start-ver=1.4 cd-journal=joma no-vol=177 cd-vols= no-issue= article-no= start-page=113652 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-term effects of forest growth dynamics and climate change on groundwater recharge and evapotranspiration in a steep catchment of western Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Growing water demand for human and environmental needs has led to increased reliance on groundwater resources. However, groundwater is a finite resource, and its sustainability is closely linked to recharge processes, which are influenced by forest growth dynamics as well as climate change. Evapotranspiration, largely driven by vegetation cover and climatic conditions, represents a major component of terrestrial water loss that can reduce groundwater recharge. In this study, forest growth trends, reflecting the complete developmental stages from juvenile to post-maturity of a representative species, were reconstructed using remote sensing data, forest inventories, and field studies, and incorporated into the SWAT model to evaluate their impacts on groundwater recharge and evapotranspiration as indicators of forest hydrological function and ecosystem health. The modelfs vegetation growth simulation was enhanced and uncertainty reduced by dynamically updating it with MODIS-derived leaf area index (LAI) at 5-year intervals. Groundwater recharge estimates were further improved through multi-variable calibration using Penman?Monteith?Leuning evapotranspiration (V2) and streamflow data to ensure water budget closure. Results showed that evergreen conifer growth from planting to maturity significantly reduced groundwater recharge (?4.7 mm/year) and increased evapotranspiration (+7.6 mm/year). In contrast, natural and mature deciduous broadleaf forests showed more stable recharge and evapotranspiration trends. Rising temperatures were identified as a key climatic driver of reduced recharge and increased evapotranspiration, reflecting broader global warming impacts. This study demonstrates that forest growth dynamics, especially during the critical transition from planting to maturity, alongside climate change, play a crucial role in shaping the catchmentfs water balance and offer valuable insights for sustainable groundwater management, particularly in transitional forest ecosystems. en-copyright= kn-copyright= en-aut-name=GuyoRendilicha Halake en-aut-sei=Guyo en-aut-mei=Rendilicha Halake kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangKunyang en-aut-sei=Wang en-aut-mei=Kunyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnoderaShin-ichi en-aut-sei=Onodera en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoMitsuyo en-aut-sei=Saito en-aut-mei=Mitsuyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoroizumiToshitsugu en-aut-sei=Moroizumi en-aut-mei=Toshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University kn-affil= affil-num=3 en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University kn-affil= affil-num=4 en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University kn-affil= affil-num=5 en-affil= Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Forest growth kn-keyword=Forest growth en-keyword=SWAT kn-keyword=SWAT en-keyword=Groundwater recharge kn-keyword=Groundwater recharge en-keyword=Evapotranspiration kn-keyword=Evapotranspiration en-keyword=MODIS LAI kn-keyword=MODIS LAI en-keyword=PML_V2 kn-keyword=PML_V2 en-keyword=Climate change kn-keyword=Climate change END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=11 article-no= start-page=e70168 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative Genomic Analysis Identifies FleQ and GcbB as Virulence-Associated Factors in Pseudomonas syringae pv. tabaci Strains en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci (Pta) is an important plant pathogen, which causes wildfire disease in Nicotiana species. However, the genetic basis underlying strain-level differences in virulence remains largely unresolved. To address this, we performed a comparative genomic analysis between a highly virulent strain Pta6605 and a less virulent strain Pta7375. Despite high overall genome similarity, we identified key single-nucleotide polymorphisms, including premature stop-codon mutations in seven open reading frames in Pta7375. Notably, point mutations in two regulatory genes, such as fleQ, which encodes a transcription factor essential for flagellar biogenesis and biofilm formation, and gcbB, which encodes a GGDEF domain-containing diguanylate cyclase responsible for cyclic dimeric guanosine monophosphate (c-di-GMP) synthesis, were implicated in virulence disparity. Functional analyses using deletion and locus replacement mutants in the Pta6605 background revealed that the disruption of fleQ markedly reduced motility, flagellin production, c-di-GMP accumulation, biofilm formation and virulence level mirroring the Pta7375 phenotype. The gcbB replacement mutant showed reduced disease symptom development, although c-di-GMP levels remained comparable to the Pta6605 wild type. Locus replacement between strains confirmed that a point mutation in fleQ was the primary driver of reduced motility and flagellin expression in Pta7375. These findings indicate that the reduced virulence of Pta7375 is associated with impaired regulation of flagella-related genes and disruption of the FleQ-mediated c-di-GMP signalling, underscoring the value of comparative genomics in disentangling the complex regulatory networks that govern virulence in plant pathogens. en-copyright= kn-copyright= en-aut-name=HidayatMuhammad Taufiq en-aut-sei=Hidayat en-aut-mei=Muhammad Taufiq kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshiokaKei en-aut-sei=Yoshioka en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraTakafumi en-aut-sei=Nishimura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AsaiShuta en-aut-sei=Asai en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasudaSachiko en-aut-sei=Masuda en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Center for Sustainable Resource Science, RIKEN-TRIP kn-affil= affil-num=6 en-affil=Center for Sustainable Resource Science, RIKEN-TRIP kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=comparative genomics kn-keyword=comparative genomics en-keyword=cyclic-di- GMP kn-keyword=cyclic-di- GMP en-keyword=fleQ kn-keyword=fleQ en-keyword=gcbB kn-keyword=gcbB en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002115 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Fungal and Protist Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Fungal and Protist Viruses Subcommittee (SC) of the International Committee on Taxonomy of Viruses (ICTV) has received a total of eight taxonomic proposals for the 2024 annual cycle. The extent of proposed changes varied, including nomenclatural updates, creation of new taxa and reorganization of established taxa. Following the ICTV procedures, all proposals were reviewed and voted upon by the members of the Executive Committee with ratification in March 2025. As a result, a total of 52 species in the families Botourmiaviridae and Marnaviridae were renamed to comply with the mandated binomial format. A new genus has been added to the dsRNA virus family Amalgaviridae, while two new families, Splipalmiviridae (Wolframvirales) and Mycoalphaviridae (Hepelivirales), were created to classify new groups of positive-sense (+) RNA mycoviruses. The class Arfiviricetes (Cressdnaviricota) was expanded by a new order Lineavirales and a new family Oomyviridae of ssDNA viruses. Additionally, a new class Orpoviricetes was created in the kingdom Orthornavirae to classify a group of bisegmented (+)RNA viruses reported from fungi and oomycetes. Finally, the order Pimascovirales was reorganized to better depict evolutionary relationships of pithoviruses and related viruses with large dsDNA genomes. The summary of updates in the taxonomy of fungal and protist viruses presented here is limited to taxa within the remit of this Subcommittee. For information on taxonomy changes on other fungal viruses closely related to animal and/or plant viruses, please see reports from sister ICTV Subcommittees (i.e. Plant Virus SC and Animal dsRNA and ssRNA(?) Viruses SC). en-copyright= kn-copyright= en-aut-name=SabanadzovicSead en-aut-sei=Sabanadzovic en-aut-mei=Sead kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbergelChantal en-aut-sei=Abergel en-aut-mei=Chantal kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Ayll?nMar??a A. en-aut-sei=Ayll?n en-aut-mei=Mar??a A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BotellaLeticia en-aut-sei=Botella en-aut-mei=Leticia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=CanutiMarta en-aut-sei=Canuti en-aut-mei=Marta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChibaYuto en-aut-sei=Chiba en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ClaverieJean-Michel en-aut-sei=Claverie en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CouttsRobert H.A. en-aut-sei=Coutts en-aut-mei=Robert H.A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DaghinoStefania en-aut-sei=Daghino en-aut-mei=Stefania kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=DonaireLivia en-aut-sei=Donaire en-aut-mei=Livia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ForgiaMarco en-aut-sei=Forgia en-aut-mei=Marco kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HejnaOnd?ej en-aut-sei=Hejna en-aut-mei=Ond?ej kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=JiaJichun en-aut-sei=Jia en-aut-mei=Jichun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=JiangDaohong en-aut-sei=Jiang en-aut-mei=Daohong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=Kotta-LoizouIoly en-aut-sei=Kotta-Loizou en-aut-mei=Ioly kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=LangAndrew S. en-aut-sei=Lang en-aut-mei=Andrew S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=LegendreMatthieu en-aut-sei=Legendre en-aut-mei=Matthieu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=Lee MarzanoShin-Yi en-aut-sei=Lee Marzano en-aut-mei=Shin-Yi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NervaLuca en-aut-sei=Nerva en-aut-mei=Luca kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=P?nzesJudit en-aut-sei=P?nzes en-aut-mei=Judit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=PoimalaAnna en-aut-sei=Poimala en-aut-mei=Anna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=RigouSofia en-aut-sei=Rigou en-aut-mei=Sofia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=ShamsiWajeeha en-aut-sei=Shamsi en-aut-mei=Wajeeha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=TurinaMassimo en-aut-sei=Turina en-aut-mei=Massimo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=UrayamaSyun-ichi en-aut-sei=Urayama en-aut-mei=Syun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=VainioEeva J. en-aut-sei=Vainio en-aut-mei=Eeva J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=XieJiatao en-aut-sei=Xie en-aut-mei=Jiatao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= affil-num=1 en-affil=Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University kn-affil= affil-num=2 en-affil=Information G?nomique & Structurale, UMR7256, CNRS & Aix-Marseille Universit?, Marseille, IMM, IM2B, IOM kn-affil= affil-num=3 en-affil=Departamento de Biotecnolog?a-Biolog?a Vegetal, Escuela T?cnica Superior de Ingenier?a Agron?mica, Alimentaria y de Biosistemas, Universidad Polit?cnica de Madrid (UPM) kn-affil= affil-num=4 en-affil=Forest Protection and Wildlife Management Mendel University in Brno kn-affil= affil-num=5 en-affil=Department of Veterinary and Animal Sciences, University of Copenhagen kn-affil= affil-num=6 en-affil=School of Agriculture, Meiji University kn-affil= affil-num=7 en-affil=Information G?nomique & Structurale, UMR7256, CNRS & Aix-Marseille Universit?, Marseille, IMM, IM2B, IOM kn-affil= affil-num=8 en-affil=School of Health, Medicine and Life Sciences, University of Hertfordshire kn-affil= affil-num=9 en-affil=Institute for Sustainable Plant Protection, National Research Council of Italy kn-affil= affil-num=10 en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC kn-affil= affil-num=11 en-affil=Institute for Sustainable Plant Protection, CNR kn-affil= affil-num=12 en-affil=Department of Genetics and Biotechnologies, University of South Bohemia kn-affil= affil-num=13 en-affil=College of Plant Protection, Shanxi Agricultural University kn-affil= affil-num=14 en-affil=College of Plant Science and Technology, Huazhong Agricultural University kn-affil= affil-num=15 en-affil=School of Health, Medicine and Life Sciences, University of Hertfordshire kn-affil= affil-num=16 en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=17 en-affil=Department of Biology, Memorial University of Newfoundland kn-affil= affil-num=18 en-affil=Information G?nomique & Structurale, UMR7256, CNRS & Aix-Marseille Universit?, Marseille, IMM, IM2B, IOM kn-affil= affil-num=19 en-affil=United States Department of Agriculture, Agricultural Research Service, Application Technology Research Unit kn-affil= affil-num=20 en-affil=Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology kn-affil= affil-num=21 en-affil=Department of Entomology, Texas A&M University kn-affil= affil-num=22 en-affil=Natural Resources Institute Finland (Luke) kn-affil= affil-num=23 en-affil=Information G?nomique & Structurale, UMR7256, CNRS & Aix-Marseille Universit?, Marseille, IMM, IM2B, IOM kn-affil= affil-num=24 en-affil=Department of Biology, Institute for Plant Sciences, University of Cologne kn-affil= affil-num=25 en-affil=Department of Molecular Biology and Genetics, Aarhus University kn-affil= affil-num=26 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=27 en-affil=Department of Plant Protection, School of Agriculture, The University of Jordan kn-affil= affil-num=28 en-affil=Department of Life and Environmental Sciences, University of Tsukuba kn-affil= affil-num=29 en-affil=Natural Resources Institute Finland (Luke) kn-affil= affil-num=30 en-affil=College of Plant Science and Technology, Huazhong Agricultural University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e06572 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Viral RNA Silencing Suppressor Modulates Reactive Oxygen Species Levels to Induce the Autophagic Degradation of Dicer]Like and Argonaute]Like Proteins en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mounting evidence indicates that viruses exploit elevated reactive oxygen species (ROS) levels to promote replication and pathogenesis, yet the mechanistic underpinnings of this viral strategy remain elusive for many viral systems. This study uncovers a sophisticated viral counter-defense mechanism in the Cryphonectria hypovirus 1 (CHV1)-Fusarium graminearum system, where the viral p29 protein subverts host redox homeostasis to overcome antiviral responses. That p29 directly interacts with and inhibits the enzymatic activity of fungal NAD(P)H-dependent FMN reductase 1 (FMR1), leading to increased ROS accumulation and subsequent autophagy activation is demonstrated. Strikingly, this ROS-induced autophagy selectively targets for degradation two core antiviral RNA silencing components against CHV1 in F. graminearum, Dicer-like 2 (DCL2) and Argonaute-like 1 (AGL1), thereby compromising the host's primary antiviral defense system. Genetic analysis confirms this coordinated hijacking of host machineries, as CHV1 shows enhanced accumulation in the FMR1 knockout and reduced accumulation in autophagy-deficient fungal strains. This work reveals a tripartite interplay among oxidative stress, autophagy, and RNA silencing that CHV1 manipulates through p29 multifunctional activity. These findings provide a model for how viruses coordinately regulate distinct host defense systems to optimize infection. en-copyright= kn-copyright= en-aut-name=ZhaiShiyu en-aut-sei=Zhai en-aut-mei=Shiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PangTianxing en-aut-sei=Pang en-aut-mei=Tianxing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PengShiyu en-aut-sei=Peng en-aut-mei=Shiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZouShenshen en-aut-sei=Zou en-aut-mei=Shenshen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DengZhiping en-aut-sei=Deng en-aut-mei=Zhiping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KangZhensheng en-aut-sei=Kang en-aut-mei=Zhensheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SunLiying en-aut-sei=Sun en-aut-mei=Liying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=2 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=3 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=4 en-affil=Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University kn-affil= affil-num=5 en-affil=Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=7 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=8 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= affil-num=9 en-affil=State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University kn-affil= en-keyword=argonaute kn-keyword=argonaute en-keyword=autophagic degradation kn-keyword=autophagic degradation en-keyword=cryphonectria hypovirus 1 kn-keyword=cryphonectria hypovirus 1 en-keyword=dicer kn-keyword=dicer en-keyword=reactive oxygen species kn-keyword=reactive oxygen species en-keyword=RNA silencing suppressor kn-keyword=RNA silencing suppressor END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=9916 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A node-localized efflux transporter for loading iron to developing tissues in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Iron (Fe) is an essential micronutrient for plant growth and development. It plays crucial roles in various organs and tissues of plants, but the molecular mechanisms governing its distribution to the above-ground parts after root uptake remain unclear. In this study, we identify OsIET1 (Oryza sativa Iron Efflux Transporter 1), a rice gene highly expressed in the nodes. OsIET1 encodes a plasma membrane-localized protein, which shows efflux transport activity for ferrous iron. It is predominantly expressed in the xylem regions of diffuse vascular bundles, and its expression is upregulated under high Fe conditions. Disruption of OsIET1 impairs Fe allocation, reducing Fe transport to developing tissues (young leaves and grains), while increasing accumulation in nodes and older leaves. This misdistribution causes chlorosis in young leaves and decreases grain yield, especially under Fe-deficient conditions. Furthermore, we detect excessive Fe deposition around the xylem of diffuse vascular bundles in the nodes. Given the pivotal role of nodes in mineral distribution, our results indicate that OsIET1 mediates inter-vascular Fe transfer by facilitating Fe loading into the xylem of diffuse vascular bundles. This process ensures preferential Fe delivery to developing tissues, thereby promoting optimal plant growth and productivity. en-copyright= kn-copyright= en-aut-name=CheJing en-aut-sei=Che en-aut-mei=Jing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=QuYuting en-aut-sei=Qu en-aut-mei=Yuting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshiokaYuma en-aut-sei=Yoshioka en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TomitaChiyuri en-aut-sei=Tomita en-aut-mei=Chiyuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=LiuZhenyang en-aut-sei=Liu en-aut-mei=Zhenyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShenRenfang en-aut-sei=Shen en-aut-mei=Renfang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251005 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Artificial Selections for Life-History Traits Affect Effective Cumulative Temperature and Developmental Zero Point in Zeugoducus cucurbitae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Effective cumulative temperature and developmental zero point are important indicators for estimating the timing of organism development and the area of distribution. These indicators are generally considered to have unique values for different species of organisms and are also important for predicting the distribution range of animals and plants, especially insect pests. These values generally are species-specific, but there is variation within populations in traits having a genetic component. However, there are no studies on what kind of selection pressure affects these indicator values. To address this issue, it would be worthwhile to compare these values using individuals of strains that have been artificially selected for life-history traits by rearing them at various temperatures and calculating these indicators from developmental days and temperatures. In the present study, eggs were taken from adults of strains with many generations of artificial selection on two life-history traits (age at reproduction and developmental period) of the melon fly, Zeugodacus cucurbitae, under constant temperature conditions. Eggs were reared at five different temperatures, and the effective cumulative temperatures and developmental zero points of the larval and developmental periods were compared. The results demonstrate that artificial selection on life-history traits in Z. cucurbitae induces evolutionary changes in both the effective cumulative temperature and the developmental zero point across successive generations. en-copyright= kn-copyright= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo kn-affil= en-keyword=age at reproduction kn-keyword=age at reproduction en-keyword=development time kn-keyword=development time en-keyword=developmental period kn-keyword=developmental period en-keyword=larval period kn-keyword=larval period en-keyword=melon fly kn-keyword=melon fly en-keyword=Tephritidae kn-keyword=Tephritidae en-keyword=thermal biology kn-keyword=thermal biology en-keyword=trade-offs kn-keyword=trade-offs END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251014 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative analysis of interactions between five strains of Pseudomonas syringae pv. tabaci and Nicotiana benthamiana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pseudomonas syringae pv. tabaci 6605 (Pta 6605), the agent of wildfire disease in tobacco, has been used as a model strain for elucidating the virulence mechanisms of Pta. However, the host genes involved in resistance or susceptibility to Pta remain largely unknown. Nicotiana benthamiana is a model plant species in the Solanaceae family and is useful in functional analyses of genes. We herein compared five Pta strains (6605, 6823, 7372, 7375, and 7380) in terms of their phenotypes on medium and interactions with N. benthamiana. Pta 6605 and Pta 6823 showed more active proliferation than the other strains in a high cell density culture. Moreover, Pta 6605 exhibited markedly higher swarming motility than the other strains. In inoculated leaves of N. benthamiana, Pta 6605 and Pta 6823 caused more severe disease symptoms and proliferated to a higher cell density than the other strains. However, Pta 6823 as well as Pta 7372 and Pta 7380 induced the high accumulation of salicylic acid (SA). Moreover, the inoculations of Pta 6823 and Pta 7372 resulted in the upregulation of ethylene biosynthesis genes. On the other hand, Pta 6605 induced neither SA accumulation nor the expression of ethylene biosynthesis genes, and suppressed the expression of jasmonate biosynthesis genes. Moreover, chlorosis was clearly induced in the upper uninoculated leaves of Pta 6605-infected plants. These results suggest that Pta 6605 escapes from or suppresses plant immune systems and, thus, is the most virulent on N. benthamiana among the five strains tested. en-copyright= kn-copyright= en-aut-name=NakaoYuna en-aut-sei=Nakao en-aut-mei=Yuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsaiShuta en-aut-sei=Asai en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatouShinpei en-aut-sei=Katou en-aut-mei=Shinpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Science and Technology, Shinshu University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Science and Technology, Shinshu University kn-affil= en-keyword=Chlorosis kn-keyword=Chlorosis en-keyword=Nicotiana benthamiana kn-keyword=Nicotiana benthamiana en-keyword=Phytohormones kn-keyword=Phytohormones en-keyword=Pseudomonas syringae pv. tabaci kn-keyword=Pseudomonas syringae pv. tabaci END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=3 article-no= start-page=ME25019 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Role of Formate Chemoreceptor in Pseudomonas syringae pv. tabaci 6605 in Tobacco Infection en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chemotaxis is essential for infection by plant pathogenic bacteria. The causal agent of tobacco wildfire disease, Pseudomonas syringae pv. tabaci 6605 (Pta6605), is known to cause severe leaf disease and is highly motile. The requirement of chemotaxis for infection has been demonstrated through the inoculation of mutant strains lacking chemotaxis sensory component proteins. Pta6605 possesses 54 genes that encode chemoreceptors (known as methyl-accepting chemotaxis proteins, MCPs). Chemoreceptors are classified into several groups based on the type and localization of ligand-binding domains (LBD). Cache LBD-type chemoreceptors have been reported to recognize formate in several bacterial species. In the present study, we identified Cache_3 Cache_2 LBD-type Mcp26 encoded by Pta6605_RS00335 as a chemoreceptor for formate using a quantitative capillary assay, and named it McpF. Although the deletion mutant of mcpF (ƒ’mcpF) retained attraction to 1% yeast extract, its chemotactic response to formate was markedly reduced. Swimming and swarming motilities were also impaired in the mutant. To investigate the effects of McpF on bacterial virulence, we conducted inoculations on tobacco plants using several methods. The ƒ’mcpF mutant exhibited weaker virulence in flood and spray assays than wild-type and complemented strains, highlighting not only the involvement of McpF in formate recognition, but also its critical role in leaf entry during the early stages of infection. en-copyright= kn-copyright= en-aut-name=NguyenPhuoc Quy Thang en-aut-sei=Nguyen en-aut-mei=Phuoc Quy Thang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeYuta en-aut-sei=Watanabe en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=chemoreceptor kn-keyword=chemoreceptor en-keyword=formate kn-keyword=formate en-keyword=mcpF kn-keyword=mcpF en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae en-keyword=virulence kn-keyword=virulence END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=3 article-no= start-page=215 end-page=227 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Root-exuded sugars as drivers of rhizosphere microbiome assembly en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sugars in root exudates play a pivotal role in shaping plant-microbe interactions in the rhizosphere, serving as carbon sources and signaling molecules that orchestrate microbial behavior, community structure, and plant resilience. Recent research has shed light on the dynamics of sugar levels in root exudates, the factors that influence their secretion, and the mechanisms by which these sugars drive microbial colonization and community assembly in the rhizosphere. Microbial communities, in turn, contribute to plant physiological changes that enhance growth and stress tolerance. While well-studied sugars such as glucose, sucrose, and fructose are known to promote chemotaxis, motility, and biofilm formation, emerging evidence suggests that less-studied sugars like arabinose and trehalose may also play significant roles in microbial interactions and stress resilience. Key challenges remain, including the accurate measurement of labile sugars that are rapidly metabolized by microbes, and the elucidation of genetic mechanisms underlying rhizosphere metabolic interactions in both host plants and microbes. Addressing these challenges will advance our understanding of sugar-mediated interactions and inform the development of sustainable agricultural innovations. en-copyright= kn-copyright= en-aut-name=HemeldaNiarsi Merry en-aut-sei=Hemelda en-aut-mei=Niarsi Merry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=carbon sources kn-keyword=carbon sources en-keyword=plant-derived sugars kn-keyword=plant-derived sugars en-keyword=plant-microbe interactions kn-keyword=plant-microbe interactions en-keyword=rhizosphere kn-keyword=rhizosphere en-keyword=root exudate kn-keyword=root exudate END start-ver=1.4 cd-journal=joma no-vol=135 cd-vols= no-issue=7 article-no= start-page=1329 end-page=1343 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250417 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Molecular polymorphisms of the nuclear and chloroplast genomes among African melon germplasms reveal abundant and unique genetic diversity, especially in Sudan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Aims Africa is rich in wild species of Cucumis and is considered one of the places of origin of melon. However, our knowledge of African melon is limited, and genetic studies using melon germplasms with wide geographical coverage are required. Here, we analysed the genetic structure of African melons, with emphasis on Sudan.
Methods Ninety-seven accessions of African melon were examined along with 77 reference accessions representing Asian melon and major horticultural groups. Molecular polymorphisms in the nuclear and chloroplast genomes were investigated using 12 RAPD, 7 SSR and 3 SNP markers. Horticultural traits, including seed size, were measured for 46 accessions, mainly from Sudan.
Key Results African melons were divided into large and small seed-types based on seed length: large seed-type from Northern Africa and small seed-type from Western and Southern Africa. Both seed types are common in Sudan. Molecular genetic diversity in these geographical populations was as high as in India, the Asian centre of melon domestication. Large seed-types from Northern Africa were assigned to Pop4 by structure analysis and had Ib cytoplasm in common with Cantalupensis, Inodorus and Flexuosus. Small seed-types were highly diversified and geographically differentiated; specifically, Pop1 with Ia cytoplasm in Southern Africa and South Asia, Pop2 with Ia in East Asia, including Conomon and Makuwa, and Pop3 with Ia or Ic in Africa. Sudanese small seed-types were grouped in Pop3, while their cytoplasm type was a mixture of Ia and Ic. Sudanese Tibish had Ic cytoplasm, which was unique in Africa, common in Western Africa and Sudan, and also found in wild or feral types.
Conclusions Melon of Ic lineage, including Tibish, originated from wild melon in the ewestern Sudan regionf, and independently of melon with Ia or Ib cytoplasm, which originated in Asia. This clearly indicates the polyphyletic origin of melon. en-copyright= kn-copyright= en-aut-name=ImohOdirichi Nnennaya en-aut-sei=Imoh en-aut-mei=Odirichi Nnennaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShigitaGentaro en-aut-sei=Shigita en-aut-mei=Gentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugiyamaMitsuhiro en-aut-sei=Sugiyama en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DungTran Phuong en-aut-sei=Dung en-aut-mei=Tran Phuong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaKatsunori en-aut-sei=Tanaka en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiMami en-aut-sei=Takahashi en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishimuraKazusa en-aut-sei=Nishimura en-aut-mei=Kazusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MondenYuki en-aut-sei=Monden en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishidaHidetaka en-aut-sei=Nishida en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GodaMashaer en-aut-sei=Goda en-aut-mei=Mashaer kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=PitratMichel en-aut-sei=Pitrat en-aut-mei=Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KatoKenji en-aut-sei=Kato en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture and Life Science, Hirosaki University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Plant Genetic Resources Conservation and Research Center, Agricultural Research Corporation kn-affil= affil-num=11 en-affil=INRAE, UR1052, G?n?tique et am?lioration des fruits et l?gumes kn-affil= affil-num=12 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Cucumis melo kn-keyword=Cucumis melo en-keyword=Africa kn-keyword=Africa en-keyword=chloroplast genome kn-keyword=chloroplast genome en-keyword=domestication kn-keyword=domestication en-keyword=genetic diversity kn-keyword=genetic diversity en-keyword=genetic resources kn-keyword=genetic resources en-keyword=maternal lineage kn-keyword=maternal lineage en-keyword=melon kn-keyword=melon en-keyword=phylogeny kn-keyword=phylogeny en-keyword=polyphyletic origin kn-keyword=polyphyletic origin en-keyword=seed size kn-keyword=seed size en-keyword=Tibish kn-keyword=Tibish END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The response to thermospermine is fine-tuned by the balance between SAC51 and LHW family proteins in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thermospermine negatively regulates xylem formation. In Arabidopsis, SAC51 and SACL3, members of the SAC51 gene family encoding basic loop-helix-loop (bHLH) proteins play a key role in this regulation. These mRNAs contain an upstream open-reading-frame (uORF) that is highly conserved across species, and its inhibitory effect on the main ORF translation is alleviated by thermospermine. A double knockout of SAC51 and SACL3 results in thermospermine insensitivity at high concentrations that normally inhibit xylem formation and shoot growth in the wild type. Conversely, uORF mutants of SAC51, SACL3, and SACL1 suppress the excessive xylem formation and dwarf phenotype of acl5, a mutant defective in thermospermine biosynthesis. In this study, we generated genome-edited uORF mutants of SACL2 and confirmed that they partially recover the acl5 phenotype. All uORF mutants exhibited increased sensitivity to thermospermine. SACL3 represses the function of LHW, a key bHLH transcription factor required for xylem proliferation, through direct interaction. We found that the lhw mutant is also hypersensitive to thermospermine, while this sensitivity was suppressed by the sac51 sacl3 double knockout. Yeast two-hybrid assays demonstrated that all four SAC51 family members interact with LHW and its family members. These findings suggest that overaccumulation of SAC51 family proteins leads to thermospermine hypersensitivity by repressing the function of LHW family proteins, whose activity must be fine-tuned to ensure proper xylem development. en-copyright= kn-copyright= en-aut-name=XuYao en-aut-sei=Xu en-aut-mei=Yao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaraumiMitsuru en-aut-sei=Saraumi en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToyoshimaTomohiko en-aut-sei=Toyoshima en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=LHW family kn-keyword=LHW family en-keyword=SAC51 family kn-keyword=SAC51 family en-keyword=thermospermine kn-keyword=thermospermine en-keyword=xylem kn-keyword=xylem END start-ver=1.4 cd-journal=joma no-vol=123 cd-vols= no-issue=5 article-no= start-page=e70476 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=RNA processing/modifying enzymes play key roles in the response to thermospermine in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thermospermine is involved in negative regulation of xylem differentiation by enhancing the translation of mRNAs of the SAC51 gene family in Arabidopsis (Arabidopsis thaliana). These mRNAs contain conserved upstream open reading frames (uORFs) that interfere with the translation of the main ORF. To investigate the mechanism by which thermospermine acts in this process, we isolated mutants insensitive to thermospermine, named eitsf. We show that the four genes responsible for these mutants, its1 to its4, encode: (i) a homolog of SPOUT RNA methyltransferase, (ii) an rRNA pseudouridine synthase CBF5/NAP57, (iii) a putative spliceosome disassembly factor STIPL1/NTR1, and (iv) a plant-specific RNA-binding protein PHIP1. These four mutants were found to have much higher levels of thermospermine than the wild-type. While all these mutants except its1 appear almost normal, they enhance the dwarf phenotype of a mutant of ACL5, which encodes thermospermine synthase, resulting in tiny plants resembling a double knockout of ACL5 and SACL3, a member of the SAC51 family. Reporter assays revealed that GUS activity from the CaMV 35S promoter-SAC51 5Œ-GUS fusion construct was significantly reduced in its1 and its4 or not affected in its2 and its3, while it was slightly increased in its1, its3, and its4, or not changed in its2 by thermospermine. These findings underscore the critical role of RNA processing and modification in the thermospermine-dependent translational regulation of uORF-containing transcripts. en-copyright= kn-copyright= en-aut-name=SaraumiMitsuru en-aut-sei=Saraumi en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakahiro en-aut-sei=Tanaka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoyamaDaiki en-aut-sei=Koyama en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiYoshitaka en-aut-sei=Nishi en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiYoshihiro en-aut-sei=Takahashi en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Engineering, Kyushu Sangyo University kn-affil= affil-num=5 en-affil=Department of Life Science, Faculty of Life Science, Kyushu Sangyo University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=thermospermine kn-keyword=thermospermine en-keyword=uORF kn-keyword=uORF en-keyword=translation kn-keyword=translation en-keyword=xylem kn-keyword=xylem en-keyword=RNA methyltransferase kn-keyword=RNA methyltransferase en-keyword=pseudouridine synthase kn-keyword=pseudouridine synthase en-keyword=SPOUT domain kn-keyword=SPOUT domain en-keyword=spliceosome disassembly kn-keyword=spliceosome disassembly END start-ver=1.4 cd-journal=joma no-vol=105 cd-vols= no-issue=4 article-no= start-page=1157 end-page=1167 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of environmental conditions on seed germination and seedling growth in Cuscuta campestris en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dodder (Cuscuta) is an obligate parasitic plant that cannot survive without a host and causes significant damage to crop yields. To understand its growth characteristics before parasitism, we examined the effects of environmental conditions on seed germination and seedling growth in Cuscuta campestris Yunck. Among various factors, we focused on the effects of light, pH, temperature, sugars, salts, hormones, amino acids and polyamines on seeds sown on agar plates. Regarding the effect of light on germination, far-red light was preferable rather than red light and the reversible response of seeds to red and far-red light was confirmed, implicating a phytochrome-mediated signaling pathway opposite to that in many seed plants. Among the amino acids, aspartic acid and alanine had a promotive effect, while histidine had an inhibitory effect on germination. We further found that, in addition to gibberellic acid, methyl jasmonate stimulated both germination and shoot elongation. While 2,4-D extended the viability of trichomes around the root cap, kinetin induced the formation of scale leaves on the shoot and undifferentiated cell clusters at the base of the shoot and root tip. Real-time reverse transcriptase PCR (RT-PCR) experiments confirmed that the expression of a putative RbcS gene for photosynthesis showed no response to light, whereas that of a Phytochrome A homolog increased in the dark. Our results indicate that some of the molecular mechanisms involved in responding to light and hormone signals are uniquely modified in dodder seedlings, providing clues for understanding the survival strategy of parasitic plants. en-copyright= kn-copyright= en-aut-name=NagaoKoki en-aut-sei=Nagao en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokoyamaRyusuke en-aut-sei=Yokoyama en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= en-keyword=Cuscuta kn-keyword=Cuscuta en-keyword=Environmental conditions kn-keyword=Environmental conditions en-keyword=Germination kn-keyword=Germination en-keyword=Hormone responses kn-keyword=Hormone responses en-keyword=Seedling growth kn-keyword=Seedling growth END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=10 article-no= start-page=1623 end-page=1625 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251006 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The OsATG8?OsATG1?SPIN6 module: Linking nutrient sensing to OsRac1-mediated rice immunity via autophagy-independent mechanisms en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KouYanjun en-aut-sei=Kou en-aut-mei=Yanjun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=4 article-no= start-page=463 end-page=474 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nationwide diversity of symbolic gcity flowersh in Japan is increasing en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recognizing and maintaining locally rooted human?nature interactions is essential for utilizing ecosystem services. Although the general public's awareness of biodiversity and ecosystem services has been examined using various proxies, it remains unclear how local governments?key sectors in creating conservation policies?appreciate them within a solid local context. Here, we focused on the gcity flower,h an official symbolic species of Japanese cities, as a new proxy for measuring governmental attitudes toward biota and its services. We aimed to capture temporal changes in the awareness of species with locally relevant value at the city government level by examining the changes in city flowers over more than half a century. Data from the official websites of municipalities, including the names, the adoption years, and the reasons for adoption, revealed two major periods of adoption, with a notable increase in species diversity in and after 1993. This increase could be attributed to a recent reduction in bias toward popular flowers and growing interest in alternative, less popular flowers. Analysis of the reasons for adoption suggested that the temporal change in adopted flower species was related to the increasing emphasis on species with an explicit local context, especially those with instrumental value to the city. Our findings indicate the tendency for local governments to increasingly recognize their biocultural backgrounds and the ecosystem services of plants within their regions. The growing awareness of the local governments regarding their biocultural background is a positive sign for the conservation of biodiversity and ecosystem services. en-copyright= kn-copyright= en-aut-name=TsuzukiYoichi en-aut-sei=Tsuzuki en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhsakiHaruna en-aut-sei=Ohsaki en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaguchiYawako W. en-aut-sei=Kawaguchi en-aut-mei=Yawako W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiSayaka en-aut-sei=Suzuki en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaShogo en-aut-sei=Harada en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtakeYurie en-aut-sei=Otake en-aut-mei=Yurie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShinoharaNaoto en-aut-sei=Shinohara en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatsuharaKoki R. en-aut-sei=Katsuhara en-aut-mei=Koki R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Health and Environmental Risk Division, National Institute for Environmental Studies kn-affil= affil-num=2 en-affil=Department of Biological Sciences, Tokyo Metropolitan University kn-affil= affil-num=3 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=4 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=5 en-affil=Department of Biology, Graduate School of Science, Osaka City University kn-affil= affil-num=6 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=7 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=awareness of local governments kn-keyword=awareness of local governments en-keyword=biocultural diversity kn-keyword=biocultural diversity en-keyword=ecosystem services kn-keyword=ecosystem services en-keyword=manual web scraping kn-keyword=manual web scraping en-keyword=temporal trend kn-keyword=temporal trend END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250921 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Urbanised landscape and microhabitat differences can influence flowering phenology and synchrony in an annual herb en-subtitle= kn-subtitle= en-abstract= kn-abstract=1. Flowering phenology, a crucial determinant of plant reproductive success and biotic interactions, is susceptible to urbanisation. Numerous studies have shown the impact of urbanised landscapes on flowering phenology based on comparisons along urban?rural gradients. Phenological patterns among microenvironments in the urban ecosystem have received less attention, although they often offer unique habitats with varying artificial influences, such as roadsides, drainage ditches and vacant lots. If differences in microenvironments diversify flowering phenology, the urban matrix might reduce flowering synchrony with neighbouring populations, limiting outcrossing opportunities and therefore reducing reproductive success.
2. We investigated the flowering phenology and synchrony of the native annual herb Commelina communis in approximately 250 populations at two rural and two urban sites over 3?years. To determine the effect of microhabitat differences, we categorised the microhabitats of C. communis populations into five types: drains, roadsides, vacant land, farmland and forest edge. In some study populations, we investigated reproductive success (seed set) to estimate the degree of outcross pollination limitation.
3. Our findings revealed that populations in urban sites exhibited earlier flowering onset and longer flowering duration compared to rural locations. Besides, we did not detect consistent patterns of flowering onset, peak and duration among the different microhabitat types. For flowering synchrony, we found that the population in urban sites, growing in drain habitats, and with artificial disturbances exhibited relatively lower interpopulation flowering synchrony, suggesting their phenology differed from neighbouring populations within the same landscape. Additionally, populations in urban sites, especially those growing in drain and roadside habitats, suffered severe outcross pollen limitation compared to those in rural landscapes.
4. Synthesis and applications. In conclusion, our results indicate that in addition to landscape changes associated with urbanisation, variations in local microhabitats also influence the flowering phenology and synchrony of C. communis populations. Urbanised landscapes and differences in microhabitats could contribute to the diversification of phenological patterns between populations, potentially having a negative impact on the reproductive success of native plant species. These findings highlight the need to consider not only spatial but also temporal fragmentation from diversified flowering phenology when addressing conservation in the urban matrix. en-copyright= kn-copyright= en-aut-name=FujiwaraHinata en-aut-sei=Fujiwara en-aut-mei=Hinata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamaguchiHiroto en-aut-sei=Yamaguchi en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakataKazuyoshi en-aut-sei=Nakata en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuharaKoki R. en-aut-sei=Katsuhara en-aut-mei=Koki R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=artificial disturbance kn-keyword=artificial disturbance en-keyword=Commelina kn-keyword=Commelina en-keyword=drainage ditches kn-keyword=drainage ditches en-keyword=flowering synchrony kn-keyword=flowering synchrony en-keyword=roadside kn-keyword=roadside en-keyword=ruderal plants kn-keyword=ruderal plants en-keyword=temporal fragmentation kn-keyword=temporal fragmentation en-keyword=urban ecology kn-keyword=urban ecology END start-ver=1.4 cd-journal=joma no-vol=118 cd-vols= no-issue=10 article-no= start-page=146 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Duganella hordei sp. nov., Duganella caerulea sp. nov., and Duganella rhizosphaerae sp. nov., isolated from barley rhizosphere en-subtitle= kn-subtitle= en-abstract= kn-abstract=Duganella sp. strains R1T, R57T, and R64T, isolated from barley roots in Japan, are Gram-stain-negative, motile, rod-shaped bacteria. Duganella species abundantly colonized barley roots. Strains R1T, R57T, and R64T were capable of growth at 4 ‹C, suggesting adaptation to colonize winter barley roots. Strains R57T and R64T formed purple colonies, indicating violacein production, while strain R1T did not. Based on 16S rRNA gene sequence similarities, strains R1T, R57T, and R64T were most closely related to D. violaceipulchra HSC-15S17T (99.10%), D. vulcania FT81WT (99.45%), and D. violaceipulchra HSC-15S17T (99.86%), respectively. Their genome sizes ranged from 7.05 to 7.38 Mbp, and their genomic G+C contents were 64.2?64.7%. The average nucleotide identity and digital DNA?DNA hybridization values between R1T and D. violaceipulchra HSC-15S17T, R57T and D. vulcania FT81WT, R64T and D. violaceipulchra HSC-15S17T were 86.0% and 33.2%, 95.7% and 67.9%, and 92.7% and 52.6%, respectively. Their fatty acids were predominantly composed of C16:0, C17:0 cyclo, and summed feature 3 (C16:1 ƒΦ7c and/or C16:1 ƒΦ6c). Based on their distinct genetic and phenotypic characteristics, and supported by chemotaxonomic analyses, we propose that strains R1T, R57T, and R64T represent novel species within the Duganella genus, for which the names Duganella hordei (type strain R1T?=?NBRC 115982 T?=?DSM 115069 T), Duganella caerulea (type strain R57T?=?NBRC 115983 T?=?DSM 115070 T), and Duganella rhizosphaerae (type strain R64T?=?NBRC 115984 T?=?DSM 115071 T) are proposed. en-copyright= kn-copyright= en-aut-name=KishiroKatsumoto en-aut-sei=Kishiro en-aut-mei=Katsumoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SahinNurettin en-aut-sei=Sahin en-aut-mei=Nurettin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaishoDaisuke en-aut-sei=Saisho en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamashitaJun en-aut-sei=Yamashita en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MondenYuki en-aut-sei=Monden en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakagawaTomoyuki en-aut-sei=Nakagawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Egitim Fakultesi, Mugla Sitki Kocman University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Applied Biological Sciences, Gifu University kn-affil= affil-num=8 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Barley kn-keyword=Barley en-keyword=Duganella kn-keyword=Duganella en-keyword=Novel species kn-keyword=Novel species en-keyword=Rhizosphere kn-keyword=Rhizosphere END start-ver=1.4 cd-journal=joma no-vol=198 cd-vols= no-issue=1 article-no= start-page=kiaf137 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The thylakoid membrane remodeling protein VIPP1 forms bundled oligomers in tobacco chloroplasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=The thylakoid membrane (TM) serves as the scaffold for oxygen-evolving photosynthesis, hosting the protein complexes responsible for the light reactions and ATP synthesis. Vesicle inducing protein in plastid 1 (VIPP1), a key protein in TM remodeling, has been recognized as essential for TM homeostasis. In vitro studies of cyanobacterial VIPP1 demonstrated its ability to form large homo-oligomers (2?MDa) manifesting as ring-like or filament-like assemblies associated with membranes. Similarly, VIPP1 in Chlamydomonas reinhardtii assembles into rods that encapsulate liposomes or into stacked spiral structures. However, the nature of VIPP1 assemblies in chloroplasts, particularly in Arabidopsis, remains uncharacterized. Here, we expressed Arabidopsis thaliana VIPP1 fused to GFP (AtVIPP1-GFP) in tobacco (Nicotiana tabacum) chloroplasts and performed transmission electron microscopy (TEM). A purified AtVIPP1-GFP fraction was enriched with long filamentous tubule-like structures. Detailed TEM observations of chloroplasts in fixed resin-embedded tissues identified VIPP1 assemblies in situ that appeared to colocalize with GFP fluorescence. Electron tomography demonstrated that the AtVIPP1 oligomers consisted of bundled filaments near membranes, some of which appeared connected to the TM or inner chloroplast envelope at their contact sites. The observed bundles were never detected in wild-type Arabidopsis but were observed in Arabidopsis vipp1 mutants expressing AtVIPP1-GFP. Taken together, we propose that the bundled filaments are the dominant AtVIPP1 oligomers that represent its static state in vivo. en-copyright= kn-copyright= en-aut-name=GachieSarah W en-aut-sei=Gachie en-aut-mei=Sarah W kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MuhireAlexandre en-aut-sei=Muhire en-aut-mei=Alexandre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiDi en-aut-sei=Li en-aut-mei=Di kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawamotoAkihiro en-aut-sei=Kawamoto en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Takeda-KamiyaNoriko en-aut-sei=Takeda-Kamiya en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GotoYumi en-aut-sei=Goto en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatoMayuko en-aut-sei=Sato en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyookaKiminori en-aut-sei=Toyooka en-aut-mei=Kiminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YoshimuraRyo en-aut-sei=Yoshimura en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakamiTsuneaki en-aut-sei=Takami en-aut-mei=Tsuneaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ZhangLingang en-aut-sei=Zhang en-aut-mei=Lingang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KurisuGenji en-aut-sei=Kurisu en-aut-mei=Genji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TerachiToru en-aut-sei=Terachi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=5 en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=8 en-affil=Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=11 en-affil=School of Life Sciences, Inner Mongolia University/Key Laboratory of Herbage and Endemic Crop Biotechnology kn-affil= affil-num=12 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=13 en-affil=Faculty of Life Sciences, Kyoto Sangyo University kn-affil= affil-num=14 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=10 article-no= start-page=4724 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250515 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stem Cell Factors BAM1 and WOX1 Suppressing Longitudinal Cell Division of Margin Cells Evoked by Low-Concentration Auxin in Young Cotyledon of Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Highly differentiated tissues and organs play essential biological functions in multicellular organisms. Coordination of organ developmental process with tissue differentiation is necessary to achieve proper development of mature organs, but mechanisms for such coordination are not well understood. We used cotyledon margin cells from Arabidopsis plant as a new model system to investigate cell elongation and cell division during organ growth and found that margin cells endured a developmental phase transition from the gelongationh phase to the gelongation and divisionh phase at the early stage in germinating seedlings. We also discovered that the stem cell factors BARELY ANY MERISTEM 1 (BAM1) and WUSCHEL-related homeobox1 (WOX1) are involved in the regulation of margin cell developmental phase transition. Furthermore, exogenous auxin treatment (1 nanomolar,nM) promotes cell division, especially longitudinal cell division. This promotion of cell division did not occur in bam1 and wox1 mutants. Based on these findings, we hypothesized a new gmoderate auxin concentrationh model which emphasizes that a moderate auxin concentration is the key to triggering the developmental transition of meristematic cells. en-copyright= kn-copyright= en-aut-name=JiangYuli en-aut-sei=Jiang en-aut-mei=Yuli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiangJian en-aut-sei=Liang en-aut-mei=Jian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangChunyan en-aut-sei=Wang en-aut-mei=Chunyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanLi en-aut-sei=Tan en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagawaShingo en-aut-sei=Nagawa en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute for Translational Brain Reaearch, Fudan University kn-affil= affil-num=2 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences kn-affil= en-keyword=BAM1 kn-keyword=BAM1 en-keyword=WOX1 kn-keyword=WOX1 en-keyword=margin cells kn-keyword=margin cells en-keyword=auxin kn-keyword=auxin END start-ver=1.4 cd-journal=joma no-vol=287 cd-vols= no-issue= article-no= start-page=117674 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A plant-insertable multi-enzyme biosensor for the real-time monitoring of stomatal sucrose uptake en-subtitle= kn-subtitle= en-abstract= kn-abstract=Monitoring sucrose transport in plants is essential for understanding plant physiology and improving agricultural practices, yet effective sensors for continuous and real-time in-vivo monitoring are lacking. In this study, we developed a plant-insertable sucrose sensor capable of real-time sucrose concentration monitoring and demonstrated its application as a useful tool for plant research by monitoring the sugar-translocating path from leaves to the lower portion of plants through the stem in living plants. The biosensor consists of a bilirubin oxidase-based biocathode and a needle-type bioanode integrating glucose oxidase, invertase, and mutarotase, with the two electrodes separated by an agarose gel for ionic connection. The sensor exhibits a sensitivity of 6.22 ƒΚA mM?1 cm?2, a limit of detection of 100 ƒΚM, a detection range up to 60 mM, and a response time of 90 s at 100 ƒΚM sucrose. Additionally, the sensor retained 86 % of its initial signal after 72 h of continuous measurement. Day-night monitoring from the biosensor inserted in strawberry guava (Psidium cattleianum) showed higher sucrose transport activity at night, following well the redistribution of photosynthetically produced sugars. In addition, by monitoring the forced translocation of sucrose dissolved in the stable isotopically labeled water, we demonstrated that a young seedling of Japanese cedar known as Sugi (Cryptomeria japonica) can absorb and transport both water and sucrose through light-dependently opened stomata, which is the recently revealed path for liquid uptake by higher plants. These findings highlight the potential of our sensor for studying dynamic plant processes and its applicability in real-time monitoring of sugar transport under diverse environmental conditions. en-copyright= kn-copyright= en-aut-name=WuShiqi en-aut-sei=Wu en-aut-mei=Shiqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakagawaWakutaka en-aut-sei=Nakagawa en-aut-mei=Wakutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriYuki en-aut-sei=Mori en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AzhariSaman en-aut-sei=Azhari en-aut-mei=Saman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=M?hesG?bor en-aut-sei=M?hes en-aut-mei=G?bor kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawanoTomonori en-aut-sei=Kawano en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyakeTakeo en-aut-sei=Miyake en-aut-mei=Takeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=2 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=3 en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu kn-affil= affil-num=4 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=5 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu kn-affil= affil-num=8 en-affil=Graduate School of Information, Production and Systems, Waseda University kn-affil= en-keyword=Flexible wearable sensor kn-keyword=Flexible wearable sensor en-keyword=Plant monitoring kn-keyword=Plant monitoring en-keyword=Carbon fiber kn-keyword=Carbon fiber en-keyword=Multi-enzyme system kn-keyword=Multi-enzyme system END start-ver=1.4 cd-journal=joma no-vol=122 cd-vols= no-issue=32 article-no= start-page=e2501933122 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250805 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural insights into a citrate transporter that mediates aluminum tolerance in barley en-subtitle= kn-subtitle= en-abstract= kn-abstract=HvAACT1 is a major aluminum (Al)-tolerance gene in barley, encoding a citrate transporter that belongs to the multidrug and toxic compound extrusion (MATE) family. This transporter facilitates citrate secretion from the roots, thereby detoxifying external Al ions?a major constraint of crop production on acidic soils. In this study, we present the outward-facing crystal structure of HvAACT1, providing insights into a citrate transport mechanism. The putative citrate binding site consists of three basic residues?K126 in transmembrane helix 2 (TM2), R358 in TM7, and R535 in TM12?creating substantial positive charges in the C-lobe cavity. Proton coupling for substrate transport may involve two pairs of aspartate residues in the N-lobe cavity, one of which corresponds to the essential Asp pair found in prokaryotic H+-coupled MATE transporters belonging to the DinF subfamily. Structural coupling between proton uptake in the N-lobe and citrate extrusion in the C-lobe can be enabled by an extensive, unique hydrogen-bonding network at the extracellular half of the N-lobe. Mutation-based functional analysis, structural comparisons, molecular dynamics simulation, and phylogenic analysis suggest an evolutionary link between citrate MATE transporters and the DinF MATE subfamily. Our findings provide a solid structural basis for citrate transport by HvAACT1 in barley and contribute to a broader understanding of citrate transporter structures in other plant species. en-copyright= kn-copyright= en-aut-name=Nguyen ThaoTran en-aut-sei=Nguyen Thao en-aut-mei=Tran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Mitani-UenoNamiki en-aut-sei=Mitani-Ueno en-aut-mei=Namiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UranoRyo en-aut-sei=Urano en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangPeitong en-aut-sei=Wang en-aut-mei=Peitong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinodaWataru en-aut-sei=Shinoda en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Division of Superconducting and Functional Materials, Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=8 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= affil-num=9 en-affil=Research Core for Plant Stress Science, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=10 en-affil=Degree Program in Interdisciplinary Sciences, Graduate School of Environmental, Life, Natural Science, and Technology, Okayama University kn-affil= en-keyword=barley kn-keyword=barley en-keyword=aluminum resistance kn-keyword=aluminum resistance en-keyword=membrane protein structure kn-keyword=membrane protein structure en-keyword=citrate transporter kn-keyword=citrate transporter en-keyword=MATE transporter kn-keyword=MATE transporter END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002112 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses (ICTV) from the Animal dsRNA and ssRNA(?) Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=RNA viruses are ubiquitous in the environment and are important pathogens of humans, animals and plants. In 2024, the International Committee on Taxonomy of Viruses Animal dsRNA and ssRNA(?) Viruses Subcommittee submitted 18 taxonomic proposals for consideration. These proposals expanded the known virosphere by classifying 9 new genera and 88 species for newly detected virus genomes. Of note, newly established species expand the large family of Rhabdoviridae to 580 species. A new species in the family Arenaviridae includes a virus detected in Antarctic fish with a unique split nucleoprotein ORF. Additionally, four new species were established for historically isolated viruses with previously unsequenced genomes. Furthermore, three species were abolished due to incomplete genome sequence information, and one family was moved from being unassigned in the phylum Negarnaviricota into a subphylum and order. Herein, we summarize the 18 ratified taxonomic proposals and the general features of the current taxonomy, thereby supporting public and animal health responses. en-copyright= kn-copyright= en-aut-name=HughesHolly R. en-aut-sei=Hughes en-aut-mei=Holly R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BallingerMatthew J. en-aut-sei=Ballinger en-aut-mei=Matthew J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BaoYiming en-aut-sei=Bao en-aut-mei=Yiming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BejermanNicolas en-aut-sei=Bejerman en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BlasdellKim R. en-aut-sei=Blasdell en-aut-mei=Kim R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BrieseThomas en-aut-sei=Briese en-aut-mei=Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BrignoneJulia en-aut-sei=Brignone en-aut-mei=Julia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CarreraJean Paul en-aut-sei=Carrera en-aut-mei=Jean Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=De ConinckLander en-aut-sei=De Coninck en-aut-mei=Lander kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=de SouzaWilliam Marciel en-aut-sei=de Souza en-aut-mei=William Marciel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DebatHumberto en-aut-sei=Debat en-aut-mei=Humberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DietzgenRalf G. en-aut-sei=Dietzgen en-aut-mei=Ralf G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=D?rrwaldRalf en-aut-sei=D?rrwald en-aut-mei=Ralf kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ErdinMert en-aut-sei=Erdin en-aut-mei=Mert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FooksAnthony R. en-aut-sei=Fooks en-aut-mei=Anthony R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ForbesKristian M. en-aut-sei=Forbes en-aut-mei=Kristian M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Freitas-Ast?aJuliana en-aut-sei=Freitas-Ast?a en-aut-mei=Juliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=GarciaJorge B. en-aut-sei=Garcia en-aut-mei=Jorge B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=GeogheganJemma L. en-aut-sei=Geoghegan en-aut-mei=Jemma L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=GrimwoodRebecca M. en-aut-sei=Grimwood en-aut-mei=Rebecca M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HorieMasayuki en-aut-sei=Horie en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HyndmanTimothy H. en-aut-sei=Hyndman en-aut-mei=Timothy H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=JohneReimar en-aut-sei=Johne en-aut-mei=Reimar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KlenaJohn D. en-aut-sei=Klena en-aut-mei=John D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KooninEugene V. en-aut-sei=Koonin en-aut-mei=Eugene V. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KostygovAlexei Y. en-aut-sei=Kostygov en-aut-mei=Alexei Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=KuhnJens H. en-aut-sei=Kuhn en-aut-mei=Jens H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=LetkoMichael en-aut-sei=Letko en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=LiJun-Min en-aut-sei=Li en-aut-mei=Jun-Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=LiuYiyun en-aut-sei=Liu en-aut-mei=Yiyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=MartinMaria Laura en-aut-sei=Martin en-aut-mei=Maria Laura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=MullNathaniel en-aut-sei=Mull en-aut-mei=Nathaniel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=NazarYael en-aut-sei=Nazar en-aut-mei=Yael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=NowotnyNorbert en-aut-sei=Nowotny en-aut-mei=Norbert kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=NunesM?rcio Roberto Teixeira en-aut-sei=Nunes en-aut-mei=M?rcio Roberto Teixeira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=?klandArnfinn Lodden en-aut-sei=?kland en-aut-mei=Arnfinn Lodden kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=RubbenstrothDennis en-aut-sei=Rubbenstroth en-aut-mei=Dennis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=RussellBrandy J. en-aut-sei=Russell en-aut-mei=Brandy J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=SchottEric en-aut-sei=Schott en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=SeifertStephanie en-aut-sei=Seifert en-aut-mei=Stephanie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=SenCarina en-aut-sei=Sen en-aut-mei=Carina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=ShedroffElizabeth en-aut-sei=Shedroff en-aut-mei=Elizabeth kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=SironenTarja en-aut-sei=Sironen en-aut-mei=Tarja kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=SmuraTeemu en-aut-sei=Smura en-aut-mei=Teemu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=TavaresCamila Prestes Dos Santos en-aut-sei=Tavares en-aut-mei=Camila Prestes Dos Santos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=TeshRobert B. en-aut-sei=Tesh en-aut-mei=Robert B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=TilstonNatasha L. en-aut-sei=Tilston en-aut-mei=Natasha L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=TordoNo?l en-aut-sei=Tordo en-aut-mei=No?l kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=VasilakisNikos en-aut-sei=Vasilakis en-aut-mei=Nikos kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=WalkerPeter J. en-aut-sei=Walker en-aut-mei=Peter J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=WangFei en-aut-sei=Wang en-aut-mei=Fei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=WhitfieldAnna E. en-aut-sei=Whitfield en-aut-mei=Anna E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=WhitmerShannon L.M. en-aut-sei=Whitmer en-aut-mei=Shannon L.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=WolfYuri I. en-aut-sei=Wolf en-aut-mei=Yuri I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=XiaHan en-aut-sei=Xia en-aut-mei=Han kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=YeGong-Yin en-aut-sei=Ye en-aut-mei=Gong-Yin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=YeZhuangxin en-aut-sei=Ye en-aut-mei=Zhuangxin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=YurchenkoVyacheslav en-aut-sei=Yurchenko en-aut-mei=Vyacheslav kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=ZhaoMingli en-aut-sei=Zhao en-aut-mei=Mingli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= affil-num=1 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=2 en-affil=Biological Sciences, Mississippi State University kn-affil= affil-num=3 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Consejo Nacional de Investigaciones Cient?ficas y T?cnicas (CONICET) and Instituto Nacional de Tecnolog?a Agropecuaria (INTA) kn-affil= affil-num=5 en-affil=CSIRO Health and Biosecurity kn-affil= affil-num=6 en-affil=Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University kn-affil= affil-num=7 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=8 en-affil=Instituto Conmemorativo Gorgas de Estudios de la Salud kn-affil= affil-num=9 en-affil=Division of Clinical and Epidemiological Virology, KU Leuven kn-affil= affil-num=10 en-affil=Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky kn-affil= affil-num=11 en-affil=Instituto Nacional de Tecnolog?a Agropecuaria (INTA) kn-affil= affil-num=12 en-affil=QAAFI, The University of Queensland kn-affil= affil-num=13 en-affil=Robert Koch Institut kn-affil= affil-num=14 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=15 en-affil=Animal and Plant Health Agency (APHA) kn-affil= affil-num=16 en-affil=Department of Biological Sciences, University of Arkansas kn-affil= affil-num=17 en-affil=Embrapa Cassava and Fruits kn-affil= affil-num=18 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=19 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=20 en-affil=Department of Microbiology and Immunology, University of Otago kn-affil= affil-num=21 en-affil=Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University kn-affil= affil-num=22 en-affil=School of Veterinary Medicine, Murdoch University kn-affil= affil-num=23 en-affil=German Federal Institute for Risk Assessment kn-affil= affil-num=24 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=25 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=26 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=27 en-affil=University of Ostrava kn-affil= affil-num=28 en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=29 en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health kn-affil= affil-num=30 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=31 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=32 en-affil=National Genomics Data Center, China National Center for Bioinformation; Beijing Institute of Genomics, Chinese Academy of Sciences; University of Chinese Academy of Sciences kn-affil= affil-num=33 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=34 en-affil=Department of Natural Sciences, Shawnee State University kn-affil= affil-num=35 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=36 en-affil=College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health kn-affil= affil-num=37 en-affil=Universidade Federal do Par? kn-affil= affil-num=38 en-affil=Pharmaq Analytiq kn-affil= affil-num=39 en-affil=Institute of Diagnostic Virology, Friedrich-Loeffler-Institut kn-affil= affil-num=40 en-affil=Centers for Disease Control and Prevention kn-affil= affil-num=41 en-affil=Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science kn-affil= affil-num=42 en-affil=Paul G. Allen School for Global Health, Washington State University kn-affil= affil-num=43 en-affil=Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui. INEVH -ANLIS kn-affil= affil-num=44 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=45 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=46 en-affil=Department of Virology, University of Helsinki kn-affil= affil-num=47 en-affil=Integrated Group of Aquaculture and Environmental Studies, Federal University of Paran? kn-affil= affil-num=48 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=49 en-affil=Department of Microbiology and Immunology, Indiana University School of Medicine kn-affil= affil-num=50 en-affil=Institut Pasteur kn-affil= affil-num=51 en-affil=Department of Pathology, The University of Texas Medical Branch kn-affil= affil-num=52 en-affil=University of Queensland kn-affil= affil-num=53 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=54 en-affil=North Carolina State University kn-affil= affil-num=55 en-affil=Viral Special Pathogens Branch, The Centers for Disease Control and Prevention kn-affil= affil-num=56 en-affil=Computational Biology Branch, Division of Intramural Research National Library of Medicine, National Institutes of Health kn-affil= affil-num=57 en-affil=Wuhan Institute of Virology, Chinese Academy of Sciences kn-affil= affil-num=58 en-affil=Institute of Insect Sciences, Zhejiang University kn-affil= affil-num=59 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=60 en-affil=University of Ostrava kn-affil= affil-num=61 en-affil=Department of Pathobiology and Population Sciences, Royal Veterinary College kn-affil= END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=7 article-no= start-page=002114 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250725 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Summary of taxonomy changes ratified by the International Committee on Taxonomy of Viruses from the Plant Viruses Subcommittee, 2025 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In March 2025, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote, newly proposed taxa were added to those under the mandate of the Plant Viruses Subcommittee. In brief, 1 new order, 3 new families, 6 new genera, 2 new subgenera and 206 new species were created. Some taxa were reorganized. Genus Cytorhabdovirus in the family Rhabdoviridae was abolished and its taxa were redistributed into three new genera Alphacytorhabdovirus, Betacytorhabdovirus and Gammacytorhabdovirus. Genus Waikavirus in the family Secoviridae was reorganized into two subgenera (Actinidivirus and Ritunrivirus). One family and four previously unaffiliated genera were moved to the newly established order Tombendovirales. Twelve species not assigned to a genus were abolished. To comply with the ICTV mandate of a binomial format for virus species, eight species were renamed. Demarcation criteria in the absence of biological information were defined in the genus Ilarvirus (family Bromoviridae). This article presents the updated taxonomy put forth by the Plant Viruses Subcommittee and ratified by the ICTV. en-copyright= kn-copyright= en-aut-name=RubinoLuisa en-aut-sei=Rubino en-aut-mei=Luisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbrahamianPeter en-aut-sei=Abrahamian en-aut-mei=Peter kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnWenxia en-aut-sei=An en-aut-mei=Wenxia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArandaMiguel A. en-aut-sei=Aranda en-aut-mei=Miguel A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Ascencio-Iba?ezJos? T. en-aut-sei=Ascencio-Iba?ez en-aut-mei=Jos? T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BejermanNicolas en-aut-sei=Bejerman en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BlouinArnaud G. en-aut-sei=Blouin en-aut-mei=Arnaud G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CandresseThierry en-aut-sei=Candresse en-aut-mei=Thierry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=CantoTomas en-aut-sei=Canto en-aut-mei=Tomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=CaoMengji en-aut-sei=Cao en-aut-mei=Mengji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=CarrJohn P. en-aut-sei=Carr en-aut-mei=John P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ChoWon Kyong en-aut-sei=Cho en-aut-mei=Won Kyong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ConstableFiona en-aut-sei=Constable en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=DasguptaIndranil en-aut-sei=Dasgupta en-aut-mei=Indranil kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=DebatHumberto en-aut-sei=Debat en-aut-mei=Humberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=DietzgenRalf G. en-aut-sei=Dietzgen en-aut-mei=Ralf G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=DigiaroMichele en-aut-sei=Digiaro en-aut-mei=Michele kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DonaireLivia en-aut-sei=Donaire en-aut-mei=Livia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ElbeainoToufic en-aut-sei=Elbeaino en-aut-mei=Toufic kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FargetteDenis en-aut-sei=Fargette en-aut-mei=Denis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=FilardoFiona en-aut-sei=Filardo en-aut-mei=Fiona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=FischerMatthias G. en-aut-sei=Fischer en-aut-mei=Matthias G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=FontdevilaNuria en-aut-sei=Fontdevila en-aut-mei=Nuria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=FoxAdrian en-aut-sei=Fox en-aut-mei=Adrian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=Freitas-AstuaJuliana en-aut-sei=Freitas-Astua en-aut-mei=Juliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=FuchsMarc en-aut-sei=Fuchs en-aut-mei=Marc kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=GeeringAndrew D.W. en-aut-sei=Geering en-aut-mei=Andrew D.W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=GhafariMahan en-aut-sei=Ghafari en-aut-mei=Mahan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=Hafr?nAnders en-aut-sei=Hafr?n en-aut-mei=Anders kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=HammondJohn en-aut-sei=Hammond en-aut-mei=John kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=HammondRosemarie en-aut-sei=Hammond en-aut-mei=Rosemarie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=Hasi?w-JaroszewskaBeata en-aut-sei=Hasi?w-Jaroszewska en-aut-mei=Beata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=HebrardEugenie en-aut-sei=Hebrard en-aut-mei=Eugenie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=Hern?ndezCarmen en-aut-sei=Hern?ndez en-aut-mei=Carmen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=HilyJean-Michel en-aut-sei=Hily en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=HosseiniAhmed en-aut-sei=Hosseini en-aut-mei=Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=HullRoger en-aut-sei=Hull en-aut-mei=Roger kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=Inoue-NagataAlice K. en-aut-sei=Inoue-Nagata en-aut-mei=Alice K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=JordanRamon en-aut-sei=Jordan en-aut-mei=Ramon kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=KreuzeJan F. en-aut-sei=Kreuze en-aut-mei=Jan F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=KrupovicMart en-aut-sei=Krupovic en-aut-mei=Mart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=KubotaKenji en-aut-sei=Kubota en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=KuhnJens H. en-aut-sei=Kuhn en-aut-mei=Jens H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=LeisnerScott en-aut-sei=Leisner en-aut-mei=Scott kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=LettJean-Michel en-aut-sei=Lett en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=LiChengyu en-aut-sei=Li en-aut-mei=Chengyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=LiFan en-aut-sei=Li en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=LiJun Min en-aut-sei=Li en-aut-mei=Jun Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=L?pez-LambertiniPaola M. en-aut-sei=L?pez-Lambertini en-aut-mei=Paola M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=Lopez-MoyaJuan J. en-aut-sei=Lopez-Moya en-aut-mei=Juan J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=MaclotFrancois en-aut-sei=Maclot en-aut-mei=Francois kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=M?kinenKristiina en-aut-sei=M?kinen en-aut-mei=Kristiina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=MartinDarren en-aut-sei=Martin en-aut-mei=Darren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=MassartSebastien en-aut-sei=Massart en-aut-mei=Sebastien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=MillerW. Allen en-aut-sei=Miller en-aut-mei=W. Allen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=MohammadiMusa en-aut-sei=Mohammadi en-aut-mei=Musa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=MollovDimitre en-aut-sei=Mollov en-aut-mei=Dimitre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=MullerEmmanuelle en-aut-sei=Muller en-aut-mei=Emmanuelle kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=NagataTatsuya en-aut-sei=Nagata en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=Navas-CastilloJes?s en-aut-sei=Navas-Castillo en-aut-mei=Jes?s kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= en-aut-name=NeriyaYutaro en-aut-sei=Neriya en-aut-mei=Yutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=62 ORCID= en-aut-name=Ochoa-CoronaFrancisco M. en-aut-sei=Ochoa-Corona en-aut-mei=Francisco M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=63 ORCID= en-aut-name=OhshimaKazusato en-aut-sei=Ohshima en-aut-mei=Kazusato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=64 ORCID= en-aut-name=Pall?sVicente en-aut-sei=Pall?s en-aut-mei=Vicente kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=65 ORCID= en-aut-name=PappuHanu en-aut-sei=Pappu en-aut-mei=Hanu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=66 ORCID= en-aut-name=PetrzikKarel en-aut-sei=Petrzik en-aut-mei=Karel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=67 ORCID= en-aut-name=PoogginMikhail en-aut-sei=Pooggin en-aut-mei=Mikhail kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=68 ORCID= en-aut-name=PrigigalloMaria Isabella en-aut-sei=Prigigallo en-aut-mei=Maria Isabella kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=69 ORCID= en-aut-name=Ramos-Gonz?lezPedro L. en-aut-sei=Ramos-Gonz?lez en-aut-mei=Pedro L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=70 ORCID= en-aut-name=RibeiroSimone en-aut-sei=Ribeiro en-aut-mei=Simone kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=71 ORCID= en-aut-name=Richert-P?ggelerKatja R. en-aut-sei=Richert-P?ggeler en-aut-mei=Katja R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=72 ORCID= en-aut-name=RoumagnacPhilippe en-aut-sei=Roumagnac en-aut-mei=Philippe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=73 ORCID= en-aut-name=RoyAvijit en-aut-sei=Roy en-aut-mei=Avijit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=74 ORCID= en-aut-name=SabanadzovicSead en-aut-sei=Sabanadzovic en-aut-mei=Sead kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=75 ORCID= en-aut-name=?af??ov?Dana en-aut-sei=?af??ov? en-aut-mei=Dana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=76 ORCID= en-aut-name=SaldarelliPasquale en-aut-sei=Saldarelli en-aut-mei=Pasquale kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=77 ORCID= en-aut-name=Sanfa?onH?l?ne en-aut-sei=Sanfa?on en-aut-mei=H?l?ne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=78 ORCID= en-aut-name=SarmientoCecilia en-aut-sei=Sarmiento en-aut-mei=Cecilia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=79 ORCID= en-aut-name=SasayaTakahide en-aut-sei=Sasaya en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=80 ORCID= en-aut-name=ScheetsKay en-aut-sei=Scheets en-aut-mei=Kay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=81 ORCID= en-aut-name=SchravesandeWillem E.W. en-aut-sei=Schravesande en-aut-mei=Willem E.W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=82 ORCID= en-aut-name=SealSusan en-aut-sei=Seal en-aut-mei=Susan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=83 ORCID= en-aut-name=ShimomotoYoshifumi en-aut-sei=Shimomoto en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=84 ORCID= en-aut-name=S?meraMerike en-aut-sei=S?mera en-aut-mei=Merike kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=85 ORCID= en-aut-name=StavoloneLivia en-aut-sei=Stavolone en-aut-mei=Livia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=86 ORCID= en-aut-name=StewartLucy R. en-aut-sei=Stewart en-aut-mei=Lucy R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=87 ORCID= en-aut-name=TeycheneyPierre-Yves en-aut-sei=Teycheney en-aut-mei=Pierre-Yves kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=88 ORCID= en-aut-name=ThomasJohn E. en-aut-sei=Thomas en-aut-mei=John E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=89 ORCID= en-aut-name=ThompsonJeremy R. en-aut-sei=Thompson en-aut-mei=Jeremy R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=90 ORCID= en-aut-name=TiberiniAntonio en-aut-sei=Tiberini en-aut-mei=Antonio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=91 ORCID= en-aut-name=TomitakaYasuhiro en-aut-sei=Tomitaka en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=92 ORCID= en-aut-name=TzanetakisIoannis en-aut-sei=Tzanetakis en-aut-mei=Ioannis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=93 ORCID= en-aut-name=UmberMarie en-aut-sei=Umber en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=94 ORCID= en-aut-name=UrbinoCica en-aut-sei=Urbino en-aut-mei=Cica kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=95 ORCID= en-aut-name=van den BurgHarrold A. en-aut-sei=van den Burg en-aut-mei=Harrold A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=96 ORCID= en-aut-name=Van der VlugtRen? A.A. en-aut-sei=Van der Vlugt en-aut-mei=Ren? A.A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=97 ORCID= en-aut-name=VarsaniArvind en-aut-sei=Varsani en-aut-mei=Arvind kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=98 ORCID= en-aut-name=VerhageAdriaan en-aut-sei=Verhage en-aut-mei=Adriaan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=99 ORCID= en-aut-name=VillamorDan en-aut-sei=Villamor en-aut-mei=Dan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=100 ORCID= en-aut-name=von BargenSusanne en-aut-sei=von Bargen en-aut-mei=Susanne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=101 ORCID= en-aut-name=WalkerPeter J. en-aut-sei=Walker en-aut-mei=Peter J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=102 ORCID= en-aut-name=WetzelThierry en-aut-sei=Wetzel en-aut-mei=Thierry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=103 ORCID= en-aut-name=WhitfieldAnna E. en-aut-sei=Whitfield en-aut-mei=Anna E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=104 ORCID= en-aut-name=WylieStephen J. en-aut-sei=Wylie en-aut-mei=Stephen J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=105 ORCID= en-aut-name=YangCaixia en-aut-sei=Yang en-aut-mei=Caixia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=106 ORCID= en-aut-name=ZerbiniF. Murilo en-aut-sei=Zerbini en-aut-mei=F. Murilo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=107 ORCID= en-aut-name=ZhangSong en-aut-sei=Zhang en-aut-mei=Song kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=108 ORCID= affil-num=1 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=2 en-affil=USDA-ARS, BARC, National Germplasm Resources Laboratory kn-affil= affil-num=3 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=4 en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC kn-affil= affil-num=5 en-affil=Department of Molecular and Structural Biochemistry, North Carolina State University kn-affil= affil-num=6 en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET kn-affil= affil-num=7 en-affil=Plant Protection Department kn-affil= affil-num=8 en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE kn-affil= affil-num=9 en-affil=Margarita Salas Center for Biological Research (CIB-CSIC) Spanish Council for Scientific Research (CSIC) kn-affil= affil-num=10 en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University kn-affil= affil-num=11 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=12 en-affil=Agriculture and Life Sciences Research Institute, Kangwon National University kn-affil= affil-num=13 en-affil=Agriculture Victoria Research, Department of Energy, Environment and Climate Action and School of Applied Systems Biology, La Trobe University kn-affil= affil-num=14 en-affil=University of Delhi South Campu kn-affil= affil-num=15 en-affil=Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET kn-affil= affil-num=16 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=17 en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari kn-affil= affil-num=18 en-affil=Centro de Edafolog?a y Biolog?a Aplicada del Segura-CSIC kn-affil= affil-num=19 en-affil=CIHEAM, Istituto Agronomico Mediterraneo of Bari kn-affil= affil-num=20 en-affil=Virus South Data kn-affil= affil-num=21 en-affil=Queensland Department of Primary Industries kn-affil= affil-num=22 en-affil=Max Planck Institute for Marine Microbiology kn-affil= affil-num=23 en-affil=Plant Protection Department kn-affil= affil-num=24 en-affil=Fera Science Ltd (Fera), York Biotech Campus kn-affil= affil-num=25 en-affil=Embrapa Cassava and Fruits, Brazilian Agricultural Research Corporation kn-affil= affil-num=26 en-affil=Plant Pathology, Cornell University kn-affil= affil-num=27 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=28 en-affil=Department of Biology, University of Oxford kn-affil= affil-num=29 en-affil=Swedish University of Agriculture kn-affil= affil-num=30 en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit kn-affil= affil-num=31 en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory kn-affil= affil-num=32 en-affil=Institute of Plant Protection-NRI kn-affil= affil-num=33 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro kn-affil= affil-num=34 en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC kn-affil= affil-num=35 en-affil=Institut Fran?ais de la Vigne et du Vin kn-affil= affil-num=36 en-affil=Vali-e-Asr University of Rafsanjan, Department of Plant Protection kn-affil= affil-num=37 en-affil=Retired from John Innes Centre kn-affil= affil-num=38 en-affil=Embrapa Hortali?as kn-affil= affil-num=39 en-affil=USDA-ARS, USNA, Floral and Nursery Plants Research Unit kn-affil= affil-num=40 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=41 en-affil=International Potato Center (CIP) kn-affil= affil-num=42 en-affil=Institut Pasteur, Universit? Paris Cit?, CNRS UMR6047, Archaeal Virology Unit kn-affil= affil-num=43 en-affil=Institute for Plant Protection, NARO kn-affil= affil-num=44 en-affil=Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health kn-affil= affil-num=45 en-affil=Department of Biological Sciences, University of Toledo kn-affil= affil-num=46 en-affil=CIRAD, UMR PVBMT kn-affil= affil-num=47 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=48 en-affil=State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University kn-affil= affil-num=49 en-affil=Institute of Plant Virology, Ningbo University kn-affil= affil-num=50 en-affil=Instituto de Patolog?a Vegetal (IPAVE), INTA, Unidad de Fitopatolog?a y Modelizaci?n Agr?cola (UFYMA) INTA-CONICET kn-affil= affil-num=51 en-affil=Centre for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB) kn-affil= affil-num=52 en-affil=UMR 1332 Biologie du Fruit et Pathologie, University of Bordeaux, INRAE kn-affil= affil-num=53 en-affil=Department of Agricultural Sciences, University of Helsinki kn-affil= affil-num=54 en-affil=Institute of Infectious Disease and Molecular Medicine, University of Cape Town kn-affil= affil-num=55 en-affil=Plant Pathology Laboratory, TERRA Gembloux Agro-Bio Tech, University of Liege kn-affil= affil-num=56 en-affil=Department of Plant Pathology, Entomology and Microbiology, Iowa State University kn-affil= affil-num=57 en-affil=Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources kn-affil= affil-num=58 en-affil=USDA-APHIS, Plant Protection and Quarantine kn-affil= affil-num=59 en-affil=CIRAD, AGAP Institut; AGAP Institut, University of Montpellier; CIRAD, INRAE kn-affil= affil-num=60 en-affil=Instituto de Ci?ncias Biol?gicas, Universidade de Bras?lia kn-affil= affil-num=61 en-affil=Instituto de Hortofruticultura Subtropical y Mediterr?nea gLa Mayorah (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Cient?ficas kn-affil= affil-num=62 en-affil=Utsunomiya University kn-affil= affil-num=63 en-affil=Oklahoma State University, Institute for Biosecurity & Microbial Forensics kn-affil= affil-num=64 en-affil=Saga University kn-affil= affil-num=65 en-affil=Instituto de Biolog?a Molecular y Celular de Plantas (IBMCP), Universitat Polit?cnica de Valencia-CSIC kn-affil= affil-num=66 en-affil=Department of Plant Pathology, Washington State University kn-affil= affil-num=67 en-affil=Institute of Plant Molecular Biology kn-affil= affil-num=68 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD kn-affil= affil-num=69 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=70 en-affil=Applied Molecular Biology Laboratory, Instituto Biol?gico de S?o Paulo kn-affil= affil-num=71 en-affil=Embrapa Recursos Gen?ticos e Biotecnologia kn-affil= affil-num=72 en-affil=Julius K?hn Institute, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics kn-affil= affil-num=73 en-affil=CIRAD, UMR PHIM kn-affil= affil-num=74 en-affil=USDA-ARS, BARC, Molecular Plant Pathology Laboratory, Beltsville, MD, USA kn-affil= affil-num=75 en-affil=Department of Agricultural Science and Plant Protection, Mississippi State University kn-affil= affil-num=76 en-affil=Department of Cell Biology and Genetics, Faculty of Science, Palack? University Olomouc kn-affil= affil-num=77 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=78 en-affil=Summerland Research and Development Centre, Agriculture and Agri-Food Canada kn-affil= affil-num=79 en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology kn-affil= affil-num=80 en-affil=Strategic Planning Headquarters, NARO kn-affil= affil-num=81 en-affil=Department of Plant Pathology, Ecology and Evolution, Oklahoma State University kn-affil= affil-num=82 en-affil=Molecular Plant Pathology, University of Amsterdam kn-affil= affil-num=83 en-affil=Natural Resources Institute, University of Greenwich kn-affil= affil-num=84 en-affil=Kochi Agricultural Research Center kn-affil= affil-num=85 en-affil=Department of Chemistry and Biotechnology, Tallinn University of Technology kn-affil= affil-num=86 en-affil=Istituto per la Protezione Sostenibile delle Piante, CNR kn-affil= affil-num=87 en-affil=Currently unaffiliated kn-affil= affil-num=88 en-affil=CIRAD, UMR PVBMT & UMR PVBMT, Universit? de la R?union kn-affil= affil-num=89 en-affil=Queensland Alliance for Agriculture and Food Innovation, The University of Queensland kn-affil= affil-num=90 en-affil=Plant Health and Environment Laboratory kn-affil= affil-num=91 en-affil=Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification kn-affil= affil-num=92 en-affil=Institute for Plant Protection, NARO kn-affil= affil-num=93 en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System kn-affil= affil-num=94 en-affil=INRAE, UR ASTRO kn-affil= affil-num=95 en-affil=PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro kn-affil= affil-num=96 en-affil=Molecular Plant Pathology, University of Amsterdam kn-affil= affil-num=97 en-affil=Wageningen University and Research kn-affil= affil-num=98 en-affil=The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University kn-affil= affil-num=99 en-affil=Rijk Zwaan Breeding B.V. kn-affil= affil-num=100 en-affil=Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System kn-affil= affil-num=101 en-affil=Humboldt-Universit?t zu Berlin, Thaer-Institute of Agricultural and Horticultural Sciences kn-affil= affil-num=102 en-affil=The University of Queensland kn-affil= affil-num=103 en-affil=Dienstleistungszentrum L?ndlicher Raum Rheinpfalz kn-affil= affil-num=104 en-affil=North Carolina State University kn-affil= affil-num=105 en-affil=Food Futures Institute, Murdoch University kn-affil= affil-num=106 en-affil=Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, Shenyang University kn-affil= affil-num=107 en-affil=Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Vi?osa kn-affil= affil-num=108 en-affil=National Citrus Engineering and Technology Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=12 article-no= start-page=4932 end-page=4951 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The leucine-rich repeat receptor kinase QSK1 regulates PRR-RBOHD complexes targeted by the bacterial effector HopF2Pto en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants detect pathogens using cell-surface pattern recognition receptors (PRRs) such as ELONGATION Factor-TU (EF-TU) RECEPTOR (EFR) and FLAGELLIN SENSING 2 (FLS2), which recognize bacterial EF-Tu and flagellin, respectively. These PRRs belong to the leucine-rich repeat receptor kinase (LRR-RK) family and activate the production of reactive oxygen species via the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD). The PRR-RBOHD complex is tightly regulated to prevent unwarranted or exaggerated immune responses. However, certain pathogen effectors can subvert these regulatory mechanisms, thereby suppressing plant immunity. To elucidate the intricate dynamics of the PRR-RBOHD complex, we conducted a comparative coimmunoprecipitation analysis using EFR, FLS2, and RBOHD in Arabidopsis thaliana. We identified QIAN SHOU KINASE 1 (QSK1), an LRR-RK, as a PRR-RBOHD complex-associated protein. QSK1 downregulated FLS2 and EFR abundance, functioning as a negative regulator of PRR-triggered immunity (PTI). QSK1 was targeted by the bacterial effector HopF2Pto, a mono-ADP ribosyltransferase, reducing FLS2 and EFR levels through both transcriptional and transcription-independent pathways, thereby inhibiting PTI. Furthermore, HopF2Pto transcriptionally downregulated PROSCOOP genes encoding important stress-regulated phytocytokines and their receptor MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2. Importantly, HopF2Pto requires QSK1 for its accumulation and virulence functions within plants. In summary, our results provide insights into the mechanism by which HopF2Pto employs QSK1 to desensitize plants to pathogen attack. en-copyright= kn-copyright= en-aut-name=GotoYukihisa en-aut-sei=Goto en-aut-mei=Yukihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KadotaYasuhiro en-aut-sei=Kadota en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MbengueMalick en-aut-sei=Mbengue en-aut-mei=Malick kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LewisJennifer D en-aut-sei=Lewis en-aut-mei=Jennifer D kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MakiNoriko en-aut-sei=Maki en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NgouBruno Pok Man en-aut-sei=Ngou en-aut-mei=Bruno Pok Man kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SklenarJan en-aut-sei=Sklenar en-aut-mei=Jan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DerbyshirePaul en-aut-sei=Derbyshire en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShibataArisa en-aut-sei=Shibata en-aut-mei=Arisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchihashiYasunori en-aut-sei=Ichihashi en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=GuttmanDavid S en-aut-sei=Guttman en-aut-mei=David S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakagamiHirofumi en-aut-sei=Nakagami en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SuzukiTakamasa en-aut-sei=Suzuki en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MenkeFrank L H en-aut-sei=Menke en-aut-mei=Frank L H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=RobatzekSilke en-aut-sei=Robatzek en-aut-mei=Silke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=DesveauxDarrell en-aut-sei=Desveaux en-aut-mei=Darrell kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ZipfelCyril en-aut-sei=Zipfel en-aut-mei=Cyril kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=2 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=3 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=4 en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=7 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=8 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=9 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=10 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=11 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= affil-num=12 en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto kn-affil= affil-num=13 en-affil=Plant Proteomics Research Unit, RIKEN CSRS kn-affil= affil-num=14 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=15 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=16 en-affil=The Sainsbury Laboratory, University of East Anglia kn-affil= affil-num=17 en-affil=Department of Cell and System Biology, Centre for the Analysis of Genome Function and Evolution, University of Toronto kn-affil= affil-num=18 en-affil=Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich kn-affil= affil-num=19 en-affil=Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS) kn-affil= END start-ver=1.4 cd-journal=joma no-vol=637 cd-vols= no-issue=8046 article-no= start-page=744 end-page=748 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3,4,5. Despite the high impact of ecentrophilicf retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes. en-copyright= kn-copyright= en-aut-name=TsukaharaSayuri en-aut-sei=Tsukahara en-aut-mei=Sayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BousiosAlexandros en-aut-sei=Bousios en-aut-mei=Alexandros kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Perez-RomanEstela en-aut-sei=Perez-Roman en-aut-mei=Estela kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiSota en-aut-sei=Yamaguchi en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeduqueBasile en-aut-sei=Leduque en-aut-mei=Basile kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoAimi en-aut-sei=Nakano en-aut-mei=Aimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaishMatthew en-aut-sei=Naish en-aut-mei=Matthew kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OsakabeAkihisa en-aut-sei=Osakabe en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaAtsushi en-aut-sei=Toyoda en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHidetaka en-aut-sei=Ito en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EderaAlejandro en-aut-sei=Edera en-aut-mei=Alejandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TominagaSayaka en-aut-sei=Tominaga en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Juliarni en-aut-sei=Juliarni en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KatoKae en-aut-sei=Kato en-aut-mei=Kae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OdaShoko en-aut-sei=Oda en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=InagakiSoichi en-aut-sei=Inagaki en-aut-mei=Soichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=Lorkovi?Zdravko en-aut-sei=Lorkovi? en-aut-mei=Zdravko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NagakiKiyotaka en-aut-sei=Nagaki en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=BergerFr?d?ric en-aut-sei=Berger en-aut-mei=Fr?d?ric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KawabeAkira en-aut-sei=Kawabe en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=QuadranaLeandro en-aut-sei=Quadrana en-aut-mei=Leandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HendersonIan en-aut-sei=Henderson en-aut-mei=Ian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KakutaniTetsuji en-aut-sei=Kakutani en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=2 en-affil=School of Life Sciences, University of Sussex kn-affil= affil-num=3 en-affil=School of Life Sciences, University of Sussex kn-affil= affil-num=4 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=5 en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris kn-affil= affil-num=6 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=8 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=9 en-affil=Center for Genetic Resource Information, National Institute of Genetics kn-affil= affil-num=10 en-affil=Faculty of Science, Hokkaido University kn-affil= affil-num=11 en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris kn-affil= affil-num=12 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=13 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=14 en-affil=Department of Integrated Genetics, National Institute of Genetics kn-affil= affil-num=15 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=16 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=17 en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) kn-affil= affil-num=18 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=19 en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) kn-affil= affil-num=20 en-affil=Faculty of Life Sciences, Kyoto Sangyo University kn-affil= affil-num=21 en-affil=Institute of Plant Sciences Paris]Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour lfAgriculture, lfAlimentation et lfEnvironnement, Universit? Evry, Universit? Paris kn-affil= affil-num=22 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=23 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=10712 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Shoot-Silicon-Signal protein to regulate root silicon uptake in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone gflorigenh differentiated in Poaceae. SSS transcript is only detected in the shoot, whereas the SSS protein is also detected in the root and phloem sap. When Si is supplied from the root, the SSS transcript rapidly decreases, and then the SSS protein disappears. In sss mutants, root Si uptake and expression of Si transporters are decreased to a basal level regardless of the Si supply. The grain yield of the mutants is decreased to 1/3 due to insufficient Si accumulation. Thus, SSS is a key phloem-mobile protein for integrating root Si uptake and shoot Si accumulation underlying the terrestrial adaptation strategy of grasses. en-copyright= kn-copyright= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Mitani-UenoNamiki en-aut-sei=Mitani-Ueno en-aut-mei=Namiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiToshiki en-aut-sei=Fujii en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShinyaTomonori en-aut-sei=Shinya en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShaoJi Feng en-aut-sei=Shao en-aut-mei=Ji Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanukiShota en-aut-sei=Watanuki en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=262 cd-vols= no-issue=2 article-no= start-page=385 end-page=395 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis of the effect of permeant solutes on the hydraulic resistance of the plasma membrane in cells of Chara corallina en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the cells of Chara corallina, permeant monohydric alcohols including methanol, ethanol and 1-propanol increased the hydraulic resistance of the membrane (Lpm?1). We found that the relative value of the hydraulic resistance (rLpm?1) was linearly dependent on the concentration (Cs) of the alcohol. The relationship is expressed in the equation: rLpm?1?=?ƒΟmCs?+?1, where ƒΟm is the hydraulic resistance modifier coefficient of the membrane. Ye et al. (2004) showed that membrane-permeant glycol ethers also increased Lp?1. We used their data to estimate Lpm?1 and rLpm?1. The values of rLpm?1 fit the above relation we found for alcohols. When we plotted the ƒΟm values of all the permeant alcohols and glycol ethers against their molecular weights (MW), we obtained a linear curve with a slope of 0.014 M?1/MW and with a correlation coefficient of 0.99. We analyzed the influence of the permeant solutes on the relative hydraulic resistance of the membrane (rLpm?1) as a function of the external (ƒΞ0) and internal (ƒΞi) osmotic pressures. The analysis showed that the hydraulic resistance modifier coefficients (ƒΟm) were linearly related to the MW of the permeant solutes with a slope of 0.012 M?1/MW and with a correlation coefficient of 0.84. The linear relationship between the effects of permeating solutes on the hydraulic resistance modifier coefficient (ƒΟm) and the MW can be explained in terms of the effect of the effective osmotic pressure on the hydraulic conductivity of water channels. The result of the analysis suggests that the osmotic pressure and not the size of the permeant solute as proposed by (Ye et al., J Exp Bot 55:449?461, 2004) is the decisive factor in a solutefs influence on hydraulic conductivity. Thus, characean water channels (aquaporins) respond to permeant solutes with essentially the same mechanism as to impermeant solutes. en-copyright= kn-copyright= en-aut-name=TazawaMasashi en-aut-sei=Tazawa en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WayneRandy en-aut-sei=Wayne en-aut-mei=Randy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsuharaMaki en-aut-sei=Katsuhara en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Yoshida Biological Laboratory kn-affil= affil-num=2 en-affil=Laboratory of Natural Philosophy, Plant Biology Section, Cornell University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Chara corallina kn-keyword=Chara corallina en-keyword=Effective osmotic pressure kn-keyword=Effective osmotic pressure en-keyword=Hydraulic resistance kn-keyword=Hydraulic resistance en-keyword=Plasma membrane kn-keyword=Plasma membrane en-keyword=Reflection coefficient kn-keyword=Reflection coefficient END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=5 article-no= start-page=e70087 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250512 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genomic Islands of Pseudomonas syringae pv. tabaci 6605: Identification of PtaGI-1 as a Pathogenicity Island With Effector Genes and a Tabtoxin Cluster en-subtitle= kn-subtitle= en-abstract= kn-abstract=Genomic islands (GIs) are 20-500 kb DNA regions that are thought to be acquired by horizontal gene transfer. GIs that confer pathogenicity and environmental adaptation have been reported in Pseudomonas species; however, GIs that enhance bacterial virulence have not. Here, we identified 110 kb and 103 kb GIs in P. syringae pv. tabaci 6605 (Pta6605), the causative agent of tobacco wildfire disease, which has the ability to produce tabtoxin as a phytotoxin. These GIs are partially homologous to known genomic islands in Pseudomonas aeruginosa and P. syringae pv. phaseolicola and were designated PtaGI-1 and PtaGI-2. Both PtaGIs conserve core genes, whereas each GI possesses different accessory genes. PtaGI-1 contains a tabtoxin biosynthetic gene cluster and three type III effector genes among its accessory genes, whereas PtaGI-2 also contains homologous genes to hsvABC, pathogenicity-related genes in Erwinia amylovora. Inoculation revealed that the PtaGI-1 mutant, but not the PtaGI-2 mutant, lost the ability to biosynthesise tabtoxin and to cause disease. Therefore, PtaGI-1 is thought to be a pathogenicity island. Both PtaGI-1 and PtaGI-2 have a pseudogene of tRNALys on the left border and an intact tRNALys gene on the right border. In a colony of Pta6605, both GIs can be excised at tRNALys, and PtaGI-1 and PtaGI-2 exist in a circular form. These results indicate that tabtoxin biosynthesis genes in PtaGI-1 are required for disease development, and PtaGI-1 is necessary for Pta6605 virulence. en-copyright= kn-copyright= en-aut-name=WatanabeYuta en-aut-sei=Watanabe en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KunishiKotomi en-aut-sei=Kunishi en-aut-mei=Kotomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Agriculture,Okayama University kn-affil= affil-num=3 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=horizontal gene transfer kn-keyword=horizontal gene transfer en-keyword=integrative and conjugative elements kn-keyword=integrative and conjugative elements en-keyword=pathogenicity island kn-keyword=pathogenicity island en-keyword=Pseudomonas syringae kn-keyword=Pseudomonas syringae en-keyword=tabtoxin kn-keyword=tabtoxin END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=5 article-no= start-page=e70091 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pseudomonas syringae pv. tabaci 6605 Requires Seven Type III Effectors to Infect Nicotiana benthamiana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Type III effectors (T3Es), virulence factors injected into plant cells via the type III secretion system (T3SS), play essential roles in the infection of host plants. Pseudomonas syringae pv. tabaci 6605 (Pta 6605) is the causal agent of wildfire disease in tobacco and harbours at least 22 T3Es in its genome. However, the specific T3Es required by Pta 6605 to infect Nicotiana benthamiana remain unidentified. In this study, we investigated the T3Es that contribute to Pta 6605 infection of N. benthamiana. We constructed Pta 6605 poly-T3E-deficient mutants (Pta DxE) and inoculated them into N. benthamiana. Flood assay, which mimics natural opening-based entry, showed that mutant strains lacking 14-22 T3Es, namely, Pta D14E-D22E mutants, exhibited reduced disease symptoms. By contrast, infiltration inoculation, which involves direct injection into leaves, showed that the Pta D14E to Pta D20E mutants developed disease symptoms. Notably, the Pta D20E, containing AvrE1 and HopM1, induced weak but observable symptoms upon infiltration inoculation. Conversely, no symptoms were observed in either the flood assay or infiltration inoculation for Pta D21E and Pta D22E. Taken together, these findings indicate that the many T3Es such as AvrPto4/AvrPtoB, HopW1/HopAE1, and HopM1/AvrE1 in Pta 6605 collectively contribute to invasion through natural openings and symptom development in N. benthamiana. This study provides the basis for understanding virulence in the host by identifying the minimum T3E repertoire required by Pta 6605 to infect N. benthamiana. en-copyright= kn-copyright= en-aut-name=KuroeKana en-aut-sei=Kuroe en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakafumi en-aut-sei=Nishimura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KashiharaSachi en-aut-sei=Kashihara en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=poly T3E mutant kn-keyword=poly T3E mutant en-keyword=type III effector kn-keyword=type III effector en-keyword=type III secretion system kn-keyword=type III secretion system END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=133 end-page=145 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250328 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The Image of Mushroom Created by Junior High School Science Textbooks: Suggestions for Learning about Mushroom from Diachronic Surveys kn-title=’†ŠwZ—‰Θ‹³‰Θ‘‚ͺ‚Β‚­‚θγ‚°‚Δ‚«‚½‚«‚Μ‚±‘œ@\’ΚŽž“I’²Έ‚©‚η“Ύ‚ι‚«‚Μ‚±‚π„‚ιŠwK‚Φ‚ΜŽ¦΄\ en-subtitle= kn-subtitle= en-abstract=@In this paper, we examined the image of mushroom in postwar junior high school science textbooks from four perspectives: (1) which species of mushroom were covered, (2) whether they were classified as plants or not, (3) what makes up the body of a mushroom, and (4) how they functioned in an ecosystem. The 47 species were identified through a periodic survey. Although a total of 47 species have appeared in science textbooks, we pointed out that in recent years, the focus has shifted to the role of mushroom as decomposers, rather than to species awareness. We also pointed out that although mycorrhizal fungi have been discussed in textbooks, there was no reference to the perspective in a plant-fungal symbiosis, which raises the possibility of developing learning that aims to understand symbiosis/interactions within a nature ecosystem. kn-abstract=@–{e‚ł́CνŒγ’†ŠwZ—‰ΘŒŸ’θ‹³‰Θ‘‚Ι‚¨‚―‚ι‚«‚Μ‚±‚Μˆ΅‚ν‚κ•ϋC‚·‚Θ‚ν‚ΏŠwKŽ‚ͺŽσ‚―Žζ‚ι‚±‚Ζ‚Ι‚Θ‚ι‚«‚Μ‚±‘œ‚Ι‚Β‚’‚āC‡@‚Η‚Μ‚ζ‚€‚Θ‚«‚Μ‚±‚ͺˆ΅‚ν‚κ‚Δ‚«‚½‚Μ‚©C‡AA•¨‚Ι•ͺ—ή‚³‚κ‚Δ‚’‚ι‚©”Ϋ‚©C‡B‚«‚Μ‚±‚Μ‚©‚η‚Ύ‚Ν‰½‚ΕŒ`¬‚³‚κ‚Δ‚’‚ι‚Μ‚©C‡CΆ‘ΤŒn‚Ι‚¨‚―‚ι“­‚«‚ΜŽl‚Β‚ΜŠΟ“_‚©‚ηC’ΚŽž“I‚Θ’²Έ‚Ι‚ζ‚Α‚Δ–Ύ‚η‚©‚Ι‚΅‚½B‘S47Žν‚ͺ‚±‚κ‚ά‚Ε‚Μ—‰Θ‹³‰Θ‘‚Ε“oκ‚΅‚Δ‚«‚½‚ͺC‹ί”N‚ΝŽν‚Φ‚ΜˆΣŽ―‚Ζ‚’‚€‚ζ‚θ‚ΰC‚«‚Μ‚±‚ͺ•ͺ‰πŽ‚Ζ‚΅‚Δ‚Μ–πŠ„‚πŽ‚Β‚±‚Ƃɂ̂ݏœ_‚ͺ“–‚Δ‚η‚κ‚Δ‚«‚Δ‚’‚ι‚±‚Ζ‚πŽw“E‚΅‚½B‚ά‚½C‚±‚κ‚ά‚Ε‹³‰Θ‘‚Ι‚¨‚’‚Ă͋ۍͺ«‚Μ‚«‚Μ‚±Ž©‘Μ‚Ι‚Β‚’‚ΔŽζ‚θγ‚°‚η‚κ‚‚‚ΰC‚»‚̐Ά‘ΤŒn‚Ι‚¨‚―‚ι‘Š—˜‹€Ά‚ΜŠΟ“_‚Φ‚ΜŒΎ‹y‚Ν‚Θ‚’‚±‚Ζ‚©‚ηC‘Š—˜‹€Ά‚Μ—‰π‚π–ΪŽw‚·ŠwK‚ΜŠJ”­‚ͺ‰Β”\«‚Ζ‚΅‚Δ•‚‚©‚яγ‚ͺ‚Α‚Δ‚­‚ι‚±‚Ζ‚ΰŽw“E‚΅‚½B en-copyright= kn-copyright= en-aut-name=TAKAGIRisa en-aut-sei=TAKAGI en-aut-mei=Risa kn-aut-name=ϋό–Ψ—’Κ kn-aut-sei=ϋό–Ψ kn-aut-mei=—’Κ aut-affil-num=1 ORCID= en-aut-name=IKEDAMasafumi en-aut-sei=IKEDA en-aut-mei=Masafumi kn-aut-name=’r“c‹§Žj kn-aut-sei=’r“c kn-aut-mei=‹§Žj aut-affil-num=2 ORCID= en-aut-name=YAMAMOTOMasaya en-aut-sei=YAMAMOTO en-aut-mei=Masaya kn-aut-name=ŽR–{«–η kn-aut-sei=ŽR–{ kn-aut-mei=«–η aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Education (Professional Degree Corse), Okayama University kn-affil=‰ͺŽR‘εŠw‘εŠw‰@‹³ˆηŠwŒ€‹†‰Θ‘εŠw‰@Ά affil-num=2 en-affil=Faculty of Education, Okayama University kn-affil=‰ͺŽR‘εŠwŠwpŒ€‹†‰@‹³ˆηŠwˆζ affil-num=3 en-affil=Hyogo University of Teacher Education kn-affil=•ΊŒΙ‹³ˆη‘εŠw‘εŠw‰@ŠwZ‹³ˆηŒ€‹†‰Θ en-keyword=‹Ϋ—ή (Fungus) kn-keyword=‹Ϋ—ή (Fungus) en-keyword=‹Ϋͺ‹Ϋ (Mycorrhizal Fungi) kn-keyword=‹Ϋͺ‹Ϋ (Mycorrhizal Fungi) en-keyword=•…Ά‹Ϋ (Saprobic Fungi) kn-keyword=•…Ά‹Ϋ (Saprobic Fungi) en-keyword=‘Š—˜‹€Ά (Symbiosis) kn-keyword=‘Š—˜‹€Ά (Symbiosis) en-keyword=‹³ήŽj (History of teaching materials) kn-keyword=‹³ήŽj (History of teaching materials) END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=1 article-no= start-page=2480231 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Specific enhancement of the translation of thermospermine-responsive uORF-containing mRNAs by ribosomal mutations in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Auxin-induced xylem formation in angiosperms is negatively regulated by thermospermine, whose biosynthesis is also induced by auxin. In Arabidopsis thaliana, loss-of-function mutants of ACL5, which encodes thermospermine synthase, exhibit a dwarf phenotype accompanied by excessive xylem formation. Studies of suppressor mutants that recover from the acl5 dwarf phenotype suggest that thermospermine alleviates the inhibitory effect of an upstream open-reading frame (uORF) on the main ORF translation of SAC51 mRNA. Many suppressor mutations for acl5 have been mapped to the uORF conserved in the SAC51 family or to ribosomal protein genes, such as RPL10A, RPL4A, and RACK1A. In this study, we identified newly isolated acl5 suppressors, sac501, sac504, and sac506, which are additional alleles of RPL10A and the uORFs of SAC51 family members, SACL1 and SACL3, respectively. To investigate whether acl5-suppressor alleles of ribosomal genes broadly affect translation of uORF-containing mRNAs, we examined GUS activity in several 5'-GUS fusion constructs. Our results showed that these alleles enhanced GUS activity in SAC51 and SACL3 5'-fusion constructs but had no effect on other 5'-fusion constructs unrelated to thermospermine response. This suggests that these ribosomal proteins are specifically involved in the thermospermine-mediated regulation of mRNA translation. en-copyright= kn-copyright= en-aut-name=MutsudaKoki en-aut-sei=Mutsuda en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiYuichi en-aut-sei=Nishii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToyoshimaTomohiko en-aut-sei=Toyoshima en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukushimaHiroko en-aut-sei=Fukushima en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=mRNA translation kn-keyword=mRNA translation en-keyword=RPL10 kn-keyword=RPL10 en-keyword=suppressor mutant kn-keyword=suppressor mutant en-keyword=thermospermine kn-keyword=thermospermine en-keyword=uORF kn-keyword=uORF END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=2 article-no= start-page=235 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a basidiomycete phytopathogenic fungus that causes rapid necrosis in a wide range of crop species, leading to substantial agricultural losses worldwide. The species complex is divided into 13 anastomosis groups (AGs) based on hyphal fusion compatibility and further subdivided by culture morphology. While R. solani classifications were shown to be independent of host specificity, it remains unclear whether different R. solani isolates share similar virulence mechanisms. Here, we investigated the infectivity of Japanese R. solani isolates on Brachypodium distachyon and barley. Two isolates, AG-1 IA (from rice) and AG-4 HG-I+II (from cauliflower), infected leaves of both plants, but only AG-4 HG-I+II infected roots. B. distachyon accessions Bd3-1 and Gaz-4 and barley cultivar 'Morex' exhibited enhanced resistance to both isolates compared to B. distachyon Bd21 and barley cultivars 'Haruna Nijo' and 'Golden Promise'. During AG-1 IA infection, but not AG-4 HG-I+II infection, resistant Bd3-1 and Morex induced genes for salicylic acid (SA) and N-hydroxypipecolic acid (NHP) biosynthesis. Pretreatment with SA or NHP conferred resistance to AG-1 IA, but not AG-4 HG-I+II, in susceptible B. distachyon Bd21 and barley Haruna Nijo. On the leaves of susceptible Bd21 and Haruna Nijo, AG-1 IA developed extensive mycelial networks with numerous infection cushions, which are specialized infection structures well-characterized in rice sheath blight. In contrast, AG-4 HG-I+II formed dispersed mycelial masses associated with underlying necrosis. We propose that the R. solani species complex encompasses at least two distinct infection strategies: AG-1 IA exhibits a hemibiotrophic lifestyle, while AG-4 HG-I+II follows a predominantly necrotrophic strategy. en-copyright= kn-copyright= en-aut-name=MahadevanNiranjan en-aut-sei=Mahadevan en-aut-mei=Niranjan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FernandaRozi en-aut-sei=Fernanda en-aut-mei=Rozi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KohnoNatsuka en-aut-sei=Kohno en-aut-mei=Natsuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaoReiko en-aut-sei=Nagao en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NyeinKhin Thida en-aut-sei=Nyein en-aut-mei=Khin Thida kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=13 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=14 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Rhizoctonia solani species complex kn-keyword=Rhizoctonia solani species complex en-keyword=virulence mechanism kn-keyword=virulence mechanism en-keyword=infection behavior kn-keyword=infection behavior en-keyword=salicylic acid kn-keyword=salicylic acid en-keyword=N-hydroxypipecolic acid kn-keyword=N-hydroxypipecolic acid END start-ver=1.4 cd-journal=joma no-vol=114 cd-vols= no-issue= article-no= start-page=1 end-page=10 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of dark respiration on dry matter production of various crop species en-subtitle= kn-subtitle= en-abstract= kn-abstract=@Eleven crops were cultivated: maize, sunflower, soybean, groundnuts, sesame, kenaf, barley, wheat, rice, potato, and sweet potato. The crop growth rate (CGR) and specific dark-respiration rate (Rs) were measured, and growth efficiency GE =CGR/(CGR+R) (R, respiratory loss) was calculated. In each crop, whole-plant Rs reached a maximum in the earlier stages of growth, declined rapidly until the early reproductive growth, and remained almost constant during the ripening period. The Rs of leaves was higher than that of stems during the reproductive growth period, except for maize and potato. The Rs of storage organs was highest in the earlier stages, followed by a rapid decline to similar or lower values than those of leaves and stems during the ripening period. The GE in whole plant was higher than 60% in wheat, maize, barley, sunflower, rice, kenaf, sesame, but lower in soybean, sweet potato and groundnuts, and lowest in potato, which was affected by the higher respiratory loss. The GE in whole plant during the reproductive growth period was significantly lower, which we attributed to increased maintenance costs due to the increase of non-assimilative organs, and decrease in the dry weight of vegetative organs. A positive correlation was observed between the carbohydrate content of storage organs and GE, indicating that a crop with higher carbohydrate content in storage organs tended to have a higher GE. Crops with higher protein and crude fat content in storage organs tended to have lower GE. The GE over the growing season was low for kenaf, a fiber crop which contains high molecular weight compounds such as lignin and cellulose, and lower for sesame, groundnuts, and soybean, which contain high oil and protein and have high respiration costs for the synthesis of storage materials, suggesting that these higher respiration costs are related to lower dry matter production and hence lower yields. en-copyright= kn-copyright= en-aut-name=SaitohKuniyuki en-aut-sei=Saitoh en-aut-mei=Kuniyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurakamiTomohiro en-aut-sei=Murakami en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraYumi en-aut-sei=Nakamura en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiboriMisa en-aut-sei=Nishibori en-aut-mei=Misa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakagoshiYuki en-aut-sei=Takagoshi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiraiYoshihiko en-aut-sei=Hirai en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=School of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=School of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Cereal crops kn-keyword=Cereal crops en-keyword=Oil crops kn-keyword=Oil crops en-keyword=Crop growth rate kn-keyword=Crop growth rate en-keyword=Dark-respiration kn-keyword=Dark-respiration en-keyword=Growth efficiency kn-keyword=Growth efficiency en-keyword=Leguminous crops kn-keyword=Leguminous crops en-keyword=Nutrients composition kn-keyword=Nutrients composition en-keyword=Respiratory loss kn-keyword=Respiratory loss en-keyword=Root and tuber crops kn-keyword=Root and tuber crops END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=2 article-no= start-page=215 end-page=224 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241214 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of aged microplastics on paddy soil properties and greenhouse gas emissions under laboratory aerobic conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Microplastics (MPs) formed after changes in chemical or physical properties may alter soil properties, which in turn may affect microbial activities and greenhouse gas (GHG) emissions. However, few studies have focused on the effects of aged MPs changes on soil properties and greenhouse gas emissions. Therefore, we aimed to investigate the impact of MPs with different aging times on soil GHG emissions and dissolved organic carbon (DOC). Low-density polyethylene (PE) and polylactic acid (PLA) were treated with ultraviolet (UV) irradiation for 0?2?weeks. Soil was incubated with PE or PLA 1% (w/w) concentration at 60% water holding capacity (WHC) for 35?days. Emissions of nitrous oxide (N2O) and carbon dioxide (CO2) were measured on days 0, 1, 3, 5, 7, 14, 21, 28, and 35. Results showed that CO2 and N2O emissions were higher (p? Results: First, we constructed a binary plasmid harboring 1.5 copies of the TYLCV genome and transformed Agrobacterium with the plasmid. By injecting agroinoculum from the resulting transformant into the branches of Micro-Tom, we confirmed the susceptibility of Micro-Tom to TYLCV. To shorten the evaluation process of TYLCV infection further, we agroinoculated cotyledons of Micro-Tom 10 days after sowing seeds. We consistently observed typical symptoms of TYLCV infection on true leaves 10 days after agroinoculation. Molecular analysis detected TYLCV progeny DNA in all leaves demonstrating symptoms 6 days after agroinoculation. Therefore, our new protocol enabled assessment of TYLCV infection within 20 days after sowing seeds. Thus, agroinoculation of Micro-Tom cotyledons will accelerate the process of screening TYLCV-resistant Micro-Toms and enable screening of larger numbers of plants more quickly, contributing to the development of TYLCV-resistant tomatoes. en-copyright= kn-copyright= en-aut-name=MoriTomoaki en-aut-sei=Mori en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakenakaKosuke en-aut-sei=Takenaka en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DomotoFumiya en-aut-sei=Domoto en-aut-mei=Fumiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AoyamaYasuhiro en-aut-sei=Aoyama en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SeraTakashi en-aut-sei=Sera en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University kn-affil= affil-num=3 en-affil=Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University kn-affil= affil-num=4 en-affil=Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University kn-affil= affil-num=5 en-affil=Department of Applied Chemistry and Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Agrobacterium kn-keyword=Agrobacterium en-keyword=Agroinoculation kn-keyword=Agroinoculation en-keyword=Cotyledon kn-keyword=Cotyledon en-keyword=Micro-Tom kn-keyword=Micro-Tom en-keyword=Tomato yellow leaf curl virus kn-keyword=Tomato yellow leaf curl virus END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=8 article-no= start-page=3120 end-page=3124 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrosynthesis of Phosphacycles via Dehydrogenative C?P Bond Formation Using DABCO as a Mediator en-subtitle= kn-subtitle= en-abstract= kn-abstract=The first electrochemical synthesis of diarylphosphole oxides (DPOs) was achieved under mild conditions. The practical protocol employs commercially available and inexpensive DABCO as a hydrogen atom transfer (HAT) mediator, leading to various DPOs in moderate to good yields. This procedure can also be applied to the synthesis of six-membered phosphacycles, such as phenophosphazine derivatives. Mechanistic studies suggested that the reaction proceeds via an electro-generated phosphinyl radical. en-copyright= kn-copyright= en-aut-name=KurimotoYuji en-aut-sei=Kurimoto en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamashitaJun en-aut-sei=Yamashita en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=85 cd-vols= no-issue=1 article-no= start-page=134 end-page=142 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Synthesis of (12R,13S)-pyriculariol and (12R,13S)-dihydropyriculariol revealed that the rice blast fungus, Pyricularia oryzae, produces these phytotoxins as racemates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Synthesis of assumed natural (12R,13S)-enantiomers of pyriculariol (1) and dihydropyriculariol (2), phytotoxins isolated from rice blast disease fungus, Pyricularia oryzae, was achieved using Wittig reaction or microwave-assisted Stille coupling reaction as the key step. The synthesis revealed that the natural 1 and 2 are racemates. Foliar application test on a rice leaf indicated that both the salicylaldehyde core and side chain were necessary for phytotoxic activity. The fungus is found to produce optically active phytotoxins when incubated with rotary shaker, but racemic ones when cultured using an aerated jar fermenter. en-copyright= kn-copyright= en-aut-name=NagashimaYuta en-aut-sei=Nagashima en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiAyaka en-aut-sei=Sasaki en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiraokaRyoya en-aut-sei=Hiraoka en-aut-mei=Ryoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnodaYuko en-aut-sei=Onoda en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaKoji en-aut-sei=Tanaka en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WangZi-Yi en-aut-sei=Wang en-aut-mei=Zi-Yi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuwanaAtsuki en-aut-sei=Kuwana en-aut-mei=Atsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SatoYuki en-aut-sei=Sato en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiYuji en-aut-sei=Suzuki en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IzumiMinoru en-aut-sei=Izumi en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KuwaharaShigefumi en-aut-sei=Kuwahara en-aut-mei=Shigefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NukinaManabu en-aut-sei=Nukina en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KiyotaHiromasa en-aut-sei=Kiyota en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=2 en-affil=Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=9 en-affil=Laboratory of Plant Nutrition and Function, Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=12 en-affil=Professor Emeritus, Yamagata University kn-affil= affil-num=13 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Pyricularia oryzae kn-keyword=Pyricularia oryzae en-keyword=rice blast disease kn-keyword=rice blast disease en-keyword=structure revision kn-keyword=structure revision en-keyword=total synthesis kn-keyword=total synthesis END start-ver=1.4 cd-journal=joma no-vol=231 cd-vols= no-issue=1 article-no= start-page=75 end-page=84 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Divergence in red light responses associated with thermal reversion of phytochrome B between high] and low]latitude species en-subtitle= kn-subtitle= en-abstract= kn-abstract=Summary
EPhytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature.
EWe show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes.
The higher latitude species (Cardamine bellidifolia; Cb) responded more strongly to light]limited conditions compared with its lower latitude sister (C. nipponica; Cn). Moreover, CbPHYB conferred stronger responses to both light]limited and warm conditions in the phyB]deficient mutant of Arabidopsis thaliana than CnPHYB: that is Pfr CbphyB was more stable in nuclei than CnphyB.
EOur findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome]related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature. en-copyright= kn-copyright= en-aut-name=IkedaHajime en-aut-sei=Ikeda en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiTomomi en-aut-sei=Suzuki en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkaYoshito en-aut-sei=Oka en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GustafssonA. Lovisa S. en-aut-sei=Gustafsson en-aut-mei=A. Lovisa S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BrochmannChristian en-aut-sei=Brochmann en-aut-mei=Christian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MochizukiNobuyoshi en-aut-sei=Mochizuki en-aut-mei=Nobuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagataniAkira en-aut-sei=Nagatani en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Science, Kyoto University kn-affil= affil-num=3 en-affil=Graduate School of Science, Kyoto University kn-affil= affil-num=4 en-affil=Natural History Museum, University of Oslo kn-affil= affil-num=5 en-affil=Natural History Museum, University of Oslo kn-affil= affil-num=6 en-affil=Graduate School of Science, Kyoto University kn-affil= affil-num=7 en-affil=Graduate School of Science, Kyoto University kn-affil= en-keyword=alpine plants kn-keyword=alpine plants en-keyword=Brassicaceae kn-keyword=Brassicaceae en-keyword=Cardamine kn-keyword=Cardamine en-keyword=phytochrome kn-keyword=phytochrome en-keyword=thermal reversion kn-keyword=thermal reversion END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=3 article-no= start-page=414 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the Root Causes of the Fukushima Daiichi Disaster from the Perspective of High Complexity and Tight Coupling in Large-Scale Systems en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study explores the root causes of the Fukushima Daiichi disaster and discusses how the complexity and tight coupling in large-scale systems should be reduced under emergencies such as station blackout (SBO) to prevent future disasters. First, on the basis of a summary of the published literature on the Fukushima Daiichi disaster, we found that the direct causes (i.e., malfunctions and problems) included overlooking the loss of coolant and the nuclear reactor's failure to cool down. Second, we verified that two characteristics proposed in "normal accident" theory-high complexity and tight coupling-underlay each of the direct causes. These two characteristics were found to have made emergency management more challenging. We discuss how such disasters in large-scale systems with high complexity and tight coupling could be prevented through an organizational and managerial approach that can remove asymmetry of authority and information and foster a climate of openly discussing critical safety issues in nuclear power plants. en-copyright= kn-copyright= en-aut-name=MurataAtsuo en-aut-sei=Murata en-aut-mei=Atsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KarwowskiWaldemar en-aut-sei=Karwowski en-aut-mei=Waldemar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Intelligent Mechanical Systems, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Industrial Engineering and Management Systems, University of Central Florida kn-affil= en-keyword=Fukushima Daiichi disaster kn-keyword=Fukushima Daiichi disaster en-keyword=high complexity kn-keyword=high complexity en-keyword=tight coupling kn-keyword=tight coupling en-keyword=organizational and managerial approach kn-keyword=organizational and managerial approach en-keyword=high-reliability organization kn-keyword=high-reliability organization END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=149 end-page=163 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210322 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=An Interdisciplinary Approach for ESD-oriented Understanding of Natural Environmental Systems through Collaboration between Meteorology and Botany: Practical Trials in University Classes kn-title=‹CΫŠw‚ƐA•¨Šw‚Ζ‚Μ˜AŒg‚Ι‚ζ‚ιŽ©‘RŠΒ‹«Œn‚Μ ESD “I—‰π‚Φ‚ΜŠwΫ“IƒAƒvƒ[ƒ`\‘εŠw‚Ι‚¨‚―‚ιŽφ‹ΖŽΐ‘H‚ΜŽŽ‚έ\ en-subtitle= kn-subtitle= en-abstract=Practical lessons for liberal arts in university aimed at education for sustainable development (ESD)-oriented understanding of the natural environmental systems were conducted through collaboration between meteorological and botanical scientific studies. As the first trial, some interdisciplinary themes were identified, based on subject contents in science education in which the relationship between weather/seasons/climate and plants is important. In particular, an analysis of the lesson, gSeasons and plantsh, revealed that phenology was helpful in enhancing studentsf understanding of the relationship between the seasonal cycle of weather/climate and plant growth and responses to the environment associated with ESD. These practical lessons proved that collaboration between meteorology and botany is valuable for both the promotion of ESD-oriented understanding of the natural environmental systems and cross-cutting consideration of the subject content in science education, providing a promising approach for teacher education. kn-abstract=—‰Θ‚ΜŠw–β•ͺ–μ‚Ε‚ ‚ι‹CΫŠw‚ƐA•¨Šw‚Ζ‚Μ˜AŒg‚Ι‚ζ‚θCŽ‘±‰Β”\‚ΘŠJ”­‚Μ‚½‚ί‚Μ‹³ˆηiESDj‚πŽuŒό‚΅‚½Ž©‘RŠΒ‹«Œn‚Μ—‰π‚π–ΪŽw‚΅C‘εŠw‚Μ‹³‰ΘE•ͺ–쉑’f“I‚Θ‰Θ–Ϊ‚Ι‚¨‚―‚ιŽφ‹ΖŽΐ‘H‚πs‚Α‚½BΕ‰‚ΜŽŽ‚έ‚Ζ‚΅‚āC‹CΫE‹GίE‹CŒσ‚¨‚ζ‚ѐA•¨‚Ζ‚ΜŠΦ˜A‚ͺd—v‚ƂȂ闝‰Θ‚Μ‹³‰Θ“ΰ—e‚πƒx[ƒX‚ɁCŠwΫ“I‚Θ‘€–Κ‚πŽ‚Β‚’‚­‚Β‚©‚Μƒe[ƒ}‚ͺŒ©o‚³‚κ‚½B‚Ζ‚θ‚ν‚―CΆ•¨‹GίiƒtƒFƒmƒƒW[j‚́CESD ‚ΙŠΦ˜A‚΅‚½‹CΫE‹CŒσ‚Μ‹GίƒTƒCƒNƒ‹‚ƐA•¨‚̐¬’·‚¨‚ζ‚ΡŠΒ‹«‰ž“š‚Ζ‚ΜŠΦ‚ν‚θ‚ΙŠΦ‚·‚ιŠwΆ‚Μ—‰π‚𑣐i‚·‚ι‚€‚¦‚Ε—L—p‚Ε‚ ‚ι‚±‚Ζ‚ͺCŽφ‹Ζ•ͺΝ‚©‚ηŽ¦΄‚³‚κ‚½B‚±‚κ‚η‚ΜŽφ‹ΖŽΐ‘H‚©‚ηC‹CΫŠw‚ƐA•¨Šw‚Ζ‚Μ˜AŒg‚ͺCŽ©‘RŠΒ‹«Œn‚Μ ESD “I—‰π‚Μ‘£i‚Μ‚έ‚Θ‚η‚ΈC‹³‰Θ“ΰ—e\¬‚Μ•ͺ–쉑’f“I‚ΘŒŸ“’‚Ι‚ΰ–π—§‚ΏC‹³Žt‹³ˆη‚Μ‚½‚ί‚ΜƒAƒvƒ[ƒ`‚Ζ‚΅‚Δ—L–]‚Ε‚ ‚ι‰Β”\«‚ͺަ‚³‚κ‚½B en-copyright= kn-copyright= en-aut-name=HARADATaro en-aut-sei=HARADA en-aut-mei=Taro kn-aut-name=Œ΄“c‘Ύ˜Y kn-aut-sei=Œ΄“c kn-aut-mei=‘Ύ˜Y aut-affil-num=1 ORCID= en-aut-name=KATOKuranoshin en-aut-sei=KATO en-aut-mei=Kuranoshin kn-aut-name=‰Α“‘“ΰεUi kn-aut-sei=‰Α“‘ kn-aut-mei=“ΰεUi aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Education, Okayama University kn-affil=‰ͺŽR‘εŠw‘εŠw‰@‹³ˆηŠwŒ€‹†‰Θ affil-num=2 en-affil=Graduate School of Education, Okayama University kn-affil=‰ͺŽR‘εŠw‘εŠw‰@‹³ˆηŠwŒ€‹†‰Θ en-keyword=ESD kn-keyword=ESD en-keyword=‹³‰Θ“ΰ—e\¬ (subject contents organization) kn-keyword=‹³‰Θ“ΰ—e\¬ (subject contents organization) en-keyword=“ŒƒAƒWƒA‚Μ‹CŒσŒn (climate system in East Asia) kn-keyword=“ŒƒAƒWƒA‚Μ‹CŒσŒn (climate system in East Asia) en-keyword=Ά•¨‹Gί (phenology) kn-keyword=Ά•¨‹Gί (phenology) en-keyword=‰€Œ|Šw (horticulture) kn-keyword=‰€Œ|Šw (horticulture) END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=1100 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210217 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in State 2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem I (PSI) and II (PSII) balance their light energy distribution absorbed by their light-harvesting complexes (LHCs) through state transition to maintain the maximum photosynthetic performance and to avoid photodamage. In state 2, a part of LHCII moves to PSI, forming a PSI-LHCI-LHCII supercomplex. The green alga Chlamydomonas reinhardtii exhibits state transition to a far larger extent than higher plants. Here we report the cryo-electron microscopy structure of a PSI-LHCI-LHCII supercomplex in state 2 from C. reinhardtii at 3.42?? resolution. The result reveals that the PSI-LHCI-LHCII of C. reinhardtii binds two LHCII trimers in addition to ten LHCI subunits. The PSI core subunits PsaO and PsaH, which were missed or not well-resolved in previous Cr-PSI-LHCI structures, are observed. The present results reveal the organization and assembly of PSI core subunits, LHCI and LHCII, pigment arrangement, and possible pathways of energy transfer from peripheral antennae to the PSI core. en-copyright= kn-copyright= en-aut-name=HuangZihui en-aut-sei=Huang en-aut-mei=Zihui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShenLiangliang en-aut-sei=Shen en-aut-mei=Liangliang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaoZhiyuan en-aut-sei=Mao en-aut-mei=Zhiyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YiXiaohan en-aut-sei=Yi en-aut-mei=Xiaohan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhangXing en-aut-sei=Zhang en-aut-mei=Xing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine kn-affil= affil-num=2 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine kn-affil= affil-num=9 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=10 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antenna arrangement and energy-transfer pathways of PSI-LHCI from the moss Physcomitrella patens en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants harvest light energy utilized for photosynthesis by light-harvesting complex I and II (LHCI and LHCII) surrounding photosystem I and II (PSI and PSII), respectively. During the evolution of green plants, moss is at an evolutionarily intermediate position from aquatic photosynthetic organisms to land plants, being the first photosynthetic organisms that landed. Here, we report the structure of the PSI-LHCI supercomplex from the moss Physcomitrella patens (Pp) at 3.23 angstrom resolution solved by cryo-electron microscopy. Our structure revealed that four Lhca subunits are associated with the PSI core in an order of Lhca1-Lhca5-Lhca2-Lhca3. This number is much decreased from 8 to 10, the number of subunits in most green algal PSI-LHCI, but the same as those of land plants. Although Pp PSI-LHCI has a similar structure as PSI-LHCI of land plants, it has Lhca5, instead of Lhca4, in the second position of Lhca, and several differences were found in the arrangement of chlorophylls among green algal, moss, and land plant PSI-LHCI. One chlorophyll, PsaF-Chl 305, which is found in the moss PSI-LHCI, is located at the gap region between the two middle Lhca subunits and the PSI core, and therefore may make the excitation energy transfer from LHCI to the core more efficient than that of land plants. On the other hand, energy-transfer paths at the two side Lhca subunits are relatively conserved. These results provide a structural basis for unravelling the mechanisms of light-energy harvesting and transfer in the moss PSI-LHCI, as well as important clues on the changes of PSI-LHCI after landing. en-copyright= kn-copyright= en-aut-name=YanQiujing en-aut-sei=Yan en-aut-mei=Qiujing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhaoLiang en-aut-sei=Zhao en-aut-mei=Liang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PiXiong en-aut-sei=Pi en-aut-mei=Xiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WangJie en-aut-sei=Wang en-aut-mei=Jie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ChengLingpeng en-aut-sei=Cheng en-aut-mei=Lingpeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HeYi-Kun en-aut-sei=He en-aut-mei=Yi-Kun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=QinXiaochun en-aut-sei=Qin en-aut-mei=Xiaochun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SuiSen-Fang en-aut-sei=Sui en-aut-mei=Sen-Fang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University kn-affil= affil-num=5 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University kn-affil= affil-num=8 en-affil=College of Life Sciences, Department of Chemistry, Capital Normal University, kn-affil= affil-num=9 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=10 en-affil=School of Biological Science and Technology, University of Jinan kn-affil= affil-num=11 en-affil=State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, kn-affil= END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page=2 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gravity sensing in plant and animal cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Gravity determines shape of body tissue and affects the functions of life, both in plants and animals. The cellular response to gravity is an active process of mechanotransduction. Although plants and animals share some common mechanisms of gravity sensing in spite of their distant phylogenetic origin, each species has its own mechanism to sense and respond to gravity. In this review, we discuss current understanding regarding the mechanisms of cellular gravity sensing in plants and animals. Understanding gravisensing also contributes to life on Earth, e.g., understanding osteoporosis and muscle atrophy. Furthermore, in the current age of Mars exploration, understanding cellular responses to gravity will form the foundation of living in space. en-copyright= kn-copyright= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakahashiHideyuki en-aut-sei=Takahashi en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FuruichiTakuya en-aut-sei=Furuichi en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ToyotaMasatsugu en-aut-sei=Toyota en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Furutani-SeikiMakoto en-aut-sei=Furutani-Seiki en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiTakeshi en-aut-sei=Kobayashi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Watanabe-TakanoHaruko en-aut-sei=Watanabe-Takano en-aut-mei=Haruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinoharaMasahiro en-aut-sei=Shinohara en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Numaga-TomitaTakuro en-aut-sei=Numaga-Tomita en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=Sakaue-SawanoAsako en-aut-sei=Sakaue-Sawano en-aut-mei=Asako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MiyawakiAtsushi en-aut-sei=Miyawaki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=3 en-affil=Faculty of Human Life Sciences, Hagoromo University of International Studies kn-affil= affil-num=4 en-affil=Department of Biochemistry and Molecular Biology, Saitama University kn-affil= affil-num=5 en-affil=Department of Systems Biochemistry in Regeneration and Pathology, Graduate School of Medicine, Yamaguchi University kn-affil= affil-num=6 en-affil=Department of Integrative Physiology, Graduate School of Medicine, Nagoya University kn-affil= affil-num=7 en-affil=Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute kn-affil= affil-num=8 en-affil=Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities kn-affil= affil-num=9 en-affil=Department of Molecular Pharmacology, Shinshu University School of Medicine kn-affil= affil-num=10 en-affil=Lab for Cell Function and Dynamics, CBS, RIKEN kn-affil= affil-num=11 en-affil=Lab for Cell Function and Dynamics, CBS, RIKEN kn-affil= affil-num=12 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=4 article-no= start-page=dsaa023 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200926 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=History and future perspectives of barley genomics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Barley (Hordeum vulgare), one of the most widely cultivated cereal crops, possesses a large genome of 5.1Gbp. Through various international collaborations, the genome has recently been sequenced and assembled at the chromosome-scale by exploiting available genetic and genomic resources. Many wild and cultivated barley accessions have been collected and preserved around the world. These accessions are crucial to obtain diverse natural and induced barley variants. The barley bioresource project aims to investigate the diversity of this crop based on purified seed and DNA samples of a large number of collected accessions. The long-term goal of this project is to analyse the genome sequences of major barley accessions worldwide. In view of technical limitations, a strategy has been employed to establish the exome structure of a selected number of accessions and to perform high-quality chromosome-scale assembly of the genomes of several major representative accessions. For the future project, an efficient annotation pipeline is essential for establishing the function of genomes and genes as well as for using this information for sequence-based digital barley breeding. In this article, the author reviews the existing barley resources along with their applications and discuss possible future directions of research in barley genomics. en-copyright= kn-copyright= en-aut-name=SatoKazuhiro en-aut-sei=Sato en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Hordeum vulgare kn-keyword=Hordeum vulgare en-keyword=genome sequencing kn-keyword=genome sequencing en-keyword=genetic resources kn-keyword=genetic resources END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=e0245115 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210114 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Amplitude of circadian rhythms becomes weaken in the north, but there is no cline in the period of rhythm in a beetle en-subtitle= kn-subtitle= en-abstract= kn-abstract=Many species show rhythmicity in activity, from the timing of flowering in plants to that of foraging behavior in animals. The free-running periods and amplitude (sometimes called strength or power) of circadian rhythms are often used as indicators of biological clocks. Many reports have shown that these traits are highly geographically variable, and interestingly, they often show latitudinal or longitudinal clines. In many cases, the higher the latitude is, the longer the free-running circadian period (i.e., period of rhythm) in insects and plants. However, reports of positive correlations between latitude or longitude and circadian rhythm traits, including free-running periods, the power of the rhythm and locomotor activity, are limited to certain taxonomic groups. Therefore, we collected a cosmopolitan stored-product pest species, the red flour beetle Tribolium castaneum, in various parts of Japan and examined its rhythm traits, including the power and period of the rhythm, which were calculated from locomotor activity. The analysis revealed that the power was significantly lower for beetles collected in northern areas than southern areas in Japan. However, it is worth noting that the period of circadian rhythm did not show any clines; specifically, it did not vary among the sampling sites, despite the very large sample size (n = 1585). We discuss why these cline trends were observed in T. castaneum. en-copyright= kn-copyright= en-aut-name=AbeMasato S. en-aut-sei=Abe en-aut-mei=Masato S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Center for Advanced Intelligence Project, RIKEN kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil= Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=147 cd-vols= no-issue=1 article-no= start-page=107 end-page=124 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phos-tag-based approach to study protein phosphorylation in the thylakoid membrane en-subtitle= kn-subtitle= en-abstract= kn-abstract=Protein phosphorylation is a fundamental post-translational modification in all organisms. In photoautotrophic organisms, protein phosphorylation is essential for the fine-tuning of photosynthesis. The reversible phosphorylation of the photosystem II (PSII) core and the light-harvesting complex of PSII (LHCII) contribute to the regulation of photosynthetic activities. Besides the phosphorylation of these major proteins, recent phosphoproteomic analyses have revealed that several proteins are phosphorylated in the thylakoid membrane. In this study, we utilized the Phos-tag technology for a comprehensive assessment of protein phosphorylation in the thylakoid membrane of Arabidopsis. Phos-tag SDS-PAGE enables the mobility shift of phosphorylated proteins compared with their non-phosphorylated isoform, thus differentiating phosphorylated proteins from their non-phosphorylated isoforms. We extrapolated this technique to two-dimensional (2D) SDS-PAGE for detecting protein phosphorylation in the thylakoid membrane. Thylakoid proteins were separated in the first dimension by conventional SDS-PAGE and in the second dimension by Phos-tag SDS-PAGE. In addition to the isolation of major phosphorylated photosynthesis-related proteins, 2D Phos-tag SDS-PAGE enabled the detection of several minor phosphorylated proteins in the thylakoid membrane. The analysis of the thylakoid kinase mutants demonstrated that light-dependent protein phosphorylation was mainly restricted to the phosphorylation of the PSII core and LHCII proteins. Furthermore, we assessed the phosphorylation states of the structural domains of the thylakoid membrane, grana core, grana margin, and stroma lamella. Overall, these results demonstrated that Phos-tag SDS-PAGE is a useful biochemical tool for studying in vivo protein phosphorylation in the thylakoid membrane protein. en-copyright= kn-copyright= en-aut-name=NishiokaKeiji en-aut-sei=Nishioka en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoYusuke en-aut-sei=Kato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OzawaShin-ichiro en-aut-sei=Ozawa en-aut-mei=Shin-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiYuichiro en-aut-sei=Takahashi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Chloroplast kn-keyword=Chloroplast en-keyword=Phos-tag kn-keyword=Phos-tag en-keyword=Protein phosphorylation kn-keyword=Protein phosphorylation en-keyword=Thylakoid membrane kn-keyword=Thylakoid membrane en-keyword=STN7 kn-keyword=STN7 en-keyword=STN8 kn-keyword=STN8 END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=5627 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Establishment of Neurospora crassa as a model organism for fungal virology en-subtitle= kn-subtitle= en-abstract= kn-abstract=The filamentous fungus Neurospora crassa is used as a model organism for genetics, developmental biology and molecular biology. Remarkably, it is not known to host or to be susceptible to infection with any viruses. Here, we identify diverse RNA viruses in N. crassa and other Neurospora species, and show that N. crassa supports the replication of these viruses as well as some viruses from other fungi. Several encapsidated double-stranded RNA viruses and capsid-less positive-sense single-stranded RNA viruses can be experimentally introduced into N. crassa protoplasts or spheroplasts. This allowed us to examine viral replication and RNAi-mediated antiviral responses in this organism. We show that viral infection upregulates the transcription of RNAi components, and that Dicer proteins (DCL-1, DCL-2) and an Argonaute (QDE-2) participate in suppression of viral replication. Our study thus establishes N. crassa as a model system for the study of host-virus interactions. The fungus Neurospora crassa is a model organism for the study of various biological processes, but it is not known to be infected by any viruses. Here, Honda et al. identify RNA viruses that infect N. crassa and examine viral replication and RNAi-mediated antiviral responses, thus establishing this fungus as a model for the study of host-virus interactions. en-copyright= kn-copyright= en-aut-name=HondaShinji en-aut-sei=Honda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Eusebio-CopeAna en-aut-sei=Eusebio-Cope en-aut-mei=Ana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyashitaShuhei en-aut-sei=Miyashita en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokoyamaAyumi en-aut-sei=Yokoyama en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AuliaAnnisa en-aut-sei=Aulia en-aut-mei=Annisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShahiSabitree en-aut-sei=Shahi en-aut-mei=Sabitree kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Faculty of Medical Sciences, University of Fukui kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=4 en-affil=Faculty of Medical Sciences, University of Fukui kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Fungal biology kn-keyword=Fungal biology en-keyword=Virus?host interactions kn-keyword=Virus?host interactions END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=–ς—pA•¨—R—ˆΆ—Šˆ«•ͺŽq‚Μ‚ͺ‚ρвΧ–E‚Ι‘Ξ‚·‚ιŒψ‰Κ‚ΜŒ€‹† kn-title=Studies on the effect of bioactive molecules derived from medicinal plants on cancer stem cells en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Hend Magdy Abdelhamid Nawara en-aut-sei=Hend Magdy Abdelhamid Nawara en-aut-mei= kn-aut-name=HEND MAGDY ABDELHAMID NAWARA kn-aut-sei=HEND MAGDY ABDELHAMID NAWARA kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=‰ͺŽR‘εŠw‘εŠw‰@Ž©‘R‰ΘŠwŒ€‹†‰Θ END start-ver=1.4 cd-journal=joma no-vol=87 cd-vols= no-issue= article-no= start-page=24 end-page=29 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HopH1 effectors of Pseudomonas syringae pv. tomato DC3000 and pv. syringae B728a induce HR cell death in nonhost eggplant Solanum torvum en-subtitle= kn-subtitle= en-abstract= kn-abstract=HopH1 is an effector protein of Pseudomonas syringae pv. tomato DC3000 and P. syringae pv. syringae B728a and is a homolog of the putative Zn-dependent protease effector Rip36 of Ralstonia solanacearum, which induces hypersensitive response (HR) cell death in a nonhost plant, Solanum torvum Sw. cv. Torubamubiga. Although P. syringae pv. phaseolicola (Pph) 1448A neither produces HopH1 nor induces HR cell death, hopH1-introduced Pph 1448A acquired the ability to induce HR. These results indicate that the putative Zn-protease HopH1 effector induces HR cell death in nonhost S. torvum. en-copyright= kn-copyright= en-aut-name=NaharKamrun en-aut-sei=Nahar en-aut-mei=Kamrun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MukaiharaTakafumi en-aut-sei=Mukaihara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaguchiFumiko en-aut-sei=Taguchi en-aut-mei=Fumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Biological Sciences, Okayama (RIBS) kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Research Institute for Biological Sciences, Okayama (RIBS) kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Effector kn-keyword=Effector en-keyword=HopH1 kn-keyword=HopH1 en-keyword=HR kn-keyword=HR en-keyword=Rip36 kn-keyword=Rip36 en-keyword=Zn-protease kn-keyword=Zn-protease END start-ver=1.4 cd-journal=joma no-vol=1 cd-vols= no-issue=1 article-no= start-page=15001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A capsidless ssRNA virus hosted by an unrelated dsRNA virus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Viruses typically encode the capsid that encases their genome, while satellite viruses do not encode a replicase and depend on a helper virus for their replication1. Here, we report interplay between two RNA viruses, yado-nushi virus 1 (YnV1) and yado-kari virus 1 (YkV1), in a phytopathogenic fungus, Rosellinia necatrix2. YkV1 has a close phylogenetic affinity to positive-sense, single-stranded (+)ssRNA viruses such as animal caliciviruses3, while YnV1 has an undivided double-stranded (ds) RNA genome with a resemblance to fungal totiviruses4. Virion transfection and infectious full-length cDNA transformation has shown that YkV1 depends on YnV1 for viability, although it probably encodes functional RNA-dependent RNA polymerase (RdRp). Immunological and molecular analyses have revealed trans-encapsidation of not only YkV1 RNA but also RdRp by the capsid protein of the other virus (YnV1), and enhancement of YnV1 accumulation by YkV1. This study demonstrates interplay in which the capsidless (+)ssRNA virus (YkV1), hijacks the capsid protein of the dsRNA virus (YnV1), and replicates as if it were a dsRNA virus. en-copyright= kn-copyright= en-aut-name=ZhangRui en-aut-sei=Zhang en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanematsuSatoko en-aut-sei=Kanematsu en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=NARO Institute of Fruit Tree Science kn-affil= affil-num=6 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Molecular evolution kn-keyword=Molecular evolution en-keyword=Viral genetics kn-keyword=Viral genetics END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=3 article-no= start-page=e00450-20 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200526 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Hadaka Virus 1: a Capsidless Eleven-Segmented Positive-Sense Single-Stranded RNA Virus from a Phytopathogenic Fungus, Fusarium oxysporum en-subtitle= kn-subtitle= en-abstract= kn-abstract=The search for viruses infecting fungi, or mycoviruses, has extended our knowledge about the diversity of RNA viruses, as exemplified by the discovery of polymycoviruses, a phylogenetic group of multisegmented RNA viruses with unusual forms. The genomic RNAs of known polymycoviruses, which show a phylogenetic affinity for animal positive-sense single-stranded RNA [(+)RNA] viruses such as caliciviruses, are comprised of four conserved segments with an additional zero to four segments. The double-stranded form of polymycovirus genomic RNA is assumed to be associated with a virally encoded protein (proline-alanine-serine-rich protein [PASrp]) in either of two manners: a capsidless colloidal form or a filamentous encapsidated form. Detailed molecular characterizations of polymycoviruses, however, have been conducted for only a few strains. Here, a novel polymyco-related virus named Hadaka virus 1 (HadV1), from the phytopathogenic fungus Fusarium oxysporum, was characterized. The genomic RNA of HadV1 consisted of an 11-segmented positive-sense RNA with highly conserved terminal nucleotide sequences. HadV1 shared the three conserved segments with known polymycoviruses but lacked the PASrp-encoding segment. Unlike the known polymycoviruses and encapsidated viruses, HadV1 was not pelleted by conventional ultracentrifugation, possibly due to the lack of PASrp. This result implied that HadV1 exists only as a soluble form with naked RNA. Nevertheless, the 11 genomic segments of HadV1 have been stably maintained through host subculturing and conidiation. Taken together, the results of this study revealed a virus with a potential novel virus lifestyle, carrying many genomic segments without typical capsids or PASrp-associated forms. IMPORTANCE Fungi collectively host various RNA viruses. Examples include encapsidated double-stranded RNA (dsRNA) viruses with diverse numbers of genomic segments (from 1 to 12) and capsidless viruses with nonsegmented (+)RNA genomes. Recently, viruses with unusual intermediate features of an infectious entity between encapsidated dsRNA viruses and capsidless (+)RNA viruses were found. They are called polymycoviruses, which typically have four to eight dsRNA genomic segments associated with one of the virus-encoded proteins and are phylogenetically distantly related to animal (+)RNA caliciviruses. Here, we identified a novel virus phylogenetically related to polymycoviruses, from the phytopathogenic fungus Fusarium oxysporum. The virus, termed Hadaka virus 1 (HadV1), has 11 (+)RNA genomic segments, the largest number in known (+)RNA viruses. Nevertheless, HadV1 lacked a typical structural protein of polymycoviruses and was not pelleted by standard ultracentrifugation, implying an unusual capsidless nature of HadV1. This study reveals a potential novel lifestyle of multisegmented RNA viruses. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShamsiWajeeha en-aut-sei=Shamsi en-aut-mei=Wajeeha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JamalAtif en-aut-sei=Jamal en-aut-mei=Atif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BhattiMuhammad Faraz en-aut-sei=Bhatti en-aut-mei=Muhammad Faraz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Crop Diseases Research Institute, National Agricultural Research Centre kn-affil= affil-num=4 en-affil=Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=fungal virus kn-keyword=fungal virus en-keyword=polymycovirus kn-keyword=polymycovirus en-keyword=Fusarium oxysporum kn-keyword=Fusarium oxysporum en-keyword=multisegmented kn-keyword=multisegmented en-keyword=RNA virus kn-keyword=RNA virus en-keyword=capsidless kn-keyword=capsidless en-keyword=neo-virus lifestyle kn-keyword=neo-virus lifestyle END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=14889 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of effector candidate genes of Rhizoctonia solani AG-1 IA expressed during infection in Brachypodium distachyon en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a necrotrophic phytopathogen belonging to basidiomycetes. It causes rice sheath blight which inflicts serious damage in rice production. The infection strategy of this pathogen remains unclear. We previously demonstrated that salicylic acid-induced immunity could block R. solani AG-1 IA infection in both rice and Brachypodium distachyon. R. solani may undergo biotrophic process using effector proteins to suppress host immunity before necrotrophic stage. To identify pathogen genes expressed at the early infection process, here we developed an inoculation method using B. distachyon which enables to sample an increased amount of semi-synchronous infection hyphae. Sixty-one R. solani secretory effector-like protein genes (RsSEPGs) were identified using in silico approach with the publicly available gene annotation of R. solani AG-1 IA genome and our RNA-sequencing results obtained from hyphae grown on agar medium. Expression of RsSEPGs was analyzed at 6, 10, 16, 24, and 32 h after inoculation by a quantitative reverse transcription-polymerase chain reaction and 52 genes could be detected at least on a single time point tested. Their expressions showed phase-specific patterns which were classified into 6 clusters. The 23 RsSEPGs in the cluster 1-3 and 29 RsSEPGs in the cluster 4-6 are expected to be involved in biotrophic and necrotrophic interactions, respectively. en-copyright= kn-copyright= en-aut-name=AbdelsalamSobhy S. H. en-aut-sei=Abdelsalam en-aut-mei=Sobhy S. H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InoueKomaki en-aut-sei=Inoue en-aut-mei=Komaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsugeSeiji en-aut-sei=Tsuge en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Agriculture, Kyoto Prefectural University kn-affil= affil-num=10 en-affil=Institute for Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Fungi kn-keyword=Fungi en-keyword=Microbiology kn-keyword=Microbiology en-keyword=Pathogens kn-keyword=Pathogens en-keyword=Plant immunity kn-keyword=Plant immunity en-keyword=Plant sciences kn-keyword=Plant sciences en-keyword=Transcription kn-keyword=Transcription END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=16 article-no= start-page=4778 end-page=4796 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Low temperature modulates natural peel degreening in lemon fruit independently of endogenous ethylene en-subtitle= kn-subtitle= en-abstract= kn-abstract=Peel degreening is an important aspect of fruit ripening in many citrus fruit, and previous studies have shown that it can be advanced by ethylene treatment or by low-temperature storage. However, the important regulators and pathways involved in natural peel degreening remain largely unknown. To determine how natural peel degreening is regulated in lemon fruit (Citrus limon), we studied transcriptome and physiochemical changes in the flavedo in response to ethylene treatment and low temperatures. Treatment with ethylene induced rapid peel degreening, which was strongly inhibited by the ethylene antagonist, 1-methylcyclopropene (1-MCP). Compared with 25 degrees C, moderately low storage temperatures of 5-20 degrees C also triggered peel degreening. Surprisingly, repeated 1-MCP treatments failed to inhibit the peel degreening induced by low temperature. Transcriptome analysis revealed that low temperature and ethylene independently regulated genes associated with chlorophyll degradation, carotenoid metabolism, photosystem proteins, phytohormone biosynthesis and signalling, and transcription factors. Peel degreening of fruit on trees occurred in association with drops in ambient temperature, and it coincided with the differential expression of low temperature-regulated genes. In contrast, genes that were uniquely regulated by ethylene showed no significant expression changes during on-tree peel degreening. Based on these findings, we hypothesize that low temperature plays a prominent role in regulating natural peel degreening independently of ethylene in citrus fruit. en-copyright= kn-copyright= en-aut-name=MitaloOscar W. en-aut-sei=Mitalo en-aut-mei=Oscar W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtsukiTakumi en-aut-sei=Otsuki en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkadaRui en-aut-sei=Okada en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ObitsuSaeka en-aut-sei=Obitsu en-aut-mei=Saeka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasudaKanae en-aut-sei=Masuda en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HojoYuko en-aut-sei=Hojo en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuuraTakakazu en-aut-sei=Matsuura en-aut-mei=Takakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AbeDaigo en-aut-sei=Abe en-aut-mei=Daigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AsicheWilliam O. en-aut-sei=Asiche en-aut-mei=William O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AkagiTakashi en-aut-sei=Akagi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KuboYasutaka en-aut-sei=Kubo en-aut-mei=Yasutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=9 en-affil=National Agriculture and Food Research Organization, Shikoku Research Station kn-affil= affil-num=10 en-affil=Department of Research and Development, Del Monte Kenya Ltd kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=13 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=1-methylcyclopropene kn-keyword=1-methylcyclopropene en-keyword=carotenoids kn-keyword=carotenoids en-keyword=chlorophyll kn-keyword=chlorophyll en-keyword=Citrus limon kn-keyword=Citrus limon en-keyword=ethylene kn-keyword=ethylene en-keyword=low temperature kn-keyword=low temperature en-keyword=peel degreening kn-keyword=peel degreening en-keyword=phytohormones kn-keyword=phytohormones en-keyword=transcriptome kn-keyword=transcriptome END start-ver=1.4 cd-journal=joma no-vol=85 cd-vols= no-issue=9 article-no= start-page=2737 end-page=2744 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200825 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A comparative study of the antioxidant profiles of olive fruit and leaf extracts against five reactive oxygen species as measured with a multiple free]radical scavenging method en-subtitle= kn-subtitle= en-abstract= kn-abstract=Olive fruits and leaves are recognized to have great potential as natural sources of antioxidants. The major phenolic antioxidant component in these plant tissues is oleuropein. The antioxidant activity of olive fruits and leaves was evaluated in this study using multiple free]radical scavenging (MULTIS) methods, wherein we determined the scavenging abilities of different extracts against five reactive oxygen species (ROS; HO?, O2??, RO?, t]BuOO?, and 1O2). Raw olive fruits taste bitter and are inedible without undergoing a debittering treatment. Following the NaOH]debittering process, the radical scavenging activity of olives decreased by 90%. The MULTIS measurements indicated that oleuropein and hydroxytyrosol are responsible for the radical scavenging activity of olive fruits. Furthermore, we evaluated the radical scavenging profiles of olive leaf extracts against five ROS and found significant seasonal variations in their antioxidant activities. Leaves picked in August possessed greater radical scavenging abilities (180% to 410% for different ROS) than those picked in the cold season (December and February). In roasted olive leaves, we found marked increases (230% to 300% and 180% to 220%) in the antioxidant activities of Maillard reaction products against RO? and t]BuOO?, respectively. This study presented a useful comparative analysis of the antioxidant capacities of food against various types of ROS. en-copyright= kn-copyright= en-aut-name=SueishiYoshimi en-aut-sei=Sueishi en-aut-mei=Yoshimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NiiRisako en-aut-sei=Nii en-aut-mei=Risako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= en-keyword=antioxidant capacity kn-keyword=antioxidant capacity en-keyword=fruit extract kn-keyword=fruit extract en-keyword=leaf extract kn-keyword=leaf extract en-keyword=MULTIS kn-keyword=MULTIS en-keyword=olive kn-keyword=olive END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Canna indica L. var. indica kn-title=ƒ_ƒ“ƒhƒN en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ“ƒi‰Θ(Cannaceae) kn-keyword=ƒJƒ“ƒi‰Θ(Cannaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Erigeron canadensis L. var. glabratus Gray kn-title=ƒEƒXƒQƒqƒƒ€ƒJƒVƒˆƒ‚ƒM en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒLƒN‰Θ (Asteraceae) kn-keyword=ƒLƒN‰Θ (Asteraceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Alternanthera denticulata R.Br. kn-title=ƒzƒ\ƒoƒcƒ‹ƒmƒQƒCƒgƒE en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒqƒ†‰Θ (Amaranthaceae) kn-keyword=ƒqƒ†‰Θ (Amaranthaceae) END start-ver=1.4 cd-journal=joma no-vol=1861 cd-vols= no-issue=7 article-no= start-page=148191 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spectral tuning of light-harvesting complex II in the siphonous alga Bryopsis corticulans and its effect on energy transfer dynamics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms ? absorbing at around 650 nm and 658 nm ? and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting. en-copyright= kn-copyright= en-aut-name=AkhtarParveen en-aut-sei=Akhtar en-aut-mei=Parveen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NowakowskiPawe? J. en-aut-sei=Nowakowski en-aut-mei=Pawe? J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DoThanh Nhut en-aut-sei=Do en-aut-mei=Thanh Nhut kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZhaoSonghao en-aut-sei=Zhao en-aut-mei=Songhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SiligardiGiuliano en-aut-sei=Siligardi en-aut-mei=Giuliano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GarabGy?z? en-aut-sei=Garab en-aut-mei=Gy?z? kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanHowe-Siang en-aut-sei=Tan en-aut-mei=Howe-Siang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LambrevPetar H. en-aut-sei=Lambrev en-aut-mei=Petar H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Biological Research Centre kn-affil= affil-num=2 en-affil=ivision of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University kn-affil= affil-num=3 en-affil=Photosynthesis Research Centre, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University kn-affil= affil-num=5 en-affil=Photosynthesis Research Centre, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Diamond Light Source Ltd., Harwell Science and Innovation Campus kn-affil= affil-num=7 en-affil=Biological Research Centre kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University kn-affil= affil-num=10 en-affil=Biological Research Centre kn-affil= en-keyword=Circular dichroism kn-keyword=Circular dichroism en-keyword=Light-harvesting complexes kn-keyword=Light-harvesting complexes en-keyword=Marine algae kn-keyword=Marine algae en-keyword=Photosynthesis kn-keyword=Photosynthesis en-keyword=Time-resolved spectroscopy kn-keyword=Time-resolved spectroscopy en-keyword=Two-dimensional spectroscopy kn-keyword=Two-dimensional spectroscopy END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=14 article-no= start-page=4883 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Finite Element Study of the Effect of Internal Cracks on Surface Profile Change due to Low Loading of Turbine Blade en-subtitle= kn-subtitle= en-abstract= kn-abstract=Turbine blades for thermal power plants are exposed to severe environments, making it necessary to ensure safety against damage, such as crack formation. A previous method detected internal cracks by applying a small load to a target member. Changes in the surface properties of the material were detected before and after the load using a digital holographic microscope and a digital height correlation method. In this study, this technique was applied in combination with finite element analysis using a 2D and 3D model simulating the turbine blades. Analysis clarified that the change in the surface properties under a small load varied according to the presence or absence of a crack, and elucidated the strain distribution that caused the difference in the change. In addition, analyses of the 2D model considering the material anisotropy and thermal barrier coating were conducted. The difference in the change in the surface properties and strain distribution according to the presence or absence of cracks was elucidated. The difference in the change in the top surface height distribution of the materials with and without a crack was directly proportional to the crack length. As the value was large with respect to the vertical resolution of 0.2 nm of the digital holographic microscope, the change could be detected by the microscope. en-copyright= kn-copyright= en-aut-name=SakamotoJunji en-aut-sei=Sakamoto en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TadaNaoya en-aut-sei=Tada en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuniyasuHayato en-aut-sei=Kuniyasu en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Shimadzu Corporation kn-affil= en-keyword=nondestructive inspection kn-keyword=nondestructive inspection en-keyword=crack detection kn-keyword=crack detection en-keyword=low loading kn-keyword=low loading en-keyword=surface profile kn-keyword=surface profile en-keyword=turbine blade kn-keyword=turbine blade en-keyword=finite element analysis kn-keyword=finite element analysis END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=6 article-no= start-page=779 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200622 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Easy-to-Use InDel Markers for Genetic Mapping between Col-0 and Ler-0 Accessions of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Map-based gene cloning has played a key role in many genetic studies using the model plant,Arabidopsis thaliana. In the post-next generation sequencing era, identification of point mutations and their corresponding genes is increasingly becoming a powerful and important approach to define plant gene function. To perform initial mapping experiments efficiently on Arabidopsis mutants, enrichment of easy-to-use and reliable polymorphic DNA markers would be desirable. We present here a list of InDel polymorphic markers between Col-0 and Ler-0 accessions that can be detected in standard agarose gel electrophoresis. en-copyright= kn-copyright= en-aut-name=TanakaTakahiro en-aut-sei=Tanaka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiYuichi en-aut-sei=Nishii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuoHirotoshi en-aut-sei=Matsuo en-aut-mei=Hirotoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=InDel markers kn-keyword=InDel markers en-keyword=SSLP kn-keyword=SSLP en-keyword=chromosome mapping kn-keyword=chromosome mapping en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=mutants kn-keyword=mutants END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1064 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200626 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Diverse Partitiviruses From the Phytopathogenic Fungus,Rosellinia necatrix en-subtitle= kn-subtitle= en-abstract= kn-abstract=Partitiviruses (dsRNA viruses, familyPartitiviridae) are ubiquitously detected in plants and fungi. Although previous surveys suggested their omnipresence in the white root rot fungus,Rosellinia necatrix, only a few of them have been molecularly and biologically characterized thus far. We report the characterization of a total of 20 partitiviruses from 16R. necatrixstrains belonging to 15 new species, for which "Rosellinia necatrix partitivirus 11-Rosellinia necatrix partitivirus 25" were proposed, and 5 previously reported species. The newly identified partitiviruses have been taxonomically placed in two genera,Alphapartitivirus, andBetapartitivirus. Some partitiviruses were transfected into reference strains of the natural host,R. necatrix, and an experimental host,Cryphonectria parasitica, using purified virions. A comparative analysis of resultant transfectants revealed interesting differences and similarities between the RNA accumulation and symptom induction patterns ofR. necatrixandC. parasitica. Other interesting findings include the identification of a probable reassortment event and a quintuple partitivirus infection of a single fungal strain. These combined results provide a foundation for further studies aimed at elucidating mechanisms that underly the differences observed. en-copyright= kn-copyright= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MugambiCyrus en-aut-sei=Mugambi en-aut-mei=Cyrus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Arjona-LopezJuan Manuel en-aut-sei=Arjona-Lopez en-aut-mei=Juan Manuel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Lopez-HerreraCarlos Jose en-aut-sei=Lopez-Herrera en-aut-mei=Carlos Jose kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanematsuSatoko en-aut-sei=Kanematsu en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute for Sustainable Agriculture,Spanish Research Council kn-affil= affil-num=7 en-affil=Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=partitivirus kn-keyword=partitivirus en-keyword=dsRNA virus kn-keyword=dsRNA virus en-keyword=phytopathogenic fungus kn-keyword=phytopathogenic fungus en-keyword=Rosellinia necatrix kn-keyword=Rosellinia necatrix en-keyword=Cryphonectria parasitica kn-keyword=Cryphonectria parasitica en-keyword=diversity kn-keyword=diversity en-keyword=reassortment kn-keyword=reassortment en-keyword=horizontal transfer kn-keyword=horizontal transfer END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200615 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ambiguous species boundaries: Hybridization and morphological variation in two closely relatedRubusspecies along altitudinal gradients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although hybridization frequently occurs among plant species, hybrid zones of divergent lineages formed at species boundaries are less common and may not be apparent in later generations of hybrids with more parental-like phenotypes, as a consequence of backcrossing. To determine the effects of dispersal and selection on species boundaries, we compared clines in leaf traits and molecular hybrid index along two hybrid zones on Yakushima Island, Japan, in which a temperate (Rubus palmatus) and subtropical (Rubus grayanus) species of wild raspberry are found. Leaf sinus depth in the two hybrid zones had narrower clines at 600 m a.s.l. than the molecular hybrid index and common garden tests confirmed that some leaf traits, including leaf sinus depth that is a major trait used in species identification, are genetically divergent between these closely related species. The sharp transition in leaf phenotypic traits compared to molecular markers indicated divergent selection pressure on the hybrid zone structure. We suggest that species boundaries based on neutral molecular data may differ from those based on observed morphological traits. en-copyright= kn-copyright= en-aut-name=MimuraMakiko en-aut-sei=Mimura en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugaMihoko en-aut-sei=Suga en-aut-mei=Mihoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Biology, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Agriculture, Tamagawa University kn-affil= en-keyword=hybrid zone kn-keyword=hybrid zone en-keyword=introgression kn-keyword=introgression en-keyword=morphology kn-keyword=morphology en-keyword=species identification kn-keyword=species identification END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=5 article-no= start-page=1683 end-page=1696 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Honeydew-associated microbes elicit defense responses against brown planthopper in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Feeding of sucking insects, such as the rice brown planthopper (Nilaparvata lugens; BPH), causes only limited mechanical damage on plants that is otherwise essential for injury-triggered defense responses against herbivores. In pursuit of complementary BPH elicitors perceived by plants, we examined the potential effects of BPH honeydew secretions on the BPH monocot host, rice (Oryza sativa). We found that BPH honeydew strongly elicits direct and putative indirect defenses in rice, namely accumulation of phytoalexins in the leaves, and release of volatile organic compounds from the leaves that serve to attract natural enemies of herbivores, respectively. We then examined the elicitor active components in the honeydew and found that bacteria in the secretions are responsible for the activation of plant defense. Corroborating the importance of honeydew-associated microbiota for induced plant resistance, BPHs partially devoid of their microbiota via prolonged antibiotics ingestion induced significantly less defense in rice relative to antibiotic-free insects applied to similar groups of plants. Our data suggest that rice plants may additionally perceive herbivores via their honeydew-associated microbes, allowing them to discriminate between incompatible herbivores?that do not produce honeydew?and those that are compatible and therefore dangerous. en-copyright= kn-copyright= en-aut-name=WariDavid en-aut-sei=Wari en-aut-mei=David kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KabirMd Alamgir en-aut-sei=Kabir en-aut-mei=Md Alamgir kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MujionoKadis en-aut-sei=Mujiono en-aut-mei=Kadis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HojoYuko en-aut-sei=Hojo en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShinyaTomonori en-aut-sei=Shinya en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakataniHiroko en-aut-sei=Nakatani en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GalisIvan en-aut-sei=Galis en-aut-mei=Ivan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Honeydew-associated microorganisms kn-keyword=Honeydew-associated microorganisms en-keyword=phytoalexins kn-keyword=phytoalexins en-keyword=plant defense kn-keyword=plant defense en-keyword=rice (Oryza sativa) kn-keyword=rice (Oryza sativa) en-keyword=rice brown planthopper (Nilaparvata lugens) kn-keyword=rice brown planthopper (Nilaparvata lugens) en-keyword=sucking insect kn-keyword=sucking insect END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=3 article-no= start-page=185 end-page=190 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202006 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stem Cell Therapy in Heart Disease: Limitations and Future Possibilities en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heart diseases are one of the major causes of morbidity and mortality worldwide. Despite major advances in drug and interventional therapies, surgical procedures, and organ transplantation, further research into new therapeutic options is still necessary. Stem cell therapy has emerged as one option for the treatment of a variety of heart diseases. Although a large number of clinical trials have shown stem cell therapy to be a promising therapeutic approach, the results obtained from these clinical studies are inconsistent, and stem cell-based improvements of heart performance and cardiac remodeling were found to be quite limited. Since the precise mechanisms underlying the therapeutic actions of stem cells are still under debate, researchers have developed a variety of strategies to improve and boost the potency of stem cells in repair. In this review, we summarize both the current therapeutic strategies using stem cells and future directions for enhancing stem cell potency. en-copyright= kn-copyright= en-aut-name=SanoToshikazu en-aut-sei=Sano en-aut-mei=Toshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshigamiShuta en-aut-sei=Ishigami en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItoTatsuo en-aut-sei=Ito en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SanoShunji en-aut-sei=Sano en-aut-mei=Shunji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Surgery, Division of Pediatric Cardiothoracic Surgery, University of California San Francisco kn-affil= affil-num=2 en-affil=Department of Surgery, Division of Pediatric Cardiothoracic Surgery, University of California San Francisco kn-affil= affil-num=3 en-affil=Department of Hygiene, Kawasaki Medical University kn-affil= affil-num=4 en-affil=Department of Surgery, Division of Pediatric Cardiothoracic Surgery, University of California San Francisco kn-affil= en-keyword=heart disease kn-keyword=heart disease en-keyword=stem cell kn-keyword=stem cell en-keyword=myocardial regeneration kn-keyword=myocardial regeneration END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Spiranthes sinensis (Pers.) Ames kn-title=ƒlƒWƒoƒi en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒ‰ƒ“‰Θ (Orchidaceae) kn-keyword=ƒ‰ƒ“‰Θ (Orchidaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Canna indica L. var. flava (Roscoe) Baker kn-title=ƒLƒoƒiƒ_ƒ“ƒhƒN en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ“ƒi‰Θ (Cannaceae) kn-keyword=ƒJƒ“ƒi‰Θ (Cannaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Bolboschoenus fluviatilis (Torr.) Soj?k subsp. yagara (Ohwi) T.Koyama kn-title=ƒEƒLƒ„ƒKƒ‰ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Schoenoplectiella wallichii (Nees) Lye kn-title=ƒ^ƒCƒƒ“ƒ„ƒ}ƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Schoenoplectus triqueter (L.) Palla kn-title=ƒTƒ“ƒJƒNƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Schoenoplectiella triangulata (Roxb.) J.D.Jung et H.K.Choi kn-title=ƒJƒ“ƒKƒŒƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Schoenoplectus tabernaemontani (C.C.Gmel.) Palla kn-title=ƒtƒgƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Bolboschoenus koshevnikovii (Litv. ex Zinger) A.E.Kozhevn. kn-title=ƒRƒEƒLƒ„ƒKƒ‰ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Schoenoplectus nipponicus (Makino) Soj?k kn-title=ƒVƒYƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Schoenoplectiella lineolata (Franch. et Sav.) J.D.Jung et H.K.Choi kn-title=ƒqƒƒzƒ^ƒ‹ƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Schoenoplectiella juncoides (Roxb.) Lye kn-title=ƒCƒkƒzƒ^ƒ‹ƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Schoenoplectiella hotarui (Ohwi) J.D.Jung et H.K.Choi kn-title=ƒzƒ^ƒ‹ƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Rhynchospora rubra (Lour.) Makino kn-title=ƒCƒKƒNƒT en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus leptocarpus (F.Muell.) Bauters kn-title=ƒqƒ“ƒWƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Fimbristylis subbispicata Nees et Meyen kn-title=ƒ„ƒ}ƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Fimbristylis squarrosa Vahl kn-title=ƒAƒ[ƒeƒ“ƒcƒL en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Fimbristylis littoralis Gaudich. kn-title=ƒqƒfƒŠƒR en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Fimbristylis diphylloides Makino kn-title=ƒNƒƒeƒ“ƒcƒL en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Fimbristylis dichotoma (L.) Vahl kn-title=ƒeƒ“ƒcƒL en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Fimbristylis complanata (Retz.) Link kn-title=ƒmƒeƒ“ƒcƒL en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Fimbristylis aestivalis (Retz.) Vahl kn-title=ƒRƒAƒ[ƒeƒ“ƒcƒL en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Eleocharis wichurae Boeck. kn-title=ƒVƒJƒNƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Eleocharis mamillata H.Lindb. var. cyclocarpa Kitag. kn-title=ƒIƒIƒkƒ}ƒnƒŠƒCiƒkƒ}ƒnƒŠƒCj en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Eleocharis kuroguwai Ohwi kn-title=ƒNƒƒOƒƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Eleocharis congesta D.Don kn-title=ƒnƒŠƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Eleocharis acicularis (L.) Roem. et Schult. var. longiseta Svenson kn-title=ƒ}ƒcƒoƒC en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus tenuispica Steud. kn-title=ƒqƒƒKƒ„ƒcƒŠiƒ~ƒYƒnƒiƒrj en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus serotinus Rottb. kn-title=ƒ~ƒYƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus sanguinolentus Vahl kn-title=ƒJƒƒ‰ƒXƒKƒi en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus rotundus L. kn-title=ƒnƒ}ƒXƒQ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus polystachyos Rottb. kn-title=ƒCƒKƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus pilosus Vahl kn-title=ƒIƒjƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus orthostachyus Franch. et Sav. kn-title=ƒEƒVƒNƒO en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus nipponicus Franch. et Sav. kn-title=ƒAƒIƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus microiria Steud. kn-title=ƒJƒ„ƒcƒŠƒOƒT en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus iria L. kn-title=ƒRƒSƒƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus haspan L. var. tuberiferus T.Koyama kn-title=ƒRƒAƒ[ƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus glomeratus L. kn-title=ƒkƒ}ƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus flavidus Retz. kn-title=ƒAƒ[ƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus flaccidus R.Br. kn-title=ƒqƒiƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus difformis L. kn-title=ƒ^ƒ}ƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus cyperoides (L.) Kuntze kn-title=ƒCƒkƒNƒO en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus compressus L. kn-title=ƒNƒOƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus brevifolius (Rottb.) Hassk. var. leiolepis (Franch. et Sav.) T.Koyama kn-title=ƒqƒƒNƒO en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus brevifolius (Rottb.) Hassk. var. brevifolius kn-title=ƒAƒCƒ_ƒNƒO en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Cyperus amuricus Maxim. kn-title=ƒ`ƒƒƒKƒ„ƒcƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Carex thunbergii Steud. var. thunbergii kn-title=ƒAƒ[ƒXƒQ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Carex maximowiczii Miq. kn-title=ƒSƒEƒ\ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Carex lanceolata Boott kn-title=ƒqƒJƒQƒXƒQ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Carex gibba Wahlenb. kn-title=ƒ}ƒXƒNƒT en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Carex dispalata Boott kn-title=ƒJƒTƒXƒQ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Carex dimorpholepis Steud. kn-title=ƒAƒ[ƒiƒ‹ƒR en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Carex leucochlora Bunge var. leucochlora kn-title=ƒAƒIƒXƒQ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Carex aphanolepis Franch. et Sav. kn-title=ƒGƒiƒVƒqƒSƒNƒT en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Carex nubigena D.Don ex Tilloch et Taylor subsp. albata (Boott ex Franch. et Sav.) T.Koyama kn-title=ƒ~ƒmƒ{ƒƒXƒQ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Bulbostylis barbata (Rottb.) Kunth kn-title=ƒnƒ^ƒKƒ„ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) kn-keyword=ƒJƒ„ƒcƒŠƒOƒT‰Θ (Cyperaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Typha orientalis C.Presl kn-title=ƒRƒKƒ} en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒKƒ}‰Θ (Typhaceae) kn-keyword=ƒKƒ}‰Θ (Typhaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Typha latifolia L. kn-title=ƒKƒ} en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒKƒ}‰Θ (Typhaceae) kn-keyword=ƒKƒ}‰Θ (Typhaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Typha domingensis Pers. kn-title=ƒqƒƒKƒ} en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒKƒ}‰Θ (Typhaceae) kn-keyword=ƒKƒ}‰Θ (Typhaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Sparganium erectum L. var. macrocarpum (Makino) H.Hara kn-title=ƒIƒIƒ~ƒNƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒKƒ}‰Θ (Typhaceae) kn-keyword=ƒKƒ}‰Θ (Typhaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Sparganium erectum L. kn-title=ƒ~ƒNƒŠ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒKƒ}‰Θ (Typhaceae) kn-keyword=ƒKƒ}‰Θ (Typhaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Lemna aoukikusa Beppu et Murata subsp. aoukikusa kn-title=ƒAƒIƒEƒLƒNƒT en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒTƒgƒCƒ‚‰Θ (Araceae) kn-keyword=ƒTƒgƒCƒ‚‰Θ (Araceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Pinellia ternata (Thunb.) Breitenb. kn-title=ƒJƒ‰ƒXƒrƒVƒƒƒN en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒTƒgƒCƒ‚‰Θ (Araceae) kn-keyword=ƒTƒgƒCƒ‚‰Θ (Araceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Acorus calamus L. kn-title=ƒVƒ‡ƒEƒu en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒVƒ‡ƒEƒu‰Θ (Acoraceae) kn-keyword=ƒVƒ‡ƒEƒu‰Θ (Acoraceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Pleioblastus argenteostriatus (Regel) Nakai f. glaber (Makino) Murata kn-title=ƒlƒUƒT en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Zoysia japonica Steud. kn-title=ƒVƒo en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Zizania latifolia (Griseb.) Turcz. ex Stapf kn-title=ƒ}ƒRƒ‚ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Vulpia octoflora (Walter) Rydb. kn-title=ƒ€ƒ‰ƒTƒLƒiƒMƒiƒ^ƒKƒ„ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Vulpia myuros (L.) C.C.Gmel. var. megalura (Nutt.) Rydb. kn-title=ƒIƒIƒiƒMƒiƒ^ƒKƒ„ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Vulpia myuros (L.) C.C.Gmel. kn-title=ƒiƒMƒiƒ^ƒKƒ„ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Vulpia bromoides (L.) Gray kn-title=ƒCƒkƒiƒMƒiƒ^ƒKƒ„ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Urochloa platyphylla (Munro ex C.Wright) R.D.Webster kn-title=ƒƒŠƒPƒ“ƒjƒNƒLƒr en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Trisetum bifidum (Thunb.) Ohwi kn-title=ƒJƒjƒcƒŠƒOƒT en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Digitaria insularis (L.) Fedde kn-title=ƒXƒXƒLƒƒqƒVƒo en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Sporobolus fertilis (Steud.) Clayton kn-title=ƒlƒYƒ~ƒmƒI en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Sporobolus diander (Retz.) P.Beauv. kn-title=ƒtƒ^ƒVƒxƒlƒYƒ~ƒmƒI en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Sporobolus cryptandrus (Torr.) A.Gray kn-title=ƒXƒYƒƒqƒQƒVƒo en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Spodiopogon sibiricus Trin. kn-title=ƒIƒIƒAƒuƒ‰ƒXƒXƒL en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Sorghum halepense (L.) Pers. f. muticum (Hack.) C.E.Hubb. kn-title=ƒqƒƒ‚ƒƒRƒV en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Sorghum propinquum (Kunth) Hitchc. kn-title=ƒZƒCƒoƒ“ƒ‚ƒƒRƒV en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Setaria x pycnocoma (Steud.) Henrard kn-title=ƒIƒIƒGƒmƒRƒ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Setaria viridis (L.) P.Beauv. f. misera Honda kn-title=ƒ€ƒ‰ƒTƒLƒGƒmƒRƒ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Setaria viridis (L.) P.Beauv. var. minor (Thunb.) Ohwi kn-title=ƒGƒmƒRƒƒOƒT en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Setaria verticillata (L.) P.Beauv. kn-title=ƒUƒ‰ƒcƒLƒGƒmƒRƒƒOƒT en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Setaria pallidefusca (Schumach.) Stapf et C.E.Hubb. kn-title=ƒRƒcƒuƒLƒ“ƒGƒmƒRƒ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Setaria pumila (Poir.) Roem. et Schult. kn-title=ƒLƒ“ƒGƒmƒRƒ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Setaria faberi R.A.W.Herrm. kn-title=ƒAƒLƒmƒGƒmƒRƒƒOƒT en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Setaria barbata (Lam.) Kunth kn-title=ƒqƒƒTƒTƒLƒr en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=ƒCƒl‰Θ (Poaceae) kn-keyword=ƒCƒl‰Θ (Poaceae) END