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SEVERAL HOMOTOPY FIXED POINT SPECTRAL
SEQUENCES IN TELESCOPICALLY LOCALIZED
ALGEBRAIC K-THEORY

DANIEL G. DAvVIs

ABSTRACT. Let n > 1, p a prime, and T'(n) any representative of the
Bousfield class of the telescope v, 'F(n) of a finite type n complex.
Also, let E, be the Lubin-Tate spectrum, K (E,) its algebraic K-theory
spectrum, and G, the extended Morava stabilizer group, a profinite
group. Motivated by an Ausoni-Rognes conjecture, we show that there
are two spectral sequences

"By = mi—s(Lrgnrn K (Bn))"") <= "E3"

with common abutment . (—) of the continuous homotopy fixed points
of Lp(nt1) K (En), where g3 is continuous cohomology with coefficients
in a certain tower of discrete G,-modules. If the tower satisfies the
Mittag-Leftler condition, then there are isomorphisms with continuous
cochain cohomology groups:
IE;,* = Hc*ts(Gn7 ﬂ-*(LT(’ﬂ+1)K(En))) = IIE;*'

We isolate two hypotheses, the first of which is true when (n,p) = (1, 2),
that imply (LT(n+1)K(En))hG" ~ LT<n+1)K(LK(n)SO). Also, we show
that there is a spectral sequence

Ho (G 1o (K (En) © T(n + 1)) = m—s(K(En) © T(n +1)"%").

1. INTRODUCTION

1.1. The basic characters in this work and Lp(,,1)K(E,) as a G-
spectrum. Let n > 1, let p be any prime, and let Sp be the symmetric
monoidal co-category of spectra. Let F'(n) denote a finite type n complex
and let v, 1 F(n) be the telescope of a v,-self-map v on F(n). By [25, Lemma
4] and [32, page 103], v, F(n) is independent of the choice of v and the
Bousfield class of v, F(n) is independent of the choices for F(n) and v. As
is common, we let 7'(n) denote a representative of this Bousfield class. Also,
given a ring spectrum A (that is, an algebra in Sp; also called an E;-ring
spectrum), K (A) denotes the algebraic K-theory spectrum of A.
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Let K (n) be the nth Morava K-theory spectrum and let E,, be the Lubin-
Tate spectrum with

W*(En) = W(]Fp")[[ulv X un—l]][uiIL

where the complete power series ring over the Witt vectors for the field with
p" elements is in degree 0 and |u| = —2. Also, G,, denotes the nth extended
Morava stabilizer group, a profinite group which acts on FE,, by maps of
commutative algebras (for more background on this, see [19, 23, 24]). As in
(19, (1.4)], let

Gn=Uo 201220 2
be a descending chain of open normal subgroups of G, with ()5, U; = {e}.

Then by [19, Theorem 1], [8, Section 8], [20], and [36, Theorem 1.2], there
is a diagram

(1.1) EGn = ghUo _y phUv _y .y ghU:

in the oo-category CAlg(Sp) of commutative algebras in Sp that consists of
continuous homotopy fixed point spectra.
As in [28, Proposition 4.22; Proposition 7.10, (d)], we let

Mo < My < -+ Mj < ---

be a tower of generalized Moore spectra: each Mj is finite of type n + 1
and an atomic p-spectrum and the tower has the property that there is an
equivalence

Lrmny1)Z ~ gfé(z ® Mj),

for any spectrum Z. Let MU, denote the p-localization of MU. For each
Jj, there is a sequence a(5)o,a(j)1, ..., a(j)n of powers of p such that

(MU (M) 2 (MU0, 57, 02)

n

and it is common to write
M; = M(vg(j)o,v(f(j)l, oy 02)n),

As recalled in Definition 4 (see [38, Definition 2.6], [32]), we use Li 41 to
denote the Bousfield localization functor that is often referred to as “finite
E(n+1)-localization” [34]. We can now state a result that we use in Section
1.2 to define the continuous Gn-homotopy fixed points of Ly, 1) K(Enp).

Theorem 1.1. For every n > 1 and all primes p, there is an equivalence

Ly K (En) == lim(colim(K (%) @ L, M;)).
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On the right-hand side of the above equivalence — and elsewhere in this
paper — we use “colim” to denote the colimit in Sp; any other colimit for
spectra equipped with additional structure is marked as such. The proof of
Theorem 1.1, which is in Section 3, uses a deep result from [31] in a key way.

The G,,-action on F, induces a natural G, /U;-action on each EZUZ', and

hence, for each i and j, K (E"i) ®L£+1Mj has a natural Gy, /U;-action, with

G, /U; acting trivially on Lfl 1 M; (and diagonally on the smash product).
It follows that in Theorem 1.1, the equivalence is G,-equivariant.

Definition 1. Let G be any profinite group. As in [11], let Sh(7¢, Sp)
denote the co-category of Sp-valued sheaves on the Grothendieck site 7 of
finite continuous G-sets. Also, as in [op. cit.], PShi(7¢, Sp) denotes the oo-
category of presheaves of spectra on 7 that send finite coproducts in T¢ to
finite products (see also [6, Section 2]), and PSh(Og, Sp) is the oo-category
of presheaves on the orbit category of G consisting of quotients of G by open
subgroups.

By applying [19, Theorem 1] and [8, Section 8], we let F' € PSh(Og,,, Sp)
be the presheaf defined by

F:G,/U~ E,};U, U an open subgroup of G,

where, as before, E,};U is the continuous homotopy fixed point spectrum and
F is actually a presheaf of commutative algebras. Thus, there is a diagram
{P;};j>0 in PSh(Og,, Sp), with each presheaf P; defined by

Pj: Gn/U — K(E") @ L£+1M]~ U an open subgroup of G,,.

1.2. Continuous homotopy fixed points for Ly(,;1)K(E,) and two
associated homotopy fixed point spectral sequences. We say that
a profinite group G has “finite cohomological dimension” if there is some
integer so such that the continuous cohomology H(G, M) = 0, whenever
s > so and M is any discrete G-module. Recall that GG, has finite virtual
cohomological dimension: that is, G,, contains an open subgroup U of finite
cohomological dimension. Also, as recalled (with more generality) in Section
4, if
Xo—»X1—- > X, —> -

is a diagram of G,-spectra such that for each i, the G-action on X; factors
through G,,/U; (that is, U; acts trivially on X;), then there is the continuous
homotopy fixed point spectrum (colim;>q Xi)hG”, given by the totalization
of an {i > 0}-indexed colimit of certain familiar cosimplicial spectra.

It is now natural to make the following definition, which follows a familiar
template in algebraic K-theory (for example, see [22, Proposition 3.1.2, last
paragraph of 3.1, proof of Theorem 4.2.6]).
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Definition 2. Let n > 1 and let p be any prime. There is the continuous
homotopy fixed point spectrum

(L K (En))'Cn = (hm(colim(K(EZUi) ® L7

hGh
§>0" i>0 ”+1Mj>)) ’

where the right-hand side is given by

hG
. . hU; f ) no. . hU; f ) hGn
(%g&(c%lén(K(En )®Ln+le))) = Elé%(C?éléIl(K(En JQL],  M;)) .
For each j > 0, by Theorem 4.1, there is an equivalence
. . hGrn . g
(C?élgn(K(EzUz) ® L£+1Mj)) = (C(i)élén Pj(Gn/Ui))hGn ~ PjH<*)

with the global sections of the Postnikov sheafification ﬁl‘[ of the presheaf
Pjy in PShyy(7e,,, Sp) that is induced by P;.

To state the next result, whose proof is in Section 5, we need the follow-
ing notation. Given a profinite group G' and a tower {4;};>o of discrete
G-modules, we let HY, ((G;{A;};>0) denote continuous cohomology in the
sense of Jannsen [29] and H (G, lim;>¢ A;) is continuous cochain cohomol-
ogy with coefficients in the stated topological G-module. Also, if X*® is a
cosimplicial spectrum, then we let HES’t be the Es-term of the associated
homotopy spectral sequence

Hpst .= lig® 7(X*) = - o(Tot(X*)).

Theorem 1.2. Let n > 1 and let p be any prime. There are conditionally
convergent homotopy fixed point spectral sequences

'E5" = Higt (G {m(K (En) ®v, 4, Mj)}j20) = s (Lrmin) K (Ea)) ")
and
t
"By = mi—s(Lpgnany K (En))").
If the tower {m (K (Ey) ®v;i1Mj)}j20 satisfies the Mittag-Leffler condition
for every t € Z, then for all s > 0, there are isomorphisms
IE;* = Hcsts(Gm 71-*(LT(nJrl)l{(E‘n))) = IIE;*y
where for each t, mi(Lypm41) K (En)) = limj>o 7 (K (E,) ® v;ile).

For any spectrum X with trivial G,-action, there are two homotopy fixed
point spectral sequences for m.((Lg(n)(En ® X ))"Gn) that correspond to
the two in Theorem 1.2, but by [17, Theorem 1.2], it is the second one,
with its own particular ! IE;’*, that is isomorphic to the strongly convergent
K(n)-local Ej,-Adams spectral sequence for 7.(Lg,)X). One ingredient

in the construction of this Adams-type spectral sequence is that F, is a
commutative algebra. Similarly, K(F,) is a commutative algebra and it
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seems plausible that, in general, the second spectral sequence in Theorem 1.2
has better properties. Also, by [8, Section 4.6], it could happen that there
are cases where HE;’t in Theorem 1.2 is equal to the continuous cochain
cohomology group stated in the theorem, without the underlying tower of
discrete G,-modules satisfying the Mittag-Leffler condition.

Since F' can be regarded as a presheaf of commutative algebras, there is
the presheaf L£+1 o K o F in PSh(Og,,, Sp) given by
Gn/U — Lf;_HK(F(Gn/U)) = LfLHK(EZU), U an open subgroup of G,
which induces the diagram

L K(EMYY - LS K(EMYY - L

hU;
n+1 n+1K(En 1) —

with G,,/U; acting on L£+1K(E2Ui) for each i, and hence, there is the
continuous homotopy fixed point spectrum

(colim Ly K (E7 ™))"

The next result, whose proof is in Section 5, uses this last spectrum to show
that (Ly41)K (Ep))"C" is T(n + 1)-local.

Theorem 1.3. For each n > 1 and all primes p, there is an equivalence

(Lr(uan K (Bn))" " = L (colim L] K (ELY))"").

1.3. Potential relationships of (LT(nH)K(En))hG" with an Ausoni-

Rognes conjecture involving K (F,)"“». The spectral sequences in The-
orem 1.2 remind one of an Ausoni-Rognes conjecture ([2, (0.1)], [1, page 46;
Remark 10.8]; also, see the closely related [3, Conjecture 4.2]), which states
that (a) the K(n)-local unit map n: Lg(,)S® = E,, induces a map

K(LgwS°) = K(E)"",

which — in this paper — we refer to as K, and whose target K(FE,)"% is a
homotopy fixed point spectrum whose construction is compatible with the
profinite topology on G, ; and (b) the map

K- @T(n+1): K(LgmS") @ T(n+1) = K(E,)"" @ T(n+1)
is an equivalence, so that K is a T'(n + 1)-equivalence.
Remark 1. The 7 in K is for “transposing,” since the K (n)-local unit
BN <= Lie(n)S°
of commutative algebras is an equivalence, by [19, Theorem 1], giving

K(E;") <= K(LgmS°),
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which implies that K, switches K (—) and (—)"“" in the case of E,.

Remark 2. Currently, for every n and p, there is not a published construc-
tion of K(E,)"“» or the map K,. In [14, Remark 1.5], it is noted that
according to Jacob Lurie, the condensed mathematics of Dustin Clausen
and Peter Scholze can be used to define K(FE,) as a condensed spectrum,
and then building on this, there is a candidate definition of K(F,)"“" in
the condensed setting. Similarly (see [op. cit.]), by viewing K(F,) as a
pyknotic spectrum [5, Section 3.1], there should be a pyknotic version of the
“condensed candidate” for K(E, )",

Remark 3. Strictly speaking, the Ausoni-Rognes conjecture referred to above
predicts that K, ® U;ilF (n+ 1) is an equivalence, but this is logically the
same as K. ® T'(n + 1) being an equivalence.

From the commutative square

K (Lc(n)S°) = K (B, )hGn
l Er(nyn) Kr
L1y K (Lc(nyS®) —— Lip(n 1) (K ()",

whose vertical maps, as the usual localizations, are T'(n + 1)-equivalences,
we see that if part (a) of the above Ausoni-Rognes conjecture holds, then
part (b) holds if and only if Ly, 1)(K;) is an equivalence. This leads one
to wonder about the relationship between

L1y (K (Ep)"") and (L) K (Bn))"
and if there is an equivalence between

(L) K (Bp))"“" and Lpg,q1)K (Li(n)S°).

The following result, whose proof is in Section 6, gives two hypotheses that
when jointly satisfied imply that the last two spectra above are equivalent.
If a finite group H acts on a spectrum Z, we let [[,+ Z denote the induced
cosimplicial spectrum; see Section 4 for more detail. Also, for each ¢ > 0,
we let

K(ni): Lyguny K (ER™) = (Lpgg) K (EAYH))hon /U
be the natural map.

Theorem 1.4. Let n > 1 and let p be a prime. If
(H1) the map

c%ign K(ni): Ly K (ELT) — C(Z?Egn(LT(nH)K(EQUi))hGn/Ui
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is a T(n + 1)-equivalence, and
(H2) for each j > 0, the canonical map

C(i)%lé’n Tot(C(n,7,4)®) — Tot(c?élén C(n,j,1)*)

s an equivalence, where for each 1,
C(n’j) Z). = H(Gn/Ul)'(K(EgUl) ® L£+1Mj)7
then there is an equivalence
(LT(n+1)K(En))hG" o~ LT(n-l—l)K(LK(n)SO)'

When n = 1 and p = 2, Remark 4 shows that (H1) is true, but the validity
of (H2) is still open. For pairs (n,p) # (1,2), neither (H1) nor (H2) is known
to be true and below we give some considerations related to this.

Remark 4. The map K (n0) is an equivalence, and to show that (H1)
holds, it suffices to show that for a cofinal subsequence 1,1, ..., 4, ... of
{i > 0}, each map K (n ;) is an equivalence. For each i, the canonical map
EMGn — EMi i a K (n)-local G,,/Us-Galois extension [39, Theorem 5.4.4,
(c)], so that by, for example, (2.1), this map is also a T'(n)-local G,,/U;-
Galois extension, as noted in [13, Section 4.3]. By [op. cit., Corollary 4.16],
if G,,/U; is a p-group, then K (n i) is an equivalence. When (n,p) = (1,2),
Gy 275 = 7y xZ/(2) is a pro-2-group, with Zy equal to the 2-adic integers,
and hence, (H1) holds.

It is a special case of [3, Conjecture 4.2], due to Ausoni and Rognes, that
for all n, p, and ¢, the canonical map

L1y K(EI™) — L1y (K (B2 hCn Ui

is an equivalence. Though “Conjecture 4.2” is in general still open, this
conjecture, results in [13, Sections 1, 4], especially [op. cit., Corollary 4.16]
— which was used in Remark 4, and [12, Theorems 1.3, 1.8, 1.10, 5.1, 5.6],
which include verifying special cases of “Conjecture 4.2,” give momentum
for perhaps validating (H1) in every case.

To underline the plausibility of (H1) in general, we briefly highlight [13,
Example 4.17] from the progress cited above. Let E be a Lubin-Tate theory
with extended Morava stabilizer group G5* = S, < Z, where S, is the Morava
stabilizer group and Z is the profinite completion of the integers, and for
K a closed subgroup of G¢*, let E"¥ denote the continuous homotopy fixed
points. As explained in [7, Sections 5.1, 5.2], the construction of E* uses
[19]. Now let U be an open subgroup of G¢* such that U N S, is pro-p. By
[13, Corollary 4.16] and [12], given any normal inclusion V' <V C U of
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open subgroups, the canonical map
LT(n+1)K(EhV) i> (LT(n+1)K(EhV,))hV/V/

is an equivalence, and this yields a sheaf of T'(n 4 1)-local spectra on the
site Ty.

As explained in Definition 5, (H2) holds if for every j > 0, the presheaf P;
of Section 1.1 satisfies “condition (iv)” with N' = {U; | i > 0} (“condition
(iv)” is based on [11]). Related to this is the familiar problem of showing
that a filtered colimit of homotopy spectral sequences has abutment equal
to the colimit of the abutments of those spectral sequences (for example,
see [35, Section 3.1.3]). Given any j, for each ¢ there is the homotopy fixed
point spectral sequence { ;E: "},>1 that has the form

B = (K (B @ L, My)hCn/U%),
where
B G U B & L 1),

Then (H2) is valid if for each j, there is some r > 2 and some integer s’ such
that

;Eft =0, foralli>0,s>s,tecZ.

1.4. Possible connections with the Ausoni-Rognes conjecture with-
out using towers. The next result is an immediate consequence of the
following definition (and, for example, [8, Theorem 3.2.1] and [15, Theorem
7.9]).

Definition 3. Let n > 1 and set p equal to any prime. Recall that T'(n+1)
is any choice of a representative from the Bousfield class of v;}rlF (n+1),
where F'(n + 1) is any finite type n + 1 complex. Since

K(En) ® T(n+1) ~ colim(K (E;") ® T(n +1)),

where for each 4, the copy of T'(n + 1) is equipped with the trivial G,,/U;-
action, it is natural to define the continuous homotopy fixed point spectrum

(K (Eq) © T(n +1))"%" = (colim(K (E}") © T(n + 1)))"",

which, as in Definition 2, is the global sections of a Postnikov sheafification.

Theorem 1.5. For each n > 1 and a prime p, there is a conditionally
convergent homotopy fixed point spectral sequence

Ey' = Hi (G, m(K(Eyp) @ T(n+1))) = m—s(K(Ey) ® T(n + 1)),
where T (K (E,) @ T(n+ 1)) is a discrete Gy -module, for each t € Z.
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By [1, page 46; Remark 10.8], the Ausoni-Rognes conjecture predicts that
there is a homotopy fixed point spectral sequence
H3 (G mi (K (Br) ® vl F(n +1))) = mieo (K (L S°) @ vy Fl(n + 1)),
and thus, it is natural to ask the following questions:

e When T'(n+1) := v;ilF(n + 1), the spectral sequence in Theorem
1.5 and the above conjectural spectral sequence have identical Fjs-
terms. Is the former spectral sequence a realization of the latter
one?

e In general, is there an equivalence between

K(Lg(nyS°) @ T(n+ 1) and (K(E,) ® T(n + 1))"“?
e What is the relationship between
(K(E,) ® T(n+1))"“" and K(E,)"“" @ T(n +1)?

The following result gives two conditions that imply cases in which the
answers to the first and second questions above are “yes.” The first condition
below, (H1"), is logically equivalent to (H1) in Theorem 1.4.

Theorem 1.6. Let n > 1, let p be a prime, and set T'(n + 1) equal to
v;}rlF(n + 1), where F(n+ 1) is an atomic p-spectrum. If

(H1") the map coiign K(ni) is a T(n + 1)-equivalence, and

i>
(H2') the canonical map cc&ign Tot(C(n,i)®) — Tot(cc%ignC’(n,i)') is an
1> 1=
equivalence, where for each t,
C(n,9)* = T, vy (K (ERY) @ T(n + 1)),
then there is an equivalence
(K (Ba) © T(n+ 1))"% ~ K(Lig(8%) & T(n+1).

The proof of Theorem 1.6 is in Section 6. As with the two conditions in
Theorem 1.4, when (n,p) = (1,2), assumption (H1') is true, by Remark 4,
but the status of (H2') is unknown, and for all other pairs (n,p), neither
(H1") nor (H2') is known to hold.

The next result, whose proof is in Section 5, has as a consequence that if
F(n+ 1) is chosen to be an atomic u-spectrum, then (by Remark 6) with
T(n-+1) set equal to v;ilF(nqt 1), (K(E,)®@T(n+1))"% is T(n+1)-local.
Theorem 1.7. Whenn > 1, p is a prime, and T(n+ 1) := v;ilF(n +1),
where F(n + 1) is any finite type n + 1 complex, there are equivalences

(K (En) ® T(n+1))"" = (colim L, K (E}"))"“" @ F(n +1)
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~ (colim L) K (BRI @ T(n 4 1)

= (LT(n—i—l)K(En))hG" ® T(n + 1)

Let n =1, p > 5, and let V(1) denote the type 2 Smith-Toda complex
SY/(p,v1). In [14], we constructed in the setting of symmetric spectra of

simplicial sets the continuous homotopy fixed points (K (E1) Avy 'V (1))"%
Here, we are using “A” for the smash product in symmetric spectra. In
symmetric spectra, there should be a zigzag of weak equivalences between
this (K(Ey) A vy 'V(1)"% and (colimiso(K(EMY) A vy 'V (1)) — the
model for the continuous homotopy fixed points of K (FE;) A vy V(1) con-
structed in Definition 3, but we have not completed our work on this zigzag.
In [14], we also obtained a homotopy fixed point spectral sequence for
(K(F1) Avg 'V (1 1))"%s with Ey-term equal to the E-term of the spectral
sequence given by Theorem 1.5 (with T'(2) there set equal to vy 'V/(1)) and
these two spectral sequences should be isomorphic, but our work on this is
incomplete, since it is closely related to the aforementioned zigzag.

2. SOME BASIC FACTS ABOUT T'(n)-LOCALIZATION

As in the introduction, n > 1, p is any prime, and F'(n) is a finite type n
complex. Also, following [28, Proposition 4.22], we let

Mo <= My < -+ Mj -

be a tower of generalized Moore spectra, with each M; finite of type n (here,
we have type n, not type n + 1, as in the introduction) and an atomic p-
spectrum. As recalled in Section 1.1, one feature of this tower is that for
any Z € Sp,
LpmyZ ~ i (Z ®@ M;).
J>

Given a finite type 0 complex F(0), we let T(0) := vy 'F(0) denote the
telescope of a wg-self-map on F(0). Thus, 7(0) and HQ have the same
Bousfield class.

Remark 5. Suppose that F(n) is an atomic p-spectrum. Then each of F'(n)
and, by [32, proof of Lemma 2.2], the telescope v, 1 F((n) is a “ring spectrum,”
in the sense of [32] (see also [18]). Here, by “ring spectrum,” we mean a
left-unital magma in the homotopy category of spectra (that need not be
associative or right-unital). It follows that T'(n) can be taken to be a “ring
spectrum” in the above sense, and thus, it is worth highlighting the fact
that [31, proof of Lemma 2.3] proves the much stronger result that 7'(n) can
be set equal to an algebra in Sp.
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Remark 6. Again, let F/(n) be an atomic u-spectrum, so that as in Remark
5, v, 1 F(n) is a “ring spectrum.” Then if Z is any spectrum, Z ® v, 1F(n)
is T'(n)-local. To verify this, it suffices to show that the equivalent spec-
trum v, 1 F(n) ® Z is v, ' F(n)-local (since v, ! F(n) and T'(n) have the same
Bousfield class), and this conclusion is reached by noting that the argument
in [37, proof of Proposition 1.17, (a)] goes through here. The observation
that this argument applies in this context also occurs in the antepenultimate
paragraph of [32, proof of Lemma 2.2].

We return to letting F'(n) denote a finite type n complex that is not
necessarily an atomic p-spectrum. We recall some standard notation (for
example, see [32, Definition 3.1]).

Definition 4. For each n > 1 and every prime p, LY, denotes the Bousfield
localization functor determined by the spectrum 7'(0) & T(1) & --- & T'(n).

By [32, Corollary 3.5], Ll is smashing.
Remark 7. By [32, Proposition 3.2], there is an equivalence
LIF(n) ~ v, F(n).

We believe the following result is fairly well-known (for example, see [9,
3.2; Theorem 3.3] and [27, Corollary 2.2]), but we do not know of a reference
to it in the literature that — relative to the setup and definitions in this paper
— is straightforward to follow, and so we give a proof. We learned of this
result from [21, Fact 2.11, 2] and in the case when Z = S°, the result is [32,
Proposition 5.1].

Theorem 2.1. Given Z € Sp, n > 1, and p any prime, there is an equiva-
lence
Ly Z =~ LpmLiZ.

Proof. Since Lfl is smashing and, as in [32, Proposition 5.1], there is the
diagram {v,, 1M} ;>0 of telescopes, there are equivalences
. . -1
Ly LLZ ~ g%(z ® L M;) ~ g%(Z ® vy, 1 M;).
Each M; is an atomic p-spectrum, so that each Z ® v, *M; is T(n)-local,

and hence, the three displayed expressions above are T'(n)-local. Now we
only need to show that the composition

Z = LLZ — Ly LiZ

of canonical maps is a T'(n)-equivalence.
We fix a choice for T'(n): let

_ .1 _ : —kd
T(n)=v, My = cglzl(r]nE My,
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where d is a fixed integer determined by the self-map used to form the
telescope. As in Remark 6, since My is an atomic p-spectrum, the argument
in [37, proof of Proposition 1.17, (a)] shows that L},5°® Z @ S+ My is My-
local, and hence, F(n)-local, since My and F(n) have the same Bousfield
class (by [26, page 5]), for all k& > 0. This justifies the third step in the
following chain of equivalences, whose first step applies the fact that %M,
is a finite spectrum:

(LF(n)LfLZ) ® T(n) =~ colimlim(L{S° ® Z @ M; @ S M)
k>0 >0
~ : f 0 —kd N k £ Q0 kd
~ C’?lzlén Lpm)(L7,S" @ Z @ %77 My) ~ C(]glzlén(LnS ® Z @ S FM)
~ LS9 Z®T(n)~Z® LIT(n) ~ Z® LL(LI M) ~ Z ® LI M,
~Z®T(n).

It follows that the aforementioned composition is a T'(n)-equivalence. [

Remark 8. In [13, Section 4.3], the authors work with 7'(n)-local and T'(n)-
local pro-Galois extensions in the sense of [39]. Theorem 2.1 above shows
that T'(n) satisfies [8, Assumption 1.0.3] and so [8] can be used to study
“T'(n)-local profinite Galois extensions” (especially ones that are consistent
and of finite virtual cohomological dimension), which differ slightly from
T'(n)-local pro-Galois extensions.

As in [34, Section 3], set
K(<n)=K0)eK1)®- - & K(n),

where K(0) = HQ, and as is standard, we let L,, denote the Bousfield
localization functor Ly (<y). Notice that given a p-local spectrum Z, the

canonical K (< n)-equivalence LLZ — L,Z (see [32, page 113]) is an equiv-
alence when Z is K (< n)-local, since there are equivalences

Z2~1i8"®72~10,80L{® 2 ~L,L{Z = L,L,Z ~ Z.
Therefore, if a spectrum Z is K (< n)-local, there are equivalences
(2.1) LgmyZ =~ LpmyLnZ «<— LpuyLiZ ~ Ly, Z,

where the first and last steps applied [28, Proposition 7.10, (e)] and Theorem
2.1, respectively. The observation in (2.1) is not original: it is stated in [4,
Section 3] and [31, proof of Corollary 4.20, (iv)], and the latter reference
gives a proof.
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3. A PROOF OF THEOREM 1.1

We continue to let n > 1 and p denotes a prime. Also, we use the notation
‘colim™” for the colimit in the co-category A of ring spectra.
Now let
Ag— A1 — = Ay > A — -+
be a diagram in the oo-category A7) of T'(n)-local ring spectra. The colimit

colim;, T(") A; of this diagram in Ap(,) satisfies

cohm;iTO(") A; ~ LT(n)(colimiZO A;)

in Ap(,). Then a special case of [31, Corollary 4.31], which is due to Land,
Mathew, Meier, and Tamme, is the remarkable fact that there is an equiv-
alence

Ar(n .
Lip(n1) K (colimig™ Ai) = L1 (colim Ly 1) K (A))

in Sp, which simplifies to
(3.1) L1y K (Lpm) (Colimfzo Ai)) =~ L) (C?Egn K(A)))
in Sp.
We recall that (1.1) is the diagram E!¢n = EMo — BhUn 5 ... in the
category CAlg(Sp) of commutative algebras. Let “ colim©A18(P) 7 denote

the colimit in CAlg(Sp). By [19, Definition 1.5, Lemma 6.2 and its proof,
Proposition 6.4], there is an equivalence

En =~ Lg ) (cohmgsz)lg(Sp) EMi)

in CAlg(Sp). Also, the sequential colimits
cohm?AOg(Sp) EMi  and colimf‘zo EhUi

are equivalent in Sp to chl(l)rn EnUi, and the equivalence
(2

Al
cohmz>0 Ehi ~ cohmC Og(Sp) EhUi

is in A.
For each i, E'Vi is K (n)-local, so that E"Ui is T'(n)-local and coiign EMi
z_
is K (< n)-local. Then by (2.1),
SRUGN . RU;
L () (colim 5 74) 2 L) (colim B,™").

Furthermore, (1.1) is a diagram in Ap,) and the last equivalence gives

Li¢(ny(coliml BYi) =~ Ly, (colim EM) & Ly (colim EMi)
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>~ Lp(n) (colimgéo EhU),
Since Ey, ~ L (n) (colim;“zo EMi) in A, we find that there is an equivalence
B, =~ Ly (colimpl g EAVe)
in A. Therefore, equivalence (3.1) yields the equivalences

LT(nJrl)K(En) = LT(n+1)K(LT(n) (Coliméo EQUZ))

~ 3 hU;
~ LT(n+1)(C?§(§n K(E,""))

in Sp. We recall the tower
Mo < My < -+ Mj < ---

from Section 1.1 of type n+ 1 generalized Moore spectra. Then by Theorem
2.1, there is an equivalence

- - hU;
Lt K (Bn) = lim(colim(K (B}™) @ L], M;)),
which completes the proof of Theorem 1.1.

4. CONTINUOUS HOMOTOPY FIXED POINTS AND POSTNIKOV
SHEAFIFICATION

In this section, we briefly recall some background material on continu-
ous homotopy fixed point spectra and we make some observations about
relationships with (pre)sheaves of spectra.

Let G be any profinite group. Let N be a collection of open normal sub-
groups of G that is cofinal in the collection of all the open normal subgroups
of G. Suppose that {Xy}nen is a diagram of G-spectra, consisting of a
single map Xy — Xy for each inclusion N’ C N in N, such that for each
N € N, the G-action on Xy factors through G/N. Then colimyepn X n has
an induced G-action, there is the continuous homotopy fixed point spectrum
(colimpyen Xn)"C, and if one of the conditions

(i) G has finite virtual cohomological dimension;
(ii) there is a fixed integer m such that HS(N’, m(colimyen Xn)) = 0,
for all s >m, t € Z, and N’ € N'; and

(iii) there is a fixed integer 7 such that m(colimyepn Xn) = 0, for all

t>r

holds, then by [8, Theorem 3.2.1; page 5038: 2nd paragraph] and [16, page
911], there is an equivalence

. hG .
(4.1) (colim X'y )™ = Tot(colim([ [/ nye Xn)),
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where for each N, H(G /N).X ~ is a cosimplicial spectrum that satisfies

Tot(IT(/nye Xn) =~ (Xn)he/m,
with ([T nye XN)([0]) = [T(g/nyo Xn = X and for each n > 1,

(Iia/nye Xn)([n]) =TT nyn XN

is the product of copies of Xy indexed by the set (G/N)"™, which is the n-
fold product of copies of G/N. As is well-known, the cosimplicial spectrum
H(G /Ny XN that can be used in this discussion is not unique.

In general (that is, even when none of conditions (i) — (iii) are satisfied),
associated to colimyep Xy is the presheaf P € PSh(Og, Sp) defined by

G/U — P(G/U) = (cjgf)éijr\/nXN)hU, U an open subgroup of G,
where (colimyepn Xn)"Y is the continuous U-homotopy fixed points (for
example, see [8, Proposition 3.3.1] and [6, Section 2]). This presheaf extends
canonically to a presheaf P in PShy(7¢, Sp), by sending finite coproducts
in T to finite products in Sp.

In the other direction, let F be a presheaf in PSh(O¢, Sp), so that for
each N € N, F(G/N) has a natural G-action that factors through the
G /N-action, and, as usual, the latter action yields the cosimplicial spectrum
[Ti¢/nye F(G/N). Let -7'~—H € Sh(7¢, Sp) denote the Postnikov sheafification
of the canonical presheaf Fp; in PShy(7¢, Sp) that is induced by F. Then
by [11, Construction 4.6, proof of Proposition 4.9],

Fri) = Tot(colim Fyy(G/N)*),

where for each N, (G/N)**! is the usual simplicial object in 7 associated
to G/N. For each n > 0, the stabilizer subgroup in G of the G-action on any
element in (G/N)"*! is N, so that there is an isomorphism (G/N)*! =
LG ny» G/N in Tg. 1t follows that there is an equivalence

Fri() == Tot(colim [T n)e F(G/N)

(for example, see [11, proof of Proposition 4.9, (7) in Proposition 4.11}).
Each inclusion N’ C N in N induces the projection 7: G/N' — G/N
in Og and the map F(n): F(G/N) — F(G/N'), with source and target
equipped with the induced G-action, is G-equivariant, so that as at the
beginning of this section, colimyear F(G/N) has a G-action.
The following result is an immediate consequence of the above.
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Theorem 4.1. Let G be a profinite group and let F € PSh(Og, Sp), with
F(G/N) equipped with the natural G/N -action for each N € N'. If G and
colimyen F(G/N) satisfy one of conditions (i) —(iii), then

(colim F(G/N))"“ ~ Fp (),

where the right-hand side of this equivalence is the global sections of the
Postnikov sheafification of Fiy.

Definition 5. Given a profinite group G and F € PSh(Og¢, Sp), we define
“condition (iv)” to be

(iv) there is some integer d > 0 such that for each N € N, the G/N-

action on F(G/N) is weakly d-nilpotent.

We refer the reader to [11, Definition 4.8] for the meaning of “weakly d-
nilpotent.” Our consideration of condition (iv) is partly motivated by [op.
cit., Propositions 4.9, 4.16], and [op. cit., Proposition 4.16, Theorem 4.26
(see its proof and the paragraph above Theorem 4.25)] give scenarios im-
plying that condition (iv) holds. When this condition is satisfied, [op. cit.,
Lemma 2.34] gives

= JURE ol hG/N
Fr(x) =~ C]\(f)g/\r?Tot(H(G/N).f(G/N)) o~ %)gr\lfl]:(G/N) .

Now we put together the various strands of discussion of this section in
the following result.

Theorem 4.2. Let G be a profinite group and suppose that {Xn}nen is
a diagram of G-spectra consisting of a unique map Xy — Xpn whenever
N' C N in N, such that for each N € N, the G-action on Xx factors
through G/N. Let F1 be the Postnikov sheafification of the presheaf Fi in
PShr(7¢, Sp) that is determined by the presheaf

F:G/U — (%)h/l\lleN)hU, U an open subgroup of G.
€

If G, colimyepn Xy, and F satisfy any one of conditions (i) —(iv), then there
are equivalences

((}\?g‘}\fn XN)hG ~ ‘%H( ) TOt(COhmH (G/N)* XN)

Proof. In general (that is, even when none of conditions (i) — (iv) hold), for
each n > 0, there are equivalences

%\cf)gr\rfl [ic/nyn F(G/N) ~ cohmH (G/N) n(cohmf(G/N )

hN'
= el Loy (selim (golimg Xor)™)

~ %)lelj\nfl [iG/nym (]cv(?/ln/{l[XNn) ~ cohmH (G/N)n XN
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where the first and last steps are because the diagonal of N'x N is cofinal in
N x N, and the penultimate step uses [8, Proposition 3.3.1: (2), (3)]. Hence
(again, in general), there are equivalences

Frp(x) =~ Tot(c;\(?g\rrfl Iig/n)e F(G/N)) = Tot(c}\(?gj\nfl [Tig/nye XN)-

These last two equivalences, together with the discussion at the beginning
of this section, imply the conclusion of the theorem when (i), (ii), or (iii) is
satisfied.

Now suppose that condition (iv) holds: the desired conclusion comes from
our last two equivalences and

i) 2 glip PGNP = gl X" = gy X,

where the last step follows from the fact that for each IV,

)hN)hG/N ~ ( )hG’

colim X n colim X
((N’EN N N'eN N

I

by [op. cit., Proposition 3.3.1, (4)]. O

5. PROOFS OF THEOREMS 1.2, 1.3, AND 1.7

We let n be any positive integer and p a prime. Also, we let {M;};>0 be
the tower of finite type n + 1 spectra that is described in Section 1.1.
Now we prove Theorem 1.2. Let 5 > 0: by Remark 7, LY M ~ U;ile,

n+1-"*J
so that
cloiign(K(EZUi) ® L£+1Mj) =~ LT(n+1)(C?§5HK(EZUi)) ® vy M;

~ (LK (En)) ® vt M ~ K(E,) ©@ v, 1 M;.

Also, by [32, Proposition 5.1] and Theorem 2.1, there is a tower {’U;ile }izo

and as a tower, it is levelwise equivalent to {LfL 11 M;}j>0. With these obser-

vations, Theorem 1.2 is an immediate consequence of [22, Proposition 3.1.2],
[15, Theorems 8.5, 8.8], and [29, Theorem 2.2].

To prove Theorem 1.3, we set “I™ in the notation of [8, Section 6.1] equal
toT(0)®T(1)®---®T(n+1). We have

. hGpn
K(E!Y) @ Mj))

hGn . 1 . f
(Lr(ny1)K(En)) ~ }lé’%(cgélén(LnJrl

. . X hGy,
~ %((c?%n L K(EMY) @ M)

~ lim((colim L] K (E]))"%" @ M)

~ L ((colim L K(E;0))"n)



152 D. G. DAVIS

~ Ly L1 (colim I K (%))

= LT(n+1) ((C(Z)g(]):n Ln—&—lK(ET}LLUi ))hGn)a

where the first step is because Lf; 41 is smashing; the third step follows from
the fact that each M is a finite spectrum and G, has finite virtual coho-
mological dimension (for example, see [35, Proposition 3.10] and [8, Theo-

rem 3.2.1]); because coﬁign LﬁHK(EZUi) is T-local (since L£+1 is smashing),
7

(coggn L£+1K(E2Ui))hG" is T-local, by [8, proof of Lemma 6.1.5], and this
12
yields the fifth step; and Theorem 2.1 gives the last step. This completes
the proof of Theorem 1.3.
We continue with the above context and prove Theorem 1.7: given any

choice of F(n + 1), with T'(n + 1) now set equal to v;lrlF(n +1),

o~ (Tot(c%ign H(Gn/Ui).LZ;_,'_lK(EZ’Ui))) ® F(n+1)

~ (colim LY | K (EMV)"Cn @ F(n +1)

i>0

~ L/

hoa(colim L K (7)) @ F(n + 1)

~ (colim L, ., K (E}"))"% @ T(n + 1)

= (LT(n—i—l)K(En))hGn ® T(n + 1)7

where the second equivalence applies the fact that F'(n + 1) is a finite spec-
trum, the fourth equivalence uses the justification given above for the fifth
step of the proof of Theorem 1.3, and the last equivalence is by Theorem
1.3. In this sequence of equivalent expressions, the first, fourth, sixth, and
seventh ones are the ones explicitly required by Theorem 1.7.

6. HOw THE TWO HYPOTHESES GIVE
(L) K (Bn))"C o Ly 1)K (L (n)S°)

In this section we prove Theorem 1.4. Also, since the proof is helpful
for verifying the related Theorem 1.6, after giving the proof of the former
result, we prove the latter one.

Let n > 1, with p equal to any prime. We let {M;};>¢ be the tower of
generalized Moore spectra from Section 1.1, with each Mj; a finite spectrum
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of type n + 1 and an atomic u-spectrum, and 7T'(n + 1) denotes a represen-
tative of the Bousfield class of UgilMo. We assume that the following two
statements are true:

(H1) The map
colim K (1,7): Ly (1) K (B ") — colim(Li 1) K (B;7))" /Y
is a T'(n + 1)-equivalence.

(H2) For each j > 0, with C(n, j,i)* := [T, v, (K (ERV) ® LL, M;)
for all ¢ > 0, the canonical map

colim Tot(C(n, j,4)*) — Tot(colim C(n, 7,4)*)
i>0 >0

is an equivalence.

To prove Theorem 1.4, we use each assumption only once and the usages
are marked with “By (H1)” and “applies (H2).”

By Remark 6, for every j and any spectrum 7, Z ® v;ile is T(n+ 1)-
local, and hence, by Remark 7, Z ® L£+1Mj is T'(n + 1)-local. Also, for all
j and Z,

Z® L£+1Mj >~ (Lrni1)Z) @ L£+1Mj7
since Z ® L]\ M; ~ Lys D)@ L M.
A helpful tool for our argument is the natural equivalence

2" =~ L1 (Zhir) = L) (colim Z),

where Z is any T'(n + 1)-local spectrum with an action by a finite group H
([30, Theorem 1.5], partly [33]; there are helpful presentations of this result
in [10, Section 1], [30, page 350]). The action of H on Z induces a diagram
BH — Spr(n+1), where Spy, 1) is the oo-category of T'(n+1)-local spectra,
and in the above equivalence, the rightmost expression is the colimit of this
diagram.

By (H1), the map (colim;>o K (n,i)) ® T'(n+ 1) is an equivalence, which
implies that for each j, the map colim;>o(K(n7i) ® Lf; 1 Mj) is an equiva-
lence: that is, the canonical maps

(L K (BL) © Ly Mj = colim((Ly iy K (ELY)) /Y @ L] My)

are equivalences. This gives the last step in the equivalences

LK (L S°) = (K (ES) @ L M)

= (L K (ERS)) @ Ly M;)
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~ 1 ; hU\\hGn /U, ! )
== lim colim(( L) K (B )" /% @ L M;).
Now we let ¢ and j be fixed non-negative integers and consider

(Lpnin) K (EMVN)hGlUi @ LT M.

The homotopy fixed points and (—)® L£ 1M, commute to yield the natural
equivalence

(L (BRI IUi g L] My = (L K (BRV) @ LE M;)h6n/ Vs,

because the homotopy orbits and (—) ® Lf; +1M; commute. In more detail,
we have
(Lpngry K (BRV))RGn /Ui LTfL+1Mj
= Ly (G0l Ly K (7)) @ L, M,

n 3

~ (((3;01/1? Ly K (EJY)) ® LY, M;

= L) (colim D K () @ L M)
~ LT(n+1)(g01}TUI}((LT(n+1)K(EQUi)) ® L£+1MJ’))
~ (Lyp(uyy K (BAY)) @ LY MO /U

Since (L K (ER7)) © LY Mj)M /U o (K(ERV @ L My)"on /U,
we obtain the natural equivalence

(Lpns1y K (BRV))hGn/Vi @ L) M ~ Tot(C(n, 4,4)*).

Putting the conclusions of the last two paragraphs together and then
pushing further, we obtain

L1 K (L (n)S°) ~ y;% C(Z?Egn((LT(nH)K(EﬁUi))hG"/Ui ® L) M;)

~ Eg% C?élén Tot(C(n, j,i)*) ~ Eg% Tot(c?élérn C(n,7,1)°*)

. . ; e n
=~ lim(colim (K (5] @ L M) = (L K (B)) ",

where the third equivalence applies (H2) and the fourth equivalence uses
(4.1).

Now we prove Theorem 1.6. We continue the conventions used above,
but now we define T'(n + 1) := U;ilF(n + 1), where F\(n + 1) is an atomic
p-spectrum. We assume the validity of the following two statements:

(H1") The map C?Egn K(n i) is a T'(n + 1)-equivalence.
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(H2') The canonical map coii(r)n Tot(C(n,i)*) — Tot(cogén C(n,i)®) is an
7 1z

equivalence, where for each i,
C(n,9)* = [L(g, vy (K (BRY) @ T(n +1)).

We use each assumption just once and we mark the occurrences with “by
(H1")” and “by (H2').”
We have

(K(E,) @ T(n+ 1)) ~ Tot(colim [T, 17 (K(EM) @T(n+1)))
~ coii(l]rn Tot(H(Gn/Ui).(K(EQUi) ®T(n+1)))

~ coiién(K(EkUi) ® T(n 4 1))hGn /Ui,

where the first equivalence applies (4.1) and the second equivalence is by
(H2"). Since F(n + 1) is an atomic p-spectrum, Z @ T'(n + 1) is T(n + 1)-
local for any spectrum Z, by Remark 6. Thus, as in the above proof of
Theorem 1.4, there is a natural equivalence

(K (B! @ T(n + 1))/ Vi o (L) K (ERV)) 9V @ T(n + 1),
for each 7. We now conclude that

(K(E,) ® T(n+ 1)) ~ CQE?(K(EZUi) ® T(n + 1))hCn/Ui

~ colim (L K (BLU))" /Y & Tn +1))

n

 (colim (L) K (BRU))"/V) @ Tn 4 1)

where the penultimate step is by (H1').
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