
| ID | 33108 |
| フルテキストURL | |
| 著者 |
Hashemi, Ebrahim
Shahrood University of Thechnology
|
| 抄録 | Let δ be a derivation on R. A ring R is called δ-quasi-Baer (resp. quasi-Baer) if the right annihilator of every δ-ideal (resp. ideal) of R is generated by an idempotent of R. In this note first we give a positive answer to the question posed in Han et al. [7], then we show that R is δ-quasi-Baer iff the differential polynomial ring S = R[x; δ] is quasi-Baer iff S is δ‾-quasi-Baer for every extended derivation δ‾ on S of δ. This results is a generalization of Han et al. [7], to the case where R is not assumed to be δ-semiprime. |
| 発行日 | 2007-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 49巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 197
|
| 終了ページ | 200
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol49/iss1/14
|
| JaLCDOI |