このエントリーをはてなブックマークに追加
ID 19955
JaLCDOI
Sort Key
3
フルテキストURL
著者
金谷 健一 Department of Computer Science Okayama University Kaken ID publons researchmap
Sugaya Yasuyuki Department of Information and Computer Sciences Toyohashi University of Technology
抄録
A new numerical scheme is presented for computing strict maximum likelihood (ML) of geometric fitting problems having an implicit constraint. Our approach is orthogonal projection of observations onto a parameterized surface defined by the constraint. Assuming a linearly separable nonlinear constraint, we show that a theoretically global solution can be obtained by iterative Sampson error minimization. Our approach is illustrated by ellipse fitting and fundamental matrix computation. Our method also encompasses optimal correction, computing, e.g., perpendiculars to an ellipse and triangulating stereo images. A detailed discussion is given to technical and practical issues about our approach.
出版物タイトル
Memoirs of the Faculty of Engineering, Okayama University
発行日
2010-01
44巻
出版者
Faculty of Engineering, Okayama University
出版者(別表記)
岡山大学工学部
開始ページ
13
終了ページ
23
ISSN
1349-6115
NCID
AA12014085
資料タイプ
紀要論文
OAI-PMH Set
岡山大学
言語
English
論文のバージョン
publisher
NAID
Eprints Journal Name
mfe