このエントリーをはてなブックマークに追加


ID 63349
FullText URL
fulltext.pdf 1.75 MB
Author
Ohta, Jun Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
Abstract
The Calvin-Benson cycle (CB cycle) is quantitatively the most important metabolic pathway for CO2 fixation. In the canonical CB cycle, fructose 6-phosphate (F6P), fructose 1,6-bisphosphate (FBP), sedoheptulose 7-phosphate (S7P), and sedoheptulose 1,7-bisphosphate (SBP) appear as essential intermediates, where F6P is formed from FBP by the fructose 1,6-bisphosphatase (FBPase) reaction, and S7P is formed from SBP by the sedoheptulose 1,7-bisphosphatase (SBPase) reaction. Although the involvement of SBP and SBPase in the canonical CB cycle is consistent with the reported dependency of photosynthetic carbon metabolism on SBPase, the involvement of FBP and FBPase is not completely consistent with the reported FBP- or FBPase-related findings such as, although with a diminished growth rate, an Arabidopsis mutant lacking FBPase grew photoautotrophically in soil. Here, we show a novel variant of the CB cycle involving SBP, SBPase, and transaldolase, but neither FBP nor FBPase. This novel variant, named the S7P-removing transaldolase variant, bypasses FBP. This variant explains the FBP- or FBPase-related findings more easily than the canonical CB cycle as well as the dependency of photosynthetic carbon metabolism on SBPase and further suggests that co-overexpression of SBPase and transaldolase can be a strategy for enhancing photosynthetic carbon metabolism, which is important for the global environment.
Published Date
2022-03-16
Publication Title
Scientific Reports
Volume
volume12
Issue
issue1
Publisher
Nature Portfolio
Start Page
3984
ISSN
2045-2322
Content Type
Journal Article
language
English
OAI-PMH Set
岡山大学
Copyright Holders
© The Author(s) 2022
File Version
publisher
PubMed ID
DOI
Web of Science KeyUT
Related Url
isVersionOf https://doi.org/10.1038/s41598-022-07836-7
License
http://creativecommons.org/licenses/by/4.0/