このエントリーをはてなブックマークに追加
ID 56445
Title Alternative
A Study of Extracting Related Documents for Essay Evaluation Modules
FullText URL
Author
Motojin, Kota Graduate School of Natural Science and Technology, Okayama University
Takeuchi, Koichi Graduate School of Natural Science and Technology, Okayama University
Ohno, Masayuki Graduate School of Natural Science and Technology, Okayama University
Taguchi, Masahiro Graduate School of Natural Science and Technology, Okayama University
Inada, Yoshihiko Graduate School of Natural Science and Technology, Okayama University
Iizuka, Masaya Graduate School of Natural Science and Technology, Okayama University
Abo, Tatsuhiko Graduate School of Natural Science and Technology, Okayama University
Ueda, Hitoshi Graduate School of Natural Science and Technology, Okayama University
Abstract
本研究では,小論文採点システムにおいて必要となる小論文に関連した文書を取得する方法を開発した.本研究プロジェクトの自動採点の評価軸の1 つに「妥当性」がある.妥当性の評価手法として,小論文の内容がWikipediaの文書の内容と,どの程度一致しているかを基準に妥当性スコアを算出する方法を考えている.しかし,Wikipediaの文書は多様であり,小論文で取り上げていない議題に関する文書も多く存在する.そこで本論文では小論文ごとに適切な文書を取得する方法を提案する.いくつかの手法を試した結果,単語ベクトルを使用した方法が,関連した文書を獲得することができたことを報告する.
Abstract Alternative
We are developing an automatic Japanese essay-scoring system that is composed of 4 evaluation criteria, comprehensiveness, logical consistency, validity, spelling and grammar. In this paper, we discuss the most powerful approach to extract documents of Wikipedia that relates to the reference texts of the target essay theme for validity evaluation. The reason for using Wikipedia documents for evaluating validity of students’essays is that we assume that validity can be evaluated by the expanded discussions in Wikipedia documents that relates to the essay theme. Experimental results show that the skip-gram based word vector is the best approach to extract relating documents to reference texts among several keyword-based evaluation approaches.
Keywords
小論文の自動採点 (Automatic scoring of answers of essay-writing tests)
単語ベクトル (Word vector)
Skip-gram
Wikipedia
Published Date
2017-09
Publication Title
IEICE technical report. Natural language processing and models of communication
Volume
volume117
Issue
issue207
Publisher
電子情報通信学会
Start Page
47
End Page
51
ISSN
09135685
NCID
AA11524632
Content Type
Journal Article
language
日本語
OAI-PMH Set
岡山大学
Copyright Holders
copyright©2017 IEICE
File Version
publisher