このエントリーをはてなブックマークに追加
ID 53141
FullText URL
Author
Ishikawa, Hisashi
Tsuzaki, Ryuichiro
Yasunaka, Tetsuya
Koike, Kazuko
Shimomura, Yasuyuki
Seki, Hiroyuki
Matsushita, Hiroshi
Miyake, Yasuhiro
Ikeda, Fusao Kaken ID publons
Nouso, Kazuhiro
Yamamoto, Kazuhide ORCID Kaken ID publons
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease characterized by lobular inflammation, hepatocellular ballooning, and fibrosis with an inherent risk for progression to cirrhosis and hepatocellular carcinoma (HCC). Mitochondrial dysfunction appears to play a role in the progression from simple steatosis to NASH. L-carnitine (L-b-hydroxy-g-N-trimethylaminobutyric acid), an essential nutrient that converts fat into energy in mitochondria, has been shown to ameliorate liver damage. The aim of the present study was to explore the preventive and therapeutic effect of L-carnitine in NASH model mice. Eight-week-old male STAM mice, a NASH-cirrhosis-hepatocarcinogenic model, were divided into 3 experimental groups and fed as follows: 1) high-fat diet (HFD) (control group); 2) HFD mixed with 0.28% L-carnitine (L-carnitine group); and 3) HFD mixed with 0.01% alpha-tocopherol (alpha-tocopherol group). After 4 or 8 weeks, mice were sacrificed. Blood samples and livers were collected, and hepatic tumors were counted and measured. Livers were subjected to histological study, immunohistochemical staining of 4-hydroxynonenal and ferritin, determination of 8-OHdG levels, mRNA and protein expressions for multiple genes, and metabolomic analysis. The intestinal microbiome was also analyzed. L-carnitine increased hepatic expression of genes related to long-chain fatty acid transport, mitochondrial beta-oxidation, and antioxidant enzymes following suppression of hepatic oxidative stress markers and inflammatory cytokines in NASH, and mice treated with L-carnitine developed fewer liver tumors. Although alpha-tocopherol resulted in NASH improvement in the same manner as L-carnitine, it increased periodontitis-related microbiotic changes and hepatic iron transport-related gene expression and led to less effective for anti-hepatocarcinogenesis. Conclusion: L-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model by upregulating the mitochondrial beta-oxidation and redox system.
Published Date
2014-07-01
Publication Title
PLoS ONE
Volume
volume9
Issue
issue7
Publisher
Public Library Science
ISSN
1932-6203
Content Type
Journal Article
Related Url
http://ousar.lib.okayama-u.ac.jp/metadata/53133
language
English
Copyright Holders
© 2014 Ishikawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
File Version
publisher
Refereed
True
DOI
Web of Science KeyUT