このエントリーをはてなブックマークに追加
ID 30129
フルテキストURL
著者
Handa, Hisashi Okayama University Kaken ID publons researchmap
抄録

In this paper, we propose a new double-layered state space construction method, which consists of Fritzke's Growing Neural Gas algorithm and a class management mechanism of GNG units. The classification algorithm yields a new class by referring to anticipation error, anticipation vectors of an originated class, and anticipation vectors GNG units belonging in the originated class.

キーワード
Reinforcement Learning
Growing Neural Gas
Incremental State Space Construction
備考
Published with permission from the copyright holder. This is the institute's copy, as published in SICE 2004 Annual Conference, 4-6 Aug. 2004, Vol. 3, Pages 2698-2703.
Publisher URL:http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1491910
Copyright © 2004 IEEE. All rights reserved.
発行日
2004-8
出版物タイトル
SICE 2004 Annual Conference
3巻
開始ページ
2698
終了ページ
2703
資料タイプ
学術雑誌論文
言語
英語
査読
有り
Submission Path
industrial_engineering/19