start-ver=1.4
cd-journal=joma
no-vol=70
cd-vols=
no-issue=5
article-no=
start-page=733
end-page=747
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A PRA-Rab trafficking machinery modulates NLR immune receptor plasma membrane microdomain anchoring and blast resistance in rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nucleotide-binding leucine-rich repeat (NLR) receptors mediate pathogen effector-triggered immunity (ETI) in plants, and a subclass of NLRs are hypothesized to function at the plasma membrane (PM). However, how NLR traffic and PM delivery are regulated during immune responses remains largely unknown. The rice NLR PigmR confers broad-spectrum resistance to the blast fungus Magnaporthe oryzae. Here, we report that a PRA (Prenylated Rab acceptor) protein, PIBP4 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 4), interacts with both PigmR and the active form of the Rab GTPase, OsRab5a, thereby loads a portion of PigmR on trafficking vesicles that target to PM microdomains. Microdomain-localized PigmR interacts with and activates the small GTPase OsRac1, which triggers reactive oxygen species signaling and hypersensitive response, leading to immune responses against blast infection. Thus, our study discovers a previously unknown mechanism that deploys a PRA-Rab protein delivering hub to ensure ETI, linking the membrane trafficking machinery with NLR function and immune activation in plants.
en-copyright=
kn-copyright=
en-aut-name=LiangDi
en-aut-sei=Liang
en-aut-mei=Di
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YangDongyong
en-aut-sei=Yang
en-aut-mei=Dongyong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=LiTai
en-aut-sei=Li
en-aut-mei=Tai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhuZhe
en-aut-sei=Zhu
en-aut-mei=Zhe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanBingxiao
en-aut-sei=Yan
en-aut-mei=Bingxiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HeYang
en-aut-sei=He
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LiXiaoyuan
en-aut-sei=Li
en-aut-mei=Xiaoyuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhaiKeran
en-aut-sei=Zhai
en-aut-mei=Keran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LiuJiyun
en-aut-sei=Liu
en-aut-mei=Jiyun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawanoYoji
en-aut-sei=Kawano
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DengYiwen
en-aut-sei=Deng
en-aut-mei=Yiwen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WuXu Na
en-aut-sei=Wu
en-aut-mei=Xu Na
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=LiuJunzhong
en-aut-sei=Liu
en-aut-mei=Junzhong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HeZuhua
en-aut-sei=He
en-aut-mei=Zuhua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=2
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=3
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=4
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=5
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=6
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=7
en-affil=School of Life Science and Technology, ShanghaiTech University
kn-affil=
affil-num=8
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=9
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=11
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
affil-num=12
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=13
en-affil=Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University
kn-affil=
affil-num=14
en-affil=CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
kn-affil=
en-keyword=Prenylated Rab acceptor
kn-keyword=Prenylated Rab acceptor
en-keyword=PigmR
kn-keyword=PigmR
en-keyword=Trafficking vesicles
kn-keyword=Trafficking vesicles
en-keyword=OsRab5a
kn-keyword=OsRab5a
en-keyword=Blast resistance
kn-keyword=Blast resistance
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250609
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The maxillary vein: an anatomical narrative review with clinical implications for oral and maxillofacial surgeons
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The maxillary vein, despite its clinical significance, remains underexplored in anatomical literature. It plays a crucial role in venous drainage of the maxillofacial region and is closely associated with surgical procedures such as sagittal split ramus osteotomy, mandibuloplasty, and condylar or parotid surgeries. Due to its variable anatomy and proximity to critical structures, the maxillary vein poses a risk of significant hemorrhage if injured. Its small size and deep location make preoperative identification challenging, especially without contrast-enhanced imaging. Embryologically, the maxillary vein originates from the primitive maxillary vein and develops through complex anastomoses with other craniofacial veins. Anatomical studies have revealed several variations, including the presence of accessory mandibular foramina and unusual venous connections, which may increase surgical risk. Understanding the detailed anatomy and potential variations of the maxillary vein is essential for minimizing complications and improving surgical outcomes. Despite its importance, more anatomical and clinical research is needed to better define its course, variations, and implications in oral and maxillofacial surgery.
en-copyright=
kn-copyright=
en-aut-name=RaeburnKazzara
en-aut-sei=Raeburn
en-aut-mei=Kazzara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakuraHiroaki
en-aut-sei=Takakura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KikutaShogo
en-aut-sei=Kikuta
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisadaYuki
en-aut-sei=Kunisada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SamridRarinthorn
en-aut-sei=Samrid
en-aut-mei=Rarinthorn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LoukasMarios
en-aut-sei=Loukas
en-aut-mei=Marios
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TubbsR. Shane
en-aut-sei=Tubbs
en-aut-mei=R. Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwanagaJoe
en-aut-sei=Iwanaga
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=
kn-affil=
affil-num=8
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=9
en-affil=Department of Anatomical Sciences, St. George’s University
kn-affil=
affil-num=10
en-affil=Dental and Oral Medical Center, Kurume University School of Medicine
kn-affil=
en-keyword=Embryology
kn-keyword=Embryology
en-keyword=Anatomy
kn-keyword=Anatomy
en-keyword=Radiology
kn-keyword=Radiology
en-keyword=Cadaver
kn-keyword=Cadaver
en-keyword=Mandible
kn-keyword=Mandible
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250526
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lytic Transglycosylase Deficiency Increases Susceptibility to β-lactam Antibiotics But Reduces Susceptibility to Vancomycin in Escherichia coli
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In Staphylococcus aureus, a gram-positive pathogen, vancomycin-resistant strains become susceptible to β-lactam antibiotics, referred to as the “seesaw effect.” However, in gram-negative bacteria, the phenomenon is less clear. Here, we analyzed the gene-knockout effects of eight lytic transglycosylases (slt, mltA, mltB, mltC, mltD, mltE, mltF, mltG) on antibiotic sensitivity in Escherichia coli. Knockout of both slt and mltG increased sensitivity to β-lactam antibiotics and reduced sensitivity to vancomycin. The β-lactam antibiotic sensitivity and vancomycin resistance of the slt-knockout mutant were abolished by the introduction of the wild-type slt gene but remained unchanged by the introduction of the mutant slt gene encoding an amino acid substitution variant of the transglycosylase catalytic centre. The double-knockout strain for slt and mltB was more sensitive to ampicillin and more resistant to vancomycin than each single-knockout strain. The double-knockout strain for slt and mltG was more sensitive to ampicillin and more resistant to vancomycin than each single-knockout strain. These results suggest that loss of lytic transglycosylase activity causes β-lactam antibiotic sensitivity and vancomycin resistance in E. coli.
en-copyright=
kn-copyright=
en-aut-name=KimuraTakahiko
en-aut-sei=Kimura
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakagawaRyosuke
en-aut-sei=Nakagawa
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Laboratory of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Laboratory of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Laboratory of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Laboratory of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Laboratory of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Escherichia coli
kn-keyword=Escherichia coli
en-keyword=lytic transglycosylase
kn-keyword=lytic transglycosylase
en-keyword=seesaw effect
kn-keyword=seesaw effect
en-keyword=vancomycin
kn-keyword=vancomycin
en-keyword=β‐lactam antibiotics
kn-keyword=β‐lactam antibiotics
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=RP99858
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural basis for molecular assembly of fucoxanthin chlorophyll a/c-binding proteins in a diatom photosystem I supercomplex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein–protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms.
en-copyright=
kn-copyright=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=XingJian
en-aut-sei=Xing
en-aut-mei=Jian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KumazawaMinoru
en-aut-sei=Kumazawa
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaHaruya
en-aut-sei=Ogawa
en-aut-mei=Haruya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IfukuKentaro
en-aut-sei=Ifuku
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagaoRyo
en-aut-sei=Nagao
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=4
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Faculty of Agriculture, Shizuoka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=18981
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250530
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of galectin-9 in the development of gestational diabetes mellitus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Galectin-9 (Gal-9) is highly expressed in trophoblasts in placenta. Interaction between Gal-9 and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3) is important for the differentiation of tissue resident natural killer (trNK) cells in placenta and maintenance of normal pregnancy. Furthermore, the enhanced maternal systemic inflammation associated with increased proinflammatory cytokines in preeclampsia is mediated by enhanced interaction between Gal-9 and Tim-3. However, the role of Gal-9 in gestational diabetes (GDM) remains unexplored. Plasma Gal-9 levels were elevated at 3rd trimester in pregnant women with GDM and positively correlated with placenta and newborn weight. Lgals9 knockout pregnant mice fed with high fat diet (HFD KO) demonstrated maternal glucose intolerance and fetus macrosomia compared with controls (HFD WT). In HFD KO, increased proliferating cells, reduced apoptosis, and autophagy impairment were observed in junctional zones. The number of trNK cells and percentage of Tim-3 + trNK increased, while early apoptosis percentage in Tim-3 + trNK was reduced in placenta of HFD KO. The elevation of plasma Gal-9 may be a biomarker for prediction of maternal glucose intolerance and fetal macrosomia in pregnant women with GDM and Gal-9 functions as a compensation factor for GDM by inducing apoptosis in Tim-3 + trNK cells.
en-copyright=
kn-copyright=
en-aut-name=AlbuayjanHaya Hamed Hassan
en-aut-sei=Albuayjan
en-aut-mei=Haya Hamed Hassan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WatanabeMayu
en-aut-sei=Watanabe
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SugawaraRyosuke
en-aut-sei=Sugawara
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatsuyamaEri
en-aut-sei=Katsuyama
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiseKoki
en-aut-sei=Mise
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OiYukiko
en-aut-sei=Oi
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KannoAyaka
en-aut-sei=Kanno
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YangBoXuan
en-aut-sei=Yang
en-aut-mei=BoXuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TaharaToshihisa
en-aut-sei=Tahara
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NojimaIchiro
en-aut-sei=Nojima
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakatsukaAtsuko
en-aut-sei=Nakatsuka
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EguchiJun
en-aut-sei=Eguchi
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HayataKei
en-aut-sei=Hayata
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ラジカルを経由する有機合成反応に用いる可視光応答型ナノカーボン触媒の開発
kn-title=Visible-Light-Responsive Nanocarbon Catalyst for Radical-Mediated Organic Transformations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MD RAZU AHMED
en-aut-sei=MD RAZU AHMED
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=痛みの客観的バイオマーカーとしての尿中オキシトシンの研究
kn-title=A Pilot Study of Urine Oxytocin as an Objective Biomarker for Chronic Pain
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ONODaisuke
en-aut-sei=ONO
en-aut-mei=Daisuke
kn-aut-name=小野大輔
kn-aut-sei=小野
kn-aut-mei=大輔
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=大腸癌の二次治療におけるラムシルマブ: 治療効果と肝類洞への血小板凝集に関する研究
kn-title=Ramucirumab in second‑line advanced colorectal cancer therapy: A study on therapeutic outcomes and hepatic sinusoidal platelet aggregation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KIMURAKeisuke
en-aut-sei=KIMURA
en-aut-mei=Keisuke
kn-aut-name=木村圭佑
kn-aut-sei=木村
kn-aut-mei=圭佑
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=果実成熟応答経路の進化学的コンテクストと深層学習によるモデル化
kn-title=The evolutionary contextualization and deep neural network modeling on fruit ripening response
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KUWADAEriko
en-aut-sei=KUWADA
en-aut-mei=Eriko
kn-aut-name=桒田恵理子
kn-aut-sei=桒田
kn-aut-mei=恵理子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=タンパク質の限界発現により引き起こされるタンパク質毒性と細胞表現型の解析
kn-title=Analysis of Protein Toxicity and Cellular Phenotypes Triggered by the Maximum Overexpression of Proteins in Yeast
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAMBAShotaro
en-aut-sei=NAMBA
en-aut-mei=Shotaro
kn-aut-name=難波匠太郎
kn-aut-sei=難波
kn-aut-mei=匠太郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ラドン吸入がマウス脳中のタンパク質に及ぼす作用:プロテオーム解析と多変量解析を用いた検討
kn-title=Effect of Radon Inhalation on Murine Brain Proteins : Investigation Using Proteomic and Multivariate Analyses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAOEShota
en-aut-sei=NAOE
en-aut-mei=Shota
kn-aut-name=直江翔太
kn-aut-sei=直江
kn-aut-mei=翔太
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=肺腫瘍に対する定位放射線治療におけるターゲット設定の不確かさに関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAKANISHIDaiki
en-aut-sei=NAKANISHI
en-aut-mei=Daiki
kn-aut-name=中西大樹
kn-aut-sei=中西
kn-aut-mei=大樹
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=高温超伝導SQUIDを用いた磁気ナノ粒子の磁気緩和ダイナミクス評価と応用探索
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YAMASHITAKei
en-aut-sei=YAMASHITA
en-aut-mei=Kei
kn-aut-name=山下慶
kn-aut-sei=山下
kn-aut-mei=慶
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=がんセラノスティクスにおけるホウ素中性子捕捉療法BNCTのための新規薬剤送達システム
kn-title=A Novel Drug Delivery System for Boron Neutron Capture Therapy (BNCT) in Cancer Theranostics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ABDUL BASITH FITHRONI
en-aut-sei=ABDUL BASITH FITHRONI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベトナム在来スイギュウにおける繁殖および生産形質に関連する新規遺伝的変異に関する研究
kn-title=Investigation of novel genetic variants related to reproductive and productive traits in Vietnamese native buffalo
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NGUYEN THANH THUY
en-aut-sei=NGUYEN THANH THUY
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Rhizoctonia solani AG-1とAG-4の単子葉植物での感染様式の解析とAG-4系統へのオオムギ抵抗性遺伝子の同定
kn-title=Differential infection behavior of Rhizoctonia solani AG-1 and AG-4 in monocot plants, and identification of candidate resistance genes to R. solani AG-4 in barley
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Niranjan MAHADEVAN
en-aut-sei=Niranjan MAHADEVAN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=孔辺細胞のシグナル伝達におけるGUARD CELL HYDROGEN PEROXIDE-RESISTANT1と内因性アブシジン酸の役割
kn-title=Roles of GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 and endogenous abscisic acid in guard-cell signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHAIEK Oumayma
en-aut-sei=SHAIEK Oumayma
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=珪藻のシリカ被殻形成およびヒザラガイの磁鉄鉱歯形成に関わるタンパク質の機能解析
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OKADAKoki
en-aut-sei=OKADA
en-aut-mei=Koki
kn-aut-name=岡田航輝
kn-aut-sei=岡田
kn-aut-mei=航輝
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=持続可能な発展に向けた携帯電話リサイクルの推進:消費者行動分析、デジタルトランスフォーメーション戦略、および革新的インセンティブメカニズムの統合
kn-title=Optimizing cell phone recycling for sustainable development: Integrating consumer behavior analysis, digital transformation strategies, and innovative incentive mechanisms
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DUYuxin
en-aut-sei=DU
en-aut-mei=Yuxin
kn-aut-name=杜余鑫
kn-aut-sei=杜
kn-aut-mei=余鑫
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=代替モデルに基づいた豪雨による地盤災害のリスク評価
kn-title=Risk Assessment for Heavy Rainfall-Induced Geohazards using Surrogate Models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ZHENGSHIYING
en-aut-sei=ZHENG
en-aut-mei=SHIYING
kn-aut-name=鄭詩穎
kn-aut-sei=鄭
kn-aut-mei=詩穎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=稲わら施用水田土壌からのCH4およびCO2 排出抑制に向けた底質微生物燃料電池の開発
kn-title=Development of sediment microbial fuel cells to reduce CH4 and CO2 emissions from straw-amended paddy soil
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ADHENA TESFAU BEKELE
en-aut-sei=ADHENA TESFAU BEKELE
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=複雑な分子骨格の迅速構築を指向した1,2-転位を基盤とする合成法の開発
kn-title=Development of synthetic methods for complex molecular frameworks via 1,2-rearrangement reactions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAMADAHidetoshi
en-aut-sei=KAMADA
en-aut-mei=Hidetoshi
kn-aut-name=鎌田英寿
kn-aut-sei=鎌田
kn-aut-mei=英寿
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=有機電解合成における反応素過程の機構解明のための事例研究
kn-title=Deeper Mechanistic Understanding of Some Reaction Processes in Electroorganic Synthesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NIKIYuta
en-aut-sei=NIKI
en-aut-mei=Yuta
kn-aut-name=仁木祐太
kn-aut-sei=仁木
kn-aut-mei=祐太
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Bサイト金属カチオン置換に伴う結晶構造変化を利用したハロゲン化物ペロブスカイト材料のバンドギャップ制御
kn-title=Bandgap tuning of halide perovskite materials using crystal structure changes associated with B-site metal cation substitution
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=THIRI HTUN
en-aut-sei=THIRI HTUN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=行動の社会的要因:歩行者の衝突回避におけるダイナミクスの定量化
kn-title=Social Factors in Motion: Quantifying the Dynamics of Dyad–Individual Collision Avoidance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Adrien Thibaud Marie GREGORJ
en-aut-sei=Adrien Thibaud Marie GREGORJ
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ベンゾチアジアゾール系有機光起電力ドナー材料の合成と性質
kn-title=Synthesis and Properties of Benzothiadiazole-Based Organic Photovoltaic Donor Materials
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YANYi
en-aut-sei=YAN
en-aut-mei=Yi
kn-aut-name=闫艺
kn-aut-sei=闫
kn-aut-mei=艺
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=げっ歯類における性的二型行動とそのホルモン調節機構
kn-title=Sexually dimorphic behavior and its hormonal regulation in rodents
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HAYASHIHimeka
en-aut-sei=HAYASHI
en-aut-mei=Himeka
kn-aut-name=林姫花
kn-aut-sei=林
kn-aut-mei=姫花
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=焼成による二次元物質上での物質形成を用いたナノポーラス材料の構造設計
kn-title=Structural Design of Nanoporous Materials with Substance Formation on Two-Dimensional Materials Using Calcination
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAKEUCHIYuki
en-aut-sei=TAKEUCHI
en-aut-mei=Yuki
kn-aut-name=武内裕城
kn-aut-sei=武内
kn-aut-mei=裕城
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=炭素材料の内部状態解析に向けた固体NMR観測手法の革新と応用
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ANDOHideka
en-aut-sei=ANDO
en-aut-mei=Hideka
kn-aut-name=安東映香
kn-aut-sei=安東
kn-aut-mei=映香
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=環境中親電子物質によるDNAメチル化制御を介したケモカイン発現誘導機構
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TSUCHIDATomoki
en-aut-sei=TSUCHIDA
en-aut-mei=Tomoki
kn-aut-name=土田知貴
kn-aut-sei=土田
kn-aut-mei=知貴
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=小胞体ストレスセンサー IRE1α に対する S-ニトロシル化阻害薬の同定とその薬効評価
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KUROGIHaruna
en-aut-sei=KUROGI
en-aut-mei=Haruna
kn-aut-name=黒木春那
kn-aut-sei=黒木
kn-aut-mei=春那
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マウスにおける発酵乳成分に対する味覚反応と摂取行動
kn-title=Taste Responses and Ingestive Behaviors to Ingredients of Fermented Milk in Mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YAMASEYuko
en-aut-sei=YAMASE
en-aut-mei=Yuko
kn-aut-name=山瀬裕子
kn-aut-sei=山瀬
kn-aut-mei=裕子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=味蕾内の味覚シグナル伝達調節におけるGABAの役割
kn-title=The role of GABA in modulation of taste signaling within the taste bud
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MIKAMIAyaka
en-aut-sei=MIKAMI
en-aut-mei=Ayaka
kn-aut-name=三上彩可
kn-aut-sei=三上
kn-aut-mei=彩可
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=持続的な腫瘍壊死因子-a刺激がマウス間葉系幹細胞の免疫調節機能に与える影響
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MATSUNAGANaoya
en-aut-sei=MATSUNAGA
en-aut-mei=Naoya
kn-aut-name=松永直也
kn-aut-sei=松永
kn-aut-mei=直也
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マウスIII型細胞におけるCcn3の機能の探索
kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Kuanyu Wang
en-aut-sei=Kuanyu Wang
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=人参養栄湯による破骨細胞分化と骨吸収においての抑制効果
kn-title=Herbal medicine Ninjinyoeito inhibits RANKL-induced osteoclast differentiation and bone resorption activity by regulating NF-κB and MAPK pathway.
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAUNG HTIKE
en-aut-sei=KAUNG HTIKE
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=上顎洞に認められた扁平上皮癌および非扁平上皮癌のCT画像の評価
kn-title=Evaluation of CT Findings in Squamous and Non-Squamous Cell Carcinomas of the Maxillary Sinus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ASAUMIYuka
en-aut-sei=ASAUMI
en-aut-mei=Yuka
kn-aut-name=浅海結華
kn-aut-sei=浅海
kn-aut-mei=結華
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Long COVID患者における筋痛性脳脊髄炎/慢性疲労症候群の発症予測における血清フェリチンの有用性
kn-title=Utility of Serum Ferritin for Predicting Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in Patients with Long COVID
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YAMAMOTOYukichika
en-aut-sei=YAMAMOTO
en-aut-mei=Yukichika
kn-aut-name=山本幸近
kn-aut-sei=山本
kn-aut-mei=幸近
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=日本における播種性クリプトコッカス症の発生動向:2015年~2021年の全国的観察研究
kn-title=Trends in the Incidence of Disseminated Cryptococcosis in Japan: A Nationwide Observational Study, 2015–2021
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AKAZAWAHidemasa
en-aut-sei=AKAZAWA
en-aut-mei=Hidemasa
kn-aut-name=赤澤英将
kn-aut-sei=赤澤
kn-aut-mei=英将
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Apolipoprotein-B mRNA-editing complex 3Bは子宮内膜症における新たな治療標的となる可能性がある
kn-title=Apolipoprotein-B mRNA-editing complex 3B could be a new potential therapeutic target in endometriosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=VU THUY HA
en-aut-sei=VU THUY HA
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=2022-2023年,日本における加熱式タバコ使用者のTDSに基づくニコチン依存症の検討: JASTIS調査
kn-title=Nicotine dependence based on the Tobacco Dependence Screener among heated tobacco products users in Japan, 2022-2023: the JASTIS Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KITAJIMATakuma
en-aut-sei=KITAJIMA
en-aut-mei=Takuma
kn-aut-name=北島拓真
kn-aut-sei=北島
kn-aut-mei=拓真
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=細胞自己凝集化技術を用いた内皮層反転血管構造を有するユニークなin vitro血管モデルの開発
kn-title=Development of a unique tissue-engineered in vitro vascular model with endothelial layer-inverted vascular tissue structure using a cell self-aggregation technique
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HASHIMOTOShingo
en-aut-sei=HASHIMOTO
en-aut-mei=Shingo
kn-aut-name=橋本真悟
kn-aut-sei=橋本
kn-aut-mei=真悟
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腫瘍特異的疲弊CD8⁺T細胞に発現するCD106はTCRシグナル伝達を阻害し免疫抑制を引き起こす
kn-title=CD106 in Tumor-Specific Exhausted CD8+ T Cells Mediates Immunosuppression by Inhibiting TCR Signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAOIYuto
en-aut-sei=NAOI
en-aut-mei=Yuto
kn-aut-name=直井勇人
kn-aut-sei=直井
kn-aut-mei=勇人
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=CTLA-4阻害の抗腫瘍効果はTreg細胞のCTLA-4非依存性免疫抑制機構の活性化によって減弱する
kn-title=Activated CTLA-4-independent immunosuppression of Treg cells disturbs CTLA-4 blockade-mediated antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WATANABETomofumi
en-aut-sei=WATANABE
en-aut-mei=Tomofumi
kn-aut-name=渡部智文
kn-aut-sei=渡部
kn-aut-mei=智文
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=進行NSCLC患者に対するがん免疫療法では、頭蓋内病変の進行が抑制される
kn-title=Low frequency of intracranial progression in advanced NSCLC patients treated with cancer immunotherapies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KEMMOTSUNaoya
en-aut-sei=KEMMOTSU
en-aut-mei=Naoya
kn-aut-name=劒持直也
kn-aut-sei=劒持
kn-aut-mei=直也
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ラットにおける出血性ショックおよび蘇生によって誘発される急性肺障害に対するカルバマゼピンの保護効果
kn-title=The protective effect of carbamazepine on acute lung injury induced by hemorrhagic shock and resuscitation in rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LIYAQIANG
en-aut-sei=LI
en-aut-mei=YAQIANG
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=筋層浸潤性膀胱癌に対する術前PCG療法とGC療法の臨床成績の比較試験
kn-title=Clinical Outcomes of Neoadjuvant Paclitaxel/Cisplatin/Gemcitabine Compared with Gemcitabine/Cisplatin for Muscle-Invasive Bladder Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAWADATatsushi
en-aut-sei=KAWADA
en-aut-mei=Tatsushi
kn-aut-name=河田達志
kn-aut-sei=河田
kn-aut-mei=達志
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マウス頭蓋骨モデルにおける垂直骨再生のためのE-rhBMP-2含浸フィブリンを用いたβ-TCPの最適化
kn-title=Optimizing β-TCP with E-rhBMP-2-Infused Fibrin for Vertical Bone Regeneration in a Mouse Calvarium Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ZHAOKUN
en-aut-sei=ZHAO
en-aut-mei=KUN
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=LPS誘発不安様行動に対する釣藤散および釣藤鈎の効果に関する検討
kn-title=Ameliorating effect of chotosan and its active component, Uncaria hook, on lipopolysaccharide-induced anxiety-like behavior in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OKAWAYasumasa
en-aut-sei=OKAWA
en-aut-mei=Yasumasa
kn-aut-name=大川恭昌
kn-aut-sei=大川
kn-aut-mei=恭昌
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=日本におけるDLBCLのdark zoneシグネチャーを有する分子サブタイプの分布と臨床的影響
kn-title=Distribution and clinical impact of molecular subtypes with dark zone signature of DLBCL in a Japanese real-world study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=URATATomohiro
en-aut-sei=URATA
en-aut-mei=Tomohiro
kn-aut-name=浦田知宏
kn-aut-sei=浦田
kn-aut-mei=知宏
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=バソヒビン2を標的としたペプチドワクチンは糖尿病性腎症に対して予防的効果を持つ
kn-title=Preventive effects of vasohibin-2-targeting peptide vaccine for diabetic nephropathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAKASHIMAYuri
en-aut-sei=NAKASHIMA
en-aut-mei=Yuri
kn-aut-name=中島有理
kn-aut-sei=中島
kn-aut-mei=有理
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=血漿アンギオテンシン変換酵素2(ACE2)は糖尿病関連腎臓病(DKD)の腎予後予測因子となり得る(U-CARE study 3)
kn-title=Plasma angiotensin-converting enzyme 2 (ACE2) is a marker for renal outcome of diabetic kidney disease (DKD) (U-CARE study 3)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=UENOAsami
en-aut-sei=UENO
en-aut-mei=Asami
kn-aut-name=上野麻美
kn-aut-sei=上野
kn-aut-mei=麻美
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=血管内皮細胞、線維芽細胞、およびiPS心筋細胞からなるヒト心臓チップマイクロ生理システム
kn-title=Human heart‑on‑a‑chip microphysiological system comprising endothelial cells, fibroblasts, and iPSC‑derived cardiomyocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LIUYUN
en-aut-sei=LIU
en-aut-mei=YUN
kn-aut-name=劉云
kn-aut-sei=劉
kn-aut-mei=云
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=不育症の女性における血管機能障害: 抗リン脂質抗体との関連の可能性
kn-title=Vascular dysfunction in women with recurrent pregnancy loss: Possible association with antiphospholipid antibodies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YANGTITI
en-aut-sei=YANG
en-aut-mei=TITI
kn-aut-name=楊媞媞
kn-aut-sei=楊
kn-aut-mei=媞媞
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ヒト正常軟骨細胞におけるメカニカルストレスに対するタンキラーゼ阻害剤の効果と作用機序の解明
kn-title=Inhibitory Effect of a Tankyrase Inhibitor on Mechanical Stress-Induced Protease Expression in Human Articular Chondrocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HOTTAYoshifumi
en-aut-sei=HOTTA
en-aut-mei=Yoshifumi
kn-aut-name=堀田佳史
kn-aut-sei=堀田
kn-aut-mei=佳史
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=樹状細胞の成熟は、腫瘍由来エクソソームを介してp53搭載腫瘍融解アデノウイルスによって誘導され、全身の抗腫瘍免疫を誘導する
kn-title=Dendritic cell maturation is induced by p53‑armed oncolytic adenovirus via tumor‑derived exosomes enhancing systemic antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OTANITomoko
en-aut-sei=OTANI
en-aut-mei=Tomoko
kn-aut-name=大谷朋子
kn-aut-sei=大谷
kn-aut-mei=朋子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=小径腎癌に対する腎部分切除術と根治的腎摘除術の比較:心血管イベントリスクに関する傾向スコアマッチング分析
kn-title=Partial versus Radical Nephrectomy for Small Renal Cancer: Comparative Propensity Score-Matching Analysis of Cardiovascular Event Risk
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KUBOTARisa
en-aut-sei=KUBOTA
en-aut-mei=Risa
kn-aut-name=窪田理沙
kn-aut-sei=窪田
kn-aut-mei=理沙
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=抗うつ薬であるSertralineを用いた膠芽腫に対する新規抗血管新生療法
kn-title=New Anti-Angiogenic Therapy for Glioblastoma With the Anti-Depressant Sertraline
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TSUBOINobushige
en-aut-sei=TSUBOI
en-aut-mei=Nobushige
kn-aut-name=坪井伸成
kn-aut-sei=坪井
kn-aut-mei=伸成
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=小児心臓手術における血漿遊離ヘモグロビンと術後急性腎障害の関係:前向き観察研究
kn-title=Association between plasma-free haemoglobin and postoperative acute kidney injury in paediatric cardiac surgery: a prospective observational study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SAKURATakanobu
en-aut-sei=SAKURA
en-aut-mei=Takanobu
kn-aut-name=佐倉考信
kn-aut-sei=佐倉
kn-aut-mei=考信
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=c-jun/c-fos mRNAの発現は呼吸停止下による心停止において持続的な心筋の過伸展を示唆する
kn-title=Expression of c-jun/c-fos mRNA Indicates Persistent Myocardial Stretch During Asphyxia-Induced Cardiac Arrest
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YOKOTAYutaka
en-aut-sei=YOKOTA
en-aut-mei=Yutaka
kn-aut-name=横田豊
kn-aut-sei=横田
kn-aut-mei=豊
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=精神的ストレスはアドレナリンβ2受容体を介して皮膚アレルギー炎症におけるマクロファージの抗炎症機能を減弱させる
kn-title=Stress-experienced monocytes/macrophages lose anti-inflammatory function via β2-adrenergic receptor in skin allergic inflammation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=URAKAMIHitoshi
en-aut-sei=URAKAMI
en-aut-mei=Hitoshi
kn-aut-name=浦上仁志
kn-aut-sei=浦上
kn-aut-mei=仁志
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=AP-1阻害薬T-5224の外用により、アトピー性皮膚炎様モデルマウスの炎症が抑制され皮膚バリア機能が改善する
kn-title=Topical application of activator protein-1 inhibitor T-5224 suppresses inflammation and improves skin barrier function in a murine atopic dermatitis-like dermatitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SASAKURAMinori
en-aut-sei=SASAKURA
en-aut-mei=Minori
kn-aut-name=篠倉美理
kn-aut-sei=篠倉
kn-aut-mei=美理
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肺癌術後の気管支断端瘻を回避するために組織弁が果たす予防的効果
kn-title=Prophylactic effect of tissue flap in the prevention of bronchopleural fistula after surgery for lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HABUTomohiro
en-aut-sei=HABU
en-aut-mei=Tomohiro
kn-aut-name=土生智大
kn-aut-sei=土生
kn-aut-mei=智大
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ヒト肥満細胞における重合開始剤によるヒスタミン産生の誘導
kn-title=Photoinitiators Induce Histamine Production in Human Mast Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MIURATaro
en-aut-sei=MIURA
en-aut-mei=Taro
kn-aut-name=三浦太郎
kn-aut-sei=三浦
kn-aut-mei=太郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=慢性副鼻腔炎は慢性咳嗽患者の肺機能低下と関連している可能性がある
kn-title=Chronic rhinosinusitis possibly associated with decreased lung function in chronic cough patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ZHAOPENGFEI
en-aut-sei=ZHAO
en-aut-mei=PENGFEI
kn-aut-name=趙鵬飛
kn-aut-sei=趙
kn-aut-mei=鵬飛
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=心停止ドナーからの肺移植においてNr4a1の欠損は内皮細胞障害を抑制し血管外漏出を改善する
kn-title=Loss of Nr4a1 ameliorates endothelial cell injury and vascular leakage in lung transplantation from circulatory-death donor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAWANAShinichi
en-aut-sei=KAWANA
en-aut-mei=Shinichi
kn-aut-name=川名伸一
kn-aut-sei=川名
kn-aut-mei=伸一
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=チロシンキナーゼ阻害剤の心血管毒性リスク評価: VigiBaseデータベースを用いたファーマコビジランス研究
kn-title=Cardiovascular toxicity risk assessment of tyrosine kinase inhibitors: a pharmacovigilance study using the VigiBase database
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=IGAWAYusuke
en-aut-sei=IGAWA
en-aut-mei=Yusuke
kn-aut-name=井川祐輔
kn-aut-sei=井川
kn-aut-mei=祐輔
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肺腺癌におけるSPRED2の発現
kn-title=Expression of SPRED2 in the lung adenocarcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OTAYoko
en-aut-sei=OTA
en-aut-mei=Yoko
kn-aut-name=太田陽子
kn-aut-sei=太田
kn-aut-mei=陽子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=原発性乳癌に対する術前化学療法の効果予測因子として腸内細菌叢の有用性の検討:多施設共同前向きコホート研究(SBP-14)
kn-title=Baseline gut microbiota as a predictive marker for the efficacy of neoadjuvant chemotherapy in patients with early breast cancer: a multicenter prospective cohort study in the Setouchi Breast Project‑14
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAKAMOTOShogo
en-aut-sei=NAKAMOTO
en-aut-mei=Shogo
kn-aut-name=中本翔伍
kn-aut-sei=中本
kn-aut-mei=翔伍
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ヒト臍帯血内皮前駆細胞はラット脳卒中モデルにおける動脈損傷の内膜過形成を緩和する
kn-title=Human Cord Blood–Endothelial Progenitor Cells Alleviate Intimal Hyperplasia of Arterial Damage in a Rat Stroke Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SUNHONGMING
en-aut-sei=SUN
en-aut-mei=HONGMING
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=脳卒中モデルマウスにおけるフラボノイド、スダチチンの神経保護効果
kn-title=Neuroprotective effect of, a flavonoid, sudachitin in mice stroke model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OTA ELLIOTT RICARDO SATOSHI
en-aut-sei=OTA ELLIOTT RICARDO SATOSHI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=アドレナリンβ2受容体はリガンド非依存的にマスト細胞の IgE 誘導性カルシウム流入を促進する
kn-title=Ligand-independent function of β2-adrenergic receptor affects IgE-mediated Ca2+ influx in mast cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAGAOKei
en-aut-sei=NAGAO
en-aut-mei=Kei
kn-aut-name=長尾圭
kn-aut-sei=長尾
kn-aut-mei=圭
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腹腔神経節および上腸間膜神経節の除去によるグルコース耐性の改善と膵島サイズの縮小
kn-title=Celiac and superior mesenteric ganglia removal improves glucose tolerance and reduces pancreas islet size
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=XUSHANSHAN
en-aut-sei=XU
en-aut-mei=SHANSHAN
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ラットにおける全身麻酔下、心筋虚血/再灌流によるミオグロビン遊離に対するダパグリフロジンの効果
kn-title=Effects of dapagliflozin on myoglobin efflux from cardiomyocyte during myocardial ischemia/reperfusion in anesthetized rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HAYASHIDATomohiro
en-aut-sei=HAYASHIDA
en-aut-mei=Tomohiro
kn-aut-name=林田智博
kn-aut-sei=林田
kn-aut-mei=智博
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=頚部脊髄刺激療法はCCL2を介した経路を抑制することでてんかんモデルラットに対して抗てんかん作用を示す
kn-title=Cervical spinal cord stimulation exerts anti-epileptic effects in a rat model of epileptic seizure through the suppression of CCL2-mediated cascades
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OKAZAKIYosuke
en-aut-sei=OKAZAKI
en-aut-mei=Yosuke
kn-aut-name=岡﨑洋介
kn-aut-sei=岡﨑
kn-aut-mei=洋介
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腫瘍融解アデノウイルスによる腹腔内マクロファージの機能的再構築により、胃癌腹膜播種に対する抗腫瘍免疫が回復する
kn-title=Functional remodeling of intraperitoneal macrophages by oncolytic adenovirus restores anti-tumor immunity for peritoneal metastasis of gastric cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TABUCHIMotoyasu
en-aut-sei=TABUCHI
en-aut-mei=Motoyasu
kn-aut-name=田渕幹康
kn-aut-sei=田渕
kn-aut-mei=幹康
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=p53を搭載した腫瘍融解ウイルス療法は免疫原性細胞死を促進することにより骨肉腫にアブスコパル効果を誘導する
kn-title=p53-armed oncolytic virotherapy induces abscopal effect in osteosarcoma by promoting immunogenic cell death
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DEMIYAKoji
en-aut-sei=DEMIYA
en-aut-mei=Koji
kn-aut-name=出宮光二
kn-aut-sei=出宮
kn-aut-mei=光二
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=vdaf036
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating short-term survivors of glioblastoma: A proposal based on SEER registry data
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Glioblastomas (GBMs) are central nervous system tumors with a poor prognosis and limited treatment options. Although small subsets of GBM patients survive longer than 3 years, there is little evidence regarding the prognostic factors of GBM. Therefore, we conducted a thorough characterization of GBM in the United States.
Methods: We queried the Surveillance, Epidemiology, and End Results database between 2000 and 2021 to extract age-adjusted incidence rates (AAIRs), age-adjusted mortality rates (AAMRs), and survival data for GBM. We compared trends in AAIR, AAMR, and survival time across age groups 0–14, 15–39, 40–69, and 70+ years. Also, we employed the Fine–Gray competing risk model among short-term survivors (STSs), defined as those with a survival time of 6 months or less, and long-term survivors (LTSs), defined as those with a survival time of 3 years or more.
Results: This study included 60 615 incident GBM cases, 54 998 GBM-specific deaths, and 47 207 GBM patients with available survival time between 2000 and 2021. The mortality-to-incidence ratio was constant among STSs, whereas it increased with age among LTSs. Higher age and male sex were significantly associated with GBM-specific death among LTSs, whereas non-Hispanic White and less intensive treatments were associated with GBM-specific deaths among STSs. Interestingly, higher age was significantly associated with other causes of death among STSs.
Conclusions: STSs partially consist of populations who died from causes other than GBM. It is important to include only GBM-specific deaths in STS groups to conduct reproducible research comparing STSs and LTSs.
en-copyright=
kn-copyright=
en-aut-name=TomitaYusuke
en-aut-sei=Tomita
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OmaeRyo
en-aut-sei=Omae
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizutaRyo
en-aut-sei=Mizuta
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirotsuneNobuyuki
en-aut-sei=Hirotsune
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Medical School
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=glioblastoma
kn-keyword=glioblastoma
en-keyword=long-term survivor
kn-keyword=long-term survivor
en-keyword=SEER
kn-keyword=SEER
en-keyword=short-term survivor
kn-keyword=short-term survivor
en-keyword=United States
kn-keyword=United States
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=8
article-no=
start-page=100782
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Involvement of PI3K–Akt Signaling in the Clinical and Pathological Findings of Idiopathic Multicentric Castleman Disease–Thrombocytopenia, Anasarca, Fever, Reticulin Fibrosis, and Organomegaly and Not Otherwise Specified Subtypes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Idiopathic multicentric Castleman disease is a rare lymphoproliferative disorder that is clinically classified into idiopathic plasmacytic lymphadenopathy (IPL); thrombocytopenia, anasarca, fever, reticulin fibrosis, and organomegaly (TAFRO); and not otherwise specified (NOS). Although each subtype shows varying degrees of hypervascularity, no statistical data on the degree of vascularization have been reported. Additionally, the mechanisms underlying vascularization in each clinical subtype are poorly understood. Here, we aimed to clarify these mechanisms by evaluating the histopathological characteristics of each clinical subtype across 37 patients and performing a whole-transcriptome analysis focusing on angiogenesis-related gene expression. Histologically, TAFRO and NOS exhibited a significantly higher degree of vascularization than IPL (IPL vs TAFRO, P < .001; IPL vs NOS, P = .002). In addition, the germinal centers (GCs) were significantly more atrophic in TAFRO than in IPL. In TAFRO and NOS, “whirlpool vessels” in GCs were seen in most cases (TAFRO, 9/9, 100%; NOS, 6/8, 75%) but not in IPL (IPL vs TAFRO, P < .001; IPL vs NOS, P = .007). Likewise, immunostaining for Ets-related gene revealed higher levels in endothelial cells of GCs in TAFRO than in IPL (P = .014), and TAFRO and NOS were associated with a significantly higher number of endothelial cells in interfollicular areas compared with that in IPL (TAFRO vs IPL, P < .001; NOS vs IPL, P = .002). Gene expression analysis revealed that the PI3K–Akt signaling pathway was significantly enriched in the TAFRO and NOS (TAFRO/NOS) groups. This pathway, which may be activated by vascular endothelial growth factor A and some integrins, is known to affect angiogenesis by increasing vascular permeability, which may explain the clinical manifestations of anasarca and/or fluid retention in TAFRO/NOS. These results suggest that the PI3K–Akt pathway plays an important role in the pathogenesis of TAFRO/NOS.
en-copyright=
kn-copyright=
en-aut-name=HaratakeTomoka
en-aut-sei=Haratake
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GonzalezMichael V.
en-aut-sei=Gonzalez
en-aut-mei=Michael V.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LaiYou Cheng
en-aut-sei=Lai
en-aut-mei=You Cheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OchiSayaka
en-aut-sei=Ochi
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsunodaManaka
en-aut-sei=Tsunoda
en-aut-mei=Manaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FajgenbaumDavid C.
en-aut-sei=Fajgenbaum
en-aut-mei=David C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=van RheeFrits
en-aut-sei=van Rhee
en-aut-mei=Frits
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MomoseShuji
en-aut-sei=Momose
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=5
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Medical Biotechnology and Laboratory Science, Chang Gung University
kn-affil=
affil-num=7
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=9
en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=10
en-affil=Center for Cytokine Storm Treatment and Laboratory, Department of Medicine, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=11
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=12
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=idiopathic multicentric Castleman disease
kn-keyword=idiopathic multicentric Castleman disease
en-keyword=integrin subunit alpha 5
kn-keyword=integrin subunit alpha 5
en-keyword=PI3K–Akt signaling pathway
kn-keyword=PI3K–Akt signaling pathway
en-keyword=platelet-derived growth factor receptor beta
kn-keyword=platelet-derived growth factor receptor beta
en-keyword=vascular endothelial growth factor A
kn-keyword=vascular endothelial growth factor A
en-keyword=vascularity
kn-keyword=vascularity
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel method of leukocytapheresis using a highly concentrated sodium citrate solution alternative to acid citrate dextrose solution A
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Large-volume leukocytapheresis is time consuming. The upper limit of the inlet flow rate is determined by the inlet: anticoagulant (AC) ratio and can be changed by combining the AC with heparin. Here, we devised a protocol to increase the AC ratio using a highly concentrated sodium citrate solution without heparin.
Study Design and Methods: We collected data from 40 consecutive apheresis procedures performed using the Spectra Optia system on 40 donors for allogeneic peripheral blood stem cells between June 2022 and June 2023. We used AC containing 2.2% sodium citrate (normal concentrated sodium citrate [NSC]) and 5.32% sodium citrate (highly concentrated sodium citrate [HSC]). The AC ratios were set to 12:1 and 24:1 for the NSC and HSC, respectively.
Results: The processed volume was not different; the maximum inlet flow rate increased, the total processing time was reduced, the AC solution used was reduced, and the product volume was reduced in the HSC group, compared to the NSC group. Although the CD34+ cell CE2 was reduced in the HSC group, no difference was observed in the number of collected CD34+ cells. The incidences of citrate-related reactions were similar.
Discussion: We propose a novel leukocytapheresis method using HSC that shortens the procedure time and reduces the amount of AC solution used compared to the conventional method
en-copyright=
kn-copyright=
en-aut-name=AbeMasaya
en-aut-sei=Abe
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkeuchiKazuhiro
en-aut-sei=Ikeuchi
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FukumiTakuya
en-aut-sei=Fukumi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WashioKana
en-aut-sei=Washio
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Division of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pediatric Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Division of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Division of Transfusion and Cell Therapy, Okayama University Hospital
kn-affil=
en-keyword=anticoagulant
kn-keyword=anticoagulant
en-keyword=apheresis
kn-keyword=apheresis
en-keyword=high sodium citrate concentration
kn-keyword=high sodium citrate concentration
en-keyword=Spectra Optia
kn-keyword=Spectra Optia
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=20
article-no=
start-page=eadv7488
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure of a photosystem I supercomplex from Galdieria sulphuraria close to an ancestral red alga
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Red algae exhibit unique photosynthetic adaptations, characterized by photosystem I (PSI) supercomplexes containing light-harvesting complexes (LHCs), forming PSI-LHCI supercomplexes. In this study, we solved the PSI-LHCI structure of Galdieria sulphuraria NIES-3638 at 2.19-angstrom resolution using cryo-electron microscopy, revealing a PSI monomer core associated with seven LHCI subunits. Structural analysis uncovered the absence of phylloquinones, the common secondary electron acceptor in PSI of photosynthetic organisms, suggesting adaptation to a benzoquinone-like molecule. Phylogenetic analysis suggests that G. sulphuraria retains traits characteristic of an ancestral red alga, including distinctive LHCI binding and interaction patterns. Variations in LHCI composition and interactions across red algae, particularly in red-lineage chlorophyll a/b-binding-like protein and red algal LHCs, highlight evolutionary divergence and specialization. These findings not only deepen our understanding of red algal PSI-LHCI diversification but also enable us to predict features of an ancestral red algal PSI-LHCI supercomplex, providing a framework to explore evolutionary adaptations from an ancestral red alga.
en-copyright=
kn-copyright=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KumazawaMinoru
en-aut-sei=Kumazawa
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IfukuKentaro
en-aut-sei=Ifuku
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagaoRyo
en-aut-sei=Nagao
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=3
en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University
kn-affil=
affil-num=4
en-affil=Biomolecular characterization Unit, RiKen center for Sustainable Resource Science
kn-affil=
affil-num=5
en-affil=Biomolecular characterization Unit, RiKen center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Research institute for interdisciplinary Science and Graduate School of environ-mental, life, natural Science and technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Faculty of Agriculture, Shizuoka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=4175
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure of a photosystem II-FCPII supercomplex from a haptophyte reveals a distinct antenna organization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Haptophytes are unicellular algae that produce 30 to 50% of biomass in oceans. Among haptophytes, a subset named coccolithophores is characterized by calcified scales. Despite the importance of coccolithophores in global carbon fixation and CaCO3 production, their energy conversion system is still poorly known. Here we report a cryo-electron microscopic structure of photosystem II (PSII)-fucoxanthin chlorophyll c-binding protein (FCPII) supercomplex from Chyrostila roscoffensis, a representative of coccolithophores. This complex has two sets of six dimeric and monomeric FCPIIs, with distinct orientations. Interfaces of both FCPII/FCPII and FCPII/core differ from previously reported. We also determine the sequence of Psb36, a subunit previously found in diatoms and red algae. The principal excitation energy transfer (EET) pathways involve mainly 5 FCPIIs, where one FCPII monomer mediates EET to CP47. Our findings provide a solid structural basis for EET and energy dissipation pathways occurring in coccolithophores.
en-copyright=
kn-copyright=
en-aut-name=La RoccaRomain
en-aut-sei=La Rocca
en-aut-mei=Romain
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsaiPi-Cheng
en-aut-sei=Tsai
en-aut-mei=Pi-Cheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkitaFusamichi
en-aut-sei=Akita
en-aut-mei=Fusamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, and Advanced Research Field, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=3
article-no=
start-page=459
end-page=470
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250326
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Text mining for case report articles on “peritoneal dialysis” from PubMed database
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: The number of published medical articles on peritoneal dialysis (PD) has been increasing, and efficiently selecting information from numerous articles can be difficult. In this study, we examined whether artificial intelligence (AI) text mining can be a good support for efficiently collecting PD information.
Methods: We performed text mining and analyzed all the abstracts of case reports on PD in the PubMed database. In total, 3137 case reports with abstracts related to “peritoneal dialysis” published from 1970 to 2021 were identified.
Results: A total of 280 347 relevant words were extracted from all the abstracts. Word frequency analysis, word dependency analysis, and word frequency transition analysis showed that peritonitis, encapsulating peritoneal sclerosis, and child have been important keywords. Theseanalyses not only reflected historical background but also anticipated future trends of PD study.
Conclusion: These suggest that text mining can be a good support for efficiently collecting PD information.
en-copyright=
kn-copyright=
en-aut-name=FukushimaKazuhiko
en-aut-sei=Fukushima
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UchidaNaruhiko
en-aut-sei=Uchida
en-aut-mei=Naruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaraguchiSoichiro
en-aut-sei=Haraguchi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KitamuraShinji
en-aut-sei=Kitamura
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=case reports
kn-keyword=case reports
en-keyword=peritoneal dialysis
kn-keyword=peritoneal dialysis
en-keyword=text mining
kn-keyword=text mining
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Supplement-induced acute kidney injury reproduced in kidney organoids
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Acute kidney injury associated with the consumption of Beni-koji CholesteHelp supplements, which contain red yeast rice (Beni-Koji), has become a significant public health concern in Japan. While renal biopsy findings from several case reports have suggested tubular damage, no definitive causal relationship has been established, and the underlying mechanisms of kidney injury remain poorly understood. The complexity of identifying toxic substances in supplements containing various bioactive compounds makes conventional investigative approaches both time-consuming and challenging. This highlights an urgent need to establish a reliable platform for assessing organ-specific toxicity in such supplements. In this study, we utilized a kidney organoid model derived from adult rat kidney stem cells (KS cells) to assess the potential tubular toxicity of these supplements. Methods: KS cell clusters were cultured in three-dimensional system supplemented with growth factors to promote kidney organoids. The organoids were subsequently exposed to Beni-koji CholesteHelp supplements or cisplatin, followed by histological and molecular analyses to evaluate structural impacts. Results: Established organoids had the kidney-like structures including tubular-like structures and glomerulus-like structures at the tips of multiple tubules. Treatment with Beni-koji CholesteHelp supplements induced significant tubular damage in the organoids, characterized by epithelial cell thinning, structural disruption, and increase in cleaved-caspase 3-positive apoptotic tubular cells, similar to the organoids treated with cisplatin. Conclusion: These findings provide the first evidence suggesting that certain toxicants in specific batches of Beni-koji CholesteHelp supplements cause direct renal tubular injury. This KS cell-based organoid system represents a cost-effective, reproducible, and technically simple platform for nephrotoxicity screening.
en-copyright=
kn-copyright=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaKazuhiko
en-aut-sei=Fukushima
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HaraguchiSoichiro
en-aut-sei=Haraguchi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitamuraShinji
en-aut-sei=Kitamura
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Acute kidney injury
kn-keyword=Acute kidney injury
en-keyword=Drug-induced nephrotoxicity
kn-keyword=Drug-induced nephrotoxicity
en-keyword=Kidney organoid
kn-keyword=Kidney organoid
en-keyword=Kidney stem cell
kn-keyword=Kidney stem cell
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Xenopus laevis as an infection model for human pathogenic bacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Animal infection models are essential for understanding bacterial pathogenicity and corresponding host immune responses. In this study, we investigated whether juvenile Xenopus laevis could be used as an infection model for human pathogenic bacteria. Xenopus frogs succumbed to intraperitoneal injection containing the human pathogenic bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes. In contrast, non-pathogenic bacteria Bacillus subtilis and Escherichia coli did not induce mortality in Xenopus frogs. The administration of appropriate antibiotics suppressed mortality caused by S. aureus and P. aeruginosa. Strains lacking the agr locus, cvfA (rny) gene, or hemolysin genes in S. aureus, LIPI-1-deleted mutant of L. monocytogenes, which attenuate virulence within mammals, exhibited reduced virulence in Xenopus frogs compared with their respective wild-type counterparts. Bacterial distribution analysis revealed that S. aureus persisted in the blood, liver, heart, and muscles of Xenopus frogs until death. These results suggested that intraperitoneal injection of human pathogenic bacteria induces sepsis-like symptoms in Xenopus frogs, supporting their use as a valuable animal model for evaluating antimicrobial efficacy and identifying virulence genes in various human pathogenic bacteria.
en-copyright=
kn-copyright=
en-aut-name=KuriuAyano
en-aut-sei=Kuriu
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchiyaKohsuke
en-aut-sei=Tsuchiya
en-aut-mei=Kohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University
kn-affil=
affil-num=4
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=animal infection model
kn-keyword=animal infection model
en-keyword=Staphylococcus aureus
kn-keyword=Staphylococcus aureus
en-keyword=Listeria monocytogenes
kn-keyword=Listeria monocytogenes
en-keyword=Pseudomonas aeruginosa
kn-keyword=Pseudomonas aeruginosa
en-keyword=antibiotics efficacy
kn-keyword=antibiotics efficacy
en-keyword=virulence genes
kn-keyword=virulence genes
en-keyword=hemolysin
kn-keyword=hemolysin
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=5
article-no=
start-page=e70087
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250512
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic Islands of Pseudomonas syringae pv. tabaci 6605: Identification of PtaGI-1 as a Pathogenicity Island With Effector Genes and a Tabtoxin Cluster
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Genomic islands (GIs) are 20-500 kb DNA regions that are thought to be acquired by horizontal gene transfer. GIs that confer pathogenicity and environmental adaptation have been reported in Pseudomonas species; however, GIs that enhance bacterial virulence have not. Here, we identified 110 kb and 103 kb GIs in P. syringae pv. tabaci 6605 (Pta6605), the causative agent of tobacco wildfire disease, which has the ability to produce tabtoxin as a phytotoxin. These GIs are partially homologous to known genomic islands in Pseudomonas aeruginosa and P. syringae pv. phaseolicola and were designated PtaGI-1 and PtaGI-2. Both PtaGIs conserve core genes, whereas each GI possesses different accessory genes. PtaGI-1 contains a tabtoxin biosynthetic gene cluster and three type III effector genes among its accessory genes, whereas PtaGI-2 also contains homologous genes to hsvABC, pathogenicity-related genes in Erwinia amylovora. Inoculation revealed that the PtaGI-1 mutant, but not the PtaGI-2 mutant, lost the ability to biosynthesise tabtoxin and to cause disease. Therefore, PtaGI-1 is thought to be a pathogenicity island. Both PtaGI-1 and PtaGI-2 have a pseudogene of tRNALys on the left border and an intact tRNALys gene on the right border. In a colony of Pta6605, both GIs can be excised at tRNALys, and PtaGI-1 and PtaGI-2 exist in a circular form. These results indicate that tabtoxin biosynthesis genes in PtaGI-1 are required for disease development, and PtaGI-1 is necessary for Pta6605 virulence.
en-copyright=
kn-copyright=
en-aut-name=WatanabeYuta
en-aut-sei=Watanabe
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KunishiKotomi
en-aut-sei=Kunishi
en-aut-mei=Kotomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Agriculture,Okayama University
kn-affil=
affil-num=3
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=The Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=horizontal gene transfer
kn-keyword=horizontal gene transfer
en-keyword=integrative and conjugative elements
kn-keyword=integrative and conjugative elements
en-keyword=pathogenicity island
kn-keyword=pathogenicity island
en-keyword=Pseudomonas syringae
kn-keyword=Pseudomonas syringae
en-keyword=tabtoxin
kn-keyword=tabtoxin
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=6
article-no=
start-page=97
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of aged garlic extract on experimental periodontitis in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aged garlic extract (AGE) has been reported to exert anti‑inflammatory effects. AGE has been recently found to reduce the inflammatory symptoms of periodontitis, a widespread chronic inflammatory disease caused by oral bacterial infection. However, the mechanisms underlying these effects remain unclear. In the present study, it was aimed to determine the effects of AGE on experimental periodontitis and the related inflammatory factors. AGE (2 g/kg/day) was orally administered to 15 mice during the experimental period, while a control group consisted of 15 mice that received pure water. A total of 3 days after initiation of administration, the left maxillary second molar was ligated with a 5‑0 silk thread for 7 days. Blood biochemical tests were performed to monitor the systemic effects of AGE. Alveolar bone loss was measured morphometrically using a stereomicroscope, and reverse transcription‑quantitative PCR was performed to assay mRNAs of proinflammatory cytokines in gingival tissues. A histological survey was also performed to identify osteoclasts in periodontitis lesions (five mice per group). The total protein and albumin levels showed no significant differences between the AGE and control groups. However, ligation‑induced bone resorption was lower in the AGE group than in the control group (P=0.01). Additionally, ligature increased the mRNA expression of inflammatory cytokines, whereas AGE administration tended to suppress them. Remarkably, tumor necrosis factor gene expression was significantly suppressed (P=0.04). The number of osteoclasts in periodontitis lesions was reduced in the AGE‑treated group. These results indicate that AGE prevents alveolar bone loss by suppressing the inflammatory responses related to osteoclast differentiation in the periodontal tissue. Further research is needed to elucidate the role of AGE in reducing inflammatory bone resorption.
en-copyright=
kn-copyright=
en-aut-name=KuangCanyan
en-aut-sei=Kuang
en-aut-mei=Canyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiraiAnna
en-aut-sei=Hirai
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Kamei‑ΝagataChiaki
en-aut-sei=Kamei‑Νagata
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NangoHiroshi
en-aut-sei=Nango
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OhtaniMasahiro
en-aut-sei=Ohtani
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pathophysiology‑Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Periodontics and Endodontics, Department of Dentistry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Division of Periodontics and Endodontics, Department of Dentistry, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Central Research Institute, Wakunaga Pharmaceutical Co., Ltd.
kn-affil=
affil-num=5
en-affil=Central Research Institute, Wakunaga Pharmaceutical Co., Ltd.
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology‑Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathophysiology‑Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=AGE
kn-keyword=AGE
en-keyword=experimental periodontitis
kn-keyword=experimental periodontitis
en-keyword=bone resorption
kn-keyword=bone resorption
en-keyword=inflammation
kn-keyword=inflammation
en-keyword=osteoclasts
kn-keyword=osteoclasts
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250429
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparative inhibitory effects of bepotastine and diphenhydramine on rituximab-induced infusion reactions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Infusion-related reaction (IRR) is a common adverse event induced by rituximab. Although first-generation histamine 1 receptor antagonists (H1RAs) are commonly used to prevent IRR, evidence on IRR suppression by the second-generation H1RA bepotastine is scarce. In this study, we assessed the inhibitory effects of bepotastine on rituximab-induced IRR and compared them with those of the first-generation H1RA diphenhydramine.
Methods We retrospectively evaluated IRR incidence in patients with B-cell non-Hodgkin lymphoma who received their first dose of rituximab.
Results The incidence of any grade IRR was 9.8% in the bepotastine group (n = 92), which was significantly lower than the 30.2% rate in the diphenhydramine group (n = 96; p < 0.001). The incidence of grade 2 or higher IRR was similar between the two groups (6.5% vs. 12.5%; p = 0.16). Multivariable logistic regression analysis revealed that the risk of any grade IRR incidence was higher in patients with B symptoms and bulky disease. Premedication with bepotastine was an independent factor in reducing the risk of any grade IRR incidence (odds ratio = 0.19, 95% confidence interval: 0.08–0.47).
Conclusion Bepotastine may be more effective than diphenhydramine in reducing the incidence of rituximab-induced IRR, particularly low-grade reactions.
en-copyright=
kn-copyright=
en-aut-name=HoriTomoki
en-aut-sei=Hori
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoKazuhiro
en-aut-sei=Yamamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakagawaTomoaki
en-aut-sei=Nakagawa
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakagawaRinako
en-aut-sei=Nakagawa
en-aut-mei=Rinako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkayamaMasami
en-aut-sei=Okayama
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SudouTamika
en-aut-sei=Sudou
en-aut-mei=Tamika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamasakiMoe
en-aut-sei=Hamasaki
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YasudaMai
en-aut-sei=Yasuda
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KobayashiShinya
en-aut-sei=Kobayashi
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakamuraFumihiko
en-aut-sei=Nakamura
en-aut-mei=Fumihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YagiHideo
en-aut-sei=Yagi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KitahiroYumi
en-aut-sei=Kitahiro
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IkushimaShigeki
en-aut-sei=Ikushima
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YanoIkuko
en-aut-sei=Yano
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=2
en-affil=Department of Integrated Clinical and Basic Pharmaceutical Sciences, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=6
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Nara Prefecture General Medical Center
kn-affil=
affil-num=10
en-affil=Department of Laboratory Medicine, Nara Prefecture General Medical Center
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Nara Prefecture General Medical Center
kn-affil=
affil-num=12
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
affil-num=13
en-affil=Department of Pharmacy, Nara Prefecture General Medical Center
kn-affil=
affil-num=14
en-affil=Department of Pharmacy, Kobe University Hospital
kn-affil=
en-keyword=Rituximab
kn-keyword=Rituximab
en-keyword=Infusion reaction
kn-keyword=Infusion reaction
en-keyword=Bepotastine
kn-keyword=Bepotastine
en-keyword=Diphenhydramine
kn-keyword=Diphenhydramine
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=7
article-no=
start-page=193
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Osteosarcoma cell-derived CCL2 facilitates lung metastasis via accumulation of tumor-associated macrophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteosarcoma (OS) is the most common malignant tumor of bone in children and adolescents. Although lung metastasis is a major obstacle to improving the prognosis of OS patients, the underlying mechanism of lung metastasis of OS is poorly understood. Tumor-associated macrophages (TAMs) with M2-like characteristics are reportedly associated with lung metastasis and poor prognosis in OS patients. In this study, we investigated the metastasis-associated tumor microenvironment (TME) in orthotopic OS tumor models with non-metastatic and metastatic OS cells. Non-metastatic and metastatic tumor cells derived from mouse OS (Dunn and LM8) and human OS (HOS and 143B) were used to analyze the TME associated with lung metastasis in orthotopic OS tumor models. OS cell-derived secretion factors were identified by cytokine array and enzyme-linked immunosorbent assay (ELISA). Orthotopic tumor models with metastatic LM8 and 143B cells were analyzed to evaluate the therapeutic potential of a neutralizing antibody in the development of primary and metastatic tumors. Metastatic OS cells developed metastatic tumors with infiltration of M2-like TAMs in the lungs. Cytokine array and ELISA demonstrated that metastatic mouse and human OS cells commonly secreted CCL2, which was partially encapsulated in extracellular vesicles. In vivo experiments demonstrated that while primary tumor growth was unaffected, administration of CCL2-neutralizing antibody led to a significant suppression of lung metastasis and infiltration of M2-like TAMs in the lung tissue. Our results suggest that CCL2 plays a crucial role in promoting the lung metastasis of OS cells via accumulation of M2-like TAMs.
en-copyright=
kn-copyright=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KureMiho
en-aut-sei=Kure
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DemiyaKoji
en-aut-sei=Demiya
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HataToshiaki
en-aut-sei=Hata
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshiokaYusuke
en-aut-sei=Yoshioka
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Molecular and Cellular Medicine, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Osteosarcoma
kn-keyword=Osteosarcoma
en-keyword=Lung metastasis
kn-keyword=Lung metastasis
en-keyword=Tumor-associated macrophage
kn-keyword=Tumor-associated macrophage
en-keyword=CCL2
kn-keyword=CCL2
en-keyword=Extracellular vesicle
kn-keyword=Extracellular vesicle
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=9
article-no=
start-page=1559
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impacts of Dental Follicle Cells and Periodontal Ligament Cells on the Bone Invasion of Well-Differentiated Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Oral squamous cell carcinoma (OSCC) frequently invades the jawbone, leading to diagnostic and therapeutic challenges. While tumor-bone interactions have been studied, the specific roles of dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) in OSCC-associated bone resorption remain unclear. This study aimed to compare the effects of DFCs and PDLCs on OSCC-induced bone invasion and elucidate the underlying mechanisms. Methods: Primary human DFCs and PDLCs were isolated from extracted third molars and characterized by Giemsa and immunofluorescence staining. An in vitro co-culture system and an in vivo xenograft mouse model were established using the HSC-2 OSCC cell line. Tumor invasion and osteoclast activation were assessed by hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase (TRAP) staining. Immunohistochemical analysis was performed to evaluate the expression of receptor activator of NF-kappa B ligand (RANKL) and parathyroid hormone-related peptide (PTHrP). Results: DFCs significantly enhanced OSCC-induced bone resorption by promoting osteoclastogenesis and upregulating RANKL and PTHrP expression. In contrast, PDLCs suppressed RANKL expression and partially modulated PTHrP levels, thereby reducing osteoclast activity. Conclusions: DFCs and PDLCs exert opposite regulatory effects on OSCC-associated bone destruction. These findings underscore the importance of stromal heterogeneity and highlight the therapeutic potential of targeting specific stromal-tumor interactions to mitigate bone-invasive OSCC.
en-copyright=
kn-copyright=
en-aut-name=ChangAnqi
en-aut-sei=Chang
en-aut-mei=Anqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PiaoTianyan
en-aut-sei=Piao
en-aut-mei=Tianyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArashimaTakuma
en-aut-sei=Arashima
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MinZin Zin
en-aut-sei=Min
en-aut-mei=Zin Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
en-keyword=dental follicle cells
kn-keyword=dental follicle cells
en-keyword=periodontal ligament cells
kn-keyword=periodontal ligament cells
en-keyword=bone invasion
kn-keyword=bone invasion
en-keyword=receptor activator of NF-kappa B ligand
kn-keyword=receptor activator of NF-kappa B ligand
en-keyword=parathyroid hormone-related peptide
kn-keyword=parathyroid hormone-related peptide
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=7
article-no=
start-page=192
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=HIF-PH inhibitors induce pseudohypoxia in T cells and suppress the growth of microsatellite stable colorectal cancer by enhancing antitumor immune responses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Recent studies have revealed that CD8+ T cells can be activated via genetic upregulation of HIF-1 alpha, thereby augmenting antitumor effector functions. HIF-1 alpha upregulation can be attained by inhibiting HIF-prolyl hydroxylase (HIF-PH) under normoxic conditions, termed pseudohypoxia. This study investigated whether pseudohypoxia induced by HIF-PH inhibitors suppresses Microsatellite stable (MSS) colorectal cancer (CRC) by affecting tumor immune response.
Methods The HIF-PH inhibitors Roxadustat and Vadadustat were utilized in this study. In vitro, we assessed the effects of HIF-PH inhibitors on human and murine colon cancer cell lines (SW480, HT29, Colon26) and murine T cells. In vivo experiments were performed with mice bearing Colon26 tumors to evaluate the effect of these inhibitors on tumor immune responses. Tumor and spleen samples were analyzed using immunohistochemistry, RT-qPCR, and flow cytometry to elucidate potential mechanisms.
Results HIF-PH inhibitors demonstrated antitumor effects in vivo but not in vitro. These inhibitors enhanced the tumor immune response by increasing the infiltration of CD8+ and CD4+ tumor-infiltrating lymphocytes (TILs). HIF-PH inhibitors induced IL-2 production in splenic and intratumoral CD4+ T cells, promoting T cell proliferation, differentiation, and immune responses. Roxadustat synergistically enhanced the efficacy of anti-PD-1 antibody for MSS cancer by increasing the recruitment of TILs and augmenting effector-like CD8+ T cells.
Conclusion Pseudohypoxia induced by HIF-PH inhibitors activates antitumor immune responses, at least in part, through the induction of IL-2 secretion from CD4+ T cells in the spleen and tumor microenvironment, thereby enhancing immune efficacy against MSS CRC.
en-copyright=
kn-copyright=
en-aut-name=ChenYuehua
en-aut-sei=Chen
en-aut-mei=Yuehua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaYusuke
en-aut-sei=Hamada
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangYuze
en-aut-sei=Wang
en-aut-mei=Yuze
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TianMiao
en-aut-sei=Tian
en-aut-mei=Miao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujisawaMasayoshi
en-aut-sei=Fujisawa
en-aut-mei=Masayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YoshimuraTeizo
en-aut-sei=Yoshimura
en-aut-mei=Teizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
en-keyword=Microsatellite stable
kn-keyword=Microsatellite stable
en-keyword=Hypoxia-inducible factor
kn-keyword=Hypoxia-inducible factor
en-keyword=Immune checkpoint inhibitors
kn-keyword=Immune checkpoint inhibitors
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=1
article-no=
start-page=715
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=TRPV2 mediates stress resilience in mouse cardiomyocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The heart dynamically compensates for haemodynamic stress, but how this resilience forms during cardiac growth is not clear. Using a temporally inducible, cardiac-specific knockout in mice we show that the Transient receptor potential vanilloid family 2 (TRPV2) channel is crucial for the maturation of cardiomyocyte stress resilience. TRPV2 defects in growing hearts lead to small morphology, abnormal intercalated discs, weak contractility, and low expression of serum response factor and Insulin-like growth factor-1 (IGF-1) signalling. Individual cardiomyocytes of TRPV2-deficient hearts show reduced contractility with abnormal Ca2+ handling. In cultured neonatal cardiomyocytes, mechanical Ca2+ response, excitation-contraction coupling, sarcoplasmic reticulum Ca2+ content, actin formation, nuclear localisation of Myocyte enhancer factor 2c, and IGF-1 expression require TRPV2. TRPV2-deficient hearts show a defective response to dobutamine stress and no compensatory hypertrophic response to phenylephrine administration, but no stress response to pressure overload. These data suggest TRPV2 mediates the maturation of cardiomyocyte stress resilience, and will advance therapeutic interventions and drug discovery for heart disease.
en-copyright=
kn-copyright=
en-aut-name=DongYubing
en-aut-sei=Dong
en-aut-mei=Yubing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangGuohao
en-aut-sei=Wang
en-aut-mei=Guohao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UjiharaYoshihiro
en-aut-sei=Ujihara
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChenYanzhu
en-aut-sei=Chen
en-aut-mei=Yanzhu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatanosakaKimiaki
en-aut-sei=Katanosaka
en-aut-mei=Kimiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatanosakaYuki
en-aut-sei=Katanosaka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=5
article-no=
start-page=e70091
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pseudomonas syringae pv. tabaci 6605 Requires Seven Type III Effectors to Infect Nicotiana benthamiana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type III effectors (T3Es), virulence factors injected into plant cells via the type III secretion system (T3SS), play essential roles in the infection of host plants. Pseudomonas syringae pv. tabaci 6605 (Pta 6605) is the causal agent of wildfire disease in tobacco and harbours at least 22 T3Es in its genome. However, the specific T3Es required by Pta 6605 to infect Nicotiana benthamiana remain unidentified. In this study, we investigated the T3Es that contribute to Pta 6605 infection of N. benthamiana. We constructed Pta 6605 poly-T3E-deficient mutants (Pta DxE) and inoculated them into N. benthamiana. Flood assay, which mimics natural opening-based entry, showed that mutant strains lacking 14-22 T3Es, namely, Pta D14E-D22E mutants, exhibited reduced disease symptoms. By contrast, infiltration inoculation, which involves direct injection into leaves, showed that the Pta D14E to Pta D20E mutants developed disease symptoms. Notably, the Pta D20E, containing AvrE1 and HopM1, induced weak but observable symptoms upon infiltration inoculation. Conversely, no symptoms were observed in either the flood assay or infiltration inoculation for Pta D21E and Pta D22E. Taken together, these findings indicate that the many T3Es such as AvrPto4/AvrPtoB, HopW1/HopAE1, and HopM1/AvrE1 in Pta 6605 collectively contribute to invasion through natural openings and symptom development in N. benthamiana. This study provides the basis for understanding virulence in the host by identifying the minimum T3E repertoire required by Pta 6605 to infect N. benthamiana.
en-copyright=
kn-copyright=
en-aut-name=KuroeKana
en-aut-sei=Kuroe
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimuraTakafumi
en-aut-sei=Nishimura
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KashiharaSachi
en-aut-sei=Kashihara
en-aut-mei=Sachi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoMikihiro
en-aut-sei=Yamamoto
en-aut-mei=Mikihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=poly T3E mutant
kn-keyword=poly T3E mutant
en-keyword=type III effector
kn-keyword=type III effector
en-keyword=type III secretion system
kn-keyword=type III secretion system
END
start-ver=1.4
cd-journal=joma
no-vol=27
cd-vols=
no-issue=4
article-no=
start-page=043024
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characterization of the thorium-229 defect structure in CaF2 crystals
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recent advancements in laser excitation of the low-energy thorium-229 (229Th) nuclear isomeric state in calcium fluoride (CaF2) single crystals render this system a promising candidate for a solid-state nuclear clock. Nonetheless, the precise experimental determination of the microscopic ion configuration surrounding the doped 229Th and its electronic charge state remains a critical challenge. Such characterization is essential for precisely controlling the clock transition and evaluating the performance of this solid-state nuclear clock system. In this study, we use x-ray absorption fine structure spectroscopy of 229Th:CaF2 to investigate the charge state and coordination environment of doped 229Th. The results indicate that 229Th displays a 4+ oxidation state at the substitutional site of a Ca2+ ion, with charge compensated provided by two F− ions positioned at interstitial sites adjacent to 229Th.
en-copyright=
kn-copyright=
en-aut-name=TakatoriS.
en-aut-sei=Takatori
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PimonM.
en-aut-sei=Pimon
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PollittS.
en-aut-sei=Pollitt
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BartokosM.
en-aut-sei=Bartokos
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BeeksK.
en-aut-sei=Beeks
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GrueneisA.
en-aut-sei=Grueneis
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HirakiT.
en-aut-sei=Hiraki
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HonmaT.
en-aut-sei=Honma
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HosseiniN.
en-aut-sei=Hosseini
en-aut-mei=N.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LeitnerA.
en-aut-sei=Leitner
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MasudaT.
en-aut-sei=Masuda
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MorawetzI
en-aut-sei=Morawetz
en-aut-mei=I
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NittaK.
en-aut-sei=Nitta
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OkaiK.
en-aut-sei=Okai
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=RiebnerT.
en-aut-sei=Riebner
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SchadenF.
en-aut-sei=Schaden
en-aut-mei=F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SchummT.
en-aut-sei=Schumm
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SekizawaO.
en-aut-sei=Sekizawa
en-aut-mei=O.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SikorskyT.
en-aut-sei=Sikorsky
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakahashiY.
en-aut-sei=Takahashi
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=De ColCol, L. Toscani
en-aut-sei=De Col
en-aut-mei=Col, L. Toscani
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=YamamotoR.
en-aut-sei=Yamamoto
en-aut-mei=R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=YomogidaT.
en-aut-sei=Yomogida
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=YoshimiA.
en-aut-sei=Yoshimi
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshimuraK.
en-aut-sei=Yoshimura
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=3
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=4
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=5
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=6
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=7
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=8
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=9
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=10
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=11
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=12
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=13
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=14
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=15
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=16
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=17
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=18
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=19
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=20
en-affil=Department of Earth and Planetary Science, The University of Tokyo
kn-affil=
affil-num=21
en-affil=Faculty of Physics, TU Wien
kn-affil=
affil-num=22
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=23
en-affil=Department of Earth and Planetary Science, The University of Tokyo
kn-affil=
affil-num=24
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
affil-num=25
en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University
kn-affil=
en-keyword=solid-state nuclear clock
kn-keyword=solid-state nuclear clock
en-keyword=thorium-229
kn-keyword=thorium-229
en-keyword=XAFS
kn-keyword=XAFS
END
start-ver=1.4
cd-journal=joma
no-vol=116
cd-vols=
no-issue=5
article-no=
start-page=1214
end-page=1226
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High Antigenicity for Treg Cells Confers Resistance to PD-1 Blockade Therapy via High PD-1 Expression in Treg Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Regulatory T (Treg) cells have an immunosuppressive function, and programmed death-1 (PD-1)-expressing Treg cells reportedly induce resistance to PD-1 blockade therapies through their reactivation. However, the effects of antigenicity on PD-1 expression in Treg cells and the resistance to PD-1 blockade therapy remain unclear. Here, we show that Treg cells gain high PD-1 expression through an antigen with high antigenicity. Additionally, tumors with high antigenicity for Treg cells were resistant to PD-1 blockade in vivo due to PD-1+ Treg-cell infiltration. Because such PD-1+ Treg cells have high cytotoxic T lymphocyte antigen (CTLA)-4 expression, resistance could be overcome by combination with an anti-CTLA-4 monoclonal antibody (mAb). Patients who responded to combination therapy with anti-PD-1 and anti-CTLA-4 mAbs sequentially after primary resistance to PD-1 blockade monotherapy showed high Treg cell infiltration. We propose that the high antigenicity of Treg cells confers resistance to PD-1 blockade therapy via high PD-1 expression in Treg cells, which can be overcome by combination therapy with an anti-CTLA-4 mAb.
en-copyright=
kn-copyright=
en-aut-name=MatsuuraHiroaki
en-aut-sei=Matsuura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NinomiyaToshifumi
en-aut-sei=Ninomiya
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NinomiyaKiichiro
en-aut-sei=Ninomiya
en-aut-mei=Kiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TachibanaKota
en-aut-sei=Tachibana
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MutoYoshinori
en-aut-sei=Muto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University
kn-affil=
affil-num=5
en-affil=Department of Dermatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=7
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=8
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=9
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University
kn-affil=
affil-num=11
en-affil=Department of Hematology, Oncology and Respiratory Medicine,Okayama University
kn-affil=
affil-num=12
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Tumor Microenvironment, Okayama University
kn-affil=
en-keyword=antigenicity
kn-keyword=antigenicity
en-keyword=cancer immunotherapy
kn-keyword=cancer immunotherapy
en-keyword=CTLA-4
kn-keyword=CTLA-4
en-keyword=PD-1
kn-keyword=PD-1
en-keyword=regulatory T cell
kn-keyword=regulatory T cell
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High-Resolution HPLC for Separating Peptide-Oligonucleotide Conjugates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Peptide-oligonucleotide conjugates (POCs) are chimeric molecules that combine the specificity of oligonucleotides with the functionality of peptides, improving the delivery and therapeutic potential of nucleic acid-based drugs. However, the analysis of POCs, particularly those containing arginine-rich sequences, poses major challenges because of aggregation caused by electrostatic interactions. In this study, we developed an optimized high-performance liquid chromatography (HPLC) method for analyzing POCs. Using a conjugate of DNA and nona-arginine as a model compound, we systematically investigated the effects of various analytical parameters, including column type, column temperature, mobile-phase composition, and pH. A column packed with C18 resin with wide pores combined with butylammonium acetate as the ion-pairing reagent and an optimal column temperature of 80 degrees C provided superior peak resolution and sensitivity. The optimized conditions gave clear separation of POCs from unlinked oligonucleotides and enabled the detection of nucleic acid fragments lacking an alkyne moiety as a linkage part, which is critical for quality control. Our HPLC method is robust and reproducible and substantially reduces the complexity, time, and cost associated with the POC analysis. The method may improve the efficiency of quality control in the production of POCs, thereby supporting their development as promising therapeutic agents for clinical applications.
en-copyright=
kn-copyright=
en-aut-name=NaganumaMiyako
en-aut-sei=Naganuma
en-aut-mei=Miyako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiGenichiro
en-aut-sei=Tsuji
en-aut-mei=Genichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AmiyaMisato
en-aut-sei=Amiya
en-aut-mei=Misato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiraiReira
en-aut-sei=Hirai
en-aut-mei=Reira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HiguchiYuki
en-aut-sei=Higuchi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HataNaoko
en-aut-sei=Hata
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NozawaSaoko
en-aut-sei=Nozawa
en-aut-mei=Saoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeDaishi
en-aut-sei=Watanabe
en-aut-mei=Daishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakajimaTaeko
en-aut-sei=Nakajima
en-aut-mei=Taeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=DemizuYosuke
en-aut-sei=Demizu
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Organic Chemistry, National Institute of Health Sciences
kn-affil=
affil-num=2
en-affil=Division of Organic Chemistry, National Institute of Health Sciences
kn-affil=
affil-num=3
en-affil=YMC CO., LTD.
kn-affil=
affil-num=4
en-affil=YMC CO., LTD.
kn-affil=
affil-num=5
en-affil=YMC CO., LTD.
kn-affil=
affil-num=6
en-affil=YMC CO., LTD.
kn-affil=
affil-num=7
en-affil=YMC CO., LTD.
kn-affil=
affil-num=8
en-affil=Division of Organic Chemistry, National Institute of Health Sciences
kn-affil=
affil-num=9
en-affil=YMC CO., LTD.
kn-affil=
affil-num=10
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=8
article-no=
start-page=18515
end-page=18529
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250418
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Demonstration of enhanced Raman scattering in high-Q silicon nanocavities operating below the silicon band-gap wavelength
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We experimentally determined the quality factor (Q) and the intensity of the Raman scattered light for different silicon photonic-crystal nanocavities operating at wavelengths shorter than the silicon band-gap wavelength. Despite the relatively large absorption of silicon in this wavelength region, we observed Q values greater than 10,000 for cavities with a resonance wavelength of 1.05 mu m, and Q values greater than 30,000 for cavities with a resonance wavelength of 1.10 mu m. Additionally, we measured the Raman scattering spectra of cavities with resonance wavelengths of 1.10 mu m and 1.21 mu m. On average, the generation efficiency of the Raman scattered light in a 1.10-mu m nanocavity is 6.5 times higher than that in a 1.21-mu m nanocavity. These findings suggest that silicon nanocavities operating below the silicon band-gap wavelength could be useful in the development of silicon-based light sources.
en-copyright=
kn-copyright=
en-aut-name=ShimomuraYu
en-aut-sei=Shimomura
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AsanoTakashi
en-aut-sei=Asano
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshiharaAyumi
en-aut-sei=Ishihara
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NodaSusumu
en-aut-sei=Noda
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiYasushi
en-aut-sei=Takahashi
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Physics and Electronics, Osaka Metropolitan University
kn-affil=
affil-num=2
en-affil=Department of Electronic Science and Engineering, Kyoto University
kn-affil=
affil-num=3
en-affil=Department of Physics and Electronics, Osaka Metropolitan University
kn-affil=
affil-num=4
en-affil=Department of Electronic Science and Engineering, Kyoto University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=214
cd-vols=
no-issue=
article-no=
start-page=32
end-page=41
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Medaka approach to evolutionary social neuroscience
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Previously, the integration of comparative biological and neuroscientific approaches has led to significant advancements in social neuroscience. This review highlights the potential and future directions of evolutionary social neuroscience research utilizing medaka fishes (the family Adrianichthyidae) including Japanese medaka (Oryzias latipes). We focus on medaka social cognitive capabilities and mate choice behavior, particularly emphasizing mate preference using visual cues. Medaka fishes are also advantageous due to their abundant genetic resources, extensive genomic information, and the relative ease of laboratory breeding and genetic manipulation. Here we present some research examples of both the conventional neuroscience approach and evolutionary approach involving medaka fishes and other species. We also discuss the prospects of uncovering the molecular and cellular mechanisms underlying the diversity of visual mate preference among species. Especially, we introduce that the single-cell transcriptome technology, particularly in conjunction with 'Adaptive Circuitry Census', is an innovative tool that bridges comparative biological methods and neuroscientific approaches. Evolutionary social neuroscience research using medaka has the potential to unveil fundamental principles in neuroscience and elucidate the mechanisms responsible for generating diversity in mating strategies.
en-copyright=
kn-copyright=
en-aut-name=AnsaiSatoshi
en-aut-sei=Ansai
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Hiraki-KajiyamaTowako
en-aut-sei=Hiraki-Kajiyama
en-aut-mei=Towako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UedaRyutaro
en-aut-sei=Ueda
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SekiTakahide
en-aut-sei=Seki
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokoiSaori
en-aut-sei=Yokoi
en-aut-mei=Saori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsumuraTakafumi
en-aut-sei=Katsumura
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakeuchiHideaki
en-aut-sei=Takeuchi
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Ushimado Marine Institute, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=3
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=4
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=5
en-affil=School of Pharmaceutical Sciences, Hokkaido University
kn-affil=
affil-num=6
en-affil=School of Medicine, Kitasato University
kn-affil=
affil-num=7
en-affil=Graduate School of Life Sciences, Tohoku University
kn-affil=
en-keyword=Evolutionary neuroscience
kn-keyword=Evolutionary neuroscience
en-keyword=Comparative neuroscience
kn-keyword=Comparative neuroscience
en-keyword=Medaka bioresource
kn-keyword=Medaka bioresource
en-keyword=Visual mate preference
kn-keyword=Visual mate preference
en-keyword=Sexual selection
kn-keyword=Sexual selection
en-keyword=Genetic manipulation
kn-keyword=Genetic manipulation
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=2
article-no=
start-page=e70091
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250427
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Olanzapine enabled rechallenge after lorlatinib-induced psychosis: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Lorlatinib is a third-generation tyrosine kinase inhibitor for anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). While it has a high intracranial lesion control rate, it can also cause central nervous system complications, including psychotic symptoms. We present a case of lorlatinib-induced psychosis successfully managed with olanzapine, enabling lorlatinib rechallenge.
Case Presentation: A 32-year-old woman with ALK-positive NSCLC and brain metastases was started on lorlatinib. After 18 months, she developed hallucinations and delusions. Despite treatment with risperidone, her psychotic symptoms persisted, leading to hospitalization. Her symptoms resolved upon lorlatinib discontinuation while risperidone was continued. Given the critical role of lorlatinib in controlling brain metastases, rechallenge was considered. To mitigate concerns regarding drug interactions, risperidone was replaced with olanzapine. Following lorlatinib rechallenge with olanzapine, no recurrence of psychiatric symptoms was observed, allowing continued lorlatinib treatment. Additionally, no progression of lung cancer was noted.
Conclusion: Lorlatinib is an essential drug for controlling brain metastases in ALK-positive NSCLC. However, it can induce psychotic symptoms. When psychiatrists are involved in managing adverse effects during cancer treatment, close collaboration among oncologists, psychiatrists, and patients is essential.
en-copyright=
kn-copyright=
en-aut-name=YokodeAkiyoshi
en-aut-sei=Yokode
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraMasaki
en-aut-sei=Fujiwara
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraYuko
en-aut-sei=Nakamura
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhashiKadoaki
en-aut-sei=Ohashi
en-aut-mei=Kadoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine,Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=psycho-oncology
kn-keyword=psycho-oncology
en-keyword=lorlatinib
kn-keyword=lorlatinib
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=medication-induced psychosis
kn-keyword=medication-induced psychosis
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=1
article-no=
start-page=4
end-page=6
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2023 Incentive Award of the Okayama Medical Association in General Medical Science (2023 Yuuki Prize)
kn-title=令和5年度岡山医学会賞 総合研究奨励賞(結城賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SumiiYuichi
en-aut-sei=Sumii
en-aut-mei=Yuichi
kn-aut-name=住居優一
kn-aut-sei=住居
kn-aut-mei=優一
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 血液・腫瘍・呼吸器内科学
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=14323
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250424
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lymphatic flow dynamics under exercise load assessed with thoracic duct ultrasonography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The thoracic duct (TD) is the largest lymphatic vessel proximal to the venous system. It undergoes morphological changes in response to lymph flow from the periphery, with automatic contraction controlling the dynamics to propel lymph toward the venous system. Recent advancements in ultrasonography have facilitated non-invasive observations of the TD’s terminal, including its valve and wall motions. Observations of TD movements allow predictions of lymphatic flow dynamics. However, no studies have yet documented the changes in the TD under exercise-induced lymph flow enhancement in humans. Here, using 18-MHz high-frequency ultrasonography, we demonstrate for the first time that the TD diameter significantly expands under exercise load. This study analyzed 20 participants; the maximum TD diameters at rest and post-exercise were 2.69 ± 1.06 mm and 3.41 ± 1.32 mm, respectively (p = 0.00000056). While various methods exist for observing the TD, our approach—dynamically monitoring the TD diameter using sonography in real time and correlating it with lymphatic flow dynamics—offers a novel contribution.
en-copyright=
kn-copyright=
en-aut-name=ShinaokaAkira
en-aut-sei=Shinaoka
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimataYoshihiro
en-aut-sei=Kimata
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Lymphatics and Edematology, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Plastic and Reconstructive surgery, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Lymphedema
kn-keyword=Lymphedema
en-keyword=Lymphatic function
kn-keyword=Lymphatic function
en-keyword=Lymph flow
kn-keyword=Lymph flow
en-keyword=Chylothorax
kn-keyword=Chylothorax
en-keyword=Chylous ascites,lymph velocity
kn-keyword=Chylous ascites,lymph velocity
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=2323
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides.
en-copyright=
kn-copyright=
en-aut-name=AndoYushin
en-aut-sei=Ando
en-aut-mei=Yushin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KoboAkinao
en-aut-sei=Kobo
en-aut-mei=Akinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NiwaTatsuya
en-aut-sei=Niwa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakawaAyako
en-aut-sei=Yamakawa
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KonomaSuzuna
en-aut-sei=Konoma
en-aut-mei=Suzuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiYuki
en-aut-sei=Kobayashi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NurekiOsamu
en-aut-sei=Nureki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TaguchiHideki
en-aut-sei=Taguchi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ItohYuzuru
en-aut-sei=Itoh
en-aut-mei=Yuzuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ChadaniYuhei
en-aut-sei=Chadani
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=3
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=4
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=6
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=8
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=9
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=116
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ADAR1-high tumor-associated macrophages induce drug resistance and are therapeutic targets in colorectal cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Colorectal cancer (CRC) is considered the third most common type of cancer worldwide. Tumor-associated macrophages (TAMs) have been shown to promote drug resistance. Adenosine-to-inosine RNA-editing, as regulated by adenosine deaminase acting on RNA (ADAR), is a process that induces the posttranscriptional modification of critical oncogenes. The aim of this study is to determine whether the signals from cancer cells would induce RNA-editing in macrophages.
Methods The effects of RNA-editing on phenotypes in macrophages were analyzed using clinical samples and in vitro and in vivo models.
Results The intensity of the RNA-editing enzyme ADAR1 (Adenosine deaminase acting on RNA 1) in cancer and mononuclear cells indicated a strong positive correlation between the nucleus and cytoplasm. The ADAR1-positive mononuclear cells were positive for CD68 and CD163, a marker for M2 macrophages. Cancer cells transport pro-inflammatory cytokines or ADAR1 protein directly to macrophages via the exosomes, promoting RNA-editing in AZIN1 (Antizyme Inhibitor 1) and GLI1 (Glioma-Associated Oncogene Homolog 1) and resulting in M2 macrophage polarization. GLI1 RNA-editing in the macrophages induced by cancer cells promotes the secretion of SPP1, which is supplied to the cancer cells. This activates the NF kappa B pathway in cancer cells, promoting oxaliplatin resistance. When the JAK inhibitors were administered, oncogenic RNA-editing in the macrophages was suppressed. This altered the macrophage polarization from M2 to M1 and decreased oxaliplatin resistance in cancer cells.
Conclusions This study revealed that ADAR1-high TAMs are crucial in regulating drug resistance in CRC and that targeting ADAR1 in TAMs could be a promising treatment approach for overcoming drug resistance in CRC.
en-copyright=
kn-copyright=
en-aut-name=UmedaHibiki
en-aut-sei=Umeda
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriwakeKazuya
en-aut-sei=Moriwake
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshidaKazuhiro
en-aut-sei=Yoshida
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakedaSho
en-aut-sei=Takeda
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanoShuya
en-aut-sei=Yano
en-aut-mei=Shuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KishimotoHiroyuki
en-aut-sei=Kishimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KayanoMasashi
en-aut-sei=Kayano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MoriYoshiko
en-aut-sei=Mori
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=UmedaYuzo
en-aut-sei=Umeda
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=GoelAjay
en-aut-sei=Goel
en-aut-mei=Ajay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Obstetrics and Gynecology, Okayama University Gradu�ate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center
kn-affil=
affil-num=24
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=RNA-editing
kn-keyword=RNA-editing
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Chemoresistance
kn-keyword=Chemoresistance
en-keyword=Biomarker
kn-keyword=Biomarker
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=8
article-no=
start-page=e70793
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250418
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic Differences and Distinct TP53 Mutation Site-Linked Chemosensitivity in Early- and Late-Onset Gastric Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Gastric cancer (GC) in younger patients often exhibits aggressive behavior and a poorer prognosis than that in older patients. Although the clinical differences may stem from oncogenic gene variations, it is unclear whether genetic differences exist between these groups. This study compared the genetic profiles of early- and late-onset GC and evaluated their impact on treatment outcomes.
Methods: We analyzed genetic data from 1284 patients with GC in the Japanese nationwide Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database, comparing early-onset (<= 39 years; n = 143) and late-onset (>= 65 years; n = 1141) groups. The influence of TP53 mutations on the time to treatment failure (TTF) with platinum-based chemotherapy and the sensitivity of cancer cells with different TP53 mutation sites to oxaliplatin were assessed in vitro.
Results: Early- and late-onset GC showed distinct genetic profiles, with fewer neoantigen-associated genetic changes observed in early-onset cases. In particular, TP53 has distinct mutation sites; R175H and R273 mutations are more frequent in early- and late-onset GC, respectively. The R175H mutation showed higher sensitivity to oxaliplatin in vitro, consistent with the longer TTF in early-onset patients (17.3 vs. 7.0 months, p = 0.013) when focusing on the patients with TP53 mutations.
Conclusion: Genomic differences, particularly in TP53 mutation sites, between early- and late-onset GC support the need for age-specific treatment strategies.
en-copyright=
kn-copyright=
en-aut-name=KamioTomohiro
en-aut-sei=Kamio
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirosunaKensuke
en-aut-sei=Hirosuna
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OzatoToshiki
en-aut-sei=Ozato
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=comprehensive genomic profiling
kn-keyword=comprehensive genomic profiling
en-keyword=early-onset gastric cancer
kn-keyword=early-onset gastric cancer
en-keyword=oxaliplatin
kn-keyword=oxaliplatin
en-keyword=TP53
kn-keyword=TP53
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=3
article-no=
start-page=343
end-page=350
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characteristics of Early Gastric Cancer in a Patient with a History of Helicobacter pylori Infection and No History of Eradication Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective The characteristics of gastric cancer in patients with atrophic mucosa and no apparent history of Helicobacter pylori eradication have not been thoroughly investigated. Therefore, this study examined the clinicopathological characteristics of gastric cancer in these patients.
Methods We retrospectively examined the endoscopic and pathological characteristics of gastric cancer in patients who underwent endoscopic submucosal dissection.
Patients We divided the patients into 2 groups: those with gastric atrophy and no history of eradication (group A; n=102) and those with a history of eradication (group B; n=161). In group A, patients were further divided into mild atrophy (group C) and severe atrophy (group D) groups, while group B was further divided into those who underwent eradication treatment >5 years ago (group E) and those who underwent eradication 1-5 years ago (group F).
Results Group A comprised significantly older individuals (75±8.0 vs. 71±7.5 years old, p<0.001) with a higher frequency of elevated gastric cancer than group B (32.4% vs. 17.4%, p=0.006). Compared with group E, group A was older and had a greater incidence of elevated gastric cancer. The incidence of gastric cancer in the U or M region was lower in group C than in group D.
Conclusion Gastric cancer in patients with gastric atrophy and no history of eradication was associated with an older age and higher frequency of elevated-type morphology than in those with a history of eradication.
en-copyright=
kn-copyright=
en-aut-name=KuraokaSakiko
en-aut-sei=Kuraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InoShoko
en-aut-sei=Ino
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatomiTakuya
en-aut-sei=Satomi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=autoimmune gastritis
kn-keyword=autoimmune gastritis
en-keyword=eradication
kn-keyword=eradication
en-keyword=gastric cancer
kn-keyword=gastric cancer
en-keyword=Helicobacter pylori
kn-keyword=Helicobacter pylori
END
start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250419
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quantitative assessment of adhesive effects on partial and full compressive strength of LVL in the edge-wise direction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Laminated wood-based materials have been widely developed, and the laminating process and adhesive itself have been reported to enhance performance beyond the sum of the individual layers' performance. This phenomenon is particularly notable under loads applied in the "edge-wise direction", where each layer bears stress collectively. These combined effects are referred to as the "adhesive effect". Strength under partial compressive loads is critical in timber engineering, as partial compressive stress generates complex stress distributions influenced by boundary conditions. The adhesive effect may also be impacted by these conditions. The aim of this study was to quantitatively and directly evaluate the adhesive effect under partial and full compressive loads using various parameters. The strength of laminated veneer lumber (LVL) with adhesive was compared to that of simply layered veneers without adhesive to assess the adhesive effect. Three mechanisms contributing to the adhesive effect were proposed: Mechanism I, caused by the deformation of the adhesive layer independently from the veneers; Mechanism II, resulting from the adhesive impregnating the veneers; and Mechanism III, arising from the reinforcement provided by adjacent veneers. The results suggested the following: (i) Mechanism I had minimal impact, as the fiber direction and the presence of additional length showed strong and slight effects on the adhesive effect, respectively; (ii) Mechanism II contributed to preventing crack propagation and altering the relationships among mechanical properties, with its effectiveness increasing as the adhesive weight increased; and (iii) Mechanism III functioned as a crossband effect, reinforcing weaknesses caused by the slope of the grain and the angle of the annual rings.
en-copyright=
kn-copyright=
en-aut-name=SudoRyutaro
en-aut-sei=Sudo
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyamotoKohta
en-aut-sei=Miyamoto
en-aut-mei=Kohta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IdoHirofumi
en-aut-sei=Ido
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Okayama University, Graduate School of Environmental, Life, Natural Science and Technology
kn-affil=
affil-num=2
en-affil=Forestry and Forest Products Research Institute
kn-affil=
affil-num=3
en-affil=Forestry and Forest Products Research Institute
kn-affil=
en-keyword=Laminated veneer lumber (LVL)
kn-keyword=Laminated veneer lumber (LVL)
en-keyword=Partial compressive load
kn-keyword=Partial compressive load
en-keyword=Bearing strength
kn-keyword=Bearing strength
en-keyword=Embedment strength
kn-keyword=Embedment strength
en-keyword=Partial compression perpendicular to grain (PCPG)
kn-keyword=Partial compression perpendicular to grain (PCPG)
en-keyword=Adhesive layer
kn-keyword=Adhesive layer
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=4
article-no=
start-page=e70151
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Frequency and Characteristics of Gastrointestinal Diseases in Patients With Neurofibromatosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aim: Patients with neurofibromatosis (NF) frequently experience gastrointestinal symptoms, but the specific characteristics of these lesions are not well understood.
Methods: To investigate the prevalence and nature of gastrointestinal diseases in this population, we analyzed the gastrointestinal lesions identified through endoscopic examinations in patients with NF.
Results: We included 225 patients with NF type 1 (NF1) and 15 with NF type 2 (NF2). None of the NF2 patients underwent endoscopy. Among the NF1 patients, 27 received endoscopies, and 13 (59%) had gastrointestinal lesions. These 13 patients were predominantly male (10 males and three females), with a median age of 53 years (range: 19-76 years). The identified lesions included colorectal polyps (n = 6), gastrointestinal stromal tumors ([GIST], n = 4), subepithelial lesions (n = 3), gastric fundic gland polyps (n = 3), diffuse intestinal ganglioneuromatosis (n = 2), esophageal polyps (n = 2), a Schwann cell hamartoma (n = 1), esophageal cancer (n = 1), and a gastric hyperplastic polyp (n = 1). All GISTs and one case of diffuse intestinal ganglioneuromatosis were surgically resected. Interestingly, six out of 13 patients were asymptomatic. Additionally, all patients who required surgery were 40 years of age or older.
Conclusions: These findings suggest that routine endoscopic examinations, along with imaging techniques like computed tomography and magnetic resonance imaging, could be beneficial for the early detection of gastrointestinal lesions in NF1 patients aged 40 and above.
en-copyright=
kn-copyright=
en-aut-name=HondaManami
en-aut-sei=Honda
en-aut-mei=Manami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamasakiYasushi
en-aut-sei=Yamasaki
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Practical Gastrointestinal Endoscopy,Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=colonoscopy
kn-keyword=colonoscopy
en-keyword=esophagogastroduodenoscopy
kn-keyword=esophagogastroduodenoscopy
en-keyword=gastrointestinal neoplasms
kn-keyword=gastrointestinal neoplasms
en-keyword=gastrointestinal stromal tumor
kn-keyword=gastrointestinal stromal tumor
en-keyword=neurofibromatosis
kn-keyword=neurofibromatosis
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=139
end-page=144
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Safe Resection of Esophageal Cancer with a Non-Recurrent Inferior Laryngeal Nerve Associated with an Aberrant Right Subclavian Artery Using Intraoperative Nerve Monitoring
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In thoracic esophageal cancer, lymph node dissection around the recurrent laryngeal nerve is crucial but poses a risk of nerve palsy, affecting postoperative quality of life. In cases with an aberrant right subclavian artery (ARSA), the right recurrent laryngeal nerve is absent, and the non-recurrent inferior laryngeal nerve (NRILN) enters the larynx directly from the vagus nerve in the cervical region. Identifying the course of the NRILN is vital to avoid injury. A case of esophageal cancer with an ARSA, in which the course of the NRILN was preserved using the Nerve Integrity Monitoring (NIM) system during surgery, is described.
en-copyright=
kn-copyright=
en-aut-name=TakedaYasushige
en-aut-sei=Takeda
en-aut-mei=Yasushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaedaNaoaki
en-aut-sei=Maeda
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizusawaYohei
en-aut-sei=Mizusawa
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsumotoHijiri
en-aut-sei=Matsumoto
en-aut-mei=Hijiri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoYuhei
en-aut-sei=Kondo
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KunitomoTomoyoshi
en-aut-sei=Kunitomo
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanoueYukinori
en-aut-sei=Tanoue
en-aut-mei=Yukinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HashimotoMasashi
en-aut-sei=Hashimoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanabeShunsuke
en-aut-sei=Tanabe
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Hospital
kn-affil=
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=intraoperative nerve monitoring
kn-keyword=intraoperative nerve monitoring
en-keyword=aberrant right subclavian artery
kn-keyword=aberrant right subclavian artery
en-keyword=non-recurrent inferior laryngeal nerve
kn-keyword=non-recurrent inferior laryngeal nerve
en-keyword=thoracoscopic esophagectomy
kn-keyword=thoracoscopic esophagectomy
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=129
end-page=134
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Retinitis Pigmentosa Diagnosed with Severe Anterior Capsule Contraction after Cataract Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 66-year-old woman presented with significant anterior capsule contraction and intraocular lens dislocation in both eyes 4 months after cataract surgery. Postoperative examinations such as fluorescein angiography, Goldmann perimetry, and electroretinography revealed retinitis pigmentosa (RP). Patients with significant anterior capsule contraction after cataract surgery should be closely examined because RP may be a contributing factor.
en-copyright=
kn-copyright=
en-aut-name=TsujiAkihiro
en-aut-sei=Tsuji
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosokawaMio
en-aut-sei=Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiKosuke
en-aut-sei=Takahashi
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Fukuyama City Hospital, Fukuyama City
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=retinitis pigmentosa
kn-keyword=retinitis pigmentosa
en-keyword=intraocular lens
kn-keyword=intraocular lens
en-keyword=anterior capsule contraction
kn-keyword=anterior capsule contraction
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=123
end-page=127
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Macular Hole Formation Six Months after Hemorrhage Displacement for Submacular and Henle Fiber Layer Hemorrhage due to Retinal Arterial Macroaneurysm Rupture
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 78-year-old woman presented with sudden vision loss and central scotoma. Visual acuity in the right eye was 20/222, with submacular hemorrhage (SMH) and Henle fiber layer hemorrhage (HFLh) due to retinal arterial macroaneurysm (RAM) rupture. She underwent SMH displacement, including cataract surgery, vitrectomy, intravitreal injection of tissue-plasminogen activator, and air tamponade. Three months postoperatively the SMH and HFLh had disappeared and visual acuity had improved to 20/200. Six months postoperatively, a macular hole had developed. We performed an inverted internal limiting membrane flap and gas tamponade. Ten months later, the hole had closed and visual acuity had improved to 20/100.
en-copyright=
kn-copyright=
en-aut-name=AkatsukaRiku
en-aut-sei=Akatsuka
en-aut-mei=Riku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Morizane HosokawaMio
en-aut-sei=Morizane Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DoiShinichiro
en-aut-sei=Doi
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=submacular hemorrhage
kn-keyword=submacular hemorrhage
en-keyword=Henle fiber layer hemorrhage
kn-keyword=Henle fiber layer hemorrhage
en-keyword=retinal arterial macroaneurysm rupture
kn-keyword=retinal arterial macroaneurysm rupture
en-keyword=macular hole
kn-keyword=macular hole
en-keyword=inverted internal limiting membrane flap technique
kn-keyword=inverted internal limiting membrane flap technique
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=117
end-page=121
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=From a Congenital Defect to Cancer: A Case of Squamous Cell Carcinoma in a Neglected Myelomeningocele
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Neural tube defects are common congenital anomalies, typically presenting early due to visible swelling and/or neurological deficits. Rarely, cystic swellings are neglected until adulthood, with only 14 cases of malignancy developing in an untreated meningomyelocele reported to date. We describe the case details of a 26-year-old Indian woman with this rare complication. Magnetic resonance imaging revealed a low-lying spinal cord with spinal dysraphism, cord herniation, and a cystic lesion. The biopsy confirmed a well-differentiated squamous cell carcinoma. Malignant transformation in an untreated myelomeningocele is rare, with chronic irritation and infection as proposed causes. Early biopsy and treatment are crucial for its management.
en-copyright=
kn-copyright=
en-aut-name=GautamAbhishek
en-aut-sei=Gautam
en-aut-mei=Abhishek
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KenawadekarRahul
en-aut-sei=Kenawadekar
en-aut-mei=Rahul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HattiholiVirupaxi
en-aut-sei=Hattiholi
en-aut-mei=Virupaxi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MastePraful Suresh
en-aut-sei=Maste
en-aut-mei=Praful Suresh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Neurosurgery, Jawaharlal Nehru Medical College, KAHER
kn-affil=
affil-num=2
en-affil=Department of General Surgery, Jawaharlal Nehru Medical College, KAHER
kn-affil=
affil-num=3
en-affil=Department of Radiology, Jawaharlal Nehru Medical College, KAHER
kn-affil=
affil-num=4
en-affil=Department of Neurosurgery, Jawaharlal Nehru Medical College, KAHER
kn-affil=
en-keyword=squamous cell carcinoma
kn-keyword=squamous cell carcinoma
en-keyword=meningomyelocele
kn-keyword=meningomyelocele
en-keyword=occult spinal dysraphism
kn-keyword=occult spinal dysraphism
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=81
end-page=92
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical Outcomes of Neoadjuvant Paclitaxel/Cisplatin/Gemcitabine Compared with Gemcitabine/Cisplatin for Muscle-Invasive Bladder Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We retrospectively evaluated the oncologic outcomes of paclitaxel, cisplatin, and gemcitabine (PCG) with those of gemcitabine and cisplatin (GC) as neoadjuvant chemotherapy in muscle-invasive bladder cancer (MIBC) patients. The primary outcome was efficacy: pathological complete response (pCR), ypT0N0; and pathological objective response (pOR), ypT0N0, ≤ ypT1N0, or ypT0N1. Secondary outcomes included overall survival (OS), recurrence-free survival (RFS), predictive factors for pOR, OS, and RFS, and hematologic adverse events (AEs). Among 113 patients treated (PCG, n=28; GC, n=85), similar pOR and pCR rates were achieved by the groups (pOR: PCG, 57.1% vs. GC, 49. 4%; p=0.52; pCR: PCG, 39.3% vs. GC, 29.4%; p=0.36). No significant differences were observed in OS (p=1.0) or RFS (p=0.20). Multivariate logistic regression analysis showed that hydronephrosis (odds ratio [OR] 0.32, 95%CI: 0.11-0.92) and clinical node-positive status (cN+) (OR 0.22, 95%CI: 0.050-0.99) were significantly associated with a decreased probability of pOR. On multivariate Cox regression analyses, pOR achievement was associated with improved OS (hazard ratio [HR] 0.23, 95%CI: 0.10-0.56) and RFS (HR 0.30, 95%CI: 0.13-0.67). There were no significant between-group differences in the incidence of grade ≥ 3 hematologic AEs or dose-reduction required, but the PCG group had a higher incidence of grade 4 neutropenia.
en-copyright=
kn-copyright=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsugawaTakuji
en-aut-sei=Tsugawa
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsuboiKazuma
en-aut-sei=Tsuboi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EbaraShin
en-aut-sei=Ebara
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=urothelial carcinoma
kn-keyword=urothelial carcinoma
en-keyword=paclitaxel
kn-keyword=paclitaxel
en-keyword=cisplatin
kn-keyword=cisplatin
en-keyword=gemcitabine
kn-keyword=gemcitabine
en-keyword=neoadjuvant
kn-keyword=neoadjuvant
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=65
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between the Pretreatment Body Mass Index and Anamorelin’s Efficacy in Patients with Cancer Cachexia: A Retrospective Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Anamorelin (ANAM) is used to treat cancer-associated cachexia, a syndrome involving muscle loss and anorexia. The timing of the initiation of ANAM treatment is crucial to its efficacy. Although the body mass index (BMI) is a diagnostic criterion for cancer cachexia, no studies have explored its association with ANAM efficacy. We conducted a single-center, retrospective cohort study to investigate the association between the pre-treatment BMI and ANAM efficacy in patients with cancer-associated cachexia (n=47). The ANAM treatment was considered effective if the patient’s appetite improved within 30 days of treatment initiation. We calculated a BMI cutoff value (19.5 kg/m2) and used it to divide the patients into high- and low-BMI groups. Their background, clinical laboratory values, cancer types, and treatment lines were investigated. Twenty (42.6%) had a high BMI (≥ 19.5 kg/m2) and 27 (57.4%) had a low BMI (< 19.5 kg/m2). High BMI was significantly associated with ANAM effectiveness (odds ratio 7.86, 95% confidence interval 1.99-31.00, p=0.003). Together these results indicate that it is beneficial to initiate ANAM treatment before a patient’s BMI drops below 19.5 kg/m2. Our findings will help advance cancer cachexia treatment and serve as a reference for clinicians to predict ANAM’s efficacy.
en-copyright=
kn-copyright=
en-aut-name=MakiMasatoshi
en-aut-sei=Maki
en-aut-mei=Masatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakadaRyo
en-aut-sei=Takada
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshigoTomoyuki
en-aut-sei=Ishigo
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiwaraMiki
en-aut-sei=Fujiwara
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiYoko
en-aut-sei=Takahashi
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtsukaShinya
en-aut-sei=Otsuka
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TamuraKoji
en-aut-sei=Tamura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HamaokaTerutaka
en-aut-sei=Hamaoka
en-aut-mei=Terutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=2
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Sapporo Medical University Hospital
kn-affil=
affil-num=4
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=8
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
en-keyword=anamorelin
kn-keyword=anamorelin
en-keyword=cancer-associated cachexia
kn-keyword=cancer-associated cachexia
en-keyword=body mass index
kn-keyword=body mass index
en-keyword=albumin
kn-keyword=albumin
en-keyword=efficacy rate
kn-keyword=efficacy rate
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=2
article-no=
start-page=131
end-page=136
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of calcium supplementation on bone deformity and histopathological findings of skin papules in a pediatric patient with vitamin D–dependent rickets type 2A: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Vitamin D–dependent rickets type 2A (VDDR2A) is an autosomal recessive disease caused by pathogenic variants of the vitamin D receptor (VDR) gene. VDDR2A rickets are usually resistant to native or active vitamin D treatment because of impaired active calcium absorption against the calcium concentration gradient, which is a ligand-dependent VDR action in the small intestine. Alopecia due to an impaired skin follicular cycle is occasionally observed in patients with VDDR2A. Among the pathogenic VDR variants, most in the DNA-binding domain and some in the ligand-binding domain, which affect the dimerization of VDR with the retinoic X receptor, are associated with alopecia. Herein, we report a case of VDDR2A caused by compound heterozygous pathogenic variants of the DNA-binding domain of VDR. Active vitamin D treatment did not ameliorate genu varum, rachitic changes in the roentgenogram, or abnormal laboratory findings. However, oral administration of calcium lactate dramatically improved these findings. The patient also experienced hair loss at two months of age and multiple papules on the skin at two yr of age, which did not improve with vitamin D or calcium supplementation. We also report the histopathological findings of skin papules in this patient.
en-copyright=
kn-copyright=
en-aut-name=HasegawaKosei
en-aut-sei=Hasegawa
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyakeTomoko
en-aut-sei=Miyake
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobashiMina
en-aut-sei=Kobashi
en-aut-mei=Mina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TetsunagaTomonori
en-aut-sei=Tetsunaga
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AgoYuko
en-aut-sei=Ago
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FutagawaNatsuko
en-aut-sei=Futagawa
en-aut-mei=Natsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyaharaHiroyuki
en-aut-sei=Miyahara
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HiguchiYousuke
en-aut-sei=Higuchi
en-aut-mei=Yousuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MorizaneShin
en-aut-sei=Morizane
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Dermatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=rickets
kn-keyword=rickets
en-keyword=receptor
kn-keyword=receptor
en-keyword=alopecia
kn-keyword=alopecia
en-keyword=papules
kn-keyword=papules
en-keyword=calcium
kn-keyword=calcium
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enterobacterial common antigen repeat-unit flippase WzxE is required for Escherichia coli growth under acidic conditions, low temperature, and high osmotic stress conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Colanic acid and enterobacterial common antigen (ECA) are cell-surface polysaccharides that are produced by many Escherichia coli isolates. Colanic acid is induced under acidic, low temperature, and high-salt conditions and is important for E. coli resistance to these stresses; however, the role of ECA in these stresses is less clear. Here, we observed that knockout of flippase wzxE, which translocates lipid-linked ECA repeat units from the cytoplasmic side of the inner membrane to the periplasmic side, resulted in the sensitivity of E. coli BW25113 to acidic conditions. The wzxE-knockout mutant showed reduced growth potential and viable counts in vegetable extracts with acidic environments, including cherry tomatoes, carrots, celery, lettuce, and spinach. A double-knockout strain of wzxE and wecF (glycosyltransferase that adds the third-and-final sugar of the lipid-linked ECA repeat unit) was not sensitive to acidic conditions, with similar results obtained for a double-knockout strain of wzxE and wcaJ (glycosyltransferase that initiates colanic acid lipid-linked repeat-unit biosynthesis). The wzxE-knockout mutant was sensitive to low temperatures or high-salt conditions, which induced colanic acid synthesis, and these sensitivities were abolished by the additional knockout of wcaJ. These results suggest that lipid-linked ECA repeat units confer E. coli susceptibility to acidic, low temperatures, and high-salt conditions in a colanic acid-dependent manner and that wzxE suppresses this negative effect.
en-copyright=
kn-copyright=
en-aut-name=YamaguchiSaki
en-aut-sei=Yamaguchi
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=wzxE flippase
kn-keyword=wzxE flippase
en-keyword=enterobacterial common antigen
kn-keyword=enterobacterial common antigen
en-keyword=low pH
kn-keyword=low pH
en-keyword=low temperature
kn-keyword=low temperature
en-keyword=hyperosmotic stress
kn-keyword=hyperosmotic stress
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=7
article-no=
start-page=2221
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Length Estimation of Pneumatic Artificial Muscle with Optical Fiber Sensor Using Machine Learning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A McKibben artificial muscle is a soft actuator driven by air pressure, characterized by its flexibility, lightweight design, and high power-to-weight ratio. We have developed a smart artificial muscle that is capable of sensing its motion. To enable this sensing function, an optical fiber was integrated into the sleeve consisting of multiple fibers and serving as a component of the McKibben artificial muscle. By measuring the macrobending loss of the optical fiber, the length of the smart artificial muscle is expected to be estimated. However, experimental results indicated that the sensor's characteristics depend not only on the length but also on the load and the applied air pressure. This dependency arises because the stress applied to the optical fiber increases, causing microbending loss. In this study, we employed a machine learning model, primarily composed of Long Short-Term Memory (LSTM) neural networks, to estimate the length of the smart artificial muscle. The experimental results demonstrate that the length estimation obtained through machine learning exhibits a smaller error. This suggests that machine learning is a feasible approach to enhancing the length measurement accuracy of the smart artificial muscle.
en-copyright=
kn-copyright=
en-aut-name=NiYilei
en-aut-sei=Ni
en-aut-mei=Yilei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WakimotoShuichi
en-aut-sei=Wakimoto
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TianWeihang
en-aut-sei=Tian
en-aut-mei=Weihang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TodaYuichiro
en-aut-sei=Toda
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KandaTakefumi
en-aut-sei=Kanda
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaguchiDaisuke
en-aut-sei=Yamaguchi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=McKibben artificial muscle
kn-keyword=McKibben artificial muscle
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=optical fiber
kn-keyword=optical fiber
en-keyword=motion estimation
kn-keyword=motion estimation
END
start-ver=1.4
cd-journal=joma
no-vol=75
cd-vols=
no-issue=2
article-no=
start-page=100016
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202507
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Changes in adrenoceptor expression level contribute to the cellular plasticity of glioblastoma cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glioblastoma cells are known to regulate their cellular plasticity in response to their surrounding microenvironment, but it is not fully understood what factors contribute to the cells' changing plasticity. Here, we found that glioblastoma cells alter the expression level of adrenoreceptors depending on their differentiation stage. Catecholamines are abundant in the central nervous system, and we found that noradrenaline, in particular, enhances the stemness of glioblastoma cells and promotes the dedifferentiation potential of already differentiated glioblastoma cells. Antagonist and RNAi experiments revealed that signaling through alpha 1D-adrenoreceptor is important for noradrenaline action on glioblastoma cells. We also found that high alpha 1Dadrenoreceptor expression was associated with poor prognosis in patients with gliomas. These data suggest that glioblastoma cells increase the expression level of their own adrenoreceptors to alter the surrounding tumor microenvironment favorably for survival. We believe that our findings will contribute to the development of new therapeutic strategies for glioblastoma.
en-copyright=
kn-copyright=
en-aut-name=AsakaYutaro
en-aut-sei=Asaka
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MasumotoToshio
en-aut-sei=Masumoto
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UnedaAtsuhito
en-aut-sei=Uneda
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChinVanessa D.
en-aut-sei=Chin
en-aut-mei=Vanessa D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtaniYusuke
en-aut-sei=Otani
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PenaTirso
en-aut-sei=Pena
en-aut-mei=Tirso
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HuangRongsheng
en-aut-sei=Huang
en-aut-mei=Rongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Division of Health Administration and Promotion, Department of Social Medicine, Faculty of Medicine, Tottori University
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=UMass Chan Medical School, UMass Memorial Medical Center
kn-affil=
affil-num=5
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
kn-affil=
affil-num=6
en-affil=Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University
kn-affil=
affil-num=11
en-affil=Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Adrenoceptors
kn-keyword=Adrenoceptors
en-keyword=Glioma stem-like cells
kn-keyword=Glioma stem-like cells
en-keyword=Differentiated glioma cells
kn-keyword=Differentiated glioma cells
en-keyword=Noradrenaline
kn-keyword=Noradrenaline
en-keyword=Cellular plasticity
kn-keyword=Cellular plasticity
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250403
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The association between objectively measured physical activity and home blood pressure: a population-based real-world data analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Few studies have examined the association of objectively measured habitual physical activity (PA) and sedentary behavior with out-of-office blood pressure (BP). We investigated the associations of objectively measured PA intensity time, sedentary time, and step count with at-home BP. Using accelerometer-recorded PA indices and self-measured BP in 368 participants (mean age, 53.8 years; 58.7% women), we analyzed 115,575 records of each parameter between May 2019 and April 2024. PA intensities were categorized as light (2.0–2.9 metabolic equivalents [METs]); moderate (3.0–5.9 METs); vigorous (≥6.0 METs), or sedentary (<2.0 METs): the median [interquartile ranges] for these variables was 188 [146–232], 83 [59–114], 1 [0–2], 501 [428–579] minutes, respectively, and for step count, was 6040 [4164–8457]. Means [standard deviations] for systolic and diastolic BP were 116.4 [14.2] and 75.2 [9.3] mmHg, respectively. A mixed-effect model adjusted for possible confounders showed that 1-h longer in vigorous PA was associated with lower systolic and diastolic BP (−1.69 and −1.09 mmHg, respectively). A 1000-step increase in step count was associated with lower systolic and diastolic BP (−0.05 and −0.02 mmHg, respectively). Associations were more pronounced among men and participants aged <60 years. Sedentary time was positively associated with BP in men and participants aged <60 years, but inversely associated with BP in women and participants aged ≥60 years. Our findings suggest that more PA and less sedentary behavior were associated with BP reduction, particularly among men and participants aged <60 years. However, the clinical relevance of this effect remains uncertain because of its modest magnitude.
en-copyright=
kn-copyright=
en-aut-name=KinutaMinako
en-aut-sei=Kinuta
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaniguchiKaori
en-aut-sei=Taniguchi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukudaMari
en-aut-sei=Fukuda
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakahataNoriko
en-aut-sei=Nakahata
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KandaHideyuki
en-aut-sei=Kanda
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Environmental Medicine and Public Health, Izumo, Shimane University Faculty of Medicine
kn-affil=
affil-num=4
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Health and Nutrition, The University of Shimane Faculty of Nursing and Nutrition
kn-affil=
affil-num=6
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=213
cd-vols=
no-issue=
article-no=
start-page=128
end-page=137
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The potential mechanism maintaining transactive response DNA binding protein 43 kDa in the mouse stroke model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The disruption of transactive response DNA binding protein 43 kDa (TDP-43) shuttling leads to the depletion of nuclear localization and the cytoplasmic accumulation of TDP-43. We aimed to evaluate the mechanism underlying the behavior of TDP-43 in ischemic stroke. Adult male C57BL/6 J mice were subjected to 30 or 60 min of transient middle cerebral artery occlusion (tMCAO), and examined at 1, 6, and 24 h post reperfusion. Immunostaining was used to evaluate the expression of TDP-43, G3BP1, HDAC6, and RAD23B. The total and cytoplasmic number of TDP-43–positive cells increased compared with sham operation group and peaked at 6 h post reperfusion after tMCAO. The elevated expression of G3BP1 protein peaked at 6 h after reperfusion and decreased at 24 h after reperfusion in ischemic mice brains. We also observed an increase of expression level of HDAC6 and the number of RAD23B-positive cells increased after tMCAO. RAD23B was colocalized with TDP-43 24 h after tMCAO. We proposed that the formation of stress granules might be involved in the mislocalization of TDP-43, based on an evaluation of G3BP1 and HDAC6. Subsequently, RAD23B, may also contribute to the downstream degradation of mislocalized TDP-43 in mice tMCAO model.
en-copyright=
kn-copyright=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BianZhihong
en-aut-sei=Bian
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhaiYun
en-aut-sei=Zhai
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuHaibo
en-aut-sei=Yu
en-aut-mei=Haibo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HuXiao
en-aut-sei=Hu
en-aut-mei=Xiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AnHangping
en-aut-sei=An
en-aut-mei=Hangping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=LiuHongzhi
en-aut-sei=Liu
en-aut-mei=Hongzhi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=TDP-43
kn-keyword=TDP-43
en-keyword=ALS
kn-keyword=ALS
en-keyword=RNA-binding protein
kn-keyword=RNA-binding protein
en-keyword=Mislocalization
kn-keyword=Mislocalization
en-keyword=G3BP1
kn-keyword=G3BP1
en-keyword=HDAC6
kn-keyword=HDAC6
en-keyword=RAD23B
kn-keyword=RAD23B
en-keyword=tMCAO
kn-keyword=tMCAO
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=4
article-no=
start-page=e82348
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bilateral Scleritis and Neutrophilic Dermatosis With Cytogenetic Chromosomal Aberrancy Related to Pyoderma Gangrenosum: A Case Report of a 20-Year Follow-Up
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pyoderma gangrenosum is a non-infectious autoimmune disease with skin plaques and ulcers in the entity of neutrophilic dermatosis and may have a background of myelodysplastic syndromes. This study reported a 20-year follow-up of a patient with pyoderma gangrenosum and scleritis who showed chromosomal aberrancy from the initial phase and later in the course developed thrombocythemia. A 51-year-old man presented with widespread indurated erythematous plaques with scaling and pustules on the forehead, bilateral eyelids, and nasal bridge, in addition to nodular scleritis in the left eye and ulcer formation of the plaques in the lower legs. Skin biopsy revealed massive dermal infiltration mainly with neutrophils in the absence of neutrophilic vasculitis. Suspected of myelodysplastic syndromes, bone marrow biopsy was normal, while chromosomal aberrancy, 46, XY, del (20) (q11q13.3), was detected. In the diagnosis of neutrophilic dermatosis, probably of pyoderma gangrenosum, he began to have oral prednisolone 20 mg daily and colchicine 1 mg daily, leading to the subsidence of skin lesions. Four months later, he developed nodular scleritis in the right eye and began to use topical 0.1% betamethasone in both eyes. He was stable with only prednisolone 12.5 mg daily until the age of 55.5 years, when he showed an increase of serum lactate dehydrogenase. The bone marrow aspirate disclosed neither blast cell increase nor atypical cells. The same chromosomal aberrancy was repeatedly detected. One year later, he developed breathing difficulty and underwent tracheostomy. Laryngeal lesion biopsy disclosed squamous cell papilloma with human papillomavirus-6. At 60 years old, he showed marginal corneal infiltration in the left eye, and at 61 years old, hypopyon in the right eye. Platelets tended to increase up to 1000 × 103/µL, and bone marrow examinations were recommended but refused by the patient. At the latest follow-up at 71 years old, he was ambulatory in health and stable with a tracheostomy cannula. In conclusion, pyoderma gangrenosum with scleritis occurred in an undetermined hematological malignancy with chromosomal aberrancy.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ObikaMikako
en-aut-sei=Obika
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OmichiRyotaro
en-aut-sei=Omichi
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwatsukiKeiji
en-aut-sei=Iwatsuki
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of General Internal Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=corneal infiltration
kn-keyword=corneal infiltration
en-keyword=hypopyon
kn-keyword=hypopyon
en-keyword=myelodysplastic syndromes
kn-keyword=myelodysplastic syndromes
en-keyword=neutrophilic dermatosis
kn-keyword=neutrophilic dermatosis
en-keyword=peripheral keratitis
kn-keyword=peripheral keratitis
en-keyword=pyoderma gangrenosum
kn-keyword=pyoderma gangrenosum
en-keyword=scleritis
kn-keyword=scleritis
en-keyword=sweet syndrome
kn-keyword=sweet syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=1
article-no=
start-page=141
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Primary chest wall sarcoma: advances in surgical management and outcomes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Although rare, primary chest wall sarcomas are complex malignancies necessitating optimal local control and comprehensive treatment. This study aimed to review 9 years of cases of primary chest wall sarcomas at a single institution, focusing on their histology, surgical management, and prognosis.
Methods A retrospective analysis was performed on 19 patients undergoing chest wall resection for sarcoma from 2012 to 2020. Data on demographics, tumor specifics, resection extent, and adjuvant therapies were collected. Surgical and postoperative outcomes were also assessed.
Results The median patient age was 64 years. Chondrosarcoma was the most common histology. R0 resection was achieved in all patients, with early postoperative complications occurring in 11% of the patients. Robust chest wall reconstruction was performed, resulting in minimal respiratory complications. The 5-year overall survival and disease-free survival rates were 94% and 68%, respectively. Tumor size and patient age were significant prognostic factors for local recurrence.
Conclusion Comprehensive surgical resection, coupled with multidisciplinary preoperative planning, achieves favorable outcomes. Patients aged ≥ 70 years and with tumor size ≥ 5 cm (P = .047) should be carefully followed up for local recurrence.
en-copyright=
kn-copyright=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=RyukoTsuyoshi
en-aut-sei=Ryuko
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomiokaYasuaki
en-aut-sei=Tomioka
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Primary chest wall sarcomas
kn-keyword=Primary chest wall sarcomas
en-keyword=Chest wall resection
kn-keyword=Chest wall resection
en-keyword=Chondrosarcoma
kn-keyword=Chondrosarcoma
en-keyword=Robust chest wall reconstruction
kn-keyword=Robust chest wall reconstruction
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=3
article-no=
start-page=e0320482
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Serum uric acid level is associated with renal arteriolar hyalinosis and predicts post-donation renal function in living kidney donors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Major guidelines for living-donor kidney transplantation underscore the need for pre-donation evaluation of renal function, hypertension, obesity, diabetes mellitus, and albuminuria to minimize the risk of donation from marginal donors. However, validity is yet to be established. We retrospectively investigated the relationship between clinical characteristics and histological indices in baseline renal biopsies (0-h biopsies) and whether these parameters could predict renal function in living kidney donors one year post-donation. Seventy-six living kidney donors were recruited for this study. In histological analyses, glomerulosclerosis, arteriosclerosis, arteriolosclerosis, arteriolar hyalinosis, and interstitial fibrosis and tubular atrophy scores/indices were evaluated. Post-donation serum creatinine levels in kidney donors with arteriolar hyalinosis were significantly higher than those in individuals without arteriolar hyalinosis. There was a significant correlation between baseline serum uric acid levels and the arteriolar hyalinosis index, with baseline uric acid level identified as an independent factor for hyalinosis in multiple regression analysis. Additionally, the serum uric acid level was a significant prognostic factor for post-donation serum creatinine after adjustment for baseline clinical parameters. These data demonstrate that pre-donation serum uric acid levels are associated with arteriolar hyalinosis in the kidney and could predict a decline in renal function during the first year after donation in living kidney donors.
en-copyright=
kn-copyright=
en-aut-name=KanoYuzuki
en-aut-sei=Kano
en-aut-mei=Yuzuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanabeKatsuyuki
en-aut-sei=Tanabe
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KitagawaMasashi
en-aut-sei=Kitagawa
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugiyamaHitoshi
en-aut-sei=Sugiyama
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Medicine, Kawasaki Medical School General Medical Center and Department of Medical Care Work, Kawasaki College of Health Professions
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=4
article-no=
start-page=e70139
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Induction Therapy With Oral Tacrolimus Provides Long-Term Benefit in Thiopurine-Naïve Refractory Ulcerative Colitis Patients Despite Low Serum Albumin Levels
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aim: Oral tacrolimus is an effective treatment for refractory ulcerative colitis (UC). However, tacrolimus is underutilized because of the difficulties in transitioning to subsequent maintenance therapy and concerns about adverse events.
Methods: We evaluated the clinical outcomes, adverse events, and accumulated medication costs in consecutive 72 UC patients treated with tacrolimus.
Results: Fifty-five (76%) patients with pancolitis and 43 (60%) patients with acute severe disease were entered. Fifty-four (75%) achieved clinical remission 8 weeks after starting tacrolimus. At the last visit, 62 (86%) patients had colectomy-free remission, and 55 (76%) patients had corticosteroid-free remission. Eighteen (25%) patients maintained remission without additional treatment after tacrolimus discontinuation. Patients with continuous remission had a significantly lower history of thiopurine use and lower serum albumin levels at the induction of tacrolimus than patients with failure to induce or maintain remission. No severe adverse events due to tacrolimus treatment were observed. The accumulated medication costs over 3 years in patients with continuous remission after the start of tacrolimus were lower than those in patients with induction and maintenance of infliximab (p < 0.001).
Conclusions: Tacrolimus could have an irreplaceable role in the era of biologic therapies, especially for refractory UC patients with thiopurine-na & iuml;ve and low serum albumin levels.
en-copyright=
kn-copyright=
en-aut-name=IgawaShoko
en-aut-sei=Igawa
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ToyosawaJunki
en-aut-sei=Toyosawa
en-aut-mei=Junki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AoyamaYuki
en-aut-sei=Aoyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamasakiYasushi
en-aut-sei=Yamasaki
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KinugasaHideaki
en-aut-sei=Kinugasa
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakaharaMasahiro
en-aut-sei=Takahara
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=biologics therapy
kn-keyword=biologics therapy
en-keyword=tacrolimus
kn-keyword=tacrolimus
en-keyword=thiopurine
kn-keyword=thiopurine
en-keyword=ulcerative colitis
kn-keyword=ulcerative colitis
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=51
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Quillen model structure on the category of diffeological spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We construct on the category of diffeological spaces a Quillen model structure having smooth weak homotopy equivalences as the class of weak equivalences.
en-copyright=
kn-copyright=
en-aut-name=HaraguchiTadayuki
en-aut-sei=Haraguchi
en-aut-mei=Tadayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimakawaKazuhisa
en-aut-sei=Shimakawa
en-aut-mei=Kazuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Education for Human Growth, Nara Gakuen University
kn-affil=
affil-num=2
en-affil=Okayama University
kn-affil=
en-keyword=Diffeological space
kn-keyword=Diffeological space
en-keyword=Homotopy theory
kn-keyword=Homotopy theory
en-keyword=Model category
kn-keyword=Model category
END
start-ver=1.4
cd-journal=joma
no-vol=50
cd-vols=
no-issue=1
article-no=
start-page=100
end-page=107
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigating the Effects of Reconstruction Conditions on Image Quality and Radiomic Analysis in Photon-counting Computed Tomography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction:Photon-counting computed tomography (CT) is equipped with an adaptive iterative reconstruction method called quantum iterative reconstruction (QIR), which allows the intensity to be changed during image reconstruction. It is known that the reconstruction conditions of CT images affect the analysis results when performing radiomic analysis. The aim of this study is to investigate the effect of QIR intensity on image quality and radiomic analysis of renal cell carcinoma (RCC).
Materials and Methods:The QIR intensities were selected as off, 2 and 4. The image quality evaluation items considered were task-based transfer function (TTF), noise power spectrum (NPS), and low-contrast object specific contrast-to-noise ratio (CNRLO). The influence on radiomic analysis was assessed using the discrimination accuracy of clear cell RCC.
Results:For image quality evaluation, TTF and NPS values were lower and CNRLO values were higher with increasing QIR intensity; for radiomic analysis, sensitivity, specificity, and accuracy were higher with increasing QIR intensity. Principal component analysis and receiver operating characteristics analysis also showed higher values with increasing QIR intensity.
Conclusion:It was confirmed that the intensity of the QIR intensity affects both the image quality and the radiomic analysis.
en-copyright=
kn-copyright=
en-aut-name=OhataMiyu
en-aut-sei=Ohata
en-aut-mei=Miyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukuiRyohei
en-aut-sei=Fukui
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimitsuYusuke
en-aut-sei=Morimitsu
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiDaichi
en-aut-sei=Kobayashi
en-aut-mei=Daichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamauchiTakatsugu
en-aut-sei=Yamauchi
en-aut-mei=Takatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AkagiNoriaki
en-aut-sei=Akagi
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HondaMitsugi
en-aut-sei=Honda
en-aut-mei=Mitsugi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HayashiAiko
en-aut-sei=Hayashi
en-aut-mei=Aiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HasegawaKoshi
en-aut-sei=Hasegawa
en-aut-mei=Koshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KidaKatsuhiro
en-aut-sei=Kida
en-aut-mei=Katsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=GotoSachiko
en-aut-sei=Goto
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Division of Radiological Technology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiology, Hiroshima University Hospital
kn-affil=
affil-num=9
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical, Okayama University
kn-affil=
en-keyword=Image quality
kn-keyword=Image quality
en-keyword=photon-counting computed tomography
kn-keyword=photon-counting computed tomography
en-keyword=quantum iterative reconstruction
kn-keyword=quantum iterative reconstruction
en-keyword=radiomics
kn-keyword=radiomics
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=10462
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250326
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gingipain regulates isoform switches of PD-L1 in macrophages infected with Porphyromonas gingivalis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Periodontal pathogen Porphyromonas gingivalis (P. gingivalis) is believed to possess immune evasion capabilities, but it remains unclear whether this immune evasion is related to host gene alternative splicing (AS). In this study, RNA-sequencing revealed significant changes in both AS landscape and transcriptomic profile of macrophages following P. gingivalis infection with/without knockout of gingipain (a unique toxic protease of P. gingivalis). P. gingivalis infection increased the PD-L1 transcripts expression and selectively upregulated a specific coding isoform that more effectively binds to PD-1 on T cells, thereby inhibiting immune function. Biological experiments also detected AS switch of PD-L1 in P. gingivalis-infected or gingipain-treated macrophages. AlphaFold 3 predictions indicated that the protein docking compatibility between PD-1 and P. gingivalis-upregulated PD-L1 isoform was over 80% higher than another coding isoform. These findings suggest that P. gingivalis employs gingipain to modulate the AS of PD-L1, facilitating immune evasion.
en-copyright=
kn-copyright=
en-aut-name=ZhengYilin
en-aut-sei=Zheng
en-aut-mei=Yilin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WengYao
en-aut-sei=Weng
en-aut-mei=Yao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SitosariHeriati
en-aut-sei=Sitosari
en-aut-mei=Heriati
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HeYuhan
en-aut-sei=He
en-aut-mei=Yuhan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ZhangXiu
en-aut-sei=Zhang
en-aut-mei=Xiu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShiotsuNoriko
en-aut-sei=Shiotsu
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FukuharaYoko
en-aut-sei=Fukuhara
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IkegameMika
en-aut-sei=Ikegame
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkamuraHirohiko
en-aut-sei=Okamura
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=7
en-affil=Comprehensive Dental Clinic, Okayama University Hospital, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University
kn-affil=
en-keyword=Porphyromonas gingivalis
kn-keyword=Porphyromonas gingivalis
en-keyword=Gingipain
kn-keyword=Gingipain
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Alternative splicing
kn-keyword=Alternative splicing
en-keyword=PD-L1
kn-keyword=PD-L1
en-keyword=Immune evasion
kn-keyword=Immune evasion
END
start-ver=1.4
cd-journal=joma
no-vol=96
cd-vols=
no-issue=3
article-no=
start-page=033907
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of density measurement at high pressure and high temperature using the x-ray absorption method combined with laser-heated diamond anvil cell
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The densities of liquid materials at high pressures and high temperatures are important information to understand the elastic behavior of liquids at extreme conditions, which is closely related to the formation and evolution processes of the Earth and planetary interiors. The x-ray absorption method is an effective method to measure the density of non-crystalline materials at high pressures. However, the temperature condition of the x-ray absorption method using a diamond anvil cell (DAC) has been limited to 720 K to date. To significantly expand the measurable temperature condition of this method, in this study, we developed a density measurement technique using the x-ray absorption method in combination with a laser-heated DAC. The density of solid Ni was measured up to 26 GPa and 1800 K using the x-ray absorption method and evaluated by comparison with the density obtained from the x-ray diffraction. The density of solid Ni with a thickness >17 μm was determined with an accuracy of 0.01%–2.2% (0.001–0.20 g/cm3) and a precision of 0.8%–1.8% (0.07–0.16 g/cm3) in the x-ray absorption method. The density of liquid Ni was also determined to be 8.70 ± 0.15–8.98 ± 0.38 g/cm3 at 16–23 GPa and 2230–2480 K. Consequently, the temperature limit of the x-ray absorption method can be expanded from 720 to 2480 K by combining it with a laser-heated DAC in this study.
en-copyright=
kn-copyright=
en-aut-name=TerasakiHidenori
en-aut-sei=Terasaki
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KaminaHiroyuki
en-aut-sei=Kamina
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaguchiSaori I.
en-aut-sei=Kawaguchi
en-aut-mei=Saori I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoTadashi
en-aut-sei=Kondo
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoriokaKo
en-aut-sei=Morioka
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TsuruokaRyo
en-aut-sei=Tsuruoka
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakuraiMoe
en-aut-sei=Sakurai
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YonedaAkira
en-aut-sei=Yoneda
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KamadaSeiji
en-aut-sei=Kamada
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HiraoNaohisa
en-aut-sei=Hirao
en-aut-mei=Naohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
affil-num=4
en-affil=Department of Earth and Space Science, Osaka University
kn-affil=
affil-num=5
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Earth and Space Science, Osaka University
kn-affil=
affil-num=7
en-affil=Department of Earth Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Earth and Space Science, Osaka University
kn-affil=
affil-num=9
en-affil=AD Science Incorporation
kn-affil=
affil-num=10
en-affil=Japan Synchrotron Radiation Research Institute, SPring-8
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=6
article-no=
start-page=2485
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Vesicular Glutamate Transporter 3 Is Involved in Glutamatergic Signalling in Podocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Glomerular podocytes act as a part of the filtration barrier in the kidney. The activity of this filter is regulated by ionotropic and metabotropic glutamate receptors. Adjacent podocytes can potentially release glutamate into the intercellular space; however, little is known about how podocytes release glutamate. Here, we demonstrated vesicular glutamate transporter 3 (VGLUT3)-dependent glutamate release from podocytes. Immunofluorescence analysis revealed that rat glomerular podocytes and an immortal mouse podocyte cell line (MPC) express VGLUT1 and VGLUT3. Consistent with this finding, quantitative RT-PCR revealed the expression of VGLUT1 and VGLUT3 mRNA in undifferentiated and differentiated MPCs. In addition, the exocytotic proteins vesicle-associated membrane protein 2, synapsin 1, and synaptophysin 1 were present in punctate patterns and colocalized with VGLUT3 in MPCs. Interestingly, approximately 30% of VGLUT3 colocalized with VGLUT1. By immunoelectron microscopy, VGLUT3 was often observed around clear vesicle-like structures in differentiated MPCs. Differentiated MPCs released glutamate following depolarization with high potassium levels and after stimulation with the muscarinic agonist pilocarpine. The depletion of VGLUT3 in MPCs by RNA interference reduced depolarization-dependent glutamate release. These results strongly suggest that VGLUT3 is involved in glutamatergic signalling in podocytes and may be a new drug target for various kidney diseases.
en-copyright=
kn-copyright=
en-aut-name=NishiiNaoko
en-aut-sei=Nishii
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaiTomoko
en-aut-sei=Kawai
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasuokaHiroki
en-aut-sei=Yasuoka
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeTadashi
en-aut-sei=Abe
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TatsumiNanami
en-aut-sei=Tatsumi
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HaradaYuika
en-aut-sei=Harada
en-aut-mei=Yuika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LiShunai
en-aut-sei=Li
en-aut-mei=Shunai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsukanoMoemi
en-aut-sei=Tsukano
en-aut-mei=Moemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OgawaDaisuke
en-aut-sei=Ogawa
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakeiKohji
en-aut-sei=Takei
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamadaHiroshi
en-aut-sei=Yamada
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cell Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Genomics and Proteomics, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=8
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Central Research Laboratory, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=VGLUT3
kn-keyword=VGLUT3
en-keyword=glutamate
kn-keyword=glutamate
en-keyword=podocyte
kn-keyword=podocyte
en-keyword=glutamatergic transmission
kn-keyword=glutamatergic transmission
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=
article-no=
start-page=1547222
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Interleukin-6/soluble IL-6 receptor-induced secretion of cathepsin B and L from human gingival fibroblasts is regulated by caveolin-1 and ERK1/2 pathways
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims: Cathepsins are essential lysosomal enzymes that maintain organismal homeostasis by degrading extracellular substrates. The inflammatory cytokine interleukin-6 (IL-6) increases the production of cathepsins through the caveolin-1 (Cav-1) and c-Jun N-terminal kinase (JNK) signaling pathways, which have been implicated in the destruction of periodontal tissue. This study investigated the effect of the IL-6/soluble IL-6 receptor (sIL-6R) complex on the extracellular secretion of cathepsins in human gingival fibroblasts (HGFs) and examined the function of extracellularly secreted cathepsins B and L under acidic culture conditions in vitro.
Methods: HGFs were isolated from healthy volunteer donors. The expression of Cav-1 was suppressed via transfection with small interfering RNA (siRNA) targeting Cav-1. The expression levels of cathepsins B and L induced by extracellular IL-6/sIL-6R were measured using western blotting and enzyme-linked immunosorbent assay. Extracellular cathepsin activity following IL-6/sIL-6R stimulation was assessed using a methylcoumarylamide substrate in a fluorescence-based assay. IL-6/sIL-6R-induced expression of cathepsins B and L in HGFs was quantified under inhibitory conditions for extracellular signal-regulated kinase (ERK) 1/2 and/or JNK signaling, both of which are transduction pathways activated by IL-6/sIL-6R. This quantification was also performed in HGFs with suppressed Cav-1 expression using western blotting.
Results: Cathepsins B and L were secreted in their precursor forms from HGFs, with significantly elevated protein levels observed at 24, 48, and 72 h post-IL-6/sIL-6R stimulation. Under acidic culture conditions, cathepsin B activity increased at 48 and 72 h. Cav-1 suppression inhibited the secretion of cathepsin B regardless of IL-6/sIL-6R stimulation, whereas the secretion of cathepsin L was reduced only after 48 h of IL-6/sIL-6R stimulation. Inhibition of ERK1/2 and JNK pathways decreased the secretion of cathepsin B after 48 h of IL-6/sIL-6R stimulation, and JNK inhibition reduced the secretion of cathepsin L under similar conditions.
Conclusion: IL-6/sIL-6R stimulation increased the extracellular secretion of cathepsin B and L precursors in HGFs, and these precursors became activated under acidic conditions. Cav-1 and ERK1/2 are involved in regulating the secretion of cathepsin B precursors.
en-copyright=
kn-copyright=
en-aut-name=GotoAyaka
en-aut-sei=Goto
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Yamaguchi-TomikawaTomoko
en-aut-sei=Yamaguchi-Tomikawa
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiHiroya
en-aut-sei=Kobayashi
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiraiKimito
en-aut-sei=Hirai
en-aut-mei=Kimito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IkedaAtsushi
en-aut-sei=Ikeda
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Periodontics & Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=cathepsin B
kn-keyword=cathepsin B
en-keyword=cathepsin L
kn-keyword=cathepsin L
en-keyword=human gingival fibroblast
kn-keyword=human gingival fibroblast
en-keyword=interleukin-6
kn-keyword=interleukin-6
en-keyword=caveolin
kn-keyword=caveolin
END
start-ver=1.4
cd-journal=joma
no-vol=301
cd-vols=
no-issue=4
article-no=
start-page=108334
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Roles of basic amino acid residues in substrate binding and transport of the light-driven anion pump Synechocystis halorhodopsin (SyHR)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Microbial rhodopsins are photoreceptive seventransmembrane a-helical proteins, many of which function as ion transporters, primarily for small monovalent ions such as Na+, K+, Cl-, Br-, and I-. Synechocystis halorhodopsin (SyHR), identified from the cyanobacterium Synechocystis sp. PCC 7509, uniquely transports the polyatomic divalent SO42- inward, in addition to monovalent anions (Cl- and Br-). In this study, we conducted alanine-scanning mutagenesis on twelve basic amino acid residues to investigate the anion transport mechanism of SyHR. We quantitatively evaluated the Cl-and SO42- transport activities of the WT SyHR and its mutants. The results showed a strong correlation between the Cl-and SO42- transport activities among them (R = 0.94), suggesting a shared pathway for both anions. Notably, the R71A mutation selectively abolished SO42- transport activity while maintaining Cl- transport, whereas the H167A mutation significantly impaired both Cl-and SO42- transport. Furthermore, spectroscopic analysis revealed that the R71A mutant lost its ability to bind SO42- due to the absence of a positive charge, while the H167A mutant failed to accumulate the O intermediate during the photoreaction cycle (photocycle) due to reduced hydrophilicity. Additionally, computational analysis revealed the SO42- binding modes and clarified the roles of residues involved in its binding around the retinal chromophore. Based on these findings and previous structural information, we propose that the positive charge and hydrophilicity of Arg71 and His167 are crucial for the formation of the characteristic initial and transient anion-binding site of SyHR, enabling its unique ability to bind and transport both Cl-and SO42-.
en-copyright=
kn-copyright=
en-aut-name=NakamaMasaki
en-aut-sei=Nakama
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NojiTomoyasu
en-aut-sei=Noji
en-aut-mei=Tomoyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshizawaSusumu
en-aut-sei=Yoshizawa
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshikitaHiroshi
en-aut-sei=Ishikita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Chemistry, The University of Tokyo
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Applied Chemistry, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=microbial rhodopsin
kn-keyword=microbial rhodopsin
en-keyword=anion transport
kn-keyword=anion transport
en-keyword=retinal
kn-keyword=retinal
en-keyword=membrane protein
kn-keyword=membrane protein
en-keyword=photobiology
kn-keyword=photobiology
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=6
article-no=
start-page=2713
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250318
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Involvement of a Novel Variant of FGFR1 Detected in an Adult Patient with Kallmann Syndrome in Regulation of Gonadal Steroidogenesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fibroblast growth factor receptor 1 (FGFR1), also known as KAL2, is a tyrosine kinase receptor, and variants of FGFR1 have been detected in patients with Kallmann syndrome (KS), which is a congenital developmental disorder characterized by central hypogonadism and anosmia. Herein, we report an adult case of KS with a novel variant of FGFR1. A middle-aged male was referred for a compression fracture of a lumbar vertebra. It was shown that he had severe osteoporosis, anosmia, gynecomastia, and a past history of operations for cryptorchidism. Endocrine workup using pituitary and gonadal stimulation tests revealed the presence of both primary and central hypogonadism. Genetic testing revealed a novel variant of FGFR1 (c.2197_2199dup, p.Met733dup). To identify the pathogenicity of the novel variant and the clinical significance for the gonads, we investigated the effects of the FGFR1 variant on the downstream signaling of FGFR1 and gonadal steroidogenesis by using human steroidogenic granulosa cells. It was revealed that the transfection of the variant gene significantly impaired FGFR1 signaling, detected through the downregulation of SPRY2, compared with that of the case of the forced expression of wild-type FGFR1, and that the existence of the variant gene apparently altered the expression of key steroidogenic factors, including StAR and aromatase, in the gonad. The results suggested that the novel variant of FGFR1 detected in the patient with KS was linked to the impairment of FGFR1 signaling, as well as the alteration of gonadal steroidogenesis, leading to the pathogenesis of latent primary hypogonadism.
en-copyright=
kn-copyright=
en-aut-name=SoejimaYoshiaki
en-aut-sei=Soejima
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtsukaYuki
en-aut-sei=Otsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawaguchiMarina
en-aut-sei=Kawaguchi
en-aut-mei=Marina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OguniKohei
en-aut-sei=Oguni
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoKoichiro
en-aut-sei=Yamamoto
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YasudaMiho
en-aut-sei=Yasuda
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TokumasuKazuki
en-aut-sei=Tokumasu
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UedaKeigo
en-aut-sei=Ueda
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HasegawaKosei
en-aut-sei=Hasegawa
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IwataNahoko
en-aut-sei=Iwata
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=fibroblast growth factor receptor 1 (FGFR1)
kn-keyword=fibroblast growth factor receptor 1 (FGFR1)
en-keyword=gynecomastia
kn-keyword=gynecomastia
en-keyword=Kallmann syndrome (KS)
kn-keyword=Kallmann syndrome (KS)
en-keyword=osteoporosis and steroidogenesis
kn-keyword=osteoporosis and steroidogenesis
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=1537615
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PARylation-mediated post-transcriptional modifications in cancer immunity and immunotherapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Poly-ADP-ribosylation (PARylation) is a post-translational modification in which ADP-ribose is added to substrate proteins. PARylation is mediated by a superfamily of ADP-ribosyl transferases known as PARPs and influences a wide range of cellular functions, including genome integrity maintenance, and the regulation of proliferation and differentiation. We and others have recently reported that PARylation of SH3 domain-binding protein 2 (3BP2) plays a role in bone metabolism, immune system regulation, and cytokine production. Additionally, PARylation has recently gained attention as a target for cancer treatment. In this review, we provide an overview of PARylation, its involvement in several signaling pathways related to cancer immunity, and the potential of combination therapies with PARP inhibitors and immune checkpoint inhibitors.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoKazuya
en-aut-sei=Matsumoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=PARylation
kn-keyword=PARylation
en-keyword=cancer
kn-keyword=cancer
en-keyword=post-transcriptional regulation
kn-keyword=post-transcriptional regulation
en-keyword=ubiquitylation
kn-keyword=ubiquitylation
en-keyword=immune system
kn-keyword=immune system
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=6
article-no=
start-page=790
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250320
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Improving Diagnostic Performance for Head and Neck Tumors with Simple Diffusion Kurtosis Imaging and Machine Learning Bi-Parameter Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Mean kurtosis (MK) values in simple diffusion kurtosis imaging (SDI)-a type of diffusion kurtosis imaging (DKI)-have been reported to be useful in the diagnosis of head and neck malignancies, for which pre-processing with smoothing filters has been reported to improve the diagnostic accuracy. Multi-parameter analysis using DKI in combination with other image types has recently been reported to improve the diagnostic performance. The purpose of this study was to evaluate the usefulness of machine learning (ML)-based multi-parameter analysis using the MK and apparent diffusion coefficient (ADC) values-which can be acquired simultaneously through SDI-for the differential diagnosis of benign and malignant head and neck tumors, which is important for determining the treatment strategy, as well as examining the usefulness of filter pre-processing. Methods: A total of 32 pathologically diagnosed head and neck tumors were included in the study, and a Gaussian filter was used for image pre-processing. MK and ADC values were extracted from pixels within the tumor area and used as explanatory variables. Five ML algorithms were used to create models for the prediction of tumor status (benign or malignant), which were evaluated through ROC analysis. Results: Bi-parameter analysis with gradient boosting achieved the best diagnostic performance, with an AUC of 0.81. Conclusions: The usefulness of bi-parameter analysis with ML methods for the differential diagnosis of benign and malignant head and neck tumors using SDI data were demonstrated.
en-copyright=
kn-copyright=
en-aut-name=YoshidaSuzuka
en-aut-sei=Yoshida
en-aut-mei=Suzuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaMasahiro
en-aut-sei=Kuroda
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraYoshihide
en-aut-sei=Nakamura
en-aut-mei=Yoshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukumuraYuka
en-aut-sei=Fukumura
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamitsuYuki
en-aut-sei=Nakamitsu
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Al-HammadWlla E.
en-aut-sei=Al-Hammad
en-aut-mei=Wlla E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KurodaKazuhiro
en-aut-sei=Kuroda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimizuYudai
en-aut-sei=Shimizu
en-aut-mei=Yudai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SugiantoIrfan
en-aut-sei=Sugianto
en-aut-mei=Irfan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BarhamMajd
en-aut-sei=Barham
en-aut-mei=Majd
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TekikiNouha
en-aut-sei=Tekiki
en-aut-mei=Nouha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KamaruddinNurul N.
en-aut-sei=Kamaruddin
en-aut-mei=Nurul N.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HisatomiMiki
en-aut-sei=Hisatomi
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YanagiYoshinobu
en-aut-sei=Yanagi
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=AsaumiJunichi
en-aut-sei=Asaumi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University
kn-affil=
affil-num=12
en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University
kn-affil=
affil-num=13
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=head and neck tumors
kn-keyword=head and neck tumors
en-keyword=mean kurtosis
kn-keyword=mean kurtosis
en-keyword=simple diffusion kurtosis imaging
kn-keyword=simple diffusion kurtosis imaging
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=apparent diffusion coefficient value
kn-keyword=apparent diffusion coefficient value
en-keyword=diffusion kurtosis imaging
kn-keyword=diffusion kurtosis imaging
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=bi-parameter analysis
kn-keyword=bi-parameter analysis
en-keyword=gradient boosting
kn-keyword=gradient boosting
en-keyword=differential diagnosis of benign and malignant
kn-keyword=differential diagnosis of benign and malignant
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=e70053
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250323
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association of blood carboxyhemoglobin levels with mortality and neurological outcomes in out-of-hospital cardiac arrest
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Carbon monoxide (CO), produced endogenously by heme oxygenase-1, plays a crucial role in the immune system by mitigating cellular damage under stress. However, the significance of carboxyhemoglobin (COHb) levels after out-of-hospital cardiac arrest (OHCA) is not well understood. This study aimed to explore the association between COHb levels at hospital arrival and within the first 24 h post-arrival with 30-day mortality and neurological outcomes in patients who experienced OHCA.
Methods: This single-center, retrospective study analyzed data from adult patients who experienced OHCA seen at Okayama University Hospital from 2019 to 2023. The patients were assigned to one of two study groups based on COHb levels (0.0% or >= 0.1%) upon hospital arrival. The primary outcome was 30-day mortality.
Results: Among the 560 eligible patients who experienced OHCA, 284 (50.7%) were in the COHb 0.0% group and 276 (49.3%) were in the COHb >= 0.1% group. The 30-day mortality was significantly higher in the COHb 0.0% group compared to the COHb >= 0.1% group (264 [92.9%] vs. 233 [84.4%]). Multivariable logistic regression showed that the COHb 0.0% group was associated with 30-day mortality (adjusted ORs: 2.24, 95% CIs: 1.10-4.56). Non-survivors at 30 days who were admitted to the intensive care unit had lower COHb levels at hospital arrival (0.0% vs. 0.2%) and lower mean COHb levels during the first 24 h post-arrival (0.7% vs. 0.9%) compared to survivors.
Conclusions: COHb levels of 0.0% were linked to worse outcomes in patients experiencing OHCA, warranting further research on the prognostic implications of COHb in this context.
en-copyright=
kn-copyright=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiraokaTomohiro
en-aut-sei=Hiraoka
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiYuya
en-aut-sei=Murakami
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=brain injury
kn-keyword=brain injury
en-keyword=carbon monoxide
kn-keyword=carbon monoxide
en-keyword=carboxyhemoglobin
kn-keyword=carboxyhemoglobin
en-keyword=cardiac arrest
kn-keyword=cardiac arrest
en-keyword=resuscitation
kn-keyword=resuscitation
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=6
article-no=
start-page=619
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250313
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Trehalose on Halitosis: A Randomized Cross-Over Clinical Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Halitosis is a condition characterized by an unpleasant malodor. Intra-oral halitosis is caused by volatile sulfur compounds (VSCs) and can be associated with oral dryness. Trehalose is one of the materials used to relieve oral dryness. The aim of the present study was to investigate the effect of trehalose on halitosis. Methods: This prospective, double-blinded, placebo-controlled, cross-over study enrolled volunteers from Okayama University Hospital. The participants were randomly divided into two groups, with one group receiving trehalose (a 10% trehalose solution) and the other receiving a placebo (distilled water) in a 1:1 allocation. The primary study outcome was the subjective organoleptic test. The secondary outcomes were the concentrations of the VSCs, which were measured using a portable gas chromatography device, and the oral moisture status, which was measured using an oral moisture meter. The planned sample size was 10 participants based on the previous study. Results: The final intention-to-treat analysis was performed using the data from 9 participants. After applying 10% trehalose as an oral spray, the organoleptic score decreased in a time-dependent manner. However, no significant differences were seen between the trehalose and placebo groups. In terms of secondary outcomes, the oral moisture levels increased immediately after the trehalose spray application, and significant differences in the amount of change from the baseline were seen between the trehalose and placebo groups (p = 0.047). No significant differences were seen in any of the other variables (p > 0.05). Conclusions: We could not identify any positive effects on halitosis from a one-time 10% trehalose application as an oral spray in this prospective, double-blinded, placebo-controlled, cross-over study. However, the trehalose application immediately improved the oral moisture levels and was useful for treating oral dryness.
en-copyright=
kn-copyright=
en-aut-name=MiyaiHisataka
en-aut-sei=Miyai
en-aut-mei=Hisataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TomofujiTakaaki
en-aut-sei=Tomofuji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MizunoHirofumi
en-aut-sei=Mizuno
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoritaManabu
en-aut-sei=Morita
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakaharaMomoko
en-aut-sei=Nakahara
en-aut-mei=Momoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KataokaKota
en-aut-sei=Kataoka
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumitaIchiro
en-aut-sei=Sumita
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UchidaYurika
en-aut-sei=Uchida
en-aut-mei=Yurika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyamaNaoki
en-aut-sei=Toyama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YokoiAya
en-aut-sei=Yokoi
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=Yamanaka-KohnoReiko
en-aut-sei=Yamanaka-Kohno
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakeuchiNoriko
en-aut-sei=Takeuchi
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=3
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care
kn-affil=
affil-num=5
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=halitosis
kn-keyword=halitosis
en-keyword=trehalose
kn-keyword=trehalose
en-keyword=oral dryness
kn-keyword=oral dryness
en-keyword=cross-over study
kn-keyword=cross-over study
en-keyword=randomized trial
kn-keyword=randomized trial
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=3
article-no=
start-page=e81476
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250330
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Natural Course From Primary Intraocular Lymphoma to Brain Lymphoma in Four Years According to Patient's Choice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Primary intraocular lymphoma or vitreoretinal lymphoma is a rare entity of diffuse large B-cell lymphoma that presents vitreous opacity and retinal and choroidal infiltration. Primary central nervous system lymphoma would occur previously, later, or concurrently with respect to primary intraocular lymphoma. This study reported a 72-year-old patient with a pathological diagnosis of primary intraocular lymphoma who developed central nervous system lymphoma four years later in the course of no treatment. She presented with a four-year history of blurred vision in both eyes after cataract surgeries. Three weeks previously, she underwent a vitrectomy in the left eye at a clinic, and measurements of the vitreous fluid showed a high level of interleukin-10 at 5739 pg/mL, in contrast with interleukin-6 at 142 pg/mL. Cytology of the vitreous fluid was class III on the Papanicolaou classification. Head magnetic resonance imaging detected nothing abnormal. She underwent vitrectomy in the right eye as a diagnostic procedure to show large cells in the vitreous which were positive for CD20 and Ki-67 and negative for CD3, leading to a pathological diagnosis of large B-cell lymphoma. Prophylactic chemotherapy with high-dose methotrexate was recommended as a therapeutic option, but she chose observation since she did not have any eye or systemic symptoms. In the follow-up every three months by an oncologist and an ophthalmologist, she did not have any symptoms, and serum levels of soluble interleukin-2 receptor were in the normal range at each visit. She was well for four years until the age of 76 years when she fell and hit her head, and an emergency head computed tomography scan showed a mass in the left occipital lobe. Magnetic resonance imaging demonstrated a well-defined circular mass in the left occipital lobe with a hyperintense signal in the T2-weighted fluid-attenuated inversion recovery (FLAIR) image and diffusion-weighted image. Fluorodeoxyglucose positron emission tomography showed no abnormal uptake systemically, except for the left occipital lesion. She underwent a brain biopsy by craniotomy to pathologically prove diffuse large B-cell lymphoma. She was recommended to receive first-line chemotherapy as the standard treatment but chose observation with no treatment and died of brain lymphoma nine months later. This case happened to illustrate a natural course of primary intraocular lymphoma which proceeded to central nervous system lymphoma four years later.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoShotaro
en-aut-sei=Kondo
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Internal Medicine, Kurashiki Municipal Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=brain biopsy
kn-keyword=brain biopsy
en-keyword=cell block pathology
kn-keyword=cell block pathology
en-keyword=diffuse large b-cell lymphoma
kn-keyword=diffuse large b-cell lymphoma
en-keyword=natural course
kn-keyword=natural course
en-keyword=primary central nervous system lymphoma
kn-keyword=primary central nervous system lymphoma
en-keyword=primary intraocular (vitreoretinal) lymphoma
kn-keyword=primary intraocular (vitreoretinal) lymphoma
en-keyword=vitrectomy
kn-keyword=vitrectomy
en-keyword=vitreous opacity
kn-keyword=vitreous opacity
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=
article-no=
start-page=1551700
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250305
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Acetoacetate, a ketone body, attenuates neuronal bursts in acutely-induced epileptiform slices of the mouse hippocampus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The ketogenic diet increases ketone bodies (beta-hydroxybutyrate and acetoacetate) in the brain, and ameliorates epileptic seizures in vivo. However, ketone bodies exert weak or no effects on electrical activity in rodent hippocampal slices. Especially, it remains unclear what kinds of conditions are required to strengthen the actions of ketone bodies in hippocampal slices. In the present study, we examined the effects of acetoacetate on hippocampal pyramidal cells in normal slices and epileptiform slices of mice. By using patch-clamp recordings from CA1 pyramidal cells, we first confirmed that acetoacetate did not change the membrane potentials and intrinsic properties of pyramidal cells in normal slices. However, we found that acetoacetate weakened spontaneous epileptiform bursts in pyramidal cells of epileptiform slices, which were acutely induced by applying convulsants to normal slices. Interestingly, acetoacetate did not change the frequency of the epileptiform bursts, but attenuated individual epileptiform bursts. We finally examined the effects of acetoacetate on excitatory synaptic barrages during epileptiform activity, and found that acetoacetate weakened epileptiform bursts by reducing synchronous synaptic inputs. These results show that acetoacetate attenuated neuronal bursts in epileptiform slices, but did not affect neuronal activity in normal slices, which leads to seizure-selective actions of ketone bodies.
en-copyright=
kn-copyright=
en-aut-name=WenHao
en-aut-sei=Wen
en-aut-mei=Hao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadaNagisa
en-aut-sei=Sada
en-aut-mei=Nagisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=InoueTsuyoshi
en-aut-sei=Inoue
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biophysical Chemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=epilepsy
kn-keyword=epilepsy
en-keyword=ketone body
kn-keyword=ketone body
en-keyword=ketogenic diet
kn-keyword=ketogenic diet
en-keyword=hippocampus
kn-keyword=hippocampus
en-keyword=slice physiology
kn-keyword=slice physiology
en-keyword=patch-clamp recording
kn-keyword=patch-clamp recording
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=3-4
article-no=
start-page=362
end-page=314
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=2024 General Election in Britain: an Analysis of BES 2014-2024 Internet Panel Data
kn-title=2024年イギリス総選挙:BES 2014-2024 Internet Panel Data の分析
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NarihiroT.
en-aut-sei=Narihiro
en-aut-mei=T.
kn-aut-name=成廣孝
kn-aut-sei=成廣
kn-aut-mei=孝
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学学術研究院社会文化科学学域
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=3-4
article-no=
start-page=189
end-page=252
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Les extinctions des droits réels grevés sur l’immeuble qui est acquis par usucapion : La recherche historique sur la jurisprudence au XIXe siècle.
kn-title=所有権の時効取得と他物権の帰趨 ― 一九世紀フランス法の議論構造に照らして―
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ShimazuG.
en-aut-sei=Shimazu
en-aut-mei=G.
kn-aut-name=嶋津元
kn-aut-sei=嶋津
kn-aut-mei=元
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学学術研究院社会文化科学学域
END
start-ver=1.4
cd-journal=joma
no-vol=85
cd-vols=
no-issue=6
article-no=
start-page=1082
end-page=1096
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250314
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Myeloid Cells Induce Infiltration and Activation of B Cells and CD4+ T Follicular Helper Cells to Sensitize Brain Metastases to Combination Immunotherapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Brain metastasis is a poor prognostic factor in patients with cancer. Despite showing efficacy in many extracranial tumors, immunotherapy with anti–PD-1 mAb or anti–CTLA4 mAb seems to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti–PD-1 and anti–CTLA4 mAbs has a potent antitumor effect on brain metastasis, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies. In this study, we analyzed the tumor-infiltrating lymphocytes in murine models of brain metastasis that responded to anti–CTLA4 and anti–PD-1 mAbs. Activated CD4+ T follicular helper (TFH) cells with high CTLA4 expression characteristically infiltrated the intracranial TME, which were activated by combination anti–CTLA4 and anti–PD-1 treatment. The loss of TFH cells suppressed the additive effect of CTLA4 blockade on anti–PD-1 mAb. B-cell–activating factor belonging to the TNF family (BAFF) and a proliferation-inducing ligand (APRIL) produced by abundant myeloid cells, particularly CD80hiCD206lo proinflammatory M1-like macrophages, in the intracranial TME induced B-cell and TFH-cell infiltration and activation. Furthermore, the intracranial TME of patients with non–small cell lung cancer featured TFH- and B-cell infiltration as tertiary lymphoid structures. Together, these findings provide insights into the immune cell cross-talk in the intracranial TME that facilitates an additive antitumor effect of CTLA4 blockade with anti–PD-1 treatment, supporting the potential of a combination immunotherapeutic strategy for brain metastases.
Significance: B-cell and CD4+ T follicular helper cell activation via BAFF/APRIL from abundant myeloid cells in the intracranial tumor microenvironment enables a combinatorial effect of CTLA4 and PD-1 blockade in brain metastases.
en-copyright=
kn-copyright=
en-aut-name=NinomiyaToshifumi
en-aut-sei=Ninomiya
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KemmotsuNaoya
en-aut-sei=Kemmotsu
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MukoharaFumiaki
en-aut-sei=Mukohara
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MagariMasaki
en-aut-sei=Magari
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyamotoAi
en-aut-sei=Miyamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TachibanaKota
en-aut-sei=Tachibana
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OkamotoIsamu
en-aut-sei=Okamoto
en-aut-mei=Isamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Medical Protein Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=18
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=2480231
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Specific enhancement of the translation of thermospermine-responsive uORF-containing mRNAs by ribosomal mutations in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Auxin-induced xylem formation in angiosperms is negatively regulated by thermospermine, whose biosynthesis is also induced by auxin. In Arabidopsis thaliana, loss-of-function mutants of ACL5, which encodes thermospermine synthase, exhibit a dwarf phenotype accompanied by excessive xylem formation. Studies of suppressor mutants that recover from the acl5 dwarf phenotype suggest that thermospermine alleviates the inhibitory effect of an upstream open-reading frame (uORF) on the main ORF translation of SAC51 mRNA. Many suppressor mutations for acl5 have been mapped to the uORF conserved in the SAC51 family or to ribosomal protein genes, such as RPL10A, RPL4A, and RACK1A. In this study, we identified newly isolated acl5 suppressors, sac501, sac504, and sac506, which are additional alleles of RPL10A and the uORFs of SAC51 family members, SACL1 and SACL3, respectively. To investigate whether acl5-suppressor alleles of ribosomal genes broadly affect translation of uORF-containing mRNAs, we examined GUS activity in several 5'-GUS fusion constructs. Our results showed that these alleles enhanced GUS activity in SAC51 and SACL3 5'-fusion constructs but had no effect on other 5'-fusion constructs unrelated to thermospermine response. This suggests that these ribosomal proteins are specifically involved in the thermospermine-mediated regulation of mRNA translation.
en-copyright=
kn-copyright=
en-aut-name=MutsudaKoki
en-aut-sei=Mutsuda
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiiYuichi
en-aut-sei=Nishii
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToyoshimaTomohiko
en-aut-sei=Toyoshima
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukushimaHiroko
en-aut-sei=Fukushima
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=mRNA translation
kn-keyword=mRNA translation
en-keyword=RPL10
kn-keyword=RPL10
en-keyword=suppressor mutant
kn-keyword=suppressor mutant
en-keyword=thermospermine
kn-keyword=thermospermine
en-keyword=uORF
kn-keyword=uORF
END
start-ver=1.4
cd-journal=joma
no-vol=43-45
cd-vols=
no-issue=
article-no=
start-page=15
end-page=28
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=試験研究 : 2020~2022年度
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=8502
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250312
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Age-specific assessment of initial hemoglobin levels and shock index for predicting life-saving interventions in pediatric blunt liver and spleen injuries
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study aimed to evaluate the effectiveness of combining initial hemoglobin levels with the shock index for predicting the need for life-saving interventions (LSI) in pediatric patients with blunt liver and spleen injuries (BLSI), specifically tailored to different age groups. This was a multicenter retrospective cohort study of pediatric patients with BLSI in Japan. The area under the receiver operating characteristic curve (AUROC) were used to assess predictive accuracy. The study included 1,370 patients. LSI was required in 59 of 247 (23.9%) aged 1 to 6 years, 100 of 402 (24.9%) aged 7 to 12 years, and 125 of 297 (42.1%) patients aged 13 to 16 years. Within each specific age group, the predictability was categorized as fair and appeared higher than that of the entire cohort or when using either parameter alone. Notably, in the 1 to 6-year age group, the combined values showed the highest predictability, which was statistically superior to the shock index alone (AUROC of 0.770 vs. 0.671, P = 0.025). Tailoring initial hemoglobin levels and shock index to specific age groups enhances predictability of LSI in pediatric BLSI, showing a fair level of predictive accuracy.
en-copyright=
kn-copyright=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IidaAtsuyoshi
en-aut-sei=Iida
en-aut-mei=Atsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsuraMorihiro
en-aut-sei=Katsura
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KondoYutaka
en-aut-sei=Kondo
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YasudaHideto
en-aut-sei=Yasuda
en-aut-mei=Hideto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KushimotoShigeki
en-aut-sei=Kushimoto
en-aut-mei=Shigeki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SHIPPs Study Group
en-aut-sei=SHIPPs Study Group
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Surgery, Okinawa Chubu Hospital
kn-affil=
affil-num=7
en-affil=Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital
kn-affil=
affil-num=8
en-affil=Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center
kn-affil=
affil-num=9
en-affil=Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=
kn-affil=
en-keyword=Abdominal injuries
kn-keyword=Abdominal injuries
en-keyword=Blood transfusions
kn-keyword=Blood transfusions
en-keyword=Hemoglobin
kn-keyword=Hemoglobin
en-keyword=Hemostasis
kn-keyword=Hemostasis
en-keyword=Shock index
kn-keyword=Shock index
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=1757
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Keratinocyte-driven dermal collagen formation in the axolotl skin
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type I collagen is a major component of the dermis and is formed by dermal fibroblasts. The development of dermal collagen structures has not been fully elucidated despite the major presence and importance of the dermis. This lack of understanding is due in part to the opacity of mammalian skin and it has been an obstacle to cosmetic and medical developments. We reveal the process of dermal collagen formation using the highly transparent skin of the axolotl and fluorescent collagen probes. We clarify that epidermal cells, not dermal fibroblasts, contribute to dermal collagen formation. Mesenchymal cells (fibroblasts) play a role in modifying the collagen fibers already built by keratinocytes. We confirm that collagen production by keratinocytes is a widely conserved mechanism in other model organisms. Our findings warrant a change in the current consensus about dermal collagen formation and could lead to innovations in cosmetology and skin medication.
en-copyright=
kn-copyright=
en-aut-name=OhashiAyaka
en-aut-sei=Ohashi
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurodaJunpei
en-aut-sei=Kuroda
en-aut-mei=Junpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoYohei
en-aut-sei=Kondo
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KameiYasuhiro
en-aut-sei=Kamei
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NonakaShigenori
en-aut-sei=Nonaka
en-aut-mei=Shigenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FurukawaSaya
en-aut-sei=Furukawa
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoSakiya
en-aut-sei=Yamamoto
en-aut-mei=Sakiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatohAkira
en-aut-sei=Satoh
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Frontier Biosciences, Osaka University
kn-affil=
affil-num=4
en-affil=Center for One Medicine Innovative Translational Research (COMIT), Nagoya University
kn-affil=
affil-num=5
en-affil=Laboratory for Biothermology, National Institute for Basic Biology
kn-affil=
affil-num=6
en-affil=The Graduate University for Advanced Studies (SOKENDAI)
kn-affil=
affil-num=7
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=7506
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250303
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A glucocorticoid-regulating molecule, Fkbp5, may interact with mitogen-activated protein kinase signaling in the organ of Corti of mice cochleae
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=FKBP5 is a 51-Da FK506-binding protein and member of the immunophilin family involved in controlling the signaling of glucocorticoid receptor from the cytosol to nucleus. Fkbp5 has previously been shown to be expressed in murine cochlear tissue, including the organ of Corti (i.e., the sensory epithelium of the cochlea). Fkbp5-/- mice as used in this study show hearing loss in the low-frequency (8-kHz) range and click-evoked auditory brainstem response (ABR) threshold compared to wild-type mice. Both Fkbp5-/- and wild-type mice showed hearing loss at all frequencies and click-ABR thresholds at 24 h and 14 days following acoustic overexposure (AO). Tissues of the organ of Corti were subjected to RNA sequencing and KEGG pathway analysis. In Fkbp5-/- mice before AO, the mitogen-activated protein kinase (MAPK) signaling pathway was dysregulated compared to wild-type mice. In wild-type mice at 12 h following AO, the most significantly modulated KEGG pathway was the TNF signaling pathway and major MAPK molecules p38 and Jun were involved in the TNF signaling pathway. In Fkbp5-/- mice at 12 h following AO, the MAPK signaling pathway was dysregulated compared to wild-type mice following AO. In conclusion, Fkbp5 interacts with MAPK signaling in the organ of Corti in mice cochleae.
en-copyright=
kn-copyright=
en-aut-name=SatoAsuka
en-aut-sei=Sato
en-aut-mei=Asuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmichiRyotaro
en-aut-sei=Omichi
en-aut-mei=Ryotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaedaYukihide
en-aut-sei=Maeda
en-aut-mei=Yukihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AndoMizuo
en-aut-sei=Ando
en-aut-mei=Mizuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=The organ of Corti
kn-keyword=The organ of Corti
en-keyword=Acoustic trauma
kn-keyword=Acoustic trauma
en-keyword=RNA sequencing
kn-keyword=RNA sequencing
en-keyword=51-Da FK506-binding protein
kn-keyword=51-Da FK506-binding protein
en-keyword=Mitogen-activated protein kinase signaling
kn-keyword=Mitogen-activated protein kinase signaling
en-keyword=Tumor necrosis factor signaling
kn-keyword=Tumor necrosis factor signaling
END
start-ver=1.4
cd-journal=joma
no-vol=752
cd-vols=
no-issue=
article-no=
start-page=151481
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery of myeloid zinc finger (MZF) 1 nuclear bodies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Myeloid zinc finger 1 (MZF1) is a multifaceted transcription factor that can act either as a transcriptional activator or a gene repressor. We examined its production of nuclear bodies (NBs) and subcellular localization. Proteomic and protein–protein interaction analysis were used to identify its cofactors and interactions. These revealed the presence of MZF1-NBs (intranuclear oligomers containing MZF1). MZF-NBs are similar to some other nuclear bodies, notably promyelocytic leukemia (PML) -NBs in terms of size and morphology. However the two structures appear to be different. MZF-NBs and PML-NBs were found to associate in the nucleus. Both MZF1 and PML are SUMO1-SUMOylated in PC-3 cells. Sumoylated MZF1 can interact with proteins containing SUMO-interaction motifs (SIM) through SUMO-SIM interaction. Interactome analysis revealed that its NBs participate in the stress response (TPR and UBAP2L), protein folding (CALR and ANKRD40), transcription, post-translational modification (TRIM33, ACOT7, CAMK2D, and CAMK2G), and RNA binding (ALURBP and CPSF5).
en-copyright=
kn-copyright=
en-aut-name=EguchiTakanori
en-aut-sei=Eguchi
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=CalderwoodStuart K.
en-aut-sei=Calderwood
en-aut-mei=Stuart K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School
kn-affil=
en-keyword=Myeloid zinc finger 1
kn-keyword=Myeloid zinc finger 1
en-keyword=MZF1
kn-keyword=MZF1
en-keyword=Nuclear body
kn-keyword=Nuclear body
en-keyword=PML
kn-keyword=PML
en-keyword=Sumoylation
kn-keyword=Sumoylation
en-keyword=SCAN domain protein
kn-keyword=SCAN domain protein
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=
article-no=
start-page=1
end-page=60
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250331
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Annual report / Institute of Plant Science and Resources, Okayama University
kn-title=岡山大学資源植物科学研究所報告
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Institute of Plant Science and Resources, Okayama University
en-aut-sei=Institute of Plant Science and Resources, Okayama University
en-aut-mei=
kn-aut-name=岡山大学資源植物科学研究所
kn-aut-sei=岡山大学資源植物科学研究所
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=2
cd-vols=
no-issue=
article-no=
start-page=71
end-page=80
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250314
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=KIBITANGO : Development and Implementation of an Academic English Vocabulary Learning Program
kn-title=きびたんご ―アカデミック英単語学習プログラムの開発と実践報告―
en-subtitle=
kn-subtitle=
en-abstract=At Okayama University, we have developed and provided a self-study material called "Kibitango" to help students improve their academic English vocabulary. The project began in 2019, with a focus on collecting frequently used words from academic journals, resulting in a list of 1,500 words. Each word comes with explanations by project members and examples of how it is used in academic papers. The material has been available to students since the 2022 academic year. Registered students receive one word per day via email and learn through the Kibitango website. The number of users has steadily increased. Today, however, several challenges have emerged, including the need to update the word list and improve the delivery method and system.
kn-abstract=岡山大学では学術英語の語彙力を伸ばすための自習教材として、「きびたんご」を開発し学生に提供している。2019年から開発のためのプロジェクトを開始し、学術雑誌から頻出単語を収集し1500語のリストを作成した。単語には意味・発音などの基礎情報以外に、プロジェクトメンバーによる解説や実際にどのように学術論文中に使用されているかの実例を付している。学生への提供は2022年度からで、登録した学生にメールで一日一単語配信し、専用ウェッブサイトで学習させるというシステムである。利用者も順調に増えている。開発開始から5年、提供から2年経過し、単語リストのアップデートや提供方法・システムの改善など課題も明らかになっている。
en-copyright=
kn-copyright=
en-aut-name=IGARASHIMasumi
en-aut-sei=IGARASHI
en-aut-mei=Masumi
kn-aut-name=五十嵐潤美
kn-aut-sei=五十嵐
kn-aut-mei=潤美
aut-affil-num=1
ORCID=
en-aut-name=OGINOMasaru
en-aut-sei=OGINO
en-aut-mei=Masaru
kn-aut-name=荻野勝
kn-aut-sei=荻野
kn-aut-mei=勝
aut-affil-num=2
ORCID=
en-aut-name=OTOSHIJunko
en-aut-sei=OTOSHI
en-aut-mei=Junko
kn-aut-name=大年順子
kn-aut-sei=大年
kn-aut-mei=順子
aut-affil-num=3
ORCID=
en-aut-name=TERANISHIMasako
en-aut-sei=TERANISHI
en-aut-mei=Masako
kn-aut-name=寺西雅子
kn-aut-sei=寺西
kn-aut-mei=雅子
aut-affil-num=4
ORCID=
en-aut-name=YOSHIDAAzumi
en-aut-sei=YOSHIDA
en-aut-mei=Azumi
kn-aut-name=吉田安曇
kn-aut-sei=吉田
kn-aut-mei=安曇
aut-affil-num=5
ORCID=
en-aut-name=KENMOTSUYoshi
en-aut-sei=KENMOTSU
en-aut-mei=Yoshi
kn-aut-name=剱持淑
kn-aut-sei=剱持
kn-aut-mei=淑
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Institute for Promotion of Education and Campus Life, Okayama University
kn-affil=岡山大学教育推進機構
affil-num=2
en-affil=Institute for Promotion of Education and Campus Life, Okayama University
kn-affil=岡山大学教育推進機構
affil-num=3
en-affil=Institute for Promotion of Education and Campus Life, Okayama University
kn-affil=岡山大学教育推進機構
affil-num=4
en-affil=Institute for Promotion of Education and Campus Life, Okayama University
kn-affil=岡山大学教育推進機構
affil-num=5
en-affil=Institute for Promotion of Education and Campus Life, Okayama University
kn-affil=岡山大学教育推進機構
affil-num=6
en-affil=Institute for Promotion of Education and Campus Life, Okayama University
kn-affil=岡山大学教育推進機構
en-keyword=学術語彙
kn-keyword=学術語彙
en-keyword=英語語彙力
kn-keyword=英語語彙力
en-keyword=自習教材
kn-keyword=自習教材
en-keyword=教材開発
kn-keyword=教材開発
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=5
article-no=
start-page=577
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficacy of Oral Intake of Hydrogen-Rich Jelly Intake on Gingival Inflammation: A Double-Blind, Placebo-Controlled and Exploratory Randomized Clinical Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Initiation and progression of periodontal disease include oxidative stress. Systemic application of antioxidants may provide clinical benefits against periodontal disease including gingivitis. Recently, a jelly containing a high concentration of hydrogen (40 ppm) was developed. We hypothesized that oral intake of this hydrogen-rich jelly may be safe and effective on gingivitis. This clinical trial was designed to investigate the safety and efficacy of oral intake of hydrogen-rich jelly against gingival inflammation. Methods: Participants with gingivitis were instructed to orally ingest 30 g of hydrogen-rich jelly (experimental group) or placebo jelly (control group) three times a day for 14 consecutive days. The primary outcome of this trial was the percentage of bleeding on probing (BOP) sites. Secondary outcomes were oral parameters, serum reactive oxygen metabolites, antioxidant capacity, oxidative index, concentrations of cytokine (interleukin [IL]-1β, IL-6, IL-10, IL-17, and tumor necrosis factor-alpha) in gingival crevicular fluid, and adverse events. For all parameters, Mann–Whitney U test was used for comparison between experimental and control groups. Analysis of covariance, controlling for baseline periodontal inflamed surface area, was performed to evaluate the association between the effect of the hydrogen-rich jelly and gingival inflammation. Results: In the experiment and control groups, the percentage of sites with BOP and PISA significantly decreased at the end of the experiment compared to the baseline. However, no significant differences were found between groups (p > 0.05). Conclusions: Administration of hydrogen-rich jelly for 14 days decreased gingival inflammation. However, no significant differences were identified compared to the control group.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakayamaEiji
en-aut-sei=Takayama
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TokunoShinichi
en-aut-sei=Tokuno
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoritaManabu
en-aut-sei=Morita
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Biochemistry, Asahi University School of Dentistry
kn-affil=
affil-num=3
en-affil=Graduate School of Health Innovation, Kanagawa University of Human Services
kn-affil=
affil-num=4
en-affil=Department of Oral Health, Takarazuka University of Medical and Health Care
kn-affil=
affil-num=5
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=periodontal disease
kn-keyword=periodontal disease
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=hydrogen
kn-keyword=hydrogen
en-keyword=randomized controlled trial
kn-keyword=randomized controlled trial
END
start-ver=1.4
cd-journal=joma
no-vol=2
cd-vols=
no-issue=9
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160908
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=S-nitrosylation of laforin inhibits its phosphatase activity and is implicated in Lafora disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recently, the relation between S-nitrosylation by nitric oxide (NO), which is over�produced under pathological conditions and neurodegenerative diseases, includingAlzheimer’s and Parkinson’s diseases, has become a focus of attention. Although mostcases of Parkinson’s disease are known to be caused by mutations in the Parkin gene, arecent finding has indicated that S-nitrosylation of Parkin affects its enzymatic activityand leads to the Parkinsonian phenotype. Therefore, it is important to understand thefunction of S-nitrosylated proteins in the pathogenesis of neurodegenerative diseases.Lafora disease (LD, OMIM 254780) is a neurodegenerative disease characterized by theaccumulation of insoluble glucans called Lafora bodies (LBs). LD is caused by mutationsin genes that encode the glucan phosphatase, Laforin, or the E3 ubiquitin ligase, Malin.In this study, we hypothesized that LD may be caused by S-nitrosylation of Laforin,which is similar to the finding that Parkinson’s disease is caused by S-nitrosylation ofParkin. To test this hypothesis, we first determined whether Laforin was S-nitrosylatedusing a biotin switch assay, and compared the three main functions of unmodified andS-nitrosylated Laforin, namely glucan- and Malin-binding activity and phosphataseactivity. Furthermore, we examined whether the numbers of LBs were changed byNO in the cells expressing wild-type Laforin. Here, we report for the first time thatS-nitrosylation of Laforin inhibited its phosphatase activity and that LB formation wasincreased by an NO donor. Our results suggest a possible hypothesis for LD pathogenesis; that is, the decrease in phosphatase activity of Laforin by S-nitrosylation leads toincreased LB formation. Therefore, LD may be caused not only by mutations in theLaforin or Malin genes, but also by the S-nitrosylation of Laforin.
en-copyright=
kn-copyright=
en-aut-name=ToyotaRikako
en-aut-sei=Toyota
en-aut-mei=Rikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HonjoYasuko
en-aut-sei=Honjo
en-aut-mei=Yasuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ImajoRisa
en-aut-sei=Imajo
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University
kn-affil=
en-keyword=S-Nitrosylation Of Laforin
kn-keyword=S-Nitrosylation Of Laforin
en-keyword=Post-Translational Modification
kn-keyword=Post-Translational Modification
en-keyword=Nitrosylation
kn-keyword=Nitrosylation
en-keyword=Phosphatase
kn-keyword=Phosphatase
en-keyword=Glucan-Binding
kn-keyword=Glucan-Binding
END
start-ver=1.4
cd-journal=joma
no-vol=33
cd-vols=
no-issue=4
article-no=
start-page=252
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250305
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characteristics of oral mucositis in patients undergoing haploidentical stem cell transplantation with posttransplant cyclophosphamide: marked difference between busulfan and melphalan regimens
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose This study was performed to examine the effects of conditioning regimens on oral mucositis in haploidentical (haplo) donor hematopoietic stem cell transplantation (HSCT) with posttransplant cyclophosphamide (PTCy).
Methods Thirty consecutive patients (male, 23; female, 7; 18–68 years, median, 59 years) undergoing haplo-HSCT with PTCy using one of three conditioning regimens—reduced intensity conditioning (RIC)-melphalan (Mel); RIC-Busulfan (Bu); and myeloablative conditioning (MAC)-Bu—were enrolled in this study. Data on the WHO grade of oral mucositis (day − 7 to + 20) were collected retrospectively. The incidences of ulcerative and severe mucositis (Grade 2–4 and Grade 3–4, respectively) were compared between the three groups.
Results Ulcerative mucositis occurred in 0% (0/10) of patients in the RIC-Mel group, 57.1% (4/7) in the RIC-Bu group, and 100% (13/13) in the MAC-Bu group. The differences between the RIC-Mel and RIC-Bu groups and between the RIC-Bu and MAC-Bu groups were significant (all P < 0.05). Severe mucositis occurred in 57.1% (4/7) of patients in the RIC-Bu group and 100% (13/13) of patients in the MAC-Bu group, and the difference was significant (P < 0.05). The rates of ulcerative mucositis (≥ grade 2) and of severe mucositis (≥ grade 3) were significantly higher in the MAC-Bu group than the RIC-Bu group on days 10, 13, 15, and 16 and on days 10, 14, 15, and 16, respectively (all P < 0.05).
Conclusion The risk of oral mucositis in patients undergoing haplo-HSCT with PTCy is highest with the MAC-Bu conditioning regimen, followed by RIC-Bu, and lowest with RIC-Mel.
en-copyright=
kn-copyright=
en-aut-name=OguraSaki
en-aut-sei=Ogura
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SogaYoshihiko
en-aut-sei=Soga
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiuraRumi
en-aut-sei=Miura
en-aut-mei=Rumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KubokiTakuo
en-aut-sei=Kuboki
en-aut-mei=Takuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Division of Dental Hygienist, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Division of Hospital Dentistry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Division of Dental Hygienist, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Division of Dental Hygienist, Okayama University Hospital
kn-affil=
en-keyword=Oral mucositis
kn-keyword=Oral mucositis
en-keyword=Hematopoietic cell transplantation
kn-keyword=Hematopoietic cell transplantation
en-keyword=Posttransplant cyclophosphamide
kn-keyword=Posttransplant cyclophosphamide
en-keyword=Busulfan
kn-keyword=Busulfan
en-keyword=Melphalan
kn-keyword=Melphalan
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=3
article-no=
start-page=32
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250307
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rapid development of naked malting barley germplasm through targeted mutagenesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Covered barley (Hordeum vulgare) has historically been preferred for malting, as the husk in this plant protects the embryo during harvest and acts as a filter during brewing. Naked barley, which is typically used as food, has the potential to be used in brewing due to recent technical advances, but the grains contain higher levels of β-glucan and polyphenols, which are undesirable in brewing. Introducing the naked trait into brewing cultivars through crossing is time-consuming due to the need to eliminate these undesirable traits. In this study, we rapidly developed naked barley that is potentially suitable for malting by introducing targeted mutations into Nudum (NUD) using CRISPR/Cas9-mediated targeted mutagenesis. The doubled haploid line ‘DH120366’, which was used as the parental line, was derived from a cross between two covered malting barley cultivars. We generated CRISPR/Cas9-mediated targeted mutagenized barley harboring mutations in NUD via Agrobacterium tumefaciens-mediated transformation and confirmed the presence of mosaic mutations in one individual from among 16 T0 transformants. We sowed T1 grains exhibiting the naked trait and sequenced the NUD gene in these T1 seedlings, identifying two types of mutations. Shotgun high-throughput whole-genome sequencing confirmed the absence of the transgene in at least one nud mutant line following k-mer-based analysis. Cultivation in a closed growth chamber revealed no significant differences in agronomic traits between the nud mutants and the wild type. This study demonstrates the feasibility of rapidly developing naked barley with potential use for malting and brewing by targeting only NUD via targeted mutagenesis.
en-copyright=
kn-copyright=
en-aut-name=HisanoHiroshi
en-aut-sei=Hisano
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakaiHiroaki
en-aut-sei=Sakai
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamaokaMika
en-aut-sei=Hamaoka
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MunemoriHiromi
en-aut-sei=Munemori
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AbeFumitaka
en-aut-sei=Abe
en-aut-mei=Fumitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MeintsBrigid
en-aut-sei=Meints
en-aut-mei=Brigid
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SatoKazuhiro
en-aut-sei=Sato
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HayesPatrick M.
en-aut-sei=Hayes
en-aut-mei=Patrick M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Research Center for Advanced Analysis, National Agriculture and Food Research Organization
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Crop Science, National Agriculture and Food Research Organization
kn-affil=
affil-num=6
en-affil=Department Crop and Soil Science, Oregon State University
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=8
en-affil=Department Crop and Soil Science, Oregon State University
kn-affil=
en-keyword=Hordeum vulgare
kn-keyword=Hordeum vulgare
en-keyword=Covered (hulled)
kn-keyword=Covered (hulled)
en-keyword=Naked (hull-less)
kn-keyword=Naked (hull-less)
en-keyword=Genome editing
kn-keyword=Genome editing
en-keyword=CRISPR/Cas9
kn-keyword=CRISPR/Cas9
en-keyword=Transformation amenability
kn-keyword=Transformation amenability
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=1
article-no=
start-page=e70096
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Endoscopic ultrasonography-guided removal of a stent that had migrated into the pancreas post-pancreaticojejunostomy: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 64-year-old woman had undergone subtotal stomach-preserving pancreaticoduodenectomy for locally advanced pancreatic head cancer. She had an uneventful postoperative course with no recurrence. However, approximately 18 months after surgery, she presented with recurrent abdominal pain. Although contrast-enhanced computed tomography abdominal radiographs showed internal stent migration to the residual pancreas, dilatation of the tail side of the pancreatic duct was observed. The impaired internal stent was considered to be the cause of the abdominal pain. An attempt to remove the stent via balloon-assisted endoscopy was unsuccessful as the pancreaticojejunostomy site could not be reached. Consequently, endoscopic ultrasonography-guided pancreatic duct drainage was performed, and a plastic stent was placed through the jejunal site to the stomach. Two months later, the endosonographically/endoscopic ultrasonography-guided created route was dilated, and an endoscopic introducer was inserted into the pancreatic duct. Biopsy forceps were advanced through the sheath, allowing the successful removal of the stent by direct grasping. The symptoms of the patient improved, and she was discharged without complications.
en-copyright=
kn-copyright=
en-aut-name=KajitaniSatoshi
en-aut-sei=Kajitani
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkiKentaro
en-aut-sei=Oki
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsumiAkihiro
en-aut-sei=Matsumi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyamotoKazuya
en-aut-sei=Miyamoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology andHepatology, Okayama University Hospital
kn-affil=
en-keyword=endoscopic introducer
kn-keyword=endoscopic introducer
en-keyword=endoscopic ultrasonography-guided pancreatic duct drainage
kn-keyword=endoscopic ultrasonography-guided pancreatic duct drainage
en-keyword=endosonographically/EUS-guided created route
kn-keyword=endosonographically/EUS-guided created route
en-keyword=EUS-guided interventions
kn-keyword=EUS-guided interventions
en-keyword=internal stent
kn-keyword=internal stent
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=1
article-no=
start-page=35
end-page=40
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of CT Findings in Squamous and Non-Squamous Cell Carcinomas of the Maxillary Sinus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of the present study was to compare CT images between squamous cell carcinoma (SCC) and non-SCC found in the maxillary sinus, and to identify features that could be used to differentiate between SCC and non-SCC. Patients who visited the Faculty of Dentistry, Okayama University Hospital, between April 2007 and March 2023, underwent head and neck CT, and had tumors extending into the maxillary sinus that were diagnosed histopathologically as malignancy, were enrolled. The main seat of the mass, bony changes in the maxillary sinus wall, and extension into the surrounding area were assessed. These imaging features were evaluated according to SCC or non-SCC, and the characteristics of the two classes were assessed. Comparisons between the two groups were made using the Fisher exact probability test. There were 11 cases each of SCC and non-SCC. In 11 SCC and 7 non-SCC cases, the main seat of the mass occupied the entire maxillary sinus. The frequency of mass occupying the whole sinus was significantly higher in SCC than in non-SCC (p<0.05). Bone-thickening type disease was found only in squamous cell carcinoma 4/11 (36.4%), with there being a significant difference between SCC and non-SCC (p<0.05). Occupancy of the entire maxillary sinus by the mass and bone thickening on CT images were useful for differentiating between SCC and non-SCC arising in the maxillary sinus.
en-copyright=
kn-copyright=
en-aut-name=AsaumiYuka
en-aut-sei=Asaumi
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujikuraMamiko
en-aut-sei=Fujikura
en-aut-mei=Mamiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HisatomiMiki
en-aut-sei=Hisatomi
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=E. Al-HammadWlla
en-aut-sei=E. Al-Hammad
en-aut-mei=Wlla
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakeshitaYohei
en-aut-sei=Takeshita
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkadaShunsuke
en-aut-sei=Okada
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawazuToshiyuki
en-aut-sei=Kawazu
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanagiYoshinobu
en-aut-sei=Yanagi
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AsaumiJunichi
en-aut-sei=Asaumi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Dental Informatics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Maxillary sinus
kn-keyword=Maxillary sinus
en-keyword=Squamous cell carcinoma
kn-keyword=Squamous cell carcinoma
en-keyword=Non-squamous cell carcinoma
kn-keyword=Non-squamous cell carcinoma
en-keyword=CT
kn-keyword=CT
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=
article-no=
start-page=106690
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=EGF-induced P-gp expression in tumor vasculature contributes to therapeutic resistance to doxorubicin-PEG-liposomes in mice bearing doxorubicin-resistant B16-BL6 tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously indicated that doxorubicin (DOX)-loaded polyethylene glycol (PEG)-modified liposomes (DOX-PEG-liposomes) were therapeutically effective in mice bearing DOX-resistant colon-26 (C26/DOX) tumors, and the efficacy was comparable in mice bearing DOX-sensitive C26 tumors. However, in the current study, DOX-PEG-liposomes exerted no therapeutic activity in DOX-resistant B16-BL6 melanoma (B16/DOX)-bearing mice, although they significantly suppressed DOX-sensitive B16 tumor growth in mice. Although we previously reported that the anti-tumor effects in C26/DOX-bearing mice were derived from the cytotoxic effects of DOX on vascular endothelial cells (VECs) in tumors, the B16/DOX tumor vasculature was not substantially damaged after administration of DOX-PEG-liposomes. In B16/DOX tumors, P-gp expression was significantly induced in the VECs, but not in the C26/DOX tumors, indicating that the high expression of P-gp in the tumor vasculature would be responsible for the lack of therapeutic effect of DOX-PEG-liposomes in B16/DOX-bearing mice. Epidermal growth factor (EGF), a possible induction factor for P-gp expression, was highly expressed in B16/DOX cells and tumor tissues, and significantly induced P-gp expression in human umbilical vein endothelial cells (HUVEC). The EGF receptor (EGFR) was also highly expressed in B16/DOX tumor VECs, suggesting that the activation of EGF/EGFR signaling may induce P-gp expression in VECs in B16/DOX tumors.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaMasato
en-aut-sei=Maruyama
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UedaTomoki
en-aut-sei=Ueda
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IenakaYusuke
en-aut-sei=Ienaka
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TojoHaruka
en-aut-sei=Tojo
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HyodoKenji
en-aut-sei=Hyodo
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OgawaraKen-ichi
en-aut-sei=Ogawara
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HigakiKazutaka
en-aut-sei=Higaki
en-aut-mei=Kazutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Eisai Co., Ltd.
kn-affil=
affil-num=6
en-affil=Laboratory of Pharmaceutics, Kobe Pharmaceutical University
kn-affil=
affil-num=7
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Drug resistance
kn-keyword=Drug resistance
en-keyword=P-glycoprotein
kn-keyword=P-glycoprotein
en-keyword=Liposome
kn-keyword=Liposome
en-keyword=Tumor vascular endothelial cells
kn-keyword=Tumor vascular endothelial cells
en-keyword=Melanoma
kn-keyword=Melanoma
END
start-ver=1.4
cd-journal=joma
no-vol=209
cd-vols=
no-issue=
article-no=
start-page=114663
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Repeated sequential administration of pegylated emulsion of SU5416 and liposomal paclitaxel enhances anti-tumor effect in 4T1 breast cancer-bearing mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To improve vascular normalization strategy for intractable triple-negative breast cancer 4T1, we examined the anti-tumor effects of repeated sequential administration of polyethylene glycol (PEG)-modified emulsion of SU5416 (PE-SU5416), a vascular endothelial growth factor (VEGF) receptor-2 kinase inhibitor, and PEG-modified liposomal paclitaxel (PL-PTX) in mice bearing 4T1 cells. Three sequential administrations (Seq×3) of PE-SU5416 and PL-PTX exhibited significantly higher anti-tumor activity than a single sequential administration (Seq×1). The tumor vasculatures were structurally normalized until after two PE-SU5416 (PE-SU5416×2) or sequential (Seq×2) administrations, while the improvement in vascular function, such as oxygen supply, blood flow, and PEG-liposomal distribution, was evident until after three administrations of PE-SU5416 (PE-SU5416×3) and Seq×3. Although some discrepancies between the structural and functional improvement in tumor vasculatures were observed after PE-SU5416×3 and Seq×3, cancer-associated fibroblasts (CAFs) and collagen levels were significantly reduced after PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3, suggesting that a possible decrease in interstitial fluid pressure due to the reduction in CAFs and collagen would have compensated for vascular function. Furthermore, PE-SU5416×2, PE-SU5416×3, Seq×2, and Seq×3 significantly decreased tumor growth factor-β (TGF-β), an activator of CAFs, in tumor tissues, suggesting that the reduction in TGF-β levels by PE-SU5416 suppresses CAF activation.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaMasato
en-aut-sei=Maruyama
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ToriiReiya
en-aut-sei=Torii
en-aut-mei=Reiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuiHazuki
en-aut-sei=Matsui
en-aut-mei=Hazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HayashiHiroki
en-aut-sei=Hayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaraKen-ichi
en-aut-sei=Ogawara
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HigakiKazutaka
en-aut-sei=Higaki
en-aut-mei=Kazutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Laboratory of Pharmaceutics, Kobe Pharmaceutical University
kn-affil=
affil-num=6
en-affil=Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Drug delivery
kn-keyword=Drug delivery
en-keyword=Vascular normalization
kn-keyword=Vascular normalization
en-keyword=Breast cancer
kn-keyword=Breast cancer
en-keyword=Liposome
kn-keyword=Liposome
en-keyword=Cancer-associated fibroblast
kn-keyword=Cancer-associated fibroblast
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A randomized controlled trial of conventional GVHD prophylaxis with or without teprenone for the prevention of severe acute GVHD
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Therapies that effectively suppress graft-versus-host disease (GVHD) without compromising graft-versus-leukemia/lymphoma (GVL) effects is important in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematopoietic malignancies. Geranylgeranylacetone (GGA) is a main component of teprenone, a gastric mucosal protectant commonly used in clinical practice. In preclinical models, GGA suppresses proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), which are associated with GVHD as well as induces thioredoxin-1 (Trx-1), which suppresses GVHD while maintaining GVL effects. Here, we investigated whether the addition of teprenone to standard GVHD prophylaxis could reduce the cumulative incidence of severe acute GVHD (aGVHD) without attenuating GVL effects. This open-label, randomized clinical trial enrolled 40 patients (21 control and 19 teprenone group) who received allo-HSCT between May 2022 and February 2023 in our institution. Patients in the teprenone group received 50 mg of teprenone orally thrice daily for 21 days from the initiation of the conditioning regimen. The cumulative incidence of severe aGVHD by day 100 after allo-HSCT was not significantly different in the two groups (27.9 vs. 16.1%, p = 0.25). The exploratory studies revealed no obvious changes in Trx-1 levels, but the alternations from baseline in IL-1β and TNF-α levels at day 28 after allo-HSCT tended to be lower in the teprenone group. In conclusion, we could not demonstrate that teprenone significantly prevented the development of severe aGVHD. Discrepancy with preclinical model suggests that appropriate dose of teprenone may be necessary to induce the expression of antioxidant enzymes that suppress severe aGVHD. Clinical Trial Registration number:jRCTs 061210072.
en-copyright=
kn-copyright=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsugeMitsuru
en-aut-sei=Tsuge
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoAkira
en-aut-sei=Yamamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KondoTakumi
en-aut-sei=Kondo
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pediatric Acute Diseases, Okayama University Academic Field of Medicine Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=Allogeneic hematopoietic stem cell transplantation
kn-keyword=Allogeneic hematopoietic stem cell transplantation
en-keyword=Graft-versus-host disease
kn-keyword=Graft-versus-host disease
en-keyword=Teprenone
kn-keyword=Teprenone
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Interleukin-33
kn-keyword=Interleukin-33
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=2
article-no=
start-page=61
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250129
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Study of Podoplanin-Deficient Mouse Bone with Mechanical Stress
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: We investigated morphological differences in osteocyte processes between aged mice and our original podoplanin-conditional knockout (cKO) mice in which the floxed exon 3 of podoplanin was deleted by Dmp-1-driven Cre (Dmp1-Cre;PdpnΔ/Δ). Methods: SEM observation on osteocyte cell process, histochemistry for bone remodeling with mechanostress, and RT-PCR for RANKL and M-CSF in podoplanin cKO mouse bone with mechanostress was investigated. Results: SEM observations showed fewer and thinner osteocyte processes in femurs from 23-week-old Dmp1-Cre;PdpnΔ/Δ mice than from 23-week-old wild-type mice, while the numbers of osteocyte processes in femurs and calvarias were similar in 23-week-old Dmp1-Cre;PdpnΔ/Δ mice and 48-week-old wild-type mice. Furthermore, cell process numbers in femurs and calvarias were significantly smaller in 23-week-old Dmp1-Cre;PdpnΔ/Δ mice than in 48-week-old wild-type mice. In the test for differences in alveolar bone resorption under mechanical stress between Dmp1-Cre;PdpnΔ/Δ and wild-type mice, the area of TRAP-positive resorption pits was larger in wild-type mice than in Dmp1-Cre;PdpnΔ/Δ mice. In a quantitative tissue PCR analysis, the mRNA expression levels of RANKL and M-CSF in alveolar bone under mechanical stress were significantly lower in Dmp1-Cre;PdpnΔ/Δ mice than in wild-type mice. These results suggest that a reduction in cell process formation in osteocytes with podoplanin cKO affected the absorption of alveolar bone under mechanical stress in Dmp1-Cre;PdpnΔ/Δ mice. Conclusions: In podoplanin-deficient bone, the deformation of osteocyte processes by mechanical stimuli is not recognized as a stress due to the lower number of cell processes with podoplanin deficiency; therefore, the production of osteoclast migration/differentiation factors by activated osteocytes is not fully induced and macrophage migration to alveolar bone with mechanical stress appeared to be suppressed. These results indicate that podoplanin-dependent osteocyte process formation indirectly plays a key role in sensing mechanical stress in bone.
en-copyright=
kn-copyright=
en-aut-name=KanaiTakenori
en-aut-sei=Kanai
en-aut-mei=Takenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OsawaKyoko
en-aut-sei=Osawa
en-aut-mei=Kyoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KajiwaraKoichiro
en-aut-sei=Kajiwara
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoYoshiaki
en-aut-sei=Sato
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SawaYoshihiko
en-aut-sei=Sawa
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
kn-affil=
affil-num=3
en-affil=Department of Oral Growth & Development, Hokkaido University
kn-affil=
affil-num=4
en-affil=Department of Orthodontics, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University
kn-affil=
affil-num=5
en-affil=Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=podoplanin
kn-keyword=podoplanin
en-keyword=cKO
kn-keyword=cKO
en-keyword=osteocyte
kn-keyword=osteocyte
en-keyword=bone
kn-keyword=bone
en-keyword=remodeling
kn-keyword=remodeling
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=4
article-no=
start-page=1055
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250207
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Natural Course and Long-Term Outcomes of Gastric Subepithelial Lesions: A Systematic Review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Gastric subepithelial lesions (SELs) are often incidentally detected during endoscopic examinations, with most patients being asymptomatic and lesions measuring <20 mm. Despite their generally indolent nature, certain SELs, such as gastrointestinal stromal tumors, require resection. Current guidelines recommend periodic surveillance; however, the natural course and long-term outcomes of gastric SELs have not been sufficiently investigated. This systematic review aimed to synthesize evidence on the progression, growth rate, and risk factors associated with gastric SELs to inform clinical management strategies. Methods: A comprehensive search of PubMed was conducted for peer-reviewed studies published between January 2000 and November 2024. Eligible studies included original studies on the follow-up and progression of gastric SELs. Non-English articles, reviews, case reports, and unrelated topics were excluded. In total, 277 articles were screened, with 15 additional articles identified through manual screening. Ultimately, 41 articles were included in the analysis. The study protocol is registered in PROSPERO (CRD42024614865). Results: Large-scale studies reported low growth rates of 2.0-8.5% over 2.0-5.0 years, while smaller studies reported a broader range of growth rates of 5.4-28.4%. The factors contributing to these discrepancies include patient selection, follow-up duration, and growth criteria. Risk factors for lesion size increase include larger initial lesion size, irregular margins, heterogeneous echo patterns, and certain tumor locations. Conclusions: These findings underscore the need for individualized management strategies based on lesion size, imaging characteristics, and risk factors. The close monitoring of high-risk lesions is crucial for timely intervention. Standardized growth criteria and optimized follow-up protocols are essential for improving clinical decision making and patient outcomes.
en-copyright=
kn-copyright=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=esophagogastroduodenoscopy
kn-keyword=esophagogastroduodenoscopy
en-keyword=gastric lesions
kn-keyword=gastric lesions
en-keyword=gastrointestinal stromal tumor
kn-keyword=gastrointestinal stromal tumor
en-keyword=subepithelial lesion
kn-keyword=subepithelial lesion
en-keyword=submucosal tumor
kn-keyword=submucosal tumor
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=1
article-no=
start-page=e70077
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250302
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A case of invasive pulmonary aspergillosis associated with clozapine-induced agranulocytosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Clozapine-induced agranulocytosis (CLIA) is a rare but serious complication. Fever associated with CLIA is typically treated with broad-spectrum antimicrobials, but empiric antifungal therapy is rarely used. While bacterial and viral infections have been reported in CLIA cases, no cases of fungal infections complicated by CLIA have been documented. We report the first case of CLIA complicated by invasive pulmonary aspergillosis (IPA) in a patient with schizophrenia. The diagnosis of IPA was made using serum beta-D-glucan, Aspergillus galactomannan antigen tests, and chest computed tomography (CT).
Case presentation: We present a case of a 51-year-old man with schizophrenia who developed CLIA complicated by IPA. The patient, diagnosed with treatment-resistant schizophrenia, was started on clozapine, but 9 months later he presented with fever, cough, leukopenia, and neutropenia. Clozapine was discontinued, and empirical treatments with cefepime and filgrastim were initiated. Serum beta-D-glucan and Aspergillus galactomannan antigen tests were positive, and chest CT showed well-circumscribed nodules, leading to a probable diagnosis of IPA. Antifungal therapy was switched from micafungin to voriconazole according to guidelines. His neutropenia and fever improved, and he was re-transferred to a psychiatric hospital.
Conclusion: CLIA can be complicated by fungal infections. When patients with CLIA present with fever, fungal infections, including IPA, should be considered in the differential diagnosis. Serological tests, including beta-D-glucan and Aspergillus galactomannan, are useful for the diagnosis of IPA as well as the appropriate use of antifungal agents in patients with CLIA.
en-copyright=
kn-copyright=
en-aut-name=YokodeAkiyoshi
en-aut-sei=Yokode
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraMasaki
en-aut-sei=Fujiwara
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeraoToshiki
en-aut-sei=Terao
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakamotoShinji
en-aut-sei=Sakamoto
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamadaYuto
en-aut-sei=Yamada
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoRyota
en-aut-sei=Sato
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MishimaMomoko
en-aut-sei=Mishima
en-aut-mei=Momoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YadaYuji
en-aut-sei=Yada
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsuokaKen-Ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Okayama Psychiatric Medical Center
kn-affil=
affil-num=7
en-affil=Okayama Psychiatric Medical Center
kn-affil=
affil-num=8
en-affil=Okayama Psychiatric Medical Center
kn-affil=
affil-num=9
en-affil=Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences
kn-affil=
affil-num=10
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=clozapine-induced agranulocytosis
kn-keyword=clozapine-induced agranulocytosis
en-keyword=fungal infections
kn-keyword=fungal infections
en-keyword=invasive pulmonary aspergillosis
kn-keyword=invasive pulmonary aspergillosis
en-keyword=schizophrenia
kn-keyword=schizophrenia
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=4
article-no=
start-page=1391
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250219
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Course of General Fatigue in Patients with Post-COVID-19 Conditions Who Were Prescribed Hochuekkito: A Single-Center Exploratory Pilot Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: After the start of the COVID-19 pandemic, general fatigue in patients with long COVID and post-COVID-19 conditions (PCC) became a medical issue. Although there is a lack of evidence-based treatments, Kampo medicine (traditional Japanese medicine) has gained attention in Japan. At an outpatient clinic in Japan specializing in long COVID, 24% of all prescriptions were Kampo medicines, and 72% of Kampo medicine prescriptions were hochuekkito. However, there has been no prospective, quantitative study on the course of fatigue in patients with long COVID and PCC who were prescribed hochuekkito. The aim of this study was to clarify the course of fatigue in those patients. Methods: This study included patients aged 18 years or older with general fatigue who visited the long COVID specialized outpatient clinic at Okayama University Hospital and consented to participate after being prescribed hochuekkito. We reviewed the backgrounds of the patients, and we evaluated the patients' fatigue assessment scale in person or online. Results: Twenty patients were enrolled in this study from September to December in 2023. The average age of the patients was 42.9 years (SD: 15.8 years) and 12 patients (60%) were female. After hochuekkito administration, the fatigue assessment scale score decreased from 35.9 (SD: 5.9) at the initial visit to 31.2 (SD: 9.4) after 8 weeks, indicating a trend for improvement in fatigue (difference: 4.7; 95% CI: 0.5-8.9). Conclusions: A trend for improvement in fatigue was observed in patients with long COVID and PCC who were prescribed hochuekkito, indicating a potential benefit of hochuekkito for general fatigue in such patients. General fatigue in patients with long COVID or PCC can be classified as post-infectious fatigue syndrome and is considered a condition of qi deficiency in Kampo medicine, for which hochuekkito is appropriately indicated.
en-copyright=
kn-copyright=
en-aut-name=TokumasuKazuki
en-aut-sei=Tokumasu
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukiNobuyoshi
en-aut-sei=Matsuki
en-aut-mei=Nobuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsukaYuki
en-aut-sei=Otsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakamotoYoko
en-aut-sei=Sakamoto
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UedaKeigo
en-aut-sei=Ueda
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYui
en-aut-sei=Matsuda
en-aut-mei=Yui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakuradaYasue
en-aut-sei=Sakurada
en-aut-mei=Yasue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HondaHiroyuki
en-aut-sei=Honda
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HasegawaToru
en-aut-sei=Hasegawa
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakaseRyosuke
en-aut-sei=Takase
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OmuraDaisuke
en-aut-sei=Omura
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of General Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=fatigue assessment scale (FAS)
kn-keyword=fatigue assessment scale (FAS)
en-keyword= general fatigue
kn-keyword= general fatigue
en-keyword= hochuekkito
kn-keyword= hochuekkito
en-keyword= kampo medicine
kn-keyword= kampo medicine
en-keyword= long COVID
kn-keyword= long COVID
en-keyword= post-COVID-19 condition
kn-keyword= post-COVID-19 condition
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=2
article-no=
start-page=267
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Abnormal Expression of Tubular SGLT2 and GULT2 in Diabetes Model Mice with Malocclusion-Induced Hyperglycemia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: A relationship between malocclusion and the promotion of diabetes has been suggested. In hyperglycemia, the expression of sodium-glucose cotransporter 2 (SGLT2) and the facilitative glucose transporter 2 (GLUT2) is upregulated in proximal tubular cells, leading to an increase in renal glucose reabsorption. The present study aimed to investigate whether malocclusion contributes to diabetic exacerbation. Methods: Streptozotocin (STZ)-induced diabetic mice with malocclusion due to cutting molars were investigated based on increased blood glucose levels. PCR and immunohistochemical analyses were performed on diabetic mice kidneys to investigate the expression of SGLT2 and GLUT2. Results: Animal experiments were performed using 32 mice for 21 days. The time to reach a diabetic condition in STZ-administered mice was shorter with malocclusion than without malocclusion. The increase and mean blood glucose levels in STZ-administered mice were steeper and higher with malocclusion than without malocclusion. Urea albumin, BUN, and CRE levels were higher in diabetic mice with malocclusion than in diabetic mice without. Immunoreaction with anti-SGLT2 and anti-GLUT2 in the renal tissue of STZ-administered mice was stronger with malocclusion than without malocclusion. The amounts of SGLT2 and GLUT2 mRNA in the renal tissue in STZ-administered mice were higher with malocclusion than without malocclusion. The amounts of TNF-a and IL-6 mRNA in the large intestinal tissue in STZ-administered mice were higher with malocclusion than without malocclusion. Conclusions: Our results indicate that malocclusion accelerates the tubular expression of SGLT2 and GLUT2 under hyperglycemia. Malocclusion may be a diabetes-exacerbating factor with increased poor glycemic control due to shortened occlusion time resulting from swallowing food without chewing.
en-copyright=
kn-copyright=
en-aut-name=KajiwaraKoichiro
en-aut-sei=Kajiwara
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TamaokiSachio
en-aut-sei=Tamaoki
en-aut-mei=Sachio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SawaYoshihiko
en-aut-sei=Sawa
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Oral Growth & Development, Fukuoka Dental College
kn-affil=
affil-num=2
en-affil=Department of Oral Growth & Development, Fukuoka Dental College
kn-affil=
affil-num=3
en-affil=Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=malocclusion
kn-keyword=malocclusion
en-keyword= hyperglycemia
kn-keyword= hyperglycemia
en-keyword= SGLT2
kn-keyword= SGLT2
en-keyword= GLUT2
kn-keyword= GLUT2
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=2
article-no=
start-page=235
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250205
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rhizoctonia solani is a basidiomycete phytopathogenic fungus that causes rapid necrosis in a wide range of crop species, leading to substantial agricultural losses worldwide. The species complex is divided into 13 anastomosis groups (AGs) based on hyphal fusion compatibility and further subdivided by culture morphology. While R. solani classifications were shown to be independent of host specificity, it remains unclear whether different R. solani isolates share similar virulence mechanisms. Here, we investigated the infectivity of Japanese R. solani isolates on Brachypodium distachyon and barley. Two isolates, AG-1 IA (from rice) and AG-4 HG-I+II (from cauliflower), infected leaves of both plants, but only AG-4 HG-I+II infected roots. B. distachyon accessions Bd3-1 and Gaz-4 and barley cultivar 'Morex' exhibited enhanced resistance to both isolates compared to B. distachyon Bd21 and barley cultivars 'Haruna Nijo' and 'Golden Promise'. During AG-1 IA infection, but not AG-4 HG-I+II infection, resistant Bd3-1 and Morex induced genes for salicylic acid (SA) and N-hydroxypipecolic acid (NHP) biosynthesis. Pretreatment with SA or NHP conferred resistance to AG-1 IA, but not AG-4 HG-I+II, in susceptible B. distachyon Bd21 and barley Haruna Nijo. On the leaves of susceptible Bd21 and Haruna Nijo, AG-1 IA developed extensive mycelial networks with numerous infection cushions, which are specialized infection structures well-characterized in rice sheath blight. In contrast, AG-4 HG-I+II formed dispersed mycelial masses associated with underlying necrosis. We propose that the R. solani species complex encompasses at least two distinct infection strategies: AG-1 IA exhibits a hemibiotrophic lifestyle, while AG-4 HG-I+II follows a predominantly necrotrophic strategy.
en-copyright=
kn-copyright=
en-aut-name=MahadevanNiranjan
en-aut-sei=Mahadevan
en-aut-mei=Niranjan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FernandaRozi
en-aut-sei=Fernanda
en-aut-mei=Rozi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KouzaiYusuke
en-aut-sei=Kouzai
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KohnoNatsuka
en-aut-sei=Kohno
en-aut-mei=Natsuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagaoReiko
en-aut-sei=Nagao
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NyeinKhin Thida
en-aut-sei=Nyein
en-aut-mei=Khin Thida
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeMegumi
en-aut-sei=Watanabe
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MochidaKeiichi
en-aut-sei=Mochida
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HisanoHiroshi
en-aut-sei=Hisano
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
kn-affil=
affil-num=4
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=12
en-affil=RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=13
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=14
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Rhizoctonia solani species complex
kn-keyword=Rhizoctonia solani species complex
en-keyword=virulence mechanism
kn-keyword=virulence mechanism
en-keyword=infection behavior
kn-keyword=infection behavior
en-keyword=salicylic acid
kn-keyword=salicylic acid
en-keyword=N-hydroxypipecolic acid
kn-keyword=N-hydroxypipecolic acid
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=2
article-no=
start-page=101
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Radiographic and Clinical Assessment of Unidirectional Porous Beta-Tricalcium Phosphate to Treat Benign Bone Tumors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The purpose of this study was to evaluate radiographic changes, clinical outcomes, and complications following unidirectional porous beta-tricalcium phosphate (UDPTCP) implantation for the treatment of benign bone tumors. We retrospectively analyzed 46 patients who underwent intralesional resection. The patients were divided into two cohorts: Cohort 1 (n = 32), which included all bones except the phalanges and metacarpal/tarsal bones, and Cohort 2 (n = 14), which included the phalanges and metacarpal/tarsal bones. Radiographic changes were assessed at each reading based on resorption of the implanted UDPTCP and bone trabeculation through the defect. UDPTCP resorption and bone trabeculation were observed on radiographs within 3 months of surgery in all patients. Bone remodeling in the cavity progressed steadily for up to 3 years postoperatively. In Cohort 1, resorption and trabeculation progressed significantly in young patients, and trabeculation developed significantly in small lesions. The rates of resorption and trabeculation at 3 months postoperatively correlated statistically with their increased rates at one year. There was no statistical difference in resorption and trabeculation rates between Cohort 1 and Cohort 2. There were no cases of postoperative deep infections or allergic reactions related to the implant. UDPTCP is a useful bone-filling substitute for the treatment of benign bone tumors and has a low complication rate.
en-copyright=
kn-copyright=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KurozumiTakanao
en-aut-sei=Kurozumi
en-aut-mei=Takanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AndoTeruhiko
en-aut-sei=Ando
en-aut-mei=Teruhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=unidirectional porous beta-tricalcium phosphate
kn-keyword=unidirectional porous beta-tricalcium phosphate
en-keyword= bone tumor
kn-keyword= bone tumor
en-keyword= bone graft
kn-keyword= bone graft
en-keyword= radiography
kn-keyword= radiography
en-keyword= bone remodeling
kn-keyword= bone remodeling
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e202403213
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250218
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Antifouling Activity of Xylemin, Its Structural Analogs, and Related Polyamines
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Biofouling, which is the accumulation of organisms on undersea structures, poses significant global, social, and economic issues. Although organotin compounds were effective antifoulants since the 1960s, they were banned in 2008 due to their toxicity to marine life. Although tin-free alternatives have been developed, they also raise environmental concerns. This underscores the need for effective, nontoxic antifouling agents. We previously synthesized N-(4-aminobutyl)propylamine (xylemin) and its structural analogs. In this study, we assayed the antifouling activity and toxicity of xylemin, its structural analogs, and related polyamines toward cypris larvae of the barnacle Amphibalanus amphitrite. Xylemin and its Boc-protected analog exhibited antifouling activities with 50% effective concentrations (EC50) of 4.25 and 6.11 µg/mL, respectively. Four xylemin analogs did not show a settlement-inhibitory effect at a concentration of 50 µg/mL. Putrescine, spermidine, spermine, and thermospermine, which are xylemin-related polyamines, did not display antifoulant effects (EC50 > 50 µg/mL). All evaluated compounds were nontoxic at a concentration of 50 µg/mL. These findings indicate that the size and structure of the N-alkyl group are essential for the antifouling activity of xylemin. Therefore, xylemin and its analogs hold promise as nontoxic, eco-friendly antifouling agents, offering a sustainable solution to biofouling in marine environments.
en-copyright=
kn-copyright=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YorisueTakefumi
en-aut-sei=Yorisue
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaKenta
en-aut-sei=Tanaka
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Natural and Environmental Sciences, University of Hyogo
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Amines
kn-keyword=Amines
en-keyword=Antifouling activity
kn-keyword=Antifouling activity
en-keyword=Barnacle
kn-keyword=Barnacle
en-keyword=Structure–activity relationships
kn-keyword=Structure–activity relationships
en-keyword=Xylemin
kn-keyword=Xylemin
END
start-ver=1.4
cd-journal=joma
no-vol=197
cd-vols=
no-issue=
article-no=
start-page=115301
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Fraglide-1 from traditional Chinese aromatic vinegar: A natural AhR antagonist for atopic dermatitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Traditional Chinese Zhenjiang aromatic vinegar (Kozu) contains Fraglide-1 (FG1), a bioactive lactone with demonstrated peroxisome proliferator-activated receptor gamma (PPARγ) agonist and antioxidant activities. This study explored FG1's novel ability to antagonize the aryl hydrocarbon receptor (AhR) signaling pathway, which regulates artemin expression and contributes to itching and inflammation in atopic dermatitis. Through molecular docking simulations and cell-based assays in human keratinocytes, we demonstrated FG1's potent antagonistic activity against AhR signaling. FG1 effectively suppressed FICZ-induced inflammatory responses, including artemin expression, with potency (half maximal inhibitory concentration, IC50 = 5.1 μM) comparable to the synthetic antagonist StemRegenin 1 (SR1) while demonstrating a superior safety profile (median lethal concentration, LC50 > 100 μM vs. 27.5 μM for SR1). These findings expand our understanding of bioactive compounds from traditional fermented foods and their regulatory effects on AhR signaling, providing a foundation for future studies on FG1's role in modulating skin inflammation.
en-copyright=
kn-copyright=
en-aut-name=KatoKosuke
en-aut-sei=Kato
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkamatsuMiki
en-aut-sei=Akamatsu
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KakimaruSaya
en-aut-sei=Kakimaru
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KoreishiMayuko
en-aut-sei=Koreishi
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakagiMasahiro
en-aut-sei=Takagi
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyashitaMasahiro
en-aut-sei=Miyashita
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TsujinoYoshio
en-aut-sei=Tsujino
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=School of Materials Science, Japan Advanced Institute of Science and Technology
kn-affil=
affil-num=6
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Science, Technology and Innovation, Kobe University
kn-affil=
en-keyword=AhR
kn-keyword=AhR
en-keyword=Xenobiotic responsive element
kn-keyword=Xenobiotic responsive element
en-keyword=StemRegenin 1
kn-keyword=StemRegenin 1
en-keyword=ARNT
kn-keyword=ARNT
en-keyword=Atopic dermatitis
kn-keyword=Atopic dermatitis
en-keyword=Artemin
kn-keyword=Artemin
END
start-ver=1.4
cd-journal=joma
no-vol=96
cd-vols=
no-issue=10
article-no=
start-page=1241
end-page=1252
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210728
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Validated international definition of the thrombocytopenia, anasarca, fever, reticulin fibrosis, renal insufficiency, and organomegaly clinical subtype (TAFRO) of idiopathic multicentric Castleman disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thrombocytopenia, anasarca, fever, reticulin fibrosis, renal insufficiency, and organomegaly (TAFRO) syndrome is a heterogeneous entity manifesting with a constellation of symptoms described above that can occur in the context of idiopathic multicentric Castleman disease (iMCD) as well as infectious diseases, malignancies, and rheumatologic disorders. So, iMCD-TAFRO is an aggressive subtype of iMCD with TAFRO syndrome and often hyper-vascularized lymph nodes. Since we proposed diagnostic criteria of iMCD-TAFRO in 2016, we have accumulated new insights on the disorder and additional cases have been reported worldwide. In this systematic review and cohort analysis, we established and validated a definition for iMCD-TAFRO. First, we searched PubMed and Japan Medical Abstracts Society databases using the keyword “TAFRO” to extract cases. Patients with possible systemic autoimmune diseases and hematologic malignancies were excluded. Our search identified 54 cases from 50 articles. We classified cases into three categories: (1) iMCD-TAFRO (TAFRO syndrome with lymph node histopathology consistent with iMCD), (2) possible iMCD-TAFRO (TAFRO syndrome with no lymph node biopsy performed and no other co-morbidities), and (3) TAFRO without iMCD or other co-morbidities (TAFRO syndrome with lymph node histopathology not consistent with iMCD or other comorbidities). Based on the findings, we propose an international definition requiring four clinical criteria (thrombocytopenia, anasarca, fever/hyperinflammatory status, organomegaly), renal dysfunction or characteristic bone marrow findings, and lymph node features consistent with iMCD. The definition was validated with an external cohort (the ACCELERATE Natural History Registry). The present international definition will facilitate a more precise and comprehensive approach to the diagnosis of iMCD-TAFRO.
en-copyright=
kn-copyright=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FajgenbaumDavid C.
en-aut-sei=Fajgenbaum
en-aut-mei=David C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PiersonSheila K.
en-aut-sei=Pierson
en-aut-mei=Sheila K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwakiNoriko
en-aut-sei=Iwaki
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawanoMitsuhiro
en-aut-sei=Kawano
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraNaoya
en-aut-sei=Nakamura
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IzutsuKoji
en-aut-sei=Izutsu
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakeuchiKengo
en-aut-sei=Takeuchi
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshizakiKazuyuki
en-aut-sei=Yoshizaki
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OksenhendlerEric
en-aut-sei=Oksenhendler
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=van RheeFrits
en-aut-sei=van Rhee
en-aut-mei=Frits
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Center for Cytokine Storm Treatment & Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=3
en-affil=Center for Cytokine Storm Treatment & Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=4
en-affil=Hematology/Respiratory Medicine, Kanazawa University Graduate School of Medical Science
kn-affil=
affil-num=5
en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=6
en-affil=Department of Rheumatology, Kanazawa University Graduate School of Medical Science
kn-affil=
affil-num=7
en-affil=Department of Pathology, Tokai University School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Hematology, National Cancer Center Hospital
kn-affil=
affil-num=9
en-affil=Department of Pathology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research
kn-affil=
affil-num=10
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Organic Fine Chemicals, Institute of Scientific and Industrial Research, Osaka University
kn-affil=
affil-num=14
en-affil=Department of Clinical Immunology, Hôpital Saint-Louis
kn-affil=
affil-num=15
en-affil=Myeloma Center, University of Arkansas for Medical Sciences
kn-affil=
affil-num=16
en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=3
end-page=10
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250131
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Investigation of SNPs associated with reproductive and body growth traits in Vietnamese and Nepalese native buffaloes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Water buffaloes are essential to the rural economies of many developing countries, including Vietnam and Nepal, but native buffalo populations in these countries face challenges such as low productivity due to fertility and body growth issues. This study analyzed 34 SNPs in 18 genes associated with reproductive and body growth traits reported in cattle and buffalo in Vietnamese and Nepalese native buffaloes. Results showed no polymorphism at bovine SNPs in either buffalo. Further analysis with SNPs previously reported only in popular buffalo breeds, such as Murrah, found that Vietnamese buffalo were monomorphic at all sites, which may reflect reduced genetic diversity due to population decline. In contrast, Nepalese buffalo, consisting of two native breeds, showed polymorphism in 11 SNPs in 7 genes, with 10 of these matching those found in the Murrah buffalo analyzed here. These findings suggest that these SNPs may be applicable for genetic improvement in Nepalese native buffalo. This study provides valuable insights for future conservation and breeding programs aimed at enhancing reproductive and body growth performance of native buffalo in Vietnam and Nepal.
en-copyright=
kn-copyright=
en-aut-name=Thuy ThanhNguyen
en-aut-sei=Thuy Thanh
en-aut-mei=Nguyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuniedaTetsuo
en-aut-sei=Kunieda
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Manoj KumarShah
en-aut-sei=Manoj Kumar
en-aut-mei=Shah
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=Thu Nu AnhLe
en-aut-sei=Thu Nu Anh
en-aut-mei=Le
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Van HuuNguyen
en-aut-sei=Van Huu
en-aut-mei=Nguyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UshijimaKoichiro
en-aut-sei=Ushijima
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagaeMayuko
en-aut-sei=Nagae
en-aut-mei=Mayuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsujiTakehito
en-aut-sei=Tsuji
en-aut-mei=Takehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=National Swine Research Program
kn-affil=
affil-num=4
en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=5
en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Vietnamese native buffalo
kn-keyword=Vietnamese native buffalo
en-keyword=Nepalese native buffalo
kn-keyword=Nepalese native buffalo
en-keyword=SNPs
kn-keyword=SNPs
en-keyword=Reproduction
kn-keyword=Reproduction
en-keyword=Body growth
kn-keyword=Body growth
END
start-ver=1.4
cd-journal=joma
no-vol=64
cd-vols=
no-issue=2
article-no=
start-page=97
end-page=106
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Atypical lymphoplasmacytic and immunoblastic proliferation: A Systematic Review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Atypical lymphoplasmacytic and immunoblastic proliferation (ALPIBP) was first reported in 1984 as characteristic histological findings in lymph nodes associated with autoimmune diseases, but it has not been clearly defined to date. To summarize the histological characteristics and clinical diagnoses associated with ALPIBP, we searched MEDLINE and EMBASE for all peer-reviewed articles using keywords including “atypical lymphoplasmacytic and immunoblastic lymphadenopathy” from their inception to December 27, 2023. We also summarized the courses of three cases with a pathological diagnosis of ALPIBP. Nine articles with 52 cases were included. Among the total of 55 cases, including the three from our institution, the median age of the cases was 63.5 years with a female predominance (69.5%). Lymphadenopathy was generalized in 65.6% and regional in 34.4% of cases. RA (24.4%), SLE (24.4%), and autoimmune hemolytic anemia (20.0%), were common clinical diagnoses. A combination of cytotoxic chemotherapy was used in 15.6% of cases due to the suspicion of malignancy. Nodal T-follicular helper cell lymphoma, angioimmunoblastic type, methotrexate-associated lymphoproliferative disorders, and IgG4-related diseases were listed as important diseases that need to be pathologically differentiated from ALPIBP. This review summarizes the current understanding of the characteristics of ALPIBP. Given that underrecognition of ALPIBP could lead to overdiagnosis of hematological malignancy and unnecessary treatment, increased awareness of the condition in pathologists and clinicians is crucial.
en-copyright=
kn-copyright=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakaokaKensuke
en-aut-sei=Takaoka
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MacapagalSharina
en-aut-sei=Macapagal
en-aut-mei=Sharina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WannaphutChalothorn
en-aut-sei=Wannaphut
en-aut-mei=Chalothorn
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TodaHiroko
en-aut-sei=Toda
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Medicine, John A. Burns School of Medicine, University of Hawai’i
kn-affil=
affil-num=3
en-affil=Department of Medicine, John A. Burns School of Medicine, University of Hawai’i
kn-affil=
affil-num=4
en-affil=Department of Medicine, John A. Burns School of Medicine, University of Hawai’i
kn-affil=
affil-num=5
en-affil=Department of Medicine, John A. Burns School of Medicine, University of Hawai’i
kn-affil=
affil-num=6
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=7
en-affil=Department of Pathology, Chugoku Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Medicine, John A. Burns School of Medicine, University of Hawai’i
kn-affil=
affil-num=9
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=systematic review
kn-keyword=systematic review
en-keyword=atypical lymphoplasmacytic and immunoblastic proliferation
kn-keyword=atypical lymphoplasmacytic and immunoblastic proliferation
en-keyword=IgG4-related disease
kn-keyword=IgG4-related disease
en-keyword=angioimmunoblastic T-cell lymphoma
kn-keyword=angioimmunoblastic T-cell lymphoma
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=2
article-no=
start-page=e79852
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Presumed Autoimmune Keratitis in Both Eyes Without Systemic Manifestations: A 40-Year Course of a Patient With Corneal Infiltrates and Melt
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Peripheral corneal infiltration, corneal ulcer, and melt are recognized complications linked to systemic immunological diseases, such as antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. These manifestations, which occur in isolation, might be autoimmune keratitis but are difficult to prove underlying immunological abnormalities. This report described a patient with presumed autoimmune keratitis who repeatedly presented corneal infiltration and perforation in both eyes even after penetrating keratoplasty. The 68-year-old patient with a stable condition of keratoconjunctivitis sicca, in a 28-year follow-up, abruptly developed mild infiltrates in the corneal center of the right eye and white dense infiltrates in the peripheral and central cornea of the left eye. He was treated with topical 0.1% betamethasone eye drops and oral prednisolone tapering from 30 mg daily. The patient underwent cataract surgeries in both eyes 10 months after the onset of corneal infiltration and subsequently underwent penetrating keratoplasty in both eyes due to abrupt corneal perforation in the left eye 14 months after the onset of corneal infiltration. Six months post-keratoplasty, he experienced a recurrence of infiltrates in the corneal grafts in both eyes, leading to corneal leukoma in the left eye. The corneal graft in the right eye maintained its integrity with relatively mild opacity until approximately 3.5 years post-keratoplasty, when he abruptly developed white dense infiltration of both the corneal graft and his own peripheral cornea at the age of 73. In response to oral prednisolone tapered from 15 mg daily, the corneal infiltration in the right eye resolved but resulted in graft failure. Since he did not exhibit systemic symptoms and signs throughout the course, the repeat episodes of infiltration in both his own cornea and the corneal graft would be the manifestations of autoimmune keratitis. The entity of autoimmune keratitis in isolation would be beneficial to establish a therapeutic strategy for long-term immunosuppression in light of a risk for steroid side effects and a high rate of corneal graft failure.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=autoimmune keratitis
kn-keyword=autoimmune keratitis
en-keyword=corneal graft
kn-keyword=corneal graft
en-keyword=corneal infiltration
kn-keyword=corneal infiltration
en-keyword=corneal melt
kn-keyword=corneal melt
en-keyword=penetrating keratoplasty
kn-keyword=penetrating keratoplasty
END
start-ver=1.4
cd-journal=joma
no-vol=111
cd-vols=
no-issue=6
article-no=
start-page=064502
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Josephson effect and odd-frequency pairing in superconducting junctions with unconventional magnets
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We consider Josephson junctions formed by coupling two conventional superconductors via an unconventional magnet and investigate the formation of Andreev bound states, their impact on the Josephson effect, and the emergent superconducting correlations. In particular, we focus on unconventional magnets known as 𝑑-wave altermagnets and 𝑝-wave magnets. We find that the Andreev bound states in 𝑑-wave altermagnet and 𝑝𝑦-wave magnet Josephson junctions strongly depend on the transverse momentum, with a spin splitting and low-energy minima as a function of the superconducting phase difference 𝜑. In contrast, the Andreev bound states for 𝑝𝑥-wave magnets are insensitive to the transverse momentum. We then show that the Andreev bound states can be probed by the local density of states in the middle of the junction, which also reveals that 𝑑𝑥2−𝑦2- and 𝑝-wave magnet junctions are prone to host zero energy peaks. While the zero-energy peak in 𝑑𝑥2−𝑦2-wave altermagnet junctions tends to oscillate with the magnetic order, it remains robust in 𝑝-wave magnet junctions. We then discover that the Josephson current in 𝑑-wave altermagnet junctions is composed of higher harmonics of 𝜑, which originate a 𝜙-Josephson junction behavior entirely controlled by the magnetic order in 𝑑𝑥𝑦-wave altermagnets. In contrast, the Josephson current in Josephson junctions with 𝑝-wave magnets exhibits a conventional sinelike profile with a fast sign change at 𝜑=𝜋 due to zero-energy Andreev bound states. We also demonstrate that the critical currents in 𝑑-wave altermagnet Josephson junctions exhibit an oscillatory decay with the increase of the magnetic order, while the oscillations are absent in 𝑝-wave magnet junctions albeit the currents exhibit a slow decay. Furthermore, we also demonstrate that the interplay of the Josephson effect and unconventional magnetic order of 𝑑-wave altermagnets and 𝑝-wave magnets originates from odd-frequency spin-triplet 𝑠-wave superconducting correlations that are otherwise absent. Our results can serve as a guide to pursue the new functionality of Josephson junctions based on unconventional magnets.
en-copyright=
kn-copyright=
en-aut-name=FukayaYuri
en-aut-sei=Fukaya
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaedaKazuki
en-aut-sei=Maeda
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YadaKeiji
en-aut-sei=Yada
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=CayaoJorge
en-aut-sei=Cayao
en-aut-mei=Jorge
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaYukio
en-aut-sei=Tanaka
en-aut-mei=Yukio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LuBo
en-aut-sei=Lu
en-aut-mei=Bo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Faculty of Environmental Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Applied Physics, Nagoya University
kn-affil=
affil-num=3
en-affil=Department of Applied Physics, Nagoya University
kn-affil=
affil-num=4
en-affil=Department of Physics and Astronomy, Uppsala University
kn-affil=
affil-num=5
en-affil=Department of Applied Physics, Nagoya University
kn-affil=
affil-num=6
en-affil=Center for Joint Quantum Studies, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=2
article-no=
start-page=54
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250211
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=White coat color in Vietnamese native buffalo is attributed to the LINE1 insertion in ASIP
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The coat color of the swamp buffalo is commonly dark gray, while the white coat color variant, which may have potential heat stress advantages, is also present in some Asian countries, including Vietnam. This study analyzed the most likely candidate genes, ASIP and TYR, responsible for the white coat color of Vietnamese native buffaloes. We found that LINE1 insertion in ASIP, a mutation previously reported in white swamp buffalo from other Asian countries, was exclusively found in white Vietnamese buffalo. Moreover, significantly higher expression of ASIP was confirmed in the hair follicles of white buffalo. On the other hand, no variants associated with the white phenotype were found in TYR. These findings indicate that the LINE1 insertion in ASIP is responsible for the white coat color in Vietnamese native buffalo, and that provides a crucial step towards their utilization and improved productivity in Vietnam.
en-copyright=
kn-copyright=
en-aut-name=NguyenThuy Thanh
en-aut-sei=Nguyen
en-aut-mei=Thuy Thanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LeQuan Viet
en-aut-sei=Le
en-aut-mei=Quan Viet
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NguyenVan Huu
en-aut-sei=Nguyen
en-aut-mei=Van Huu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=DuongHai Thanh
en-aut-sei=Duong
en-aut-mei=Hai Thanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsujiTakehito
en-aut-sei=Tsuji
en-aut-mei=Takehito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=4
en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Vietnamese buffalo
kn-keyword=Vietnamese buffalo
en-keyword=White coat color
kn-keyword=White coat color
en-keyword=LINE1 insertion
kn-keyword=LINE1 insertion
en-keyword=ASIP
kn-keyword=ASIP
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250217
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Kikuchi‐Fujimoto disease: investigating comprehensive clinicopathological features and risk factors for recurrence
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims: Kikuchi-Fujimoto disease (KFD) is a rare disease that typically manifests with fever and cervical lymphadenopathy. Little is known about the risk factors associated with recurrence and their correlation with clinicopathologic features.
Methods and Results: We analysed 112 patients with KFD, predominantly female (61/112, 54.5%), with an average age of 29.4 years. The incidence was higher in males up to the age of 20 and higher in females from their 30s onwards. Of the 70 patients with follow-up data, 23% experienced recurrence. Recurrence was associated with lower C4 levels (P = 0.038) and higher antinuclear antibody (ANA) rates (P = 0.007) compared to transient disease. The mean duration of symptoms was 71.5 days. Lymph node histology in 98 cases (excluding 14 needle biopsy specimens) was classified into three patterns: proliferative (n = 75, 77%), necrotizing (n = 22, 22%), and xanthomatous (n = 1, 1%). The necrotizing pattern associated with significantly enlarged lymph nodes (P = 0.047) and a longer symptom duration (P = 0.009) than the proliferating pattern. The number of CD4-positive lymphocytes was significantly lower in the necrotizing type than in the proliferative type (P < 0.001).
Conclusion: These results indicated that low C4 levels and positive ANA were associated with KFD recurrence. Although the aetiology of KFD remains elusive, given that some cases develop autoimmune disease, the results suggest that patients with recurrent KFD represent an intermediate status between those with transient KFD and those with overt autoimmune disease. The comprehensive clinicopathological findings of this study may be useful for elucidating its pathogenesis and predicting the clinical course.
en-copyright=
kn-copyright=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakaoChikako
en-aut-sei=Sakao
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurokawaYuka
en-aut-sei=Kurokawa
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=6
en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=histiocytic necrotizing lymphadenitis
kn-keyword=histiocytic necrotizing lymphadenitis
en-keyword=histological subtypes
kn-keyword=histological subtypes
en-keyword=Kikuchi-Fujimoto disease
kn-keyword=Kikuchi-Fujimoto disease
en-keyword=necrotizing type
kn-keyword=necrotizing type
en-keyword=proliferating type
kn-keyword=proliferating type
en-keyword=recurrent
kn-keyword=recurrent
en-keyword=xanthomatous type
kn-keyword=xanthomatous type
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=3
article-no=
start-page=817
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250126
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Interrelationships Between Plasma Levels of Brain Natriuretic Peptide and Prolonged Symptoms Due to Long COVID
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: Evidence for the usefulness of biomarkers that aid in diagnosis, assessment of severity, and prediction of prognosis in patients with long COVID is limited. The aim of this study was to clarify the characteristics of brain natriuretic peptide (BNP) in long COVID. Methods: We conducted a retrospective observational study of patients who visited the COVID-19 aftercare outpatient clinic at Okayama University Hospital from February 2021 to April 2024. Results: A total of 428 patients were enrolled in this study, and the patients were divided into a group with normal BNP (n = 314, <= 18.4 pg/mL) and a group with increased BNP (n = 114, >18.4 pg/mL). The long COVID group with increased BNP had a higher proportion of females (44.3% vs. 73.7%, p < 0.01) and an older median age (38 vs. 51 years, p < 0.01). Fatigue and brain fog were commonly manifested in both groups, while dyspnea was a more frequent complaint in the group with increased BNP. Various symptoms including fatigue, palpitations, and taste and/or olfactory disorders were associated with elevated BNP (23 to 24 pg/mL). Memory impairment was also linked to higher BNP (OR: 2.36, p = 0.05). In long COVID patients, plasma BNP elevation appears to be more pronounced in females and is often related to cardiogenic factors, in which inflammatory responses are also involved. Conclusions: Plasma BNP measurement may be useful for evaluating the severity of long COVID, especially in female patients and those with respiratory symptoms and/or memory impairment.
en-copyright=
kn-copyright=
en-aut-name=MasudaYohei
en-aut-sei=Masuda
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtsukaYuki
en-aut-sei=Otsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TokumasuKazuki
en-aut-sei=Tokumasu
en-aut-mei=Kazuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HondaHiroyuki
en-aut-sei=Honda
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakuradaYasue
en-aut-sei=Sakurada
en-aut-mei=Yasue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsudaYui
en-aut-sei=Matsuda
en-aut-mei=Yui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakanoYasuhiro
en-aut-sei=Nakano
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakaseRyosuke
en-aut-sei=Takase
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OmuraDaisuke
en-aut-sei=Omura
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HasegawaToru
en-aut-sei=Hasegawa
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UedaKeigo
en-aut-sei=Ueda
en-aut-mei=Keigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=brain fog
kn-keyword=brain fog
en-keyword=brain natriuretic peptide (BNP)
kn-keyword=brain natriuretic peptide (BNP)
en-keyword=COVID-19
kn-keyword=COVID-19
en-keyword=fatigue
kn-keyword=fatigue
en-keyword=long COVID
kn-keyword=long COVID
en-keyword=memory impairment
kn-keyword=memory impairment
en-keyword=post-COVID-19 conditions
kn-keyword=post-COVID-19 conditions
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=16
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250215
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Behavior, behavioral syndromes, and metabolism: the effects of artificial selection for death-feigning on metabolic rate
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Death-feigning, or thanatosis, is an anti-predator behavioral strategy in many animals. Because individuals remain immobile while feigning death, individuals with longer durations of death feigning often show lower locomotor activity. Thus, metabolic rate, which is closely related to locomotor activity, may also be related to the intensity of death feigning. If there is a genetic correlation between death feigning and metabolism, metabolic rate may respond to selection on death-feigning behavior. Here, we tested for a relationship between metabolic rate and death-feigning using replicated populations of the red flour beetle (Tribolium castaneum) subjected to artificial bidirectional selection on the duration of death-feigning behavior. The results indicated that metabolic rate did not differ between populations selected for increased or decreased death feigning, although locomotor activity was significantly different between these treatments; populations selected for reduced death-feigning durations tended to be more active. These results suggest that death-feigning behavior is not genetically correlated with metabolic rate in T. castaneum.
en-copyright=
kn-copyright=
en-aut-name=MatsumuraKentarou
en-aut-sei=Matsumura
en-aut-mei=Kentarou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HoskenDavid J.
en-aut-sei=Hosken
en-aut-mei=David J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NodaTomohito
en-aut-sei=Noda
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyatakeTakahisa
en-aut-sei=Miyatake
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SharmaManmohan D.
en-aut-sei=Sharma
en-aut-mei=Manmohan D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter
kn-affil=
affil-num=3
en-affil=Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter
kn-affil=
en-keyword=anti-predator behavior
kn-keyword=anti-predator behavior
en-keyword=artificial selection
kn-keyword=artificial selection
en-keyword=death-feigning
kn-keyword=death-feigning
en-keyword=metabolic rate
kn-keyword=metabolic rate
en-keyword=personality
kn-keyword=personality
en-keyword=Tribolium
kn-keyword=Tribolium
END
start-ver=1.4
cd-journal=joma
no-vol=49
cd-vols=
no-issue=4
article-no=
start-page=563
end-page=567
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Backside Irradiation of Ultraviolet-A for Correcting Nonuniformity Error of Gafchromic XR-QA2 Films
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose: Radiochromic film is used for quality assurance and quality control of X-ray equipment in the diagnostic radiology. In addition, three-dimensional dose distribution of computed tomography (CT) is measured. To correct the nonuniformity and uncertainty of radiochromic films for dose measurement of CT, the films are preirradiated ultraviolet (UV)-A rays. There is a difference in the UV protection strength of radiochromic films. A concern exists about the effects of the UV-A irradiation intensity. We thus irradiated with UV-A rays from the backsides of the films to assess if backside irradiation was possible. Materials and Methods: Gafchromic XR-QA2 and RTQA2 were used in this study. The UV-A rays were simultaneously irradiated on the front and backsides of each film for 12 h. The yellow layer of each film was scanned and imaged. The average pixel values ± standard deviations (SDs) were compared. In the statistical analysis, a paired t-test was performed. To compare, the active-layer densities engendered by the UV-A rays. Calibration curve was created with 48 h of preirradiation of UV-A. Results: The mean pixel values ± SD for Gafchromic XR-QA2 on the front and backsides were 130.776 ± 0.812 and 81.015 ± 1.128, respectively. On the other hand, the mean pixel values ± SD for Gafchromic RTQA2 on the front and backsides were 62.299 ± 1.077 and 133.761 ± 1.365, respectively. The statistical results of the paired t-test were significantly different (P < 0.01) between both films. Fitting equation of the calibration curve is shown below. y = -390.47 ± 200 + (443.45 ± 10x80).5068 ± 0.0434. Conclusion: Based on the relationship between the sensitivity of the active layer to UV-A rays and the strength of UV protection on the surface, we concluded that backside irradiation is recommended for Gafchromic XR-QA2, and frontside irradiation is recommended for Gafchromic RTQA2.
en-copyright=
kn-copyright=
en-aut-name=TankiNobuyoshi
en-aut-sei=Tanki
en-aut-mei=Nobuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GotoSachiko
en-aut-sei=Goto
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatsudaToshizo
en-aut-sei=Katsuda
en-aut-mei=Toshizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GotandaRumi
en-aut-sei=Gotanda
en-aut-mei=Rumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotandaTatsuhiro
en-aut-sei=Gotanda
en-aut-mei=Tatsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuwanoTadao
en-aut-sei=Kuwano
en-aut-mei=Tadao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medical Radiation Technology, Shizuoka College of Medicalcare Science
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare
kn-affil=
affil-num=6
en-affil=Department of Radiology, Osaka Center for Cancer and Cardiovascular Diseases Prevention
kn-affil=
en-keyword=Backside irradiation
kn-keyword=Backside irradiation
en-keyword=computed tomography
kn-keyword=computed tomography
en-keyword=reflective type radiochromic film
kn-keyword=reflective type radiochromic film
en-keyword=ultraviolet radiation
kn-keyword=ultraviolet radiation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spatiotemporal expression pattern of dyslexia susceptibility 1 candidate 1 (DYX1C1) during rat cerebral cortex development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Developmental dyslexia (DD) is a common learning disorder with significant consequences for affected individuals. Although several candidate genes, including dyslexia susceptibility 1 candidate 1 (DYX1C1), have been implicated in dyslexia, their role in brain development remains unclear. We aimed to elucidate the spatiotemporal expression patterns of DYX1C1 during cerebral cortex development in rats.
Methods We investigated DYX1C1 expression during cerebral cortex development using rat embryos at various gestational stages (E13.5, 15.5, 17.5 and 20.5) by immunohistochemistry (n = 7 embryos/stage), quantitative real-time PCR (n = 6), and in situ hybridization (n = 11–15).
Results The DYX1C1-positive cells were predominantly located in the outermost layers of the cortical plate, particularly at E15.5. DYX1C1 mRNA expression peaked at E15.5 and subsequently declined. DYX1C1-positive cells did not co-localize with reelin-positive Cajal-Retzius cells, but co-localized with neuronal markers expressed during development, and had shorter primary cilia than DYX1C1-negative cells.
Conclusions Our findings highlight the dynamic expression of DYX1C1 in the developing cerebral cortex of rats, implicating its involvement in neurodevelopmental processes. Further investigation of the functional interactions of DYX1C1, particularly its relationship with reelin and its role in cerebrocortical and hippocampal development, may provide insights into the pathophysiology of dyslexia and neurodevelopmental disorders.
en-copyright=
kn-copyright=
en-aut-name=ZenshoKazumasa
en-aut-sei=Zensho
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IsseAika
en-aut-sei=Isse
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MisawaIchika
en-aut-sei=Misawa
en-aut-mei=Ichika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasaiKaori
en-aut-sei=Masai
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkaMakio
en-aut-sei=Oka
en-aut-mei=Makio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Psychosocial Medicine, National Center for Child Health and Development
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=99
cd-vols=
no-issue=3
article-no=
start-page=e02166-24
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250213
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A capsidless (+)RNA yadokarivirus hosted by a dsRNA virus is infectious as particles, cDNA, and dsRNA
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Capsidless yadokariviruses (members of the order Yadokarivirales) with (+)RNA genomes divert the capsid of their partner icosahedral double-stranded RNA (dsRNA) viruses in different families of the order Ghabrivirales into the replication site. A yadokarivirus, AfSV2, has been reported from a German strain of the ascomycete fungus Aspergillus foetidus coinfected by two dsRNA viruses, a victorivirus (AfSV1, family Pseudototiviridae) and an alternavirus (AfFV, family Alternaviridae). Here, we identified AfSV1 as the partner of AfSV2 in a Japanese A. foetidus strain after showing the infectiousness of AfSV2 in three forms: virus particles (heterocapsid), transforming full-length complementary DNA (cDNA), and purified replicated form (RF) dsRNA that is believed to be inactive as a translational template. Virion transfection of virus-free A. foetidus protoplasts resulted in the generation of two strains infected either by AfSV1 alone or by both AfSV1 and AfSV2. Transformants with AfSV2 full-length cDNA launched AfSV2 infection only in the presence of AfSV1, but not those with AfSV2 RNA-directed RNA polymerase mutant cDNA. The purified fractions containing AfSV2 RF dsRNA also launched infection when transfected into protoplasts infected by AfSV1. Treatment with dsRNA-specific RNase III, but not with proteinase K, S1 nuclease, or DNase I, abolished the infectivity of AfSV2 RF dsRNA. Furthermore, we confirmed the infectiousness of gel-purified AfSV2 RF dsRNA in the presence of AfSV1. Taken together, our results show the unique infectious entity of AfSV2 and the expansion of yadokarivirus partners in the family Pseudototiviridae and provide interesting evolutionary insights.
en-copyright=
kn-copyright=
en-aut-name=FadliMuhammad
en-aut-sei=Fadli
en-aut-mei=Muhammad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisanoSakae
en-aut-sei=Hisano
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NovoaGuy
en-aut-sei=Novoa
en-aut-mei=Guy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=CastónJosé R.
en-aut-sei=Castón
en-aut-mei=José R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Structure of Macromolecules, Centro Nacional Biotecnología (CNB-CSIC), Campus de Cantoblanco
kn-affil=
affil-num=4
en-affil=Department of Structure of Macromolecules, Centro Nacional Biotecnología (CNB-CSIC), Campus de Cantoblanco
kn-affil=
affil-num=5
en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=yadokarivirus
kn-keyword=yadokarivirus
en-keyword=hetero-encapsidation
kn-keyword=hetero-encapsidation
en-keyword=partner dsRNA virus
kn-keyword=partner dsRNA virus
en-keyword=fungal virus
kn-keyword=fungal virus
en-keyword=Aspergillus foetidus
kn-keyword=Aspergillus foetidus
en-keyword=neo-lifestyle
kn-keyword=neo-lifestyle
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=3
article-no=
start-page=1007
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250124
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LRP4 and Agrin Are Modulated by Cartilage Degeneration and Involved in β-Catenin Signaling in Human Articular Chondrocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated the roles of low-density lipoprotein receptor-related protein (LRP) 4 and its ligand Agrin in the pathophysiology of cartilage degeneration. Immunohistochemical analysis of human normal articular cartilage and cartilage tissues from patients with osteoarthritis (OA) obtained during surgery of the knee joint showed marked LRP4 expression in the early stages of OA, which then decreased with cartilage degeneration, whereas Agrin was consistently increased with cartilage degeneration. In normal human articular chondrocytes (NHACs), mild cyclic tensile strain (CTS) (0.5 Hz, 5% elongation, 2 h) increased the expression of LRP4 and aggrecan (ACAN), while intense CTS (0.5 Hz, 10% elongation, 6 h) increased the expression of Agrin without affecting LRP4 expression. Treatment with recombinant human (rh) Agrin downregulated the mRNA expression of LRP4 and ACAN, but upregulated the expression of LRP5/6, SRY-box transcription factor 9 (SOX9), Runt-related transcription factor 2 (RUNX2), and a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4). Immunocytochemistry and Western blot analysis showed that rhAgrin treatment upregulated the expression of β-catenin and SOX9. Agrin knockdown by siAGRN transfection partially reduced the nuclear protein expression of β-catenin, which was increased with intense CTS. LRP4 knockdown by siLRP4 transfection increased the expression of LRP5/6, SOX9, RUNX2, ADAMTS-4, and Agrin. These results suggested that intense CTS increases the expression of Agrin, which might interfere with the role of LRP4 in the inhibition of LRP5/6 and their downstream β-catenin signaling, leading to cartilage degeneration.
en-copyright=
kn-copyright=
en-aut-name=NaniwaShuichi
en-aut-sei=Naniwa
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishidaKeiichiro
en-aut-sei=Nishida
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NasuYoshihisa
en-aut-sei=Nasu
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HottaYoshifumi
en-aut-sei=Hotta
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimizuNoriyuki
en-aut-sei=Shimizu
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IchikawaChinatsu
en-aut-sei=Ichikawa
en-aut-mei=Chinatsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LinDeting
en-aut-sei=Lin
en-aut-mei=Deting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaNoriaki
en-aut-sei=Otsuka
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Locomotive Pain Center, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=4
en-affil=Locomotive Pain Center, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Locomotive Pain Center, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Sayo Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Orthopaedic Surgery, Section of Medicine, Division of Medicine, Dentistry and Pharmaceutical Sciences, Graduate School of Medicine, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Orthopaedic Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=osteoarthritis
kn-keyword=osteoarthritis
en-keyword=chondrocyte
kn-keyword=chondrocyte
en-keyword=mechanical stress
kn-keyword=mechanical stress
en-keyword=LRP4
kn-keyword=LRP4
en-keyword=Agrin
kn-keyword=Agrin
en-keyword=β-catenin
kn-keyword=β-catenin
en-keyword=SOX9
kn-keyword=SOX9
END
start-ver=1.4
cd-journal=joma
no-vol=236
cd-vols=
no-issue=
article-no=
start-page=74
end-page=81
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characteristics of porcine oocyte-cumulus complexes derived from various sizes of antral follicles and classified by brilliant cresyl blue staining, and developmental competence of the oocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The present study sought to determine the characteristics of porcine oocyte-cumulus complexes (OCCs) derived from very small and small antral follicles (with less than 1 mm and 1–3 mm in diameter, respectively; VSF and SF) in comparison with controls from medium ones (with 3–6 mm in diameter; MF). Additionally, the present study examined the utility of brilliant cresyl blue (BCB) staining for assessing these OCCs. The incidence of BCB- oocytes in VSF- and SF-derived OCCs was higher than that in MF-derived OCCs. Although the meiotic and developmental competences of BCB+ oocytes from MF were superior to those from VSF and SF, blastocysts were successfully obtained from BCB+ oocytes even derived from VSF. The mean numbers of both total and viable cumulus cells surrounding an oocyte were significantly affected not only by the origin of the OCCs, but also by the BCB status of the oocytes (largest in MF-derived OCCs containing BCB+ oocytes). Although the outer and inner diameters of zona pellucida were affected by the origin of OCCs and the BCB status of oocytes (largest in MF-derived oocytes), the ooplasmic diameter of BCB+ oocytes did not differ among those derived from VSF, SF, and MF. Regardless of the BCB status, the transcriptional levels of G6PD and TKT in cumulus cells decreased during follicular development from VSF to MF, whereas the RPIA mRNA level in cumulus cells of MF-derived BCB+ OCCs was lower than in the others. These results underscore the utility of BCB staining for selecting MF-, SF-, and even VSF-derived OCCs containing oocytes with relatively higher meiotic and developmental competences, as well as the importance of having a sufficient number of healthy cumulus cells expressing genes related to the pentose phosphate pathway at lower levels.
en-copyright=
kn-copyright=
en-aut-name=VanPhong Ngoc
en-aut-sei=Van
en-aut-mei=Phong Ngoc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DoSon Quang
en-aut-sei=Do
en-aut-mei=Son Quang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FonsekaWanniarachchige Tharindu Lakshitha
en-aut-sei=Fonseka
en-aut-mei=Wanniarachchige Tharindu Lakshitha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WakaiTakuya
en-aut-sei=Wakai
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FunahashiHiroaki
en-aut-sei=Funahashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=1
article-no=
start-page=vvae044
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The effects of soybeans and its derivatives on oral diseases: a narrative review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Soybean is a widely utilized protein source that originated in China and has been associated with preventing and treating various diseases. Soy protein has been found to inhibit fat accumulation effectively, and soybeans contain isoflavones, saponins, phytic acid, and other substances with preventive and therapeutic effects on heart disease, cancer, and diabetes. Furthermore, processed soybean products, such as Avocado-Soybean unsaponifiable, Tempeh, and Bowman-Birk inhibitor, have demonstrated health benefits. These products have been shown to have antibacterial, antioxidant, and anticancer effects in oral diseases. Numerous experiments have provided evidence of the antibacterial, antioxidant, and anticancer effects of polyunsaturated fatty acids, isoflavones, and soybean polypeptides. This comprehensive review assesses the relationship and mechanism of soybeans and their derivatives on oral diseases, providing valuable insights into their prevention and treatment.
en-copyright=
kn-copyright=
en-aut-name=CanyanKuang
en-aut-sei=Canyan
en-aut-mei=Kuang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AriasZulema Rosalia
en-aut-sei=Arias
en-aut-mei=Zulema Rosalia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Pathophysiology—Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology—Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology—Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pathophysiology—Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology—Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=soybean
kn-keyword=soybean
en-keyword=soy products
kn-keyword=soy products
en-keyword=oral diseases
kn-keyword=oral diseases
en-keyword=dental application
kn-keyword=dental application
en-keyword=antibacterial effect
kn-keyword=antibacterial effect
en-keyword=antioxidant
kn-keyword=antioxidant
en-keyword=anticancer
kn-keyword=anticancer
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of caffeine on the longevity and locomotion activity of the common green bottle fly, Lucilia sericata (Diptera: Calliphoridae)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The common green bottle fly, Lucilia sericata (Meigen) (Diptera: Calliphoridae), is a promising and useful managed pollinator for greenhouse agricultural crops. The fly can pollinate at lower and higher temperatures than European honeybee. However, management of the longevity of pollinators is important for growers using greenhouses. Previous studies using other insects showed that caffeine affects insect longevity and behaviors. For instance, European honeybee live longer and have increased memory after caffeine consumption. How caffeine affects the longevity and behavior of pollinators is worth investigating because it can affect pollinator’s behavior, extend longevity, or be an insecticide against pollinators. In the present study, therefore, the longevity and locomotion of L. sericata were investigated when they were given different caffeine concentrations. First, the longevity of L. sericata with five different caffeine concentrations was compared to the control. The results showed that higher concentrations of caffeine (2%, 1%, and 0.5%) significantly decreased the life span compared to lower concentrations (0.05% and 0.01%). Second, the locomotion activities of L. sericata were examined at those two caffeine concentrations with treated and control male and female flies utilizing a Drosophila Activity Monitor (DAM). Treatment with 0.05% caffeine dramatically reduced locomotion, but treatment of 0.01% caffeine did not. We also compared lipid concentrations of flies: flies treated with 0.05% caffeine had a lower lipid concentration compared to flies treated with 0% and 0.01% caffeine. These results indicate that caffeine had negative effects on the longevity and locomotion activities of the pollinator L. sericata in laboratory conditions.
en-copyright=
kn-copyright=
en-aut-name=NaingShine Shane
en-aut-sei=Naing
en-aut-mei=Shine Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiokaHaruna
en-aut-sei=Fujioka
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuuraTeruhisa
en-aut-sei=Matsuura
en-aut-mei=Teruhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyatakeTakahisa
en-aut-sei=Miyatake
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Caffeine
kn-keyword=Caffeine
en-keyword=Life span
kn-keyword=Life span
en-keyword=Locomotor activity
kn-keyword=Locomotor activity
en-keyword=Pollinator
kn-keyword=Pollinator
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=
article-no=
start-page=103026
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The antimalarial activity of transdermal N-89 mediated by inhibiting ERC gene expression in P. Berghei-infected mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Through studies of new antimalarial drugs, we identified 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) as a potential drug candidate. Here, we analyzed the antimalarial action of a transdermal formulation (td) of N-89, designed for easy use by children, using Plasmodium berghei-infected mice as a model for malaria patients. The td N-89 or artemisinin (ART) formulation was transdermally administered to P. berghei-infected mice with 0.2–0.4 % parasitemia, twice daily for four days, at an effective dose of 90 % for malaria. Parasitemia was decreased in td N-89 and td ART groups during the drug treatment; then, three of the eight mice in td N-89 group were completely cured without relapse. Additionally, abnormal trophozoites in td N-89 group were observed 8 h after administration and increased up to 24 h. To study the change in endoplasmic reticulum-resident calcium-binding protein (ERC) gene expression with td N-89, we investigated the gene expression of P. berghei ERC (PbERC) after td N-89 treatment. PbERC gene expression was increased time-dependently in control group, and was statistically decreased at 4 and 8 h and then increased similar to that of control group at 12 h in td ART group. In contrast, the expression in td N-89 group was almost steady starting from 0 h. We also studied parasite egress-related genes expression after td N-89 treatment, plasmepsin X, subtilisin-like protease 1 and merozoite surface protein 1, were suppressed at 12 h compared to control group. These results suggest that N-89 affects function of endoplasmic reticulum via regulating gene suppression and subsequently parasite growth is inhibited.
en-copyright=
kn-copyright=
en-aut-name=MatsumoriHiroaki
en-aut-sei=Matsumori
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DinhThi Quyen
en-aut-sei=Dinh
en-aut-mei=Thi Quyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyoshiShin-ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoritaMasayuki
en-aut-sei=Morita
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimHye-Sook
en-aut-sei=Kim
en-aut-mei=Hye-Sook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Research Center for Intestinal Health Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Anatomy, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Synthetic antimalarial endoperoxide
kn-keyword=Synthetic antimalarial endoperoxide
en-keyword=Transdermal N-89
kn-keyword=Transdermal N-89
en-keyword=Artemisinin
kn-keyword=Artemisinin
en-keyword=In vivo
kn-keyword=In vivo
en-keyword=Abnormal trophozoite
kn-keyword=Abnormal trophozoite
en-keyword=Endoplasmic reticulum-resident calcium-binding protein (ERC)
kn-keyword=Endoplasmic reticulum-resident calcium-binding protein (ERC)
en-keyword=Parasite egress-related gene
kn-keyword=Parasite egress-related gene
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=24
article-no=
start-page=4606
end-page=4620
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nano/microparticle-based tough and recyclable polymers toward a sustainable society
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=By virtue of their unique properties, polymer nano/microparticles constitute important building blocks for the construction of functional nanomaterials. Although intense research efforts in this field have laid the foundation for the applications of polymer nano/microparticle-based latex films, cutting-edge innovations in the recycling of polymer materials are still required for the realization of a sustainable society. This feature article reviews our recent attempts to develop the applications of polymer nano/microparticles in the context of a circular society on the basis of the precise synthesis of single nano/microparticles and multiscale structural analysis.
en-copyright=
kn-copyright=
en-aut-name=SasakiYuma
en-aut-sei=Sasaki
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishizawaYuichiro
en-aut-sei=Nishizawa
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurehaTakuma
en-aut-sei=Kureha
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=2
article-no=
start-page=376
end-page=382
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250205
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A case of pancreatic ductal adenocarcinoma growing within the pancreatic duct mimicking an intraductal tubulopapillary neoplasm
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We herein report a case of pancreatic ductal adenocarcinoma (PDAC) that developed within the pancreatic duct and was initially diagnosed as an intraductal tubulopapillary neoplasm (ITPN). A 76-year-old man presented with weight loss and main pancreatic duct dilation. The imaging studies revealed a 30-mm hypovascular tumor within the main duct of the pancreatic head. An endoscopic examination with a biopsy revealed high-grade atypical epithelial cells with immunostaining patterns suggestive of ITPN. Following robot-assisted pancreaticoduodenectomy, postoperative pathology revealed conflicting features: nodular/cribriform infiltrations typical of ITPN and non-lobular replacement with scattered infiltrations characteristic of PDAC. A comprehensive genomic profiling test detected KRAS and TP53 mutations, leading to the final diagnosis of PDAC (fT3N1aM0, stage IIB). The patient received adjuvant S-1 chemotherapy and remained recurrence-free for 15 months post-surgery. This case highlights the diagnostic challenges of differentiating intraductal pancreatic tumors and demonstrates the utility of integrating genetic testing with conventional diagnostic modalities for an accurate diagnosis and appropriate treatment selection.
en-copyright=
kn-copyright=
en-aut-name=SatoRyosuke
en-aut-sei=Sato
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UkaMayu
en-aut-sei=Uka
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishidaKenji
en-aut-sei=Nishida
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Pathology, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Pathology, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=Pancreatic intraductal neoplasms
kn-keyword=Pancreatic intraductal neoplasms
en-keyword=Pancreatic carcinoma
kn-keyword=Pancreatic carcinoma
en-keyword=Intraductal tubulopapillary neoplasm
kn-keyword=Intraductal tubulopapillary neoplasm
en-keyword=Genetic testing
kn-keyword=Genetic testing
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=59
end-page=64
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Rare Case of Compression Neuritis due to Intraorbital Arteriovenous Fistula (IOAVF) Mimicking Retrobulbar Optic Neuritis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Intraorbital arteriovenous fistulas (IOAVFs) are rare vascular abnormalities. We describe a case of an IOAVF featuring a direct shunt between the accessory meningeal artery and the superior ophthalmic artery. A 55-year-old woman presented with a 1-month history of visual impairment in her right eye, and magnetic resonance imaging (MRI) revealed optic neuritis-like findings. Steroid pulse therapy temporarily resolved visual impairment. However, 1 month later, she experienced decreased visual acuity, ocular conjunctival hyperemia, edema, and a pulsatile murmur. Contrast-enhanced MRI and digital subtraction angiography revealed compression optic neuropathy due to an IOAVF. Following successful treatment with transarterial embolization, her symptoms disappeared.
en-copyright=
kn-copyright=
en-aut-name=MinakawaShun
en-aut-sei=Minakawa
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiranoMasayuki
en-aut-sei=Hirano
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiKazuya
en-aut-sei=Takahashi
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImamuraYuta
en-aut-sei=Imamura
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeTakashi
en-aut-sei=Watanabe
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Japanese Red Cross Society Himeji Hospital
kn-affil=
en-keyword=intraorbital arteriovenous fistula
kn-keyword=intraorbital arteriovenous fistula
en-keyword=compressive optic neuropathy
kn-keyword=compressive optic neuropathy
en-keyword=accessory meningeal artery
kn-keyword=accessory meningeal artery
en-keyword=superior ophthalmic vein
kn-keyword=superior ophthalmic vein
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=51
end-page=58
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photoinitiators Induce Histamine Production in Human Mast Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photoinitiators are used in the manufacture of many daily products, and may produce harmful effects due to their cytotoxicity. They have also been detected in human serum. Here, we investigated the histamine-producing effects in HMC-1 cells and the inflammatory cytokine release effects in RAW264 cells for four photoinitiators: 1-hydroxycyclohexyl phenyl ketone; 2-isopropylthioxanthone; methyl 2-benzoylbenzoate; and 2-methyl-4´-(methylthio)-2-morpholinopropiophenone. All four promoted histamine production in HMC-1 cells; however, they did not significantly affect the release of inflammatory cytokines in RAW264 cells. These findings suggest that these four photoinitiators induce inflammatory cytokine-independent histamine production, potentially contributing to histamine-mediated chronic inflammation in vitro.
en-copyright=
kn-copyright=
en-aut-name=MiuraTaro
en-aut-sei=Miura
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawasakiYoichi
en-aut-sei=Kawasaki
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SendoToshiaki
en-aut-sei=Sendo
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Laboratory of Clinical Pharmacology and Therapeutics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
kn-affil=
affil-num=3
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=photoinitiator
kn-keyword=photoinitiator
en-keyword=ink
kn-keyword=ink
en-keyword=injection
kn-keyword=injection
en-keyword=histamine
kn-keyword=histamine
en-keyword=inflammation
kn-keyword=inflammation
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=3
article-no=
start-page=96
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cancer-associated fibroblasts promote pro-tumor functions of neutrophils in pancreatic cancer via IL-8: potential suppression by pirfenidone
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background The mechanisms by which neutrophils acquire pro-tumor properties remain poorly understood. In pancreatic cancer, cancer-associated fibroblasts (CAFs) may interact with neutrophils, directing them to promote tumor progression.
Methods To validate the association between CAFs and neutrophils, the localization of neutrophils was examined in clinically resected pancreatic cancer specimens. CAFs were produced by culturing in cancer-conditioned media, and the effects of these CAFs on neutrophils were examined. In vitro migration and invasion assays assess the effect of CAF-activated neutrophils on cancer cells. The factors secreted by the activated neutrophils were also explored. Finally, pirfenidone (PFD) was tested to determine whether it could suppress the pro-tumor functions of activated neutrophils.
Results In pancreatic cancer specimens, neutrophils tended to co-localize with IL-6-positive CAFs. Neutrophils co-cultured with CAFs increased migratory capacity and prolonged life span. CAF-affected neutrophils enhance the migratory and invasive activities of pancreatic cancer cells. IL-8 is the most upregulated cytokine secreted by the neutrophils. PFD suppresses IL-8 secretion from CAF-stimulated neutrophils and mitigates the malignant traits of pancreatic cancer cells.
Conclusion CAFs activate neutrophils and enhance the malignant phenotype of pancreatic cancer. The interactions between cancer cells, CAFs, and neutrophils can be disrupted by PFD, highlighting a potential therapeutic approach.
en-copyright=
kn-copyright=
en-aut-name=YagiTomohiko
en-aut-sei=Yagi
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NogiShohei
en-aut-sei=Nogi
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaniguchiAtsuki
en-aut-sei=Taniguchi
en-aut-mei=Atsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshimotoMasashi
en-aut-sei=Yoshimoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuemoriKanto
en-aut-sei=Suemori
en-aut-mei=Kanto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagaiYasuo
en-aut-sei=Nagai
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujitaShuto
en-aut-sei=Fujita
en-aut-mei=Shuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Departments of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Cancer-associated fibroblasts
kn-keyword=Cancer-associated fibroblasts
en-keyword=Neutrophil
kn-keyword=Neutrophil
en-keyword=Anti-fibrotic agent
kn-keyword=Anti-fibrotic agent
en-keyword=Pirfenidone
kn-keyword=Pirfenidone
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=21
end-page=30
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prediction of Prostate Cancer Grades Using Radiomic Features
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] ≥ 8) from intermediate or low-grade (GS < 8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients.
en-copyright=
kn-copyright=
en-aut-name=YamamotoYasuhiro
en-aut-sei=Yamamoto
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaraguchiTakafumi
en-aut-sei=Haraguchi
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsudaKaori
en-aut-sei=Matsuda
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkazakiYoshio
en-aut-sei=Okazaki
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimotoShin
en-aut-sei=Kimoto
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanjiNozomu
en-aut-sei=Tanji
en-aut-mei=Nozomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoAtsushi
en-aut-sei=Matsumoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MimuraHidefumi
en-aut-sei=Mimura
en-aut-mei=Hidefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiology, Houshasen Daiichi Hospital
kn-affil=
affil-num=2
en-affil=Department of Advanced Biomedical Imaging and Informatics, St. Marianna University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Radiology, Houshasen Daiichi Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiology, Houshasen Daiichi Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Houshasen Daiichi Hospital
kn-affil=
affil-num=6
en-affil=Department of Urology, Houshasen Daiichi Hospital
kn-affil=
affil-num=7
en-affil=Department of Urology, Houshasen Daiichi Hospital
kn-affil=
affil-num=8
en-affil=Department of Medical Information and Communication Technology Research, St. Marianna University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Radiology, St. Marianna University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=prostate cancer
kn-keyword=prostate cancer
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=prostate Imaging-Reporting and Data System
kn-keyword=prostate Imaging-Reporting and Data System
en-keyword=radiomics
kn-keyword=radiomics
en-keyword=Gleason score
kn-keyword=Gleason score
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=7
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Endothelial Cell Polarity in Health and Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front–rear, apical–basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes.
en-copyright=
kn-copyright=
en-aut-name=ThihaMoe
en-aut-sei=Thiha
en-aut-mei=Moe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HikitaTakao
en-aut-sei=Hikita
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakayamaMasanori
en-aut-sei=Nakayama
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=blood vessel
kn-keyword=blood vessel
en-keyword=endothelial cell
kn-keyword=endothelial cell
en-keyword=cell polarity
kn-keyword=cell polarity
en-keyword=atherosclerosis
kn-keyword=atherosclerosis
en-keyword=cancer
kn-keyword=cancer
END
start-ver=1.4
cd-journal=joma
no-vol=69
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=9
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationships between tilt angles of rectus muscles and positions of rectus muscle pulleys in patients with sagging eye syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose To examine the relationship between the rectus muscle (RM) angle and RM pulley displacement in patients with sagging eye syndrome (SES) without myopia.
Study design Retrospective cross-sectional case series.
Methods High-resolution quasi-coronal magnetic resonance imaging (MRI) data from 20 orbits of ten Japanese patients with SES but without high myopia were analyzed. The patients had no abduction deficiency. The RM angles were measured between the major axes of the horizontal and vertical RMs relative to the vertical and horizontal planes, respectively. The positions of the RM pulleys relative to the center of the globe were analyzed as previously described.
Results The mean age of the patients was 75.8 ± 4.5 years (standard deviation). The average axial length was 23.6 ± 0.6 mm. The lateral rectus (LR) muscle angle (22 ± 6°) had moderate negative correlations with the inferior displacement of the inferior rectus (IR), superior rectus (SR), and LR pulleys (r =– 0.63,– 0.45, and– 0.45, respectively); however, no change was observed in the medial rectus (MR) pulley (r =– 0.41). No correlations were found between the angles of the SR (4 ± 8°), IR (– 13 ± 8°), and MR (– 1 ± 6°) muscles and the positions of the RM pulleys.
Conclusion Given the correlation between increased LR muscle angle and inferior displacement of adjacent RM pulleys in SES, the LR muscle angle may serve as a diagnostic clue, even when inferior displacement is not identifiable on MRI. Further confirmation in larger studies is warranted.
en-copyright=
kn-copyright=
en-aut-name=KonoReika
en-aut-sei=Kono
en-aut-mei=Reika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HamasakiIchiro
en-aut-sei=Hamasaki
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KishimotoFumiko
en-aut-sei=Kishimoto
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShibataKiyo
en-aut-sei=Shibata
en-aut-mei=Kiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MorisawaShin
en-aut-sei=Morisawa
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Division of Ophthalmology, Ibara City Hospital, Ibara City
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Orbital pulley
kn-keyword=Orbital pulley
en-keyword=Sagging eye syndrome
kn-keyword=Sagging eye syndrome
en-keyword=Distance esotropia
kn-keyword=Distance esotropia
en-keyword=Cyclovertical strabismus
kn-keyword=Cyclovertical strabismus
en-keyword=Aging
kn-keyword=Aging
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=35
article-no=
start-page=e2320189121
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240821
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Somatic mutations in tumor-infiltrating lymphocytes impact on antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors (ICIs) exert clinical efficacy against various types of cancers by reinvigorating exhausted CD8+ T cells that can expand and directly attack cancer cells (cancer-specific T cells) among tumor-infiltrating lymphocytes (TILs). Although some reports have identified somatic mutations in TILs, their effect on antitumor immunity remains unclear. In this study, we successfully established 18 cancer-specific T cell clones, which have an exhaustion phenotype, from the TILs of four patients with melanoma. We conducted whole-genome sequencing for these T cell clones and identified various somatic mutations in them with high clonality. Among the somatic mutations, an SH2D2A loss-of-function frameshift mutation and TNFAIP3 deletion could activate T cell effector functions in vitro. Furthermore, we generated CD8+ T cell–specific Tnfaip3 knockout mice and showed that Tnfaip3 function loss in CD8+ T cell increased antitumor immunity, leading to remarkable response to PD-1 blockade in vivo. In addition, we analyzed bulk CD3+ T cells from TILs in additional 12 patients and identified an SH2D2A mutation in one patient through amplicon sequencing. These findings suggest that somatic mutations in TILs can affect antitumor immunity and suggest unique biomarkers and therapeutic targets.
en-copyright=
kn-copyright=
en-aut-name=MukoharaFumiaki
en-aut-sei=Mukohara
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IwataKazuma
en-aut-sei=Iwata
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UenoToshihide
en-aut-sei=Ueno
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IkedaHideki
en-aut-sei=Ikeda
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawaseKatsushige
en-aut-sei=Kawase
en-aut-mei=Katsushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SaekiYuka
en-aut-sei=Saeki
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamashitaKazuo
en-aut-sei=Yamashita
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KawaharaYu
en-aut-sei=Kawahara
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraYasuhiro
en-aut-sei=Nakamura
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WatanabeHiroko
en-aut-sei=Watanabe
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=DansakoHiromichi
en-aut-sei=Dansako
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KawamuraTatsuyoshi
en-aut-sei=Kawamura
en-aut-mei=Tatsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SuzukiYutaka
en-aut-sei=Suzuki
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=HondaHiroaki
en-aut-sei=Honda
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ManoHiroyuki
en-aut-sei=Mano
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Cellular Signaling, National Cancer Center Research Institute
kn-affil=
affil-num=9
en-affil=Division of Cell Therapy, Chiba Cancer Research Institute
kn-affil=
affil-num=10
en-affil=Division of Cell Therapy, Chiba Cancer Research Institute
kn-affil=
affil-num=11
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=KOTAI Biotechnologies, Inc.
kn-affil=
affil-num=14
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=16
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=17
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=18
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Dermatology, University of Yamanashi
kn-affil=
affil-num=20
en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa
kn-affil=
affil-num=21
en-affil=Department of Pathology, Tokyo Women's Medical University
kn-affil=
affil-num=22
en-affil=Division of Cellular Signaling, National Cancer Center Research Institute
kn-affil=
affil-num=23
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University
kn-affil=
affil-num=24
en-affil=Division of Cell Therapy, Chiba Cancer Research Institute
kn-affil=
affil-num=25
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=cancer immunology
kn-keyword=cancer immunology
en-keyword=somatic mutation
kn-keyword=somatic mutation
en-keyword=T cell
kn-keyword=T cell
en-keyword=tumor-infiltrating lymphocytes
kn-keyword=tumor-infiltrating lymphocytes
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=2485
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250120
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cesarean delivery on child health and development in Japanese nationwide birth cohort
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The long-term effects of cesarean delivery (CD) on child health and development remain controversial. This study aimed to investigate these effects using an outcome-wide approach in a Japanese context, where perinatal mortality rates are among the world's lowest. We analyzed data from 2,114 children in a nationwide Japanese birth cohort, linking the 21st Century Longitudinal Survey of Newborns with the Perinatal Research Network database. We examined associations between CD and various health and developmental outcomes up to 9 years of age, including hospitalizations, obesity, and developmental milestones. After adjusting for potential confounders, CD was not significantly associated with most outcomes, including all-cause hospitalization (adjusted risk ratio 1.25, 95% CI 0.997-1.56), obesity at 5.5 and 9 years, and various developmental milestones. Subgroup analyses for multiple births and preterm infants showed some differences in point estimates, but were limited by small sample sizes. CD was not significantly associated with adverse long-term child health or developmental outcomes in this Japanese cohort. These findings provide reassurance regarding CD safety when medically indicated in advanced perinatal care settings. Further research with larger samples and longer follow-up is needed, especially for specific subgroups.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoNaomi
en-aut-sei=Matsumoto
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuiTakashi
en-aut-sei=Mitsui
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TamaiKei
en-aut-sei=Tamai
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirotaTomoya
en-aut-sei=Hirota
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Division of Neonatology, NHO Okayama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Cesarean delivery
kn-keyword=Cesarean delivery
en-keyword=Delivery methods
kn-keyword=Delivery methods
en-keyword=Long-term outcome
kn-keyword=Long-term outcome
en-keyword=Child development
kn-keyword=Child development
en-keyword=Outcome-wide approach
kn-keyword=Outcome-wide approach
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=2
article-no=
start-page=e70168
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crowned Dens Syndrome Triggered by Dental Treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Crowned dens syndrome (CDS) is an important yet often overlooked cause of fever and neck pain, frequently leading to unnecessary examinations and treatments and misdiagnosis as infectious diseases or rheumatic diseases. The mechanism of an acute attack of CDS is not clarified completely, while it is considered that severe systemic stress can trigger inflammation caused by calcium pyrophosphate crystals. We describe a case of CDS triggered by localized physical stress to the neck and emphasize the importance of considering this condition in cases of fever and neck pain following dental treatment.
en-copyright=
kn-copyright=
en-aut-name=MoritaSatoru
en-aut-sei=Morita
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtsukaYuki
en-aut-sei=Otsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MasudaYohei
en-aut-sei=Masuda
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SoejimaYoshiaki
en-aut-sei=Soejima
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=calcium pyrophosphate crystal deposition disease
kn-keyword=calcium pyrophosphate crystal deposition disease
en-keyword=crowned dens syndrome
kn-keyword=crowned dens syndrome
en-keyword=dental treatment
kn-keyword=dental treatment
en-keyword=fever
kn-keyword=fever
en-keyword=neck pain
kn-keyword=neck pain
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=1
article-no=
start-page=e70062
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250202
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Trends in uptake of cancer screening among people with severe mental illness before and after the COVID-19 pandemic in Japan: A repeated cross-sectional study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aim: The aim of this study was to investigate trends in cancer screening participation among people with severe mental illness (PSMI) from periods before and after the COVID-19 pandemic.
Methods: In this repeated cross-sectional study, we used anonymized datasets on municipal cancer screening participation among PSMI in Okayama City. The data covered fiscal year (FY) 2018 to FY2022; we used the municipal cancer screening database and Medical Payment for Services and Supports for Persons with Disabilities. PSMI were defined as those with schizophrenia or related psychotic disorders (F20-29) or bipolar disorder (F30 or F31), identified using International Classification of Diseases, Tenth Revision, codes. The analysis included men and women aged 40-69 years for colorectal and lung cancer screening; men and women aged 50-69 years for gastric cancer screening; women aged 40-69 years for breast cancer screening; and women aged 20-69 years for cervical cancer screening. Municipal cancer screening rates among PSMI were calculated for each FY.
Results: For all cancer types, cancer screening rates for PSMI in FY2020 (colorectal: 9.0%; lung: 11.6%; gastric: 4.9%; breast: 6.2%; and cervical: 6.1%) were lower than the rates in FY2019 (11.5%, 14.0%, 6.5%, 9.3%, and 8.3%, respectively). In FY2022, the rates (9.9%, 12.9%; 5.3%; 8.0%, and 6.9%, respectively) recovered, but remained low.
Conclusion: This study showed that cancer screening rates among PSMI were very low, both before and after the COVID-19 pandemic. Efforts to encourage participation in cancer screening in this population are urgently needed.
en-copyright=
kn-copyright=
en-aut-name=YamadaYuto
en-aut-sei=Yamada
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraMasaki
en-aut-sei=Fujiwara
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakayaNaoki
en-aut-sei=Nakaya
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OtsukiKoji
en-aut-sei=Otsuki
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimazuTaichi
en-aut-sei=Shimazu
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimoriMaiko
en-aut-sei=Fujimori
en-aut-mei=Maiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HinotsuShiro
en-aut-sei=Hinotsu
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagoshiKiwamu
en-aut-sei=Nagoshi
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UchitomiYosuke
en-aut-sei=Uchitomi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=InagakiMasatoshi
en-aut-sei=Inagaki
en-aut-mei=Masatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Tohoku Medical Megabank Organization, Tohoku University
kn-affil=
affil-num=4
en-affil=Department of Psychiatry, Faculty of Medicine, Shimane University
kn-affil=
affil-num=5
en-affil=Division of Behavioral Sciences, National Cancer Center Institute for Cancer Control, National Cancer Center
kn-affil=
affil-num=6
en-affil=Division of Survivorship Research, National Cancer Center Institute for Cancer Control, National Cancer Center
kn-affil=
affil-num=7
en-affil=Department of Biostatistics and Data Management, Sapporo Medical University
kn-affil=
affil-num=8
en-affil=Department of Environmental Medicine and Public Health, Faculty of Medicine, Shimane University
kn-affil=
affil-num=9
en-affil=Department of Cancer Survivorship and Digital Medicine, The Jikei University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Psychiatry, Faculty of Medicine, Shimane University
kn-affil=
en-keyword=bipolar disorder
kn-keyword=bipolar disorder
en-keyword=cancer screening
kn-keyword=cancer screening
en-keyword=COVID-19
kn-keyword=COVID-19
en-keyword=healthcare disparities
kn-keyword=healthcare disparities
en-keyword=schizophrenia
kn-keyword=schizophrenia
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=RP99858
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structural basis for molecular assembly of fucoxanthin chlorophyll a/c-binding proteins in a diatom photosystem I supercomplex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein-protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms.
en-copyright=
kn-copyright=
en-aut-name=KatoKoji
en-aut-sei=Kato
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakajimaYoshiki
en-aut-sei=Nakajima
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=XingJian
en-aut-sei=Xing
en-aut-mei=Jian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KumazawaMinoru
en-aut-sei=Kumazawa
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaHaruya
en-aut-sei=Ogawa
en-aut-mei=Haruya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShenJian-Ren
en-aut-sei=Shen
en-aut-mei=Jian-Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IfukuKentaro
en-aut-sei=Ifuku
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagaoRyo
en-aut-sei=Nagao
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=4
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Agriculture, Kyoto University
kn-affil=
affil-num=8
en-affil=Faculty of Agriculture, Shizuoka University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=1
article-no=
start-page=e70073
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250129
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficacy and safety of endoscopic ultrasonography-guided radiofrequency ablation of small pancreatic neuroendocrine neoplasms: A prospective, pilot study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives: Endoscopic ultrasonography (EUS)-guided radiofrequency ablation has recently been introduced as one of the management strategies for small pancreatic neuroendocrine neoplasms (PNENs). However, prospective data on its safety and efficacy remain limited.
Methods: This prospective pilot study was conducted at Okayama University Hospital from May 2023 to December 2024. Patients with grade 1 PNENs <= 15 mm, confirmed by EUS-guided fine-needle aspiration, were included. The primary endpoint was safety (adverse events [AEs] evaluated according to the 2010 guidelines of the American Society for Gastrointestinal Endoscopy. Severe AEs were defined as moderate or higher in American Society for Gastrointestinal Endoscopy grading and grade >= 3. Secondary endpoints included efficacy (complete response on contrast-enhanced computed tomography at 1 and 6 months), treatment details, device failure, diabetes mellitus exacerbation, and overall survival at 6 months.
Results: Five patients with non-functional PNENs (median age: 64 years; median tumor size: 10 mm) were treated. AEs occurred in two patients (40%, 2/5), although none was severe. Both patients developed asymptomatic pseudocysts, one experienced mild pancreatitis, and both resolved with conservative treatment. The complete response rates on contrast-enhanced computed tomography at one and 6 months were 100%. The median procedure time was 16 min without any device failure, and the median hospitalization was 5 days. None of the patients developed new-onset or worsening diabetes mellitus. The 6-month overall survival rate was 100%.
Conclusion: EUS-guided radiofrequency ablation demonstrated a high complete response rate with no severe AEs in this pilot study, suggesting a minimally invasive option for small, low-grade PNENs (jRCTs062230014).
en-copyright=
kn-copyright=
en-aut-name=MatsumotoKazuyuki
en-aut-sei=Matsumoto
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UchidaDaisuke
en-aut-sei=Uchida
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakeuchiYasuto
en-aut-sei=Takeuchi
en-aut-mei=Yasuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatoHironari
en-aut-sei=Kato
en-aut-mei=Hironari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiiYuki
en-aut-sei=Fujii
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HaradaKei
en-aut-sei=Harada
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HattoriNao
en-aut-sei=Hattori
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SatoRyosuke
en-aut-sei=Sato
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ObataTaisuke
en-aut-sei=Obata
en-aut-mei=Taisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsumiAkihiro
en-aut-sei=Matsumi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MiyamotoKazuya
en-aut-sei=Miyamoto
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HoriguchiShigeru
en-aut-sei=Horiguchi
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TsutsumiKoichiro
en-aut-sei=Tsutsumi
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HaradaRyo
en-aut-sei=Harada
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiiMasakuni
en-aut-sei=Fujii
en-aut-mei=Masakuni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=16
en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital
kn-affil=
affil-num=17
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=ablation techniques
kn-keyword=ablation techniques
en-keyword=endosonography
kn-keyword=endosonography
en-keyword=neuroendocrine tumors
kn-keyword=neuroendocrine tumors
en-keyword=pancreatic neoplasms
kn-keyword=pancreatic neoplasms
en-keyword=pilot projects
kn-keyword=pilot projects
END
start-ver=1.4
cd-journal=joma
no-vol=114
cd-vols=
no-issue=
article-no=
start-page=27
end-page=38
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The List of Published by Members of the Faculty From January to December 2024.
kn-title=公表学術論文等リスト 2024
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
END
start-ver=1.4
cd-journal=joma
no-vol=114
cd-vols=
no-issue=
article-no=
start-page=21
end-page=25
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Elucidation of plant-bacterial pathogen interactions for the control of bacterial blight on cruciferous crops
kn-title=アブラナ科植物黒斑細菌病の防除に向けた植物-病原細菌の相互作用の解明
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Pseudomonas cannabina pv. alisalensis (Pcal), the causative agent of bacterial blight on cruciferous crops, is an economically important pathogen worldwide. We have conducted several studies on the interactions between plants and pathogenic bacteria to develop effective control strategies for this disease. Using forward and reverse genetics, we identified several virulence factors, including the type III secretion system, membrane transporters, transcriptional factors, and amino acid metabolism. Additionally, we emphasized the role of coronatine, a toxin produced by Pcal, which promotes stomatal reopening and suppresses salicylic acid accumulation in plants. We also examined plant defense mechanisms activated by one of the plant defense activators, acibenzolar-S-methyl (ASM). ASM enhanced stomatal-based defense, resulting in reduction of bacterial entry and disease development. Moreover, we explored innovative control strategies for bacterial disease and demonstrated that amino acids and cellulose nanofiber are efficient and environmentally friendly control strategies. These studies advance our understanding of plant-pathogen dynamics and offer promising, sustainable approaches for managing bacterial blight disease in cruciferous crops.
en-copyright=
kn-copyright=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=坂田七海
kn-aut-sei=坂田
kn-aut-mei=七海
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Course of Applied Plant Science
kn-affil=応用植物科学コース
en-keyword=Plant pathogenic bacteria
kn-keyword=Plant pathogenic bacteria
en-keyword=Pseudomonas
kn-keyword=Pseudomonas
en-keyword=Cruciferous
kn-keyword=Cruciferous
en-keyword=Plant protection
kn-keyword=Plant protection
en-keyword=Stomata
kn-keyword=Stomata
END
start-ver=1.4
cd-journal=joma
no-vol=114
cd-vols=
no-issue=
article-no=
start-page=11
end-page=20
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Uncovering the role of arcuate kisspeptin neurons as a source of the gonadotropin-releasing hormone pulse generator using gene-modified rats
kn-title=遺伝子改変ラットを用いた弓状核キスペプチンニューロンの性腺刺激ホルモン放出ホルモンパルスジェネレーターとしての役割解明
en-subtitle=
kn-subtitle=
en-abstract= 世界において,乳牛の受胎率(妊娠率)が低下しており,家畜の繁殖成績向上のための効果的な治療法が必要とされている.家畜を含む哺乳類において,生殖機能は視床下部-下垂体-性腺軸から分泌されるホルモンによって制御されている.これらのホルモンのうち,性腺刺激ホルモン放出ホルモン(GnRH)のパルス状分泌(GnRH パルス)は,性腺刺激ホルモン分泌と性腺機能に本質的に重要である.したがって,GnRH パルスを制御するメカニズム(GnRH パルスジェネレーター)を解明することは,家畜の生殖技術を向上させるために不可欠である.本総説では,著者らの遺伝子改変ラットモデルを用いた弓状核キスペプチンニューロン(ΚNDy ニューロンとしても知られる)がGnRH パルスジェネレーターの本体であることの直接的な証拠を示した研究を中心として,過去20年間の研究を概説した.また,ΚNDy ニューロンが分泌するニューロキニンB,グルタミン酸,ダイノルフィンA がΚNDy ニューロンの神経活動を同期させ,GnRH パルスを発生させるメカニズムについて論じた.遺伝子改変ラットモデルから得られた知識は,GnRH/ 性腺刺激ホルモンパルスを刺激して,家畜の繁殖能力を向上させる新規繁殖促進剤開発に寄与すると期待できる.
kn-abstract= Strategies for increasing reproductive performance are needed for domestic animals because for example the conception (pregnancy) rate has decreased in dairy cows around the world. Reproductive function is controlled by hormones released by the hypothalamus-pituitary-gonadal axis in mammals, including domestic animals. Of those hormones, tonic (pulsatile) gonadotropin-releasing hormone (GnRH) release is fundamentally important for gonadotropin release and gonadal activity. Therefore, uncovering the mechanism controlling GnRH pulses, that is GnRH pulse generator, is essential to improve reproductive technologies for domestic animals. The present review is focused on the indispensable role of arcuate nucleus (ARC) kisspeptin neurons (also known as KNDy neurons) as the GnRH pulse generator in mammals. First, we give a brief overview of studies on hypothalamic kisspeptin neurons throughout the past two decades. Second, we review studies that have provided direct evidence that ARC kisspeptin neurons serve as the GnRH pulse generator, with a special focus on our gene-modified rat models. Finally, we discuss the mechanism underlying GnRH pulse generation. The knowledge obtained from gene-modified rat models should be clinically important and could be adapted to new tools to improve reproductive performance in livestock by stimulating GnRH/gonadotropin pulses.
en-copyright=
kn-copyright=
en-aut-name=NagaeMayuko
en-aut-sei=Nagae
en-aut-mei=Mayuko
kn-aut-name=長江麻佑子
kn-aut-sei=長江
kn-aut-mei=麻佑子
aut-affil-num=1
ORCID=
en-aut-name=UenoyamaYoshihisa
en-aut-sei=Uenoyama
en-aut-mei=Yoshihisa
kn-aut-name=上野山賀久
kn-aut-sei=上野山
kn-aut-mei=賀久
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
affil-num=2
en-affil=Graduate School of Bioagricultural Sciences, Nagoya University
kn-affil=名古屋大学大学院生命農学研究科
en-keyword=gene-modified rats
kn-keyword=gene-modified rats
en-keyword=GnRH
kn-keyword=GnRH
en-keyword=kisspeptin
kn-keyword=kisspeptin
en-keyword=LH
kn-keyword=LH
en-keyword=pulse generator
kn-keyword=pulse generator
END