このエントリーをはてなブックマークに追加
ID 68611
フルテキストURL
著者
Harrington, Joshua Department of Mathematics, Cedar Crest College
Jones, Lenny Department of Mathematics, Shippensburg University
抄録
A polynomial f(x) ∈ Z[x] of degree N is called monogenic if f(x) is irreducible over Q and {1, θ, θ2, . . . , θN−1} is a basis for the ring of integers of Q(θ), where f(θ) = 0. Define F(x) := xm+Axm−1+B. In this article, we determine sets of conditions on m, A, and B, such that the power-compositional trinomial F(xpn) is monogenic for all integers n ≥ 0 and a given prime p. Furthermore, we prove the actual existence of infinite families of such trinomials F(x).
キーワード
irreducible
monogenic
power-compositional
trinomial
備考
Mathematics Subject Classification. Primary 11R04; Secondary 11R09, 12F05.
発行日
2025-01
出版物タイトル
Mathematical Journal of Okayama University
67巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
53
終了ページ
65
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
著作権者
Copyright ©2025 by the Editorial Board of Mathematical Journal of Okayama University
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol67/iss1/3