
| ID | 66007 |
| フルテキストURL | |
| 著者 |
Davis, Daniel G.
Department of Mathematics, University of Louisiana at Lafayette
|
| 抄録 | Let n ≥ 1, p a prime, and T(n) any representative of the Bousfield class of the telescope v−1n F(n) of a finite type n complex. Also, let En be the Lubin-Tate spectrum, K(En) its algebraic K-theory spectrum, and Gn the extended Morava stabilizer group, a profinite group. Motivated by an Ausoni-Rognes conjecture, we show that there are two spectral sequences
IEs,t2 ⇒ πt−s((LT(n+1)K(En))hGn) ⇐ IIEs,t2 with common abutment π∗(−) of the continuous homotopy fixed points of LT(n+1)K(En), where IEs,t2 is continuous cohomology with coefficients in a certain tower of discrete Gn-modules. If the tower satisfies the Mittag-Leffler condition, then there are isomorphisms with continuous cochain cohomology groups: IE∗,∗2 ≅ H∗cts(Gn, π∗(LT(n+1)K(En))) ≅ IIE∗,∗2. We isolate two hypotheses, the first of which is true when (n, p) = (1, 2), that imply (LT(n+1)K(En))hGn ≃ LT(n+1)K(LK(n)S0). Also, we show that there is a spectral sequence Hscts(Gn, πt(K(En) ⊗ T(n + 1))) ⇒ πt−s((K(En) ⊗ T(n + 1))hGn). |
| キーワード | Algebraic K-theory spectrum
continuous homotopy fixed point spectrum
Lubin-Tate spectrum
Morava stabilizer group
homotopy fixed point spectral sequence
telescopic localization
|
| 備考 | Mathematics Subject Classification. Primary 19D55; Secondary 55N20, 55P42, 55T25.
|
| 発行日 | 2024-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 66巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 135
|
| 終了ページ | 157
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 著作権者 | Copyright ©2024 by the Editorial Board of Mathematical Journal of Okayama University
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol66/iss1/10
|