このエントリーをはてなブックマークに追加
ID 30111
フルテキストURL
著者
Handa, Hisashi Okayama University Kaken ID publons researchmap
Horiuchi, Tadashi Osaka University
Katai, Osamu Kyoto University
Kaneko, Takeshi Kyoto University
Konishi, Tadataka Okayama University
Baba, Mitsuru Okayama University
抄録

The authors introduce a novel coevolutionary genetic algorithm with schema extraction by machine learning techniques. Our CGA consists of two GA populations: the first GA (H-GA) searches for the solutions in the given problems and the second GA (P-GA) searches for effective schemata of the H-GA. We aim to improve the search ability of our CGA by extracting more efficiently useful schemata from the H-GA population, and then incorporating those extracted schemata in a natural manner into the P-GA. Several computational simulations on multidimensional knapsack problems confirm the effectiveness of the proposed method

キーワード
genetic algorithms
knapsack problems
learning (artificial intelligence)
search problems
備考
Digital Object Identifier: 10.1109/CEC.2001.934329
Published with permission from the copyright holder. This is the institute's copy, as published in Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, 27-30 May 2001, Vol. 2, Pages 1213-1219.
Publisher URL:http://dx.doi.org/10.1109/CEC.2001.934329
Copyright © 2001 IEEE. All rights reserved.
発行日
2001-5
出版物タイトル
Evolutionary Computation
2巻
開始ページ
1213
終了ページ
1219
資料タイプ
学術雑誌論文
言語
英語
査読
有り
DOI
Submission Path
industrial_engineering/34