
| ID | 68611 |
| フルテキストURL | |
| 著者 |
Harrington, Joshua
Department of Mathematics, Cedar Crest College
Jones, Lenny
Department of Mathematics, Shippensburg University
|
| 抄録 | A polynomial f(x) ∈ Z[x] of degree N is called monogenic if f(x) is irreducible over Q and {1, θ, θ2, . . . , θN−1} is a basis for the ring of integers of Q(θ), where f(θ) = 0. Define F(x) := xm+Axm−1+B. In this article, we determine sets of conditions on m, A, and B, such that
the power-compositional trinomial F(xpn) is monogenic for all integers n ≥ 0 and a given prime p. Furthermore, we prove the actual existence of infinite families of such trinomials F(x).
|
| キーワード | irreducible
monogenic
power-compositional
trinomial
|
| 備考 | Mathematics Subject Classification. Primary 11R04; Secondary 11R09, 12F05.
|
| 発行日 | 2025-01
|
| 出版物タイトル |
Mathematical Journal of Okayama University
|
| 巻 | 67巻
|
| 号 | 1号
|
| 出版者 | Department of Mathematics, Faculty of Science, Okayama University
|
| 開始ページ | 53
|
| 終了ページ | 65
|
| ISSN | 0030-1566
|
| NCID | AA00723502
|
| 資料タイプ |
学術雑誌論文
|
| 言語 |
英語
|
| 著作権者 | Copyright ©2025 by the Editorial Board of Mathematical Journal of Okayama University
|
| 論文のバージョン | publisher
|
| 査読 |
有り
|
| Submission Path | mjou/vol67/iss1/3
|