このエントリーをはてなブックマークに追加
ID 52074
フルテキストURL
著者
Yamagishi, Hiroyuki Tokyo Metropolitan College of Industrial Technology
Watanabe, Kohtaro Department of Computer Science, National Defense Academy
Kametaka, Yoshinori Faculty of Engineering Science, Osaka University
抄録
We have obtained the best constant of the following Lp Sobolev inequality sup 0≤y≤1| u(j)(y)| ≤C (∫ 01 | u(M)(x)| p dx)1/p , where u is a function satisfying u(M) ∈ Lp(0, 1), u(2i)(0) = 0 (0 ≤i ≤ [(M − 1)/2]) and u(2i+1)(1) = 0 (0 ≤ i ≤ [(M − 2)/2]), where u(i) is the abbreviation of (d/dx)iu(x). In [9], the best constant of the above inequality was obtained for the case of p = 2 and j = 0. This paper extends the result of [9] under the conditions p > 1 and 0 ≤ j ≤ M −1. The best constant is expressed by Bernoulli polynomials.
キーワード
L<sup>p</sup> Sobolev inequality
Best constant
Green function
Reproducing kernel
Bernoulli polynomial
Hölder inequality
発行日
2014-01
出版物タイトル
Mathematical Journal of Okayama University
56巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
145
終了ページ
155
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
著作権者
Copyright©2014 by the Editorial Board of Mathematical Journal of Okayama University
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol56/iss1/11
JaLCDOI