| ID | 69340 |
| FullText URL |
suppl.docx
8.59 MB
|
| Author |
Hasegawa-Takano, Masumi
Atmosphere and Ocean Research Institute, The University of Tokyo
Hosaka, Toshiaki
Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
Kojima, Keiichi
Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
ORCID
Kaken ID
researchmap
Nishimura, Yosuke
Atmosphere and Ocean Research Institute, The University of Tokyo
Kurihara, Marie
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
Nakajima, Yu
Atmosphere and Ocean Research Institute, The University of Tokyo
Ishizuka-Katsura, Yoshiko
Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
Kimura-Someya, Tomomi
Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
Shirouzu, Mikako
Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research
Sudo, Yuki
Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
ORCID
Kaken ID
researchmap
Yoshizawa, Susumu
Atmosphere and Ocean Research Institute, The University of Tokyo
|
| Abstract | Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax = 570 nm), whereas GCyR-II absorbed green light (λmax = 550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria.
|
| Keywords | cyanobacteria
microbial rhodopsin
ecology
evolution
|
| Published Date | 2024-01
|
| Publication Title |
The ISME Journal
|
| Volume | volume18
|
| Issue | issue1
|
| Publisher | Oxford University Press (OUP)
|
| Start Page | wrae175
|
| ISSN | 1751-7362
|
| NCID | AA12230488
|
| Content Type |
Journal Article
|
| language |
English
|
| OAI-PMH Set |
岡山大学
|
| Copyright Holders | © The Author(s) 2024.
|
| File Version | publisher
|
| PubMed ID | |
| DOI | |
| Web of Science KeyUT | |
| Related Url | isVersionOf https://doi.org/10.1093/ismejo/wrae175
|
| License | https://creativecommons.org/licenses/by/4.0/
|
| Citation | Masumi Hasegawa-Takano, Toshiaki Hosaka, Keiichi Kojima, Yosuke Nishimura, Marie Kurihara, Yu Nakajima, Yoshiko Ishizuka-Katsura, Tomomi Kimura-Someya, Mikako Shirouzu, Yuki Sudo, Susumu Yoshizawa, Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria, The ISME Journal, Volume 18, Issue 1, January 2024, wrae175, https://doi.org/10.1093/ismejo/wrae175
|
| 助成情報 |
19J21582:
植物プランクトンの新たな光利用:ロドプシンによるエネルギー生産機構の解明
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
22KJ3197:
深海に着目した海洋微生物の新たな光利用戦略の解明
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
17K07324:
クロライドポンプNM-R3イオン輸送機構の解明と時分割シリアルフェムト秒構造解析
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
20H05450:
大腸菌無細胞合成系を利用した時分割SFX実験に適したサンプル調製法の開発
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
21H02446:
ロドプシン基底関数の理解と利用
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
15K14601:
シアノバクテリアの持つロドプシンの機能解析:彼らは光をどう使い分けるのか?
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
22H00557:
海洋微生物光受容の全貌解明:大規模メタゲノムで描き出す海と光のSeascape
( 独立行政法人日本学術振興会 / Japan Society for the Promotion of Science )
23ama121001:
生命科学と創薬研究に向けた相関構造解析プラットフォームによる支援と高度化
( 国立研究開発法人日本医療研究開発機構 / Japan Agency for Medical Research and Development )
23ama121013:
疾病関連膜タンパク質の生産および構造解析支援
( 国立研究開発法人日本医療研究開発機構 / Japan Agency for Medical Research and Development )
JPMXD1521474594:
( 文部科学省 / Ministry of Education )
JPMJPR23G9:
細菌から紐解くマングローブの炭素貯留能
( 国立研究開発法人科学技術振興機構 / Japan Science and Technology Agency )
JPMJAX21BK:
メタゲノムビッグデータを活用した微生物の環境適応因子の解明
( 国立研究開発法人科学技術振興機構 / Japan Science and Technology Agency )
|