
| ID | 54715 |
| フルテキストURL | |
| 著者 |
Defant, Colin
Department of Mathematics, University of Florida
|
| 抄録 | We define ψ‾ to be the multiplicative arithmetic function that satisfies
![]() for all primes p and positive integers α. Let λ(n) be the number of iterations of the function ψ‾ needed for n to reach 2. It follows from a theorem due to White that λ is additive. Following Shapiro's work on the iterated φ function, we determine bounds for λ. We also use the function λ to partition the set of positive integers into three sets S1, S2, S3 and determine some properties of these sets. |
| キーワード | Iterated function
Dedekind function
additive function
|
| 発行日 | 2017-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 59巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 81
|
| 終了ページ | 92
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| オフィシャル URL | http://www.math.okayama-u.ac.jp/mjou/
|
| 言語 |
英語
|
| 著作権者 | Copyright©2017 by the Editorial Board of Mathematical Journal of Okayama University
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol59/iss1/6
|
| JaLCDOI |