
| ID | 19959 | 
| JaLCDOI | |
| Sort Key | 7 | 
| フルテキストURL | |
| 著者 | 
                    Niitsuma Hirotaka
                Department of Computer Science Okayama University
                    ORCID 
                    Kaken ID 
                    publons 
                    researchmap 
     
                Rangrajan Prasanna
                Department of Electrical Engineering Southern Methodist University
     | 
| 抄録 | We present highly accurate least-squares (LS) alternatives to the theoretically optimal maximum likelihood (ML) estimator for homographies between two images. Unlike ML, our estimators are non-iterative and yield solutions even in the presence of large noise. By rigorous error analysis, we derive a “hyperaccurate” estimator which is unbiased up to second order noise terms. Then, we introduce a computational simplification, which we call “Taubin approximation”, without incurring a loss in accuracy. We experimentally demonstrate that our estimators have accuracy surpassing the traditional LS estimator and comparable to the ML estimator. | 
| 出版物タイトル | 
            Memoirs of the Faculty of Engineering, Okayama University
     | 
| 発行日 | 2010-01 | 
| 巻 | 44巻 | 
| 出版者 | Faculty of Engineering, Okayama University | 
| 出版者(別表記) | 岡山大学工学部 | 
| 開始ページ | 50 | 
| 終了ページ | 59 | 
| ISSN | 1349-6115 | 
| NCID | AA12014085 | 
| 資料タイプ | 
            紀要論文
     | 
| OAI-PMH Set | 
            岡山大学
     | 
| 言語 | 
            英語
     | 
| 論文のバージョン | publisher | 
| NAID | |
| Eprints Journal Name | mfe |