このエントリーをはてなブックマークに追加


ID 62793
フルテキストURL
著者
Seita, Kohei Department of Mathematics, Graduate School of Natural Science and Technology, Okayama University
抄録
Let G be a finite group. In 1970s, T. Petrie defined the Smith equivalence of real G-modules. The Smith set of G is the subset of the real representation ring consisting of elements obtained as differences of Smith equivalent real G-modules. Various results of the topic have been obtained. The d-Smith set of G is the set of all elements [V ]−[W] in the Smith set of G such that the H-fixed point sets of V and W have the same dimension for all subgroups H of G. The results of the Smith sets of the alternating groups and the symmetric groups are obtained by E. Laitinen, K. Pawa lowski and R. Solomon. In this paper, we give the calculation results of the d-Smith sets of the alternating groups and the symmetric groups. In addition, we give the calculation results of the d-Smith sets of Cartesian products of the alternating groups and finite elementary abelian 2-groups.
キーワード
Real G-module
Smith equivalence
Oliver group
alternating group
備考
Mathematics Subject Classification. Primary 55M35, Secondary 20C15.
発行日
2022-01
出版物タイトル
Mathematical Journal of Okayama University
64巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
13
終了ページ
29
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
著作権者
Copyright ©2022 by the Editorial Board of Mathematical Journal of Okayama University
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol64/iss1/2