このエントリーをはてなブックマークに追加
ID 52431
FullText URL
Author
Fang, Xing
Nunoshiba, Tatsuo
Yoshida, Midori
Nishikawa, Akiyoshi
Nemoto, Kiyomitsu
Degawa, Masakuni
Okamoto, Keinosuke
Abstract
It remains uncertain why non-genotoxic compounds that result in liver hypertrophy cause liver tumors. In an effort to resolve this issue, we examined whether liver post-mitochondrial fraction (S9) prepared from rats treated with non-genotoxic compounds affected the genotoxicity of pro-mutagens. Known hepatotoxic compounds, such as piperonyl butoxide (PBO), decabromodiphenyl ether (DBDE), beta-naphthoflavone (BNF), indole-3-carbinol (I3C) and acetaminophen (AA), were orally administered to male and female F344 rats at doses sufficient to cause liver hypertrophy. Rats received diets containing each test compound for 3 days, 4 weeks or 13 weeks, and were then kept for 4 weeks without the test chemical. S9 prepared from the livers of each group was used for the Ames test with 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), benzo[a]pyrene (BaP) and N-nitrosodimethylamine (NDMA). In both sexes, liver hypertrophy was observed following administration of all test compounds, and was then reversed to the control state when administration ceased. The mutagenicity of MeIQx, BaP and NDMA increased with the use of S9 derived from rats treated with non-genotoxic compounds other than AA. DBDE administration had a marked effect on the mutagenicity of BaP (over a 30-fold increase in females) and NDMA (about a 20-fold increase in males). To estimate the involvement of metabolic enzymes in the alteration of mutagenicity, we measured the activity of ethoxyresorufin-O-deethylase (EROD) and methoxyresorufin-O-demethylase (MROD) (phase I enzymes), and UDP-glucuronosyltransferase (UGT) and glutathione S-transferase (GST) (phase II enzymes) in each S9 sample. The activity of phase I enzymes increased, even at the 3rd day following administration, and then decreased gradually, except in the case of AA, while the activity of phase II enzymes increased slightly. These results suggest that non-genotoxic hepato-hypertrophic compounds may be partly involved in carcinogenesis by modulating the metabolism of pre-carcinogens incorporated from the environment, in a manner that is dependent on sex and pre-incorporated chemicals.
Keywords
liver hypertrophic compound
metabolism
mutation
Ames test
Published Date
2014-02-28
Publication Title
Genes and Environment
Volume
volume36
Issue
issue1
Start Page
1
End Page
9
ISSN
1880-7046
Content Type
Journal Article
language
English
Copyright Holders
© 2014 by The Japanese Environmental Mutagen Society
File Version
publisher
Refereed
True
DOI