
| ID | 53043 |
| フルテキストURL | |
| 著者 |
Qi, Yan
Department of Mathematics Graduate School of Natural Science and Technology Okayama University
|
| 抄録 | A generator of the reduced KO-group of the real projective space of dimension n is related to the canonical line bundle γ. In
the present paper, we will prove that for a finite group G of odd order and a real G-representation U of dimension 2n, in the reduced G-equivariant KO-group of the real projective space associated with the
G-representation R ⊕ U, the element 2n+2[γ] is equal to zero.
|
| キーワード | equivariant real vector bundle
group action
real projective space
canonical line bundle
product bundle
|
| 発行日 | 2015-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 57巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 111
|
| 終了ページ | 122
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 著作権者 | Copyright©2015 by the Editorial Board of Mathematical Journal of Okayama University
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol57/iss1/6
|
| JaLCDOI |