このエントリーをはてなブックマークに追加
ID 34106
フルテキストURL
著者
Kanatani, Kenichi Okayama University Kaken ID publons researchmap
抄録

Reformulating the Costeira-Kanade algorithm as a pure mathematical theorem independent of the Tomasi-Kanade factorization, we present a robust segmentation algorithm by incorporating such techniques as dimension correction, model selection using the geometric AIC, and least-median fitting. Doing numerical simulations, we demonstrate that oar algorithm dramatically outperforms existing methods. It does not involve any parameters which need to be adjusted empirically

備考
Digital Object Identifier: 10.1109/ICCV.2001.937679
Published with permission from the copyright holder. This is the institute's copy, as published in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, 7-14 July 2001, Volume: 2, Pages 586-591.
Publisher URL:http://dx.doi.org/10.1109/ICCV.2001.937679
Copyright © 2001 IEEE. All rights reserved.
発行日
2001-7
出版物タイトル
Computer Vision
開始ページ
586
終了ページ
591
資料タイプ
学術雑誌論文
言語
英語
査読
有り
DOI
Submission Path
electrical_engineering/117