このエントリーをはてなブックマークに追加
ID 60242
著者
Watanabe, Takaichi Department of Applied Chemistry, Graduate School of Natural Science, Okayama University ORCID Kaken ID researchmap
Takahashi, Ruri Department of Applied Chemistry, Graduate School of Natural Science, Okayama University
Ono, Tsutomu Department of Applied Chemistry, Graduate School of Natural Science, Okayama University ORCID Kaken ID publons researchmap
抄録
We report the preparation of tough, thermally stable, and water-resistant double-network (DN) ion gels, which consist of a partially-clustered silica nanoparticle network and poly(ionic liquid) (PIL) network holding an ionic liquid. Silica nanoparticles/poly([Evim][Tf2N]) DN ion gels are prepared by photo-induced radical polymerisation of [Evim][Tf2N] in a mixture containing silica nanoparticles, [Bmim][Tf2N], ionic liquid based cross-linker [(VIM)2C4][Tf2N]2, and ethyl acetate, followed by subsequent solvent evaporation. Tensile strength measurements show that the mechanical properties of the PIL DN ion gels were higher than those of the PIL single-network (SN) ion gel. A rheological study indicates that an enhancement in mechanical strength of the PIL DN ion gels can be achieved when silica nanoparticles form partial clusters in [Bmim][Tf2N]. The cyclic stress–strain measurement of the PIL DN ion gels shows hysteresis loops, suggesting that the silica nanoparticle clusters rupture and dissipate the loading energy when the PIL DN ion gels undergo a large deformation. The fracture strength and Young's modulus of the PIL DN ion gels increase as the diameter of the silica nanoparticles is decreased. Thermogravimetric analysis measurement shows that the PIL DN ion gel has a high decomposition temperature of approximately 400 °C. Moreover, the swelling test shows that the PIL DN ion gel possesses an excellent water-resistant property because of the hydrophobic nature of the PIL backbone. We believe that such tough, thermally stable, and water-resistant PIL DN ion gels can be used as carbon dioxide separation membranes, sensors, and actuators for soft robotics.
備考
This fulltext is available in Dec.2020.
発行日
2019-12-23
出版物タイトル
Soft Matter
16巻
6号
出版者
Royal Society of Chemistry
開始ページ
1572
終了ページ
1581
ISSN
1744-683X
NCID
AA12068335
資料タイプ
学術雑誌論文
言語
English
OAI-PMH Set
岡山大学
論文のバージョン
author
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.1039/C9SM02213A
助成機関名
科学技術振興機構
助成番号
18H03854
19K15340