ID | 53604 |
フルテキストURL | |
著者 | |
抄録 | This paper studies traveling fronts to the Allen–Cahn equation in RN for N ≥ 3. Let
(N −2)-dimensional smooth surfaces be the boundaries of compact sets in RN−1 and assume that all principal curvatures are positive everywhere. We define an equivalence relation between them and prove that there exists a traveling front associated with a given surface and that it is asymptotically stable for given initial perturbation. The associated traveling fronts coincide up to phase transition if and only if the given surfaces satisfy the equivalence relation.
|
キーワード | traveling front
Allen–Cahn equation
nonsymmetric
|
備考 | © 2015 Society for Industrial and Applied Mathematics
|
発行日 | 2015-01
|
出版物タイトル |
SIAM Journal on Mathematical Analysis
|
巻 | 47巻
|
号 | 1号
|
出版者 | Society for Industrial and Applied Mathematics
|
開始ページ | 455
|
終了ページ | 476
|
ISSN | 0036-1410
|
NCID | AA00424217
|
資料タイプ |
学術雑誌論文
|
オフィシャル URL | http://epubs.siam.org/loi/sjmaah
|
言語 |
英語
|
著作権者 | Society for Industrial and Applied Mathematics
|
論文のバージョン | publisher
|
査読 |
有り
|
DOI | |
Web of Science KeyUT |