このエントリーをはてなブックマークに追加


ID 62440
FullText URL
fulltext.pdf 1.39 MB
Author
Hisano, Hiroshi Institute of Plant Science and Resources, Okayama University ORCID Kaken ID publons researchmap
Hoffie, Robert E. Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben
Abe, Fumitaka Institute of Crop Science, NARO
Munemori, Hiromi Institute of Plant Science and Resources, Okayama University
Matsuura, Takakazu Institute of Plant Science and Resources, Okayama University
Endo, Masaki Institute of Agrobiological Sciences, NARO
Mikami, Masafumi Institute of Agrobiological Sciences, NARO
Nakamura, Shingo Institute of Crop Science, NARO
Kumlehn, Jochen Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben
Sato, Kazuhiro Institute of Plant Science and Resources, Okayama University ORCID Kaken ID publons researchmap
Abstract
High humidity during harvest season often causes pre-harvest sprouting in barley (Hordeum vulgare). Prolonged grain dormancy prevents pre-harvest sprouting; however, extended dormancy can interfere with malt production and uniform germination upon sowing. In this study, we used Cas9-induced targeted mutagenesis to create single and double mutants in QTL FOR SEED DORMANCY 1 (Qsd1) and Qsd2 in the same genetic background. We performed germination assays in independent qsd1 and qsd2 single mutants, as well as in two double mutants, which revealed a strong repression of germination in the mutants. These results demonstrated that normal early grain germination requires both Qsd1 and Qsd2 function. However, germination of qsd1 was promoted by treatment with 3% hydrogen peroxide, supporting the notion that the mutants exhibit delayed germination. Likewise, exposure to cold temperatures largely alleviated the block of germination in the single and double mutants. Notably, qsd1 mutants partially suppress the long dormancy phenotype of qsd2, while qsd2 mutant grains failed to germinate in the light, but not in the dark. Consistent with the delay in germination, abscisic acid accumulated in all mutants relative to the wild type, but abscisic acid levels cannot maintain long-term dormancy and only delay germination. Elucidation of mutant allele interactions, such as those shown in this study, are important for fine-tuning traits that will lead to the design of grain dormancy through combinations of mutant alleles. Thus, these mutants will provide the necessary germplasm to study grain dormancy and germination in barley.
Keywords
Hordeum vulgare
seed dormancy
targeted genome modification
CRISPR
Cas9 nuclease
pre-harvest sprouting
Published Date
2021-08-29
Publication Title
Plant Biotechnology Journal
Publisher
Wiley
Start Page
1
End Page
10
ISSN
1467-7644
NCID
AA11805223
Content Type
Journal Article
language
English
OAI-PMH Set
岡山大学
Copyright Holders
© 2021 The Authors.
File Version
publisher
PubMed ID
DOI
Web of Science KeyUT
Related Url
isVersionOf https://doi.org/10.1111/pbi.13692
License
https://creativecommons.org/licenses/by/4.0/
Citation
Hisano, H., Hoffie, R. E., Abe, F., Munemori, H., Matsuura, T., Endo, M., Mikami, M., Nakamura, S., Kumlehn, J. and Sato, K. (2021)Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. Plant Biotechnol J., https://doi.org/10.1111/pbi.13692