このエントリーをはてなブックマークに追加
ID 33494
フルテキストURL
著者
Gordon, M. Departamento de Matemática e Engenharias, Universidade da Madeira
Loura, L. Departamento de Engenharia Electrotécnica e Automação Secção de Matemática
抄録

In this paper we generalize the Fourier transform from the space of tempered distributions to a bigger space called exponential generalized distributions. For that purpose we replace the Schwartz space S by a smaller space X0 of smooth functions such that, among other properties, decay at infinity faster than any exponential. The construction of X0 is such that this space of test functions is closed for derivatives, for Fourier transform and for translations. We equip X0 with an appropriate locally convex topology and we study it’s dual X'0; we call X′0 the space of exponential generalized distributions. The space X′0 contains all the Schwartz tempered distributions, is closed for derivatives, and both, translations and Fourier transform, are vector and topological automorphisms in X′0. As non trivial examples of elements in X′0, we show that some multipole series appearing in physics are convergent in this space.

キーワード
Distribution
Ultradistribution
Multipole series
Fourier transform
発行日
2010-01
出版物タイトル
Mathematical Journal of Okayama University
52巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
133
終了ページ
142
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol52/iss1/14
JaLCDOI