ID | 57492 |
フルテキストURL | |
著者 |
Ueda, Masashi
Department of Pharmaceutical Analytical Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
ORCID
Kaken ID
publons
researchmap
Saji, Hideo
Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University
|
抄録 | Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1) expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α), which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of (18)F-FDG or (18)F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.
|
発行日 | 2014-08-18
|
出版物タイトル |
Scientific World Journal
|
出版者 | Hindawi
|
開始ページ | 165461
|
ISSN | 1537744X
|
資料タイプ |
学術雑誌論文
|
言語 |
英語
|
OAI-PMH Set |
岡山大学
|
著作権者 | © 2014 Authors.
|
論文のバージョン | publisher
|
PubMed ID | |
DOI | |
Web of Science KeyUT | |
関連URL | isVersionOf https://doi.org/10.1155/2014/165461
|
ライセンス | http://creativecommons.org/licenses/by/3.0/
|