
| ID | 33348 |
| フルテキストURL | |
| 著者 |
Mochizuki, Shinichi
Kyoto University
|
| 抄録 | In this paper, we study the pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set of prime numbers, over Galois groups of “solvably closed extensions” of number fields — i.e., infinite extensions of number fields which have no nontrivial abelian extensions. The main results of this paper are, in essence, immediate corollaries of the following three ingredients: (a) classical results concerning the structure of Galois groups of number fields; (b) an anabelian result of Uchida concerning Galois groups of solvably closed extensions of number fields; (c) a previous result of the author concerning the pro-Σ anabelian geometry of hyperbolic curves over nonarchimedean local fields. |
| キーワード | solvably closed
number field
Galois group
anabelian geometry
hyperbolic curve
|
| 発行日 | 2006-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 48巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 57
|
| 終了ページ | 72
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol48/iss1/7
|
| JaLCDOI |