
| ID | 60871 |
| フルテキストURL | |
| 著者 |
Seita, Kohei
Department of Mathematics, Graduate School of Natural Science and Technology, Okayama University
|
| 抄録 | Let G be a finite group and let V and W be real G-modules. We call V and W dim-equivalent if for each subgroup H of G, the H-fixed point sets of V and W have the same dimension. We call V and W are Smith equivalent if there is a smooth G-action on a homotopy sphere Σ with exactly two G-fixed points, say a and b, such that the tangential G-representations at a and b of Σ are respectively isomorphic to V and W . Moreover, We call V and W are d-Smith equivalent if they are dim-equivalent and Smith equivalent. The differences of d-Smith equivalent real G-modules make up a subset, called the d-Smith set, of the real representation ring RO(G). We call V and W P(G)-matched if they are isomorphic whenever the actions are restricted to subgroups with prime power order of G. Let N be a normal subgroup. For a subset F of G, we say that a real G-module is F-free if the H-fixed point set of the G-module is trivial for all elements H of F. We study the d-Smith set by means of the submodule of RO(G) consisting of the differences of dim-equivalent, P(G)-matched, {N}-free real G-modules. In particular, we give a rank formula for the submodule in order to see how the d-Smith set is large.
|
| キーワード | Real G-module
Smith equivalence
representation ring
Oliver group
|
| 備考 | Mathematics Subject Classification. Primary 57S25, Secondary 20C15.
|
| 発行日 | 2021-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 63巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 153
|
| 終了ページ | 165
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 著作権者 | Copyright©2021 by the Editorial Board of Mathematical Journal of Okayama University
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol63/iss1/9
|