このエントリーをはてなブックマークに追加


ID 65908
フルテキストURL
著者
Nakagawa, Masaki Graduate School of Education Okayama University
Naruse, Hiroshi Graduate School of Education University of Yamanashi
抄録
We introduce factorial analogues of the ordinary Hall–Littlewood P- and Q-polynomials, which we call the factorial Hall–Littlewood P- and Q-polynomials. Using the universal formal group law, we further generalize these polynomials to the universal factorial Hall–Littlewood P- and Q-functions. We show that these functions satisfy the vanishing property which the ordinary factorial Schur S-, P-, and Q-polynomials have. By the vanishing property, we derive the Pieri-type formula and a certain generalization of the classical hook formula. We then characterize our functions in terms of Gysin maps from flag bundles in complex cobordism theory. Using this characterization and Gysin formulas for flag bundles, we obtain generating functions for the universal factorial Hall–Littlewood P- and Q-functions. Using our generating functions, we show that our factorial Hall–Littlewood P- and Q-polynomials have a certain cancellation property. Further applications such as Pfaffian formulas for K-theoretic factorial Q-polynomials are also given.
キーワード
factorial Hall-Littlewood P-and Q-functions
generating func-tions
formal group laws
complex cobordism theory
Gysin formulas
発行日
2023-08-16
出版物タイトル
Fundamenta Mathematicae
263巻
出版者
Institute of Mathematics, Polish Academy of Sciences
開始ページ
133
終了ページ
166
ISSN
0016-2736
NCID
AA00192803
資料タイプ
学術雑誌論文
言語
英語
OAI-PMH Set
岡山大学
著作権者
© Instytut Matematyczny PAN, 2023
論文のバージョン
author
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.4064/fm257-5-2023
助成機関名
Japan Society for the Promotion of Science
助成番号
18K03303
16H03921