このエントリーをはてなブックマークに追加
ID 64017
フルテキストURL
fulltext.pdf 2.52 MB
著者
Sukegawa, Shintaro Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University ORCID Kaken ID publons
Tanaka, Futa Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University
Hara, Takeshi Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University
Yoshii, Kazumasa Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University
Yamashita, Katsusuke Polytechnic Center Kagawa
Nakano, Keisuke Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University ORCID Kaken ID publons researchmap
Takabatake, Kiyofumi Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Kaken ID publons researchmap
Kawai, Hotaka Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
Nagatsuka, Hitoshi Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Kaken ID publons researchmap
Furuki, Yoshihiko Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital
抄録
In this study, the accuracy of the positional relationship of the contact between the inferior alveolar canal and mandibular third molar was evaluated using deep learning. In contact analysis, we investigated the diagnostic performance of the presence or absence of contact between the mandibular third molar and inferior alveolar canal. We also evaluated the diagnostic performance of bone continuity diagnosed based on computed tomography as a continuity analysis. A dataset of 1279 images of mandibular third molars from digital radiographs taken at the Department of Oral and Maxillofacial Surgery at a general hospital (2014-2021) was used for the validation. The deep learning models were ResNet50 and ResNet50v2, with stochastic gradient descent and sharpness-aware minimization (SAM) as optimizers. The performance metrics were accuracy, precision, recall, specificity, F1 score, and area under the receiver operating characteristic curve (AUC). The results indicated that ResNet50v2 using SAM performed excellently in the contact and continuity analyses. The accuracy and AUC were 0.860 and 0.890 for the contact analyses and 0.766 and 0.843 for the continuity analyses. In the contact analysis, SAM and the deep learning model performed effectively. However, in the continuity analysis, none of the deep learning models demonstrated significant classification performance.
発行日
2022-10-08
出版物タイトル
Scientific Reports
12巻
1号
出版者
Nature Portfolio
開始ページ
16925
ISSN
2045-2322
資料タイプ
学術雑誌論文
言語
英語
OAI-PMH Set
岡山大学
著作権者
© The Author(s) 2022
論文のバージョン
publisher
PubMed ID
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.1038/s41598-022-21408-9
ライセンス
http://creativecommons.org/licenses/by/4.0/