このエントリーをはてなブックマークに追加
ID 61361
FullText URL
Author
Kamba, Yuya Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University
Ueta, Miharu Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University
Uddin, Md. Azhar Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University
Kato, Yoshiei Department of Material and Energy Science, Graduate School of Environmental and Life Science, Okayama University ORCID publons
Abstract
Zinc (Zn) removal by physically mixed particles of zero-valent iron (Fe) and iron sulfide (FeS) was investigated as one technology for Zn removal from waste groundwater. The effects of the Fe/FeS mass ratio, including a single Fe and FeS particles, and pH on changes in the concentrations of Zn, Fe, and S were examined by a batch test and column tests, and the mechanism of Zn elimination was discussed. Among all the mixing fractions of Fe and FeS, Zn was eliminated most effectively by 3Fe/7FeS (mass ratio of Fe/FeS = 3/7). The Zn removal rate decreased in the order of 3Fe/7FeS, FeS, and Fe, whereas the Fe concentration decreased in the order of Fe, FeS, and 3Fe/7FeS. The S concentration of FeS was larger than that of 3Fe/7FeS. The Zn removal rate by physically mixed 3Fe/7FeS particles was enhanced by a local cell reaction between the Fe and FeS particles. The electrons caused by Fe corrosion moved to the FeS surface and reduced the dissolved oxygen in the solution. Zn2+, Fe2+, and OH− ions in the solution were then coprecipitated on the particles as ZnFe2(OH)6 and oxidized to ZnFe2O4. Moreover, Zn2+ was sulfurized as ZnS by both the Fe/FeS mixture and the simple FeS particles. The Zn removal rate increased with increasing pH in the range from pH 3 to 7. From a kinetic analysis of Zn removal, the rate constant of anode (Fe)/cathode (FeS) reaction was almost the same as that of ZnS formation and slightly larger than that of Fe alone.
Keywords
Zero-valent iron
Iron sulfide
Zinc ion
Zinc removal
Groundwater treatment
Note
This is a post-peer-review, pre-copyedit version of an article published in Water, Air, & Soil Pollution. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11270-020-04966-4.
Published Date
2021-01-06
Publication Title
Water, Air, & Soil Pollution
Volume
volume232
Issue
issue1
Publisher
Springer
Start Page
17
ISSN
0049-6979
NCID
AA00886303
Content Type
Journal Article
language
英語
OAI-PMH Set
岡山大学
File Version
author
DOI
Web of Science KeyUT
Related Url
isVersionOf https://doi.org/10.1007/s11270-020-04966-4