ID | 19959 |
JaLCDOI | |
Sort Key | 7
|
フルテキストURL | |
著者 |
Niitsuma Hirotaka
Department of Computer Science Okayama University
ORCID
Kaken ID
publons
researchmap
Rangrajan Prasanna
Department of Electrical Engineering Southern Methodist University
|
抄録 | We present highly accurate least-squares (LS) alternatives to the theoretically optimal maximum likelihood (ML) estimator for homographies between two images. Unlike ML, our estimators are non-iterative and yield solutions even in the presence of large noise. By rigorous error analysis, we derive a “hyperaccurate” estimator which is unbiased up to second order noise terms. Then, we introduce a computational simplification, which we call “Taubin approximation”, without incurring a loss in accuracy. We experimentally demonstrate that our estimators have accuracy surpassing the traditional LS estimator and comparable to the ML estimator.
|
出版物タイトル |
Memoirs of the Faculty of Engineering, Okayama University
|
発行日 | 2010-01
|
巻 | 44巻
|
出版者 | Faculty of Engineering, Okayama University
|
出版者(別表記) | 岡山大学工学部
|
開始ページ | 50
|
終了ページ | 59
|
ISSN | 1349-6115
|
NCID | AA12014085
|
資料タイプ |
紀要論文
|
OAI-PMH Set |
岡山大学
|
言語 |
英語
|
論文のバージョン | publisher
|
NAID | |
Eprints Journal Name | mfe
|