このエントリーをはてなブックマークに追加


ID 33602
フルテキストURL
著者
June, Leong Wah University Putra Malaysia
Hassan, Malik Abu University Putra Malaysia, Malaysia
抄録

In this paper we present two new numerical methods for unconstrained large-scale optimization. These methods apply update formulae, which are derived by considering different techniques of approximating the objective function. Theoretical analysis is given to show the advantages of using these update formulae. It is observed that these update formulae can be employed within the framework of limited memory strategy with only a modest increase in the linear algebra cost. Comparative results with limited memory BFGS (L-BFGS) method are presented.

キーワード
Large-scale optimization
limited memory methods
BFGS update.
発行日
2005-01
出版物タイトル
Mathematical Journal of Okayama University
47巻
1号
出版者
Department of Mathematics, Faculty of Science, Okayama University
開始ページ
175
終了ページ
188
ISSN
0030-1566
NCID
AA00723502
資料タイプ
学術雑誌論文
言語
英語
論文のバージョン
publisher
査読
有り
Submission Path
mjou/vol47/iss1/16
JaLCDOI