このエントリーをはてなブックマークに追加
ID 63844
フルテキストURL
著者
Sukegawa, Shintaro Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University ORCID Kaken ID publons
Tanaka, Futa Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University
Nakano, Keisuke Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University ORCID Kaken ID publons researchmap
Hara, Takeshi Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University
Yoshii, Kazumasa Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University
Yamashita, Katsusuke Polytechnic Center Kagawa
Ono, Sawako Department of Pathology, Kagawa Prefectural Central Hospital
Takabatake, Kiyofumi Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Kaken ID publons researchmap
Kawai, Hotaka Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
Nagatsuka, Hitoshi Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Kaken ID publons researchmap
Furuki, Yoshihiko Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital
抄録
The use of sharpness aware minimization (SAM) as an optimizer that achieves high performance for convolutional neural networks (CNNs) is attracting attention in various fields of deep learning. We used deep learning to perform classification diagnosis in oral exfoliative cytology and to analyze performance, using SAM as an optimization algorithm to improve classification accuracy. The whole image of the oral exfoliation cytology slide was cut into tiles and labeled by an oral pathologist. CNN was VGG16, and stochastic gradient descent (SGD) and SAM were used as optimizers. Each was analyzed with and without a learning rate scheduler in 300 epochs. The performance metrics used were accuracy, precision, recall, specificity, F1 score, AUC, and statistical and effect size. All optimizers performed better with the rate scheduler. In particular, the SAM effect size had high accuracy (11.2) and AUC (11.0). SAM had the best performance of all models with a learning rate scheduler. (AUC = 0.9328) SAM tended to suppress overfitting compared to SGD. In oral exfoliation cytology classification, CNNs using SAM rate scheduler showed the highest classification performance. These results suggest that SAM can play an important role in primary screening of the oral cytological diagnostic environment.
発行日
2022-08-02
出版物タイトル
Scientific Reports
12巻
1号
出版者
Nature Portfolio
開始ページ
13281
ISSN
2045-2322
資料タイプ
学術雑誌論文
言語
英語
OAI-PMH Set
岡山大学
著作権者
© The Author(s) 2022
論文のバージョン
publisher
PubMed ID
DOI
Web of Science KeyUT
関連URL
isVersionOf https://doi.org/10.1038/s41598-022-17602-4
ライセンス
http://creativecommons.org/licenses/by/4.0/