このエントリーをはてなブックマークに追加


ID 66007
フルテキストURL
著者
Davis, Daniel G. Department of Mathematics, University of Louisiana at Lafayette
抄録
Let n ≥ 1, p a prime, and T(n) any representative of the Bousfield class of the telescope v−1n F(n) of a finite type n complex. Also, let En be the Lubin-Tate spectrum, K(En) its algebraic K-theory spectrum, and Gn the extended Morava stabilizer group, a profinite group. Motivated by an Ausoni-Rognes conjecture, we show that there are two spectral sequences
IEs,t2 ⇒ πt−s((LT(n+1)K(En))hGn) ⇐ IIEs,t2
with common abutment π∗(−) of the continuous homotopy fixed points of LT(n+1)K(En), where IEs,t2 is continuous cohomology with coefficients in a certain tower of discrete Gn-modules. If the tower satisfies the Mittag-Leffler condition, then there are isomorphisms with continuous cochain cohomology groups:
IE∗,∗2 ≅ H∗cts(Gn, π∗(LT(n+1)K(En))) ≅ IIE∗,∗2.
We isolate two hypotheses, the first of which is true when (n, p) = (1, 2), that imply (LT(n+1)K(En))hGn ≃ LT(n+1)K(LK(n)S0). Also, we show that there is a spectral sequence
Hscts(Gn, πt(K(En) ⊗ T(n + 1))) ⇒ πt−s((K(En) ⊗ T(n + 1))hGn).
キーワード
Algebraic K-theory spectrum
continuous homotopy fixed point spectrum
Lubin-Tate spectrum
Morava stabilizer group
homotopy fixed point spectral sequence
telescopic localization
備考
Mathematics Subject Classification. Primary 19D55; Secondary 55N20, 55P42, 55T25.
発行日
2024-01
出版物タイトル
Mathematical Journal of Okayama University
66巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
135
終了ページ
157
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
著作権者
Copyright ©2024 by the Editorial Board of Mathematical Journal of Okayama University
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol66/iss1/10