このエントリーをはてなブックマークに追加
ID 60864
フルテキストURL
著者
da Silva, Luiz C. B. Department of Physics of Complex Systems, Weizmann Institute of Science
抄録
We study invariant surfaces generated by one-parameter subgroups of simply and pseudo isotropic rigid motions. Basically, the simply and pseudo isotropic geometries are the study of a three-dimensional space equipped with a rank 2 metric of index zero and one, respectively. We show that the one-parameter subgroups of isotropic rigid motions lead to seven types of invariant surfaces, which then generalizes the study of revolution and helicoidal surfaces in Euclidean and Lorentzian spaces to the context of singular metrics. After computing the two fundamental forms of these surfaces and their Gaussian and mean curvatures, we solve the corresponding problem of prescribed curvature for invariant surfaces whose generating curves lie on a plane containing the degenerated direction.
キーワード
Simply isotropic space
pseudo-isotropic space
singular metric
invariant surface
prescribed Gaussian curvature
prescribed mean curvature
備考
Mathematics Subject Classification. Primary 53A35; Secondary 53A10; 53A40.
発行日
2021-01
出版物タイトル
Mathematical Journal of Okayama University
63巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
15
終了ページ
52
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
著作権者
Copyright©2021 by the Editorial Board of Mathematical Journal of Okayama University
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol63/iss1/2