このエントリーをはてなブックマークに追加
ID 62761
フルテキストURL
著者
Potiszil, Christian Pheasant Memorial Laboratory, Institute for Planetary Materials, Okayama University ORCID publons researchmap
Montgomery, Wren Imaging and Analysis Centre, The Natural History Museum
Sephton, Mark A. Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London
抄録
CM2 chondrites experienced widespread aqueous and short term thermal alteration on their parent bodies. Whilst previous Raman spectroscopic investigations have investigated insoluble organic matter (IOM), they have not taken into account the binary nature of IOM. Studies employing mass spectrometry have indicated that IOM also known as macromolecular organic matter (MOM) is in fact composed of two distinct fractions: labile organic matter (LOM) and refractory organic matter (ROM). The ROM component represents the aromatic rich and heteroatom poor component of IOM/MOM, whilst the LOM fraction represents a more heteroatom and aliphatic rich component. Here we report Raman 2D maps and spectroscopic data for Murchison and Mighei, both before and after chemical degradation, which attacks and liberates LOM. The removal of LOM simulates the effects of aqueous alteration, where ester and ether bonds are broken and is thought to release some components to the soluble organic matter (SOM) fraction, also known as the free organic matter fraction (FOM). Raman spectroscopy can be used to reveal the nature of bonding (sp2and sp3) within carbonaceous materials such as meteoritic organic matter, through evaluation of the D and G band peak centres and FWHM values from the recorded data. The presence of sp3orbitals indicates that the organic materials contain aliphatic linkages and/or heteroatoms. Statistical analysis of the Raman parameters obtained here indicates that the organic matter originating the Raman response is indistinguishable between the bulk (chemically untreated) and chemically degraded (treated with KOH and HI) samples. Such an observation indicates that the ROM fraction is the major contributor to the Raman response of meteoritic organic matter and thus Raman spectroscopy is unlikely to record any aqueous alteration processes that have affected meteoritic organic matter. Therefore, studies which use Raman to probe the IOM are investigating just one of the components of IOM and not the entire fraction. Studies that aim to investigate the effects of aqueous alteration on meteoritic organic matter should use alternate techniques to Raman spectroscopy. Furthermore, the indistinguishable nature of the Raman response of ROM from Murchison and Mighei suggests these meteorites inherited a ROM component that is chemically similar, reflecting either a common process for the formation of CM2 meteoritic ROM and/or that these meteorites probed the same ROM reservoir.
キーワード
carbonaceous chondrite
Raman spectroscopy
refractory organic matter
heterogeneity
alteration
備考
© 2021 Published by Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0 License.http://creativecommons.org/licenses/by-nc-nd/4.0/.This is the accepted manuscript version. The formal published version is available at [https://doi.org/10.1016/j.epsl.2021.117149] .
発行日
2021-11
出版物タイトル
Earth and Planetary Science Letters
574巻
15号
出版者
Elsevier B.V.
開始ページ
117149
ISSN
0012-821X
NCID
AA00631029
資料タイプ
学術雑誌論文
言語
英語
OAI-PMH Set
岡山大学
著作権者
© 2021 Published by Elsevier B.V.
論文のバージョン
author
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.1016/j.epsl.2021.117149
ライセンス
http://creativecommons.org/licenses/by-nc-nd/4.0/
Citation
Christian Potiszil, Wren Montgomery, Mark A. Sephton, Heterogeneity within refractory organic matter from CM2 Carbonaceous Chondrites: Evidence from Raman spectroscopy, Earth and Planetary Science Letters, Volume 574, 2021, 117149, ISSN 0012-821X, https://doi.org/10.1016/j.epsl.2021.117149.
助成機関名
UK Research & Innovation (UKRI)
Science & Technology Facilities Council (STFC)
Science and Technology Development Fund (STDF)
助成番号
1394578
ST/S000615/1