このエントリーをはてなブックマークに追加
ID 30054
フルテキストURL
著者
Handa, Hisashi Okayama University Kaken ID publons researchmap
Katai, Osamu Kyoto University
Konishi, Tadataka Okayama University
Baba, Mitsuru Okayama University
抄録

In this paper, we discuss how many satisfiable solutions a genetic algorithm can find in a problem instance of a constraint satisfaction problems in a single execution. Hence, we propose a framework for a new fitness function which can be applied to traditional fitness functions. However, the mechanism of the proposed fitness function is quite simple, and several experimental results on a variety of instances of general constraint satisfaction problems demonstrate the effectiveness of the proposed fitness function

キーワード
constraint theory
functions
genetic algorithms
operations research
備考
Digital Object Identifier: 10.1109/CEC.2000.870783
Published with permission from the copyright holder. This is the institute's copy, as published in Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, 16-19 July 2000, Vol. 2, Pages 1184-1189.
Publisher URL:http://dx.doi.org/10.1109/CEC.2000.870783
Copyright © 2000 IEEE. All rights reserved.
発行日
2000-7
出版物タイトル
Evolutionary Computation
2巻
開始ページ
1184
終了ページ
1189
資料タイプ
学術雑誌論文
言語
英語
査読
有り
DOI
Submission Path
industrial_engineering/41