ID | 46969 |
JaLCDOI | |
Sort Key | 4
|
フルテキストURL | |
著者 |
Kanatani, Kenichi
Department of Information Technology, Okayama University
Kaken ID
publons
researchmap
|
抄録 | In order to facilitate smooth communications with researchers in other fields including statistics, this paper investigates the meaning of "statistical methods" for geometric inference based on image feature points, We point out that statistical analysis does not make sense unless the underlying "statistical ensemble" is clearly defined. We trace back the origin of feature uncertainty to image processing operations for computer vision in general and discuss the implications of asymptotic analysis for performance evaluation in reference to "geometric fitting", "geometric model selection", the "geometric AIC", and the "geometric MDL". Referring to such statistical concepts as "nuisance parameters", the "Neyman-Scott problem", and "semiparametric models", we point out that simulation experiments for performance evaluation will lose meaning without carefully considering the assumptions involved and intended applications.
|
出版物タイトル |
Memoirs of the Faculty of Engineering, Okayama University
|
発行日 | 2002-11
|
巻 | 37巻
|
号 | 1号
|
出版者 | Faculty of Engineering, Okayama University
|
開始ページ | 15
|
終了ページ | 23
|
ISSN | 0475-0071
|
NCID | AA10699856
|
資料タイプ |
紀要論文
|
OAI-PMH Set |
岡山大学
|
言語 |
英語
|
論文のバージョン | publisher
|
NAID | |
Eprints Journal Name | mfe
|