このエントリーをはてなブックマークに追加


ID 68721
フルテキストURL
著者
Bufetov, Alexander I. Steklov Mathematical Institute of RAS
Kawamoto, Yosuke Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
抄録
We investigate the intertwining of Laguerre processes of parameter α in different dimensions. We introduce a Feller kernel that depends on α and intertwines the α-Laguerre process in N + 1 dimensions and that in N dimensions. When α is a non-negative integer, the new kernel is interpreted in terms of the conditional distribution of the squared singular values: if the singular values of a unitarily invariant random matrix of order (N+α+1)×(N+1) are fixed, then the those of its (N+α) × N truncation matrix are given by the new kernel.
キーワード
Random matrices
Intertwining relation
Interacting Brownian motions
備考
The version of record of this article, first published in Journal of Statistical Physics, is available online at Publisher’s website: http://dx.doi.org/10.1007/s10955-025-03441-w
発行日
2025-04-16
出版物タイトル
Journal of Statistical Physics
192巻
5号
出版者
Springer Science and Business Media LLC
開始ページ
58
ISSN
1572-9613
資料タイプ
学術雑誌論文
言語
英語
OAI-PMH Set
岡山大学
著作権者
© The Author(s) 2025
論文のバージョン
publisher
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.1007/s10955-025-03441-w
ライセンス
http://creativecommons.org/licenses/by/4.0/
Citation
Bufetov, A.I., Kawamoto, Y. The Intertwining Property for Laguerre Processes with a Fixed Parameter. J Stat Phys 192, 58 (2025). https://doi.org/10.1007/s10955-025-03441-w
助成機関名
Okayama University
Ministry of Science and Higher Education of the Russian Federation
Japan Society for the Promotion of Science
助成番号
JP21K13812