start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=1
article-no=
start-page=2480231
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Specific enhancement of the translation of thermospermine-responsive uORF-containing mRNAs by ribosomal mutations in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Auxin-induced xylem formation in angiosperms is negatively regulated by thermospermine, whose biosynthesis is also induced by auxin. In Arabidopsis thaliana, loss-of-function mutants of ACL5, which encodes thermospermine synthase, exhibit a dwarf phenotype accompanied by excessive xylem formation. Studies of suppressor mutants that recover from the acl5 dwarf phenotype suggest that thermospermine alleviates the inhibitory effect of an upstream open-reading frame (uORF) on the main ORF translation of SAC51 mRNA. Many suppressor mutations for acl5 have been mapped to the uORF conserved in the SAC51 family or to ribosomal protein genes, such as RPL10A, RPL4A, and RACK1A. In this study, we identified newly isolated acl5 suppressors, sac501, sac504, and sac506, which are additional alleles of RPL10A and the uORFs of SAC51 family members, SACL1 and SACL3, respectively. To investigate whether acl5-suppressor alleles of ribosomal genes broadly affect translation of uORF-containing mRNAs, we examined GUS activity in several 5'-GUS fusion constructs. Our results showed that these alleles enhanced GUS activity in SAC51 and SACL3 5'-fusion constructs but had no effect on other 5'-fusion constructs unrelated to thermospermine response. This suggests that these ribosomal proteins are specifically involved in the thermospermine-mediated regulation of mRNA translation.
en-copyright=
kn-copyright=
en-aut-name=MutsudaKoki
en-aut-sei=Mutsuda
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiiYuichi
en-aut-sei=Nishii
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToyoshimaTomohiko
en-aut-sei=Toyoshima
en-aut-mei=Tomohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukushimaHiroko
en-aut-sei=Fukushima
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=mRNA translation
kn-keyword=mRNA translation
en-keyword=RPL10
kn-keyword=RPL10
en-keyword=suppressor mutant
kn-keyword=suppressor mutant
en-keyword=thermospermine
kn-keyword=thermospermine
en-keyword=uORF
kn-keyword=uORF
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=塩ストレス下での根の成長制御におけるシロイヌナズナ外向き整流カリウムイオンチャネルの役割
kn-title=Roles of outward-rectifying potassium channels in regulation of root growth under salt stress in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Hafsa Jahan Hiya
en-aut-sei=Hafsa Jahan Hiya
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=65
cd-vols=
no-issue=11
article-no=
start-page=1769
end-page=1786
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240824
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nutrient Requirements Shape the Preferential Habitat of Allorhizobium vitis VAR03-1, a Commensal Bacterium, in the Rhizosphere of Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A diverse range of commensal bacteria inhabit the rhizosphere, influencing host plant growth and responses to biotic and abiotic stresses. While root-released nutrients can define soil microbial habitats, the bacterial factors involved in plant–microbe interactions are not well characterized. In this study, we investigated the colonization patterns of two plant disease biocontrol agents, Allorhizobium vitis VAR03-1 and Pseudomonas protegens Cab57, in the rhizosphere of Arabidopsis thaliana using Murashige and Skoog (MS) agar medium. VAR03-1 formed colonies even at a distance from the roots, preferentially in the upper part, while Cab57 colonized only the root surface. The addition of sucrose to the agar medium resulted in excessive proliferation of VAR03-1, similar to its pattern without sucrose, whereas Cab57 formed colonies only near the root surface. Overgrowth of both bacterial strains upon nutrient supplementation inhibited host growth, independent of plant immune responses. This inhibition was reduced in the VAR03-1 ΔrecA mutant, which exhibited increased biofilm formation, suggesting that some activities associated with the free-living lifestyle rather than the sessile lifestyle may be detrimental to host growth. VAR03-1 grew in liquid MS medium with sucrose alone, while Cab57 required both sucrose and organic acids. Supplementation of sugars and organic acids allowed both bacterial strains to grow near and away from Arabidopsis roots in MS agar. These results suggest that nutrient requirements for bacterial growth may determine their growth habitats in the rhizosphere, with nutrients released in root exudates potentially acting as a limiting factor in harnessing microbiota.
en-copyright=
kn-copyright=
en-aut-name=HemeldaNiarsi Merry
en-aut-sei=Hemelda
en-aut-mei=Niarsi Merry
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BaoJiyuan
en-aut-sei=Bao
en-aut-mei=Jiyuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeMegumi
en-aut-sei=Watanabe
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Commensal bacteria
kn-keyword=Commensal bacteria
en-keyword=Nutrient requirements
kn-keyword=Nutrient requirements
en-keyword=Organic acids
kn-keyword=Organic acids
en-keyword=Plant-microbe interactions
kn-keyword=Plant-microbe interactions
en-keyword=Rhizosphere
kn-keyword=Rhizosphere
en-keyword=Sugars
kn-keyword=Sugars
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=zbae092
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240716
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cytosolic acidification and oxidation are the toxic mechanisms of SO2 in Arabidopsis guard cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=SO2/H2SO3 can damage plants. However, its toxic mechanism has still been controversial. Two models have been proposed, cytosolic acidification model and cellular oxidation model. Here, we assessed the toxic mechanism of H2SO3 in three cell types of Arabidopsis thaliana, mesophyll cells, guard cells (GCs), and petal cells. The sensitivity of GCs of Chloride channel a (CLCa)-knockout mutants to H2SO3 was significantly lower than those of wildtype plants. Expression of other CLC genes in mesophyll cells and petal cells were different from GCs. Treatment with antioxidant, disodium 4,5-dihydroxy-1,3-benzenedisulfonate (tiron), increased the median lethal concentration (LC50) of H2SO3 in GCs indicating the involvement of cellular oxidation, while the effect was negligible in mesophyll cells and petal cells. These results indicate that there are two toxic mechanisms of SO2 to Arabidopsis cells: cytosolic acidification and cellular oxidation, and the toxic mechanism may vary among cell types.
en-copyright=
kn-copyright=
en-aut-name=MozhganiMahdi
en-aut-sei=Mozhgani
en-aut-mei=Mahdi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OoiLia
en-aut-sei=Ooi
en-aut-mei=Lia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EspagneChristelle
en-aut-sei=Espagne
en-aut-mei=Christelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FilleurSophie
en-aut-sei=Filleur
en-aut-mei=Sophie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoriIzumi C
en-aut-sei=Mori
en-aut-mei=Izumi C
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
kn-affil=
affil-num=4
en-affil=Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=cytosolic acidification
kn-keyword=cytosolic acidification
en-keyword=Arabidopsis
kn-keyword=Arabidopsis
en-keyword=cellular oxidation
kn-keyword=cellular oxidation
en-keyword=chloride channel a
kn-keyword=chloride channel a
en-keyword=sulfur dioxide
kn-keyword=sulfur dioxide
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=RP88822
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH.
en-copyright=
kn-copyright=
en-aut-name=KatoYusuke
en-aut-sei=Kato
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaHiroshi
en-aut-sei=Kuroda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OzawaShin-Ichiro
en-aut-sei=Ozawa
en-aut-mei=Shin-Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitoKeisuke
en-aut-sei=Saito
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DograVivek
en-aut-sei=Dogra
en-aut-mei=Vivek
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ScholzMartin
en-aut-sei=Scholz
en-aut-mei=Martin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhangGuoxian
en-aut-sei=Zhang
en-aut-mei=Guoxian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=de VitryCatherine
en-aut-sei=de Vitry
en-aut-mei=Catherine
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshikitaHiroshi
en-aut-sei=Ishikita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KimChanhong
en-aut-sei=Kim
en-aut-mei=Chanhong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HipplerMichael
en-aut-sei=Hippler
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakahashiYuichiro
en-aut-sei=Takahashi
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SakamotoWataru
en-aut-sei=Sakamoto
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=4
en-affil=Research Center for Advanced Science and Technology, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
kn-affil=
affil-num=6
en-affil=Institute of Plant Biology and Biotechnology, University of Münster
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=8
en-affil=Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université Pierre et Marie Curie
kn-affil=
affil-num=9
en-affil=Research Center for Advanced Science and Technology, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
kn-affil=
affil-num=11
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=12
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=13
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=post-translational modification
kn-keyword=post-translational modification
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=protein degradation
kn-keyword=protein degradation
en-keyword=photosystem II
kn-keyword=photosystem II
en-keyword=photo-oxidative damage
kn-keyword=photo-oxidative damage
en-keyword=tryptophan oxidation
kn-keyword=tryptophan oxidation
en-keyword=Chlamydomonas reinhardtii
kn-keyword=Chlamydomonas reinhardtii
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=1
article-no=
start-page=2281159
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231115
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microtubule-associated proteins WDL5 and WDL6 play a critical role in pollen tube growth in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Morphological response of cells to environment involves concerted rearrangements of microtubules and actin microfilaments. A mutant of WAVE-DAMPENED2-LIKE5 (WDL5), which encodes an ethylene-regulated microtubule-associated protein belonging to the WVD2/WDL family in Arabidopsis thaliana, shows attenuation in the temporal root growth reduction in response to mechanical stress. We found that a T-DNA knockout of WDL6, the closest homolog of WDL5, oppositely shows an enhancement of the response. To know the functional relationship between WDL5 and WDL6, we attempted to generate the double mutant by crosses but failed in isolation. Close examination of gametophytes in plants that are homozygous for one and heterozygous for the other revealed that these plants produce pollen grains with a reduced rate of germination and tube growth. Reciprocal cross experiments of these plants with the wild type confirmed that the double mutation is not inherited paternally. These results suggest a critical and cooperative function of WDL5 and WDL6 in pollen tube growth.
en-copyright=
kn-copyright=
en-aut-name=OkamotoTakashi
en-aut-sei=Okamoto
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Arabidopsis
kn-keyword=Arabidopsis
en-keyword=pollen germination
kn-keyword=pollen germination
en-keyword=pollen tube growth
kn-keyword=pollen tube growth
en-keyword=the WVD2/WDL family
kn-keyword=the WVD2/WDL family
END
start-ver=1.4
cd-journal=joma
no-vol=236
cd-vols=
no-issue=3
article-no=
start-page=864
end-page=877
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220817
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A tonoplast‐localized magnesium transporter is crucial for stomatal opening in Arabidopsis under high Mg2+ conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Plant stomata play an important role in CO2 uptake for photosynthesis and transpiration, but the mechanisms underlying stomatal opening and closing under changing environmental conditions are still not completely understood.
Through large-scale genetic screening, we isolated an Arabidopsis mutant (closed stomata2 (cst2)) that is defective in stomatal opening. We cloned the causal gene (MGR1/CST2) and functionally characterized this gene.
The mutant phenotype was caused by a mutation in a gene encoding an unknown protein with similarities to the human magnesium (Mg2+) efflux transporter ACDP/CNNM. MGR1/CST2 was localized to the tonoplast and showed transport activity for Mg2+. This protein was constitutively and highly expressed in guard cells. Knockout of this gene resulted in stomatal closing, decreased photosynthesis and growth retardation, especially under high Mg2+ conditions, while overexpression of this gene increased stomatal opening and tolerance to high Mg2+ concentrations. Furthermore, guard cell-specific expression of MGR1/CST2 in the mutant partially restored its stomatal opening.
Our results indicate that MGR1/CST2 expression in the leaf guard cells plays an important role in maintaining cytosolic Mg2+ concentrations through sequestering Mg2+ into vacuoles, which is required for stomatal opening, especially under high Mg2+ conditions.
en-copyright=
kn-copyright=
en-aut-name=InoueShin‐ichiro
en-aut-sei=Inoue
en-aut-mei=Shin‐ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HayashiMaki
en-aut-sei=Hayashi
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangSheng
en-aut-sei=Huang
en-aut-mei=Sheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YokoshoKengo
en-aut-sei=Yokosho
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GotohEiji
en-aut-sei=Gotoh
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IkematsuShuka
en-aut-sei=Ikematsu
en-aut-mei=Shuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkumuraMasaki
en-aut-sei=Okumura
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SuzukiTakamasa
en-aut-sei=Suzuki
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KamuraTakumi
en-aut-sei=Kamura
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KinoshitaToshinori
en-aut-sei=Kinoshita
en-aut-mei=Toshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=2
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University
kn-affil=
affil-num=6
en-affil=Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
kn-affil=
affil-num=7
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=8
en-affil=Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=9
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=10
en-affil=Division of Biological Science, Graduate School of Science, Nagoya University
kn-affil=
affil-num=11
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=ACDP
kn-keyword=ACDP
en-keyword=CNNM
kn-keyword=CNNM
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=magnesium transport
kn-keyword=magnesium transport
en-keyword=plant growth
kn-keyword=plant growth
en-keyword=stomatal opening
kn-keyword=stomatal opening
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=11
article-no=
start-page=3322
end-page=3337
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220907
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=FE UPTAKE‐INDUCING PEPTIDE1 maintains Fe translocation by controlling Fe deficiency response genes in the vascular tissue of Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=FE UPTAKE-INDUCING PEPTIDE1 (FEP1), also named IRON MAN3 (IMA3) is a short peptide involved in the iron deficiency response in Arabidopsis thaliana. Recent studies uncovered its molecular function, but its physiological function in the systemic Fe response is not fully understood. To explore the physiological function of FEP1 in iron homoeostasis, we performed a transcriptome analysis using the FEP1 loss-of-function mutant fep1-1 and a transgenic line with oestrogen-inducible expression of FEP1. We determined that FEP1 specifically regulates several iron deficiency-responsive genes, indicating that FEP1 participates in iron translocation rather than iron uptake in roots. The iron concentration in xylem sap under iron-deficient conditions was lower in the fep1-1 mutant and higher in FEP1-induced transgenic plants compared with the wild type (WT). Perls staining revealed a greater accumulation of iron in the cortex of fep1-1 roots than in the WT root cortex, although total iron levels in roots were comparable in the two genotypes. Moreover, the fep1-1 mutation partially suppressed the iron overaccumulation phenotype in the leaves of the oligopeptide transporter3-2 (opt3-2) mutant. These data suggest that FEP1 plays a pivotal role in iron movement and in maintaining the iron quota in vascular tissues in Arabidopsis.
en-copyright=
kn-copyright=
en-aut-name=OkadaSatoshi
en-aut-sei=Okada
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LeiGui J.
en-aut-sei=Lei
en-aut-mei=Gui J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HuangSheng
en-aut-sei=Huang
en-aut-mei=Sheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MaJian F.
en-aut-sei=Ma
en-aut-mei=Jian F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MochidaKeiichi
en-aut-sei=Mochida
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HirayamaTakashi
en-aut-sei=Hirayama
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=4
en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Crop Design Research Team, Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=7
en-affil=Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=oestrogen induction system
kn-keyword=oestrogen induction system
en-keyword=fep1-1
kn-keyword=fep1-1
en-keyword=iron-deficiency response
kn-keyword=iron-deficiency response
en-keyword=transcriptome
kn-keyword=transcriptome
END
start-ver=1.4
cd-journal=joma
no-vol=596
cd-vols=
no-issue=23
article-no=
start-page=3005
end-page=3014
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Loss of function of an Arabidopsis homologue of JMJD6 suppresses the dwarf phenotype of acl5, a mutant defective in thermospermine biosynthesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In Arabidopsis thaliana, the ACL5 gene encodes thermospermine synthase and its mutant, acl5, exhibits a dwarf phenotype with excessive xylem formation. Studies of suppressor mutants of acl5 reveal the involvement of thermospermine in enhancing mRNA translation of the SAC51 gene family. We show here that a mutant, sac59, which partially suppresses the acl5 phenotype, has a point mutation in JMJ22 encoding a D6-class Jumonji C protein (JMJD6). A T-DNA insertion allele, jmj22-2, also partially suppressed the acl5 phenotype while mutants of its closest two homologs JMJ21 and JMJ20 had no such effects, suggesting a unique role for JMJ22 in plant development. We found that mRNAs of the SAC51 family are more stabilized in acl5 jmj22-2 than in acl5.
en-copyright=
kn-copyright=
en-aut-name=MatsuoHirotoshi
en-aut-sei=Matsuo
en-aut-mei=Hirotoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukushimaHiroko
en-aut-sei=Fukushima
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurokawaShinpei
en-aut-sei=Kurokawa
en-aut-mei=Shinpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawanoEri
en-aut-sei=Kawano
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkamotoTakashi
en-aut-sei=Okamoto
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Arabidopsis
kn-keyword=Arabidopsis
en-keyword=JMJD6
kn-keyword=JMJD6
en-keyword=mRNA stability
kn-keyword=mRNA stability
en-keyword=thermospermine
kn-keyword=thermospermine
en-keyword=xylem development
kn-keyword=xylem development
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Rhizoctonia solani種複合体の分類群とシロイヌナズナに対する病原性との関連性
kn-title=Relationship between classification of Rhizoctonia solani species complex and pathogenicity on Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Mai Mohsen Ahmed Abdelghany Ahmed
en-aut-sei=Mai Mohsen Ahmed Abdelghany Ahmed
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=シロイヌナズナの内生サプレッサーとしての CEP ペプチドの作用機序に関する研究
kn-title=Study on the mode of action of CEP peptide as an endogenous suppressor in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=APRILIA NUR FITRIANTI
en-aut-sei=APRILIA NUR FITRIANTI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=シロイヌナズナにおけるリンゴ酸誘導気孔閉口のメカニズム
kn-title=The mechanism of malate-induced stomatal closure in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MimataYoshiharu
en-aut-sei=Mimata
en-aut-mei=Yoshiharu
kn-aut-name=三俣好令
kn-aut-sei=三俣
kn-aut-mei=好令
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=76
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Surveillance of Pathogenicity of Rhizoctonia solani Japanese Isolates with Varied Anastomosis Groups and Subgroups on Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rhizoctonia solani is a necrotrophic plant pathogen with a wide host range. R. solani is a species complex consisting of thirteen anastomosis groups (AGs) defined by compatibility of hyphal fusion reaction and subgroups based on cultural morphology. The relationship between such classifications and host specificity remains elusive. Here, we investigated the pathogenicity of seventeen R. solani isolates (AG-1 to 7) in Japan towards Arabidopsis thaliana using leaf and soil inoculations. The tested AGs, except AG-3 and AG-6, induced symptoms in both methods with variations in pathogenicity. The virulence levels differed even within the same AG and subgroup. Some isolates showed tissue-specific infection behavior. Thus, the AGs and their subgroups are suggested to be not enough to define the virulence (host and tissue specificity) of R. solani. We also evaluated the virulence of the isolates on Arabidopsis plants pretreated with salicylic acid, jasmonic acid, and ethylene. No obvious effects were detected on the symptom formation by the virulence isolates, but ethylene and salicylic acid slightly enhanced the susceptibility to the weak and nonvirulent isolates. R. solani seems to be able to overcome the induced defense by these phytohormones in the infection to Arabidopsis.
en-copyright=
kn-copyright=
en-aut-name=AbdelghanyMai Mohsen Ahmed
en-aut-sei=Abdelghany
en-aut-mei=Mai Mohsen Ahmed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurikawaMaria
en-aut-sei=Kurikawa
en-aut-mei=Maria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WatanabeMegumi
en-aut-sei=Watanabe
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoMikihiro
en-aut-sei=Yamamoto
en-aut-mei=Mikihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KouzaiYusuke
en-aut-sei=Kouzai
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Agriculture, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Rhizoctonia solani
kn-keyword=Rhizoctonia solani
en-keyword=anastomosis group
kn-keyword=anastomosis group
en-keyword=phytohormones
kn-keyword=phytohormones
en-keyword=pathogenicity
kn-keyword=pathogenicity
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=12
article-no=
start-page=3283
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211124
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Responses of Polyamine-Metabolic Genes to Polyamines and Plant Stress Hormones in Arabidopsis Seedlings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In plants, many of the enzymes in polyamine metabolism are encoded by multiple genes, whose expressions are differentially regulated under different physiological conditions. For comprehensive understanding of their regulation during the seedling growth stage, we examined the expression of polyamine metabolic genes in response to polyamines and stress-related plant hormones in Arabidopsis thaliana. While confirming previous findings such as induction of many of the genes by abscisic acid, induction of arginase genes and a copper amine oxidase gene, CuAO alpha 3, by methyl jasmonate, that of an arginine decarboxylase gene, ADC2, and a spermine synthase gene, SPMS, by salicylic acid, and negative feedback regulation of thermospermine biosynthetic genes by thermospermine, our results showed that expressions of most of the genes are not responsive to exogenous polyamines. We thus examined expression of OsPAO6, which encodes an apoplastic polyamine oxidase and is strongly induced by polyamines in rice, by using the promoter-GUS fusion in transgenic Arabidopsis seedlings. The GUS activity was increased by treatment with methyl jasmonate but neither by polyamines nor by other plant hormones, suggesting a difference in the response to polyamines between Arabidopsis and rice. Our results provide a framework to study regulatory modules directing expression of each polyamine metabolic gene.
en-copyright=
kn-copyright=
en-aut-name=YariuchiYusaku
en-aut-sei=Yariuchi
en-aut-mei=Yusaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkamotoTakashi
en-aut-sei=Okamoto
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=abscisic acid
kn-keyword=abscisic acid
en-keyword=Arabidopsis
kn-keyword=Arabidopsis
en-keyword=jasmonate
kn-keyword=jasmonate
en-keyword=polyamine metabolism
kn-keyword=polyamine metabolism
en-keyword=salicylic acid
kn-keyword=salicylic acid
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210924
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=イソチオシアネートに対するシロイヌナズナの気孔応答
kn-title=Stomatal response to isothiocyanates in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SONYA AFRIN
en-aut-sei=SONYA AFRIN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=647684
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210810
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Purification, Characterization, and Gene Expression of Rice Endo-beta-N-Acetylglucosaminidase, Endo-Os
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the endoplasmic reticulum-associated degradation system of plant and animal cells, high-mannose type free N-glycans (HMT-FNGs) are produced from misfolded glycoproteins prior to proteasomal degradation, and two enzymes, cytosolic peptide:N-glycanase (cPNGase) and endo-beta-N-acetylglucosaminidase (endo-beta-GlcNAc-ase), are involved in the deglycosylation. Although the physiological functions of these FNGs in plant growth and development remain to be elucidated, detailed characterization of cPNGase and endo-beta-GlcNAc-ase is required. In our previous work, we described the purification, characterization, and subcellular distribution of some plant endo-beta-GlcNAc-ases and preliminarily reported the gene information of rice endo-beta-GlcNAc-ase (Endo-Os). Furthermore, we analyzed the changes in gene expression of endo-beta-GlcNAc-ase during tomato fruit maturation and constructed a mutant line of Arabidopsis thaliana, in which the two endo-beta-GlcNAc-ase genes were knocked-out based on the Endo-Os gene. In this report, we describe the purification, characterization, amino acid sequence, and gene cloning of Endo-Os in detail. Purified Endo-Os, with an optimal pH of 6.5, showed high activity for high-mannose type N-glycans bearing the Man alpha 1-2Man alpha 1-3Man beta 1 unit; this substrate specificity was almost the same as that of other plant endo-beta-GlcNAc-ases, suggesting that Endo-Os plays a critical role in the production of HTM-FNGs in the cytosol. Electrospray ionization-mass spectrometry analysis of the tryptic peptides revealed 17 internal amino acid sequences, including the C terminus; the N-terminal sequence could not be identified due to chemical modification. These internal amino acid sequences were consistent with the amino acid sequence (UniProt ID: Q5W6R1) deduced from the Oryza sativa cDNA clone AK112067 (gene ID: Os05g0346500). Recombinant Endo-Os expressed in Escherichia coli using cDNA showed the same enzymatic properties as those of native Endo-Os.
en-copyright=
kn-copyright=
en-aut-name=MaedaMegumi
en-aut-sei=Maeda
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkamotoNaoko
en-aut-sei=Okamoto
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ArakiNode
en-aut-sei=Araki
en-aut-mei=Node
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KimuraYoshinobu
en-aut-sei=Kimura
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University
kn-affil=
affil-num=4
en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=endo-beta-N-acetylglucosaminidase
kn-keyword=endo-beta-N-acetylglucosaminidase
en-keyword=free N-glycans
kn-keyword=free N-glycans
en-keyword=Oryza sativa
kn-keyword=Oryza sativa
en-keyword=ER associated degradation
kn-keyword=ER associated degradation
en-keyword=peptide:N-glycanase
kn-keyword=peptide:N-glycanase
END
start-ver=1.4
cd-journal=joma
no-vol=231
cd-vols=
no-issue=1
article-no=
start-page=75
end-page=84
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20210504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Divergence in red light responses associated with thermal reversion of phytochrome B between high‐ and low‐latitude species
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Summary
・Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature.
・We show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes.
The higher latitude species (Cardamine bellidifolia; Cb) responded more strongly to light‐limited conditions compared with its lower latitude sister (C. nipponica; Cn). Moreover, CbPHYB conferred stronger responses to both light‐limited and warm conditions in the phyB‐deficient mutant of Arabidopsis thaliana than CnPHYB: that is Pfr CbphyB was more stable in nuclei than CnphyB.
・Our findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome‐related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature.
en-copyright=
kn-copyright=
en-aut-name=IkedaHajime
en-aut-sei=Ikeda
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiTomomi
en-aut-sei=Suzuki
en-aut-mei=Tomomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkaYoshito
en-aut-sei=Oka
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GustafssonA. Lovisa S.
en-aut-sei=Gustafsson
en-aut-mei=A. Lovisa S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BrochmannChristian
en-aut-sei=Brochmann
en-aut-mei=Christian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MochizukiNobuyoshi
en-aut-sei=Mochizuki
en-aut-mei=Nobuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NagataniAkira
en-aut-sei=Nagatani
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Science, Kyoto University
kn-affil=
affil-num=3
en-affil=Graduate School of Science, Kyoto University
kn-affil=
affil-num=4
en-affil=Natural History Museum, University of Oslo
kn-affil=
affil-num=5
en-affil=Natural History Museum, University of Oslo
kn-affil=
affil-num=6
en-affil=Graduate School of Science, Kyoto University
kn-affil=
affil-num=7
en-affil=Graduate School of Science, Kyoto University
kn-affil=
en-keyword=alpine plants
kn-keyword=alpine plants
en-keyword=Brassicaceae
kn-keyword=Brassicaceae
en-keyword=Cardamine
kn-keyword=Cardamine
en-keyword=phytochrome
kn-keyword=phytochrome
en-keyword=thermal reversion
kn-keyword=thermal reversion
END
start-ver=1.4
cd-journal=joma
no-vol=95
cd-vols=
no-issue=3
article-no=
start-page=119
end-page=131
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200601
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Ribosome rescue activity of an Arabidopsis thaliana ArfB homolog
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A homolog of the bacterial ribosome rescue factor ArfB was identified in Arabidopsis thaliana. The factor, named AtArfB for Arabidopsis thaliana ArfB, showed ribosome rescue activity in both in vivo and in vitro assays based on the bacterial translation system. As has been shown for ArfB, the ribosome rescue activity of AtArfB was dependent on the GGQ motif, the crucial motif for the function of class I release factors and ArfB. The C-terminal region of AtArfB was also important for its function. The N-terminal region of AtArfB, which is absent in bacterial ArfB, functioned as a transit peptide for chloroplast targeting in tobacco cells. These results strongly suggest that AtArfB is a ribosome rescue factor that functions in chloroplasts.
en-copyright=
kn-copyright=
en-aut-name=NagaoMichiaki
en-aut-sei=Nagao
en-aut-mei=Michiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsuchiyaFumina
en-aut-sei=Tsuchiya
en-aut-mei=Fumina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotohashiReiko
en-aut-sei=Motohashi
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AboTatsuhiko
en-aut-sei=Abo
en-aut-mei=Tatsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Integrated Science and Technology, Shizuoka University
kn-affil=
affil-num=3
en-affil=Graduate School of Integrated Science and Technology, Shizuoka University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=ArfB
kn-keyword=ArfB
en-keyword=chloroplast
kn-keyword=chloroplast
en-keyword=ribosome rescue
kn-keyword=ribosome rescue
en-keyword=translation
kn-keyword=translation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=シロイヌナズナの気孔閉口における活性カルボニル種の役割
kn-title=Roles of reactive carbonyl species in stomatal closure of Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Rhaman Mohammad Saidur
en-aut-sei=Rhaman Mohammad Saidur
en-aut-mei=
kn-aut-name=RHAMAN MOHAMMAD SAIDUR
kn-aut-sei=RHAMAN MOHAMMAD SAIDUR
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=6
article-no=
start-page=779
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2020
dt-pub=20200622
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Easy-to-Use InDel Markers for Genetic Mapping between Col-0 and Ler-0 Accessions of Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Map-based gene cloning has played a key role in many genetic studies using the model plant,Arabidopsis thaliana. In the post-next generation sequencing era, identification of point mutations and their corresponding genes is increasingly becoming a powerful and important approach to define plant gene function. To perform initial mapping experiments efficiently on Arabidopsis mutants, enrichment of easy-to-use and reliable polymorphic DNA markers would be desirable. We present here a list of InDel polymorphic markers between Col-0 and Ler-0 accessions that can be detected in standard agarose gel electrophoresis.
en-copyright=
kn-copyright=
en-aut-name=TanakaTakahiro
en-aut-sei=Tanaka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiiYuichi
en-aut-sei=Nishii
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuoHirotoshi
en-aut-sei=Matsuo
en-aut-mei=Hirotoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=InDel markers
kn-keyword=InDel markers
en-keyword=SSLP
kn-keyword=SSLP
en-keyword=chromosome mapping
kn-keyword=chromosome mapping
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=mutants
kn-keyword=mutants
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=
dt-pub=
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Arabidopsis thaliana (L.) Heynh.
kn-title=シロイヌナズナ
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-keyword=アブラナ科 (Brassicaceae)
kn-keyword=アブラナ科 (Brassicaceae)
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2019
dt-pub=20190925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=シロイヌナズナに存在する内生サプレッサーに関する研究
kn-title=Study on the endogenous suppressor(s) in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MAI THANH LUAN
en-aut-sei=MAI THANH LUAN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=岡山大学大学院
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=8
article-no=
start-page=1779
end-page=1990
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= Methyl jasmonate (MeJA) induces stomatal closure. It has been shown that stomata of many ABA-insensitive mutants are also insensitive to MeJA, and a low amount of ABA is a prerequisite for the MeJA response. However, the molecular mechanisms of the interaction between ABA and MeJA signaling remain to be elucidated. Here we studied the interplay of signaling of the two hormones in guard cells using the quadruple ABA receptor mutant pyr1 pyl1 pyl2 pyl4 and ABA-activated protein kinase mutants ost1-2 and srk2e. In the quadruple mutant, MeJA-induced stomatal closure, H2O2 production, nitric oxide (NO) production, cytosolic alkalization and plasma membrane Ca(2+)-permeable current (ICa) activation were not impaired. At the same time, the inactivation of the inward-rectifying K(+) current was impaired. In contrast to the quadruple mutant, MeJA-induced stomatal closure, H2O2 production, NO production and cytosolic alkalization were impaired in ost1-2 and srk2e as well as in aba2-2, the ABA-deficient mutant. The activation of ICa was also impaired in srk2e. Collectively, these results indicated that OST1 was essential for MeJA-induced stomatal closure, while PYR1, PYL1, PYL2 and PYL4 ABA receptors were not sufficient factors. MeJA did not appear to activate OST1 kinase activity. This implies that OST1 mediates MeJA signaling through an undetectable level of activity or a non-enzymatic action. MeJA induced the expression of an ABA synthesis gene, NCED3, and increased ABA contents only modestly. Taken together with previous reports, this study suggests that MeJA signaling in guard cells is primed by ABA and is not brought about through the pathway mediated by PYR1, PYL1 PYL2 and PYL4.
en-copyright=
kn-copyright=
en-aut-name=YinYe
en-aut-sei=Yin
en-aut-mei=Ye
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AdachiYuji
en-aut-sei=Adachi
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=ABA
kn-keyword=ABA
en-keyword=ABA receptors
kn-keyword=ABA receptors
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=Guard cells
kn-keyword=Guard cells
en-keyword=Methyl jasmonate
kn-keyword=Methyl jasmonate
en-keyword=OST1 protein kinase
kn-keyword=OST1 protein kinase
END
start-ver=1.4
cd-journal=joma
no-vol=57
cd-vols=
no-issue=8
article-no=
start-page=1583
end-page=1592
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=201608
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The SAC51 Family Plays a Central Role in Thermospermine Responses in Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The acaulis5 (acl5) mutant of Arabidopsis thaliana is defective in the biosynthesis of thermospermine and shows a dwarf phenotype associated with excess xylem differentiation. SAC51 was identified from a dominant suppressor of acl5, sac51-d, and encodes a basic helix-loop-helix protein. The sac51-d mutant has a premature termination codon in an upstream open reading frame (uORF) that is conserved among all four members of the SAC51 family, SAC51 and SACL1-SACL3 This suggests that thermospermine cancels the inhibitory effect of the uORF in main ORF translation. Another suppressor, sac57-d, has a mutation in the conserved uORF of SACL3 To define further the function of the SAC51 family in the thermospermine response, we analyzed T-DNA insertion mutants of each gene. Although sacl1-1 may not be a null allele, the quadruple mutant showed a semi-dwarf phenotype but with an increased level of thermospermine and decreased sensitivity to exogenous thermospermine that normally represses xylem differentiation. The sac51-1 sacl3-1 double mutant was also insensitive to thermospermine. These results suggest that SAC51 and SACL3 play a key role in thermospermine-dependent negative control of thermospermine biosynthesis and xylem differentiation. Using 5' leader-GUS (β-glucuronidase) fusion constructs, however, we detected a significant enhancement of the GUS activity by thermospermine only in SAC51 and SACL1 constructs. Furthermore, while acl5-1 sac51-1 showed the acl5 dwarf phenotype, acl5-1 sacl3-1 exhibited an extremely tiny-plant phenotype. These results suggest a complex regulatory network for the thermospermine response in which SAC51 and SACL3 function in parallel pathways.
en-copyright=
kn-copyright=
en-aut-name=CaiQingqing
en-aut-sei=Cai
en-aut-mei=Qingqing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukushimaHiroko
en-aut-sei=Fukushima
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamotoMai
en-aut-sei=Yamamoto
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiiNami
en-aut-sei=Ishii
en-aut-mei=Nami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoTomoaki
en-aut-sei=Sakamoto
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KurataTetsuya
en-aut-sei=Kurata
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology
kn-affil=
affil-num=6
en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Arabidopsis
kn-keyword=Arabidopsis
en-keyword=Thermospermine
kn-keyword=Thermospermine
en-keyword=Translation
kn-keyword=Translation
en-keyword=Xylem differentiation
kn-keyword=Xylem differentiation
en-keyword=uORF
kn-keyword=uORF
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=
article-no=
start-page=21487
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Chemical control of xylem differentiation by thermospermine, xylemin and auxin
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The xylem conducts water and minerals from the root to the shoot and provides mechanical strength to the plant body. The vascular precursor cells of the procambium differentiate to form continuous vascular strands, from which xylem and phloem cells are generated in the proper spatiotemporal pattern. Procambium formation and xylem differentiation are directed by auxin. In angiosperms, thermospermine, a structural isomer of spermine, suppresses xylem differentiation by limiting auxin signalling. However, the process of auxin-inducible xylem differentiation has not been fully elucidated and remains difficult to manipulate. Here, we found that an antagonist of spermidine can act as an inhibitor of thermospermine biosynthesis and results in excessive xylem differentiation, which is a phenocopy of a thermospermine-deficient mutant acaulis5 in Arabidopsis thaliana. We named this compound xylemin owing to its xylem-inducing effect. Application of a combination of xylemin and thermospermine to wild-type seedlings negates the effect of xylemin, whereas co-treatment with xylemin and a synthetic proauxin, which undergoes hydrolysis to release active auxin, has a synergistic inductive effect on xylem differentiation. Thus, xylemin may serve as a useful transformative chemical tool not only for the study of thermospermine function in various plant species but also for the control of xylem induction and woody biomass production.
en-copyright=
kn-copyright=
en-aut-name=YoshimotoKaori
en-aut-sei=Yoshimoto
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=
article-no=
start-page=21487
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2016
dt-pub=20160216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Chemical control of xylem differentiation by thermospermine, xylemin, and auxin
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The xylem conducts water and minerals from the root to the shoot and provides mechanical strength to the plant body. The vascular precursor cells of the procambium differentiate to form continuous vascular strands, from which xylem and phloem cells are generated in the proper spatiotemporal pattern. Procambium formation and xylem differentiation are directed by auxin. In angiosperms, thermospermine, a structural isomer of spermine, suppresses xylem differentiation by limiting auxin signalling. However, the process of auxin-inducible xylem differentiation has not been fully elucidated and remains difficult to manipulate. Here, we found that an antagonist of spermidine can act as an inhibitor of thermospermine biosynthesis and results in excessive xylem differentiation, which is a phenocopy of a thermospermine-deficient mutant acaulis5 in Arabidopsis thaliana. We named this compound xylemin owing to its xylem-inducing effect. Application of a combination of xylemin and thermospermine to wild-type seedlings negates the effect of xylemin, whereas co-treatment with xylemin and a synthetic proauxin, which undergoes hydrolysis to release active auxin, has a synergistic inductive effect on xylem differentiation. Thus, xylemin may serve as a useful transformative chemical tool not only for the study of thermospermine function in various plant species but also for the control of xylem induction and woody biomass production.
en-copyright=
kn-copyright=
en-aut-name=YoshimotoKaori
en-aut-sei=Yoshimoto
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University
affil-num=2
en-affil=
kn-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
affil-num=3
en-affil=
kn-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
affil-num=4
en-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=
kn-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=128
cd-vols=
no-issue=6
article-no=
start-page=875
end-page=891
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=201511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=icrotubules are highly dynamic structures that control the spatiotemporal pattern of cell growth and division. Microtubule dynamics are regulated by reversible protein phosphorylation involving both protein kinases and phosphatases. Never in mitosis A (NIMA)-related kinases (NEKs) are a family of serine/threonine kinases that regulate microtubule-related mitotic events in fungi and animal cells (e.g. centrosome separation and spindle formation). Although plants contain multiple members of the NEK family, their functions remain elusive. Recent studies revealed that NEK6 of Arabidopsis thaliana regulates cell expansion and morphogenesis through β-tubulin phosphorylation and microtubule destabilization. In addition, plant NEK members participate in organ development and stress responses. The present phylogenetic analysis indicates that plant NEK genes are diverged from a single NEK6-like gene, which may share a common ancestor with other kinases involved in the control of microtubule organization. On the contrary, another mitotic kinase, polo-like kinase, might have been lost during the evolution of land plants. We propose that plant NEK members have acquired novel functions to regulate cell growth, microtubule organization, and stress responses.
en-copyright=
kn-copyright=
en-aut-name=TakataniShogo
en-aut-sei=Takatani
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaniKento
en-aut-sei=Otani
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanazawaMai
en-aut-sei=Kanazawa
en-aut-mei=Mai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=
kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University
affil-num=2
en-affil=
kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University
affil-num=3
en-affil=
kn-affil=Department of Biology, Faculty of Science, Okayama University
affil-num=4
en-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Biology, Faculty of Science, Okayama University
kn-affil=
en-keyword=NIMA-related kinase
kn-keyword=NIMA-related kinase
en-keyword=Phosphorylation
kn-keyword=Phosphorylation
en-keyword=Tubulin
kn-keyword=Tubulin
en-keyword=Microtubule
kn-keyword=Microtubule
en-keyword=Cell expansion
kn-keyword=Cell expansion
en-keyword=Cell division
kn-keyword=Cell division
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=
article-no=
start-page=11364
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=20150612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Abscisic acid induces ectopic outgrowth in epidermal cells through cortical microtubule reorganization in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Abscisic acid (ABA) regulates seed maturation, germination and various stress responses in plants. The roles of ABA in cellular growth and morphogenesis, however, remain to be explored. Here, we report that ABA induces the ectopic outgrowth of epidermal cells in Arabidopsis thaliana. Seedlings of A. thaliana germinated and grown in the presence of ABA developed ectopic protrusions in the epidermal cells of hypocotyls, petioles and cotyledons. One protrusion was formed in the middle of each epidermal cell. In the hypocotyl epidermis, two types of cell files are arranged alternately into non-stoma cell files and stoma cell files, ectopic protrusions being restricted to the non-stoma cell files. This suggests the presence of a difference in the degree of sensitivity to ABA or in the capacity of cells to form protrusions between the two cell files. The ectopic outgrowth was suppressed in ABA insensitive mutants, whereas it was enhanced in ABA hypersensitive mutants. Interestingly, ABA-induced ectopic outgrowth was also suppressed in mutants in which microtubule organization was compromised. Furthermore, cortical microtubules were disorganized and depolymerized by the ABA treatment. These results suggest that ABA signaling induces ectopic outgrowth in epidermal cells through microtubule reorganization.
en-copyright=
kn-copyright=
en-aut-name=TakataniShogo
en-aut-sei=Takatani
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HirayamaTakashi
en-aut-sei=Hirayama
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HashimotoTakashi
en-aut-sei=Hashimoto
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University
affil-num=2
en-affil=
kn-affil=Institute of Plant Science and Resources, Okayama University
affil-num=3
en-affil=
kn-affil=Graduate School of Biological Science, Nara Institute of Science and Technology
affil-num=4
en-affil=
kn-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University
affil-num=5
en-affil=
kn-affil=自然科学研究科
en-keyword=Cell growth
kn-keyword=Cell growth
en-keyword=Plant cytoskeleton
kn-keyword=Plant cytoskeleton
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=20150325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=シロイヌナズナの木部分化におけるサーモスペルミンの作用に関するケミカルバイオロジー解析
kn-title=A chemical biology analysis of the action of thermospermine in xylem differentiation of Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YoshimotoKaori
en-aut-sei=Yoshimoto
en-aut-mei=Kaori
kn-aut-name=吉本香織
kn-aut-sei=吉本
kn-aut-mei=香織
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学大学院
END
start-ver=1.4
cd-journal=joma
no-vol=6
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2015
dt-pub=20150105
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown. Here we show that AtPHT4;4, a member of the phosphate transporter 4 family of Arabidopsis thaliana, functions as an ascorbate transporter. In vitro analysis shows that proteoliposomes containing the purified AtPHT4;4 protein exhibit membrane potential- and Cl-dependent ascorbate uptake. The AtPHT4;4 protein is abundantly expressed in the chloroplast envelope membrane. Knockout of AtPHT4;4 results in decreased levels of the reduced form of ascorbate in the leaves and the heat dissipation process of excessive energy during photosynthesis is compromised. Taken together, these observations indicate that the AtPHT4;4 protein is an ascorbate transporter at the chloroplast envelope membrane, which may be required for tolerance to strong light stress.
en-copyright=
kn-copyright=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuromoriTakashi
en-aut-sei=Kuromori
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakeuchiYu
en-aut-sei=Takeuchi
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamajiNaoki
en-aut-sei=Yamaji
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YokoshoKengo
en-aut-sei=Yokosho
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimazawaAtsushi
en-aut-sei=Shimazawa
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SugimotoEriko
en-aut-sei=Sugimoto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OmoteHiroshi
en-aut-sei=Omote
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MaJian Feng
en-aut-sei=Ma
en-aut-mei=Jian Feng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ShinozakiKazuo
en-aut-sei=Shinozaki
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MoriyamaYoshinori
en-aut-sei=Moriyama
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=
kn-affil=Advanced Science Research Center, Okayama University
affil-num=2
en-affil=
kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science
affil-num=3
en-affil=
kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=4
en-affil=
kn-affil=Institute of Plant Science and Resources, Okayama University
affil-num=5
en-affil=
kn-affil=Institute of Plant Science and Resources, Okayama University
affil-num=6
en-affil=
kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=7
en-affil=
kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science
affil-num=8
en-affil=
kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=9
en-affil=
kn-affil=Institute of Plant Science and Resources, Okayama University
affil-num=10
en-affil=
kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science
affil-num=11
en-affil=
kn-affil=Advanced Science Research Center, Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2014
dt-pub=20140930
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=シロイヌナズナにおけるポリアミンに対する応答の分子遺伝学的解析
kn-title=A molecular and genetic study of the response to polyamines in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name= 日 娜
kn-aut-sei= 日 娜
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=20130930
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=シロイヌナズナのガンマ線照射への応答におけるカタラーゼの役割
kn-title=Roles of catalases in response to gamma irradiation in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SultanaAmena
en-aut-sei=Sultana
en-aut-mei=Amena
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=20130325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=シロイヌナズナの茎の伸長におけるサーモスペルミンの作用機構の研究
kn-title=A study on the mode of action of thermospermine in stem elongation of Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KakehiJunichi
en-aut-sei=Kakehi
en-aut-mei=Junichi
kn-aut-name=懸樋潤一
kn-aut-sei=懸樋
kn-aut-mei=潤一
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=12
article-no=
start-page=1552
end-page=1555
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=NIMA-related kinases regulate directional cell growth and organ development through microtubule function in Arabidopsis thaliana.
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=NIMA-related kinase 6 (NEK6) regulates cellular expansion and morphogenesis through microtubule organizaiton in Arabidopsis thaliana. Loss-of-function mutations in NEK6 (nek6/ibo1) cause ectopic outgrowth and microtubule disorganization in epidermal cells. We recently found that NEK6 forms homodimers and heterodimers with NEK4 and NEK5 to destabilize cortical microtubules possibly by direct binding to microtubules and the β-tubulin phosphorylation. Here, we identified a new allele of NEK6 and further analyzed the morphological phenotypes of nek6/ibo1 mutants, along with alleles of nek4 and nek5 mutants. Phenotypic analysis demonstrated that NEK6 is required for the directional growth of roots and hypocotyls, petiole elongation, cell file formation, and trichome morphogenesis. In addition, nek4, nek5, and nek6/ibo1 mutants were hypersensitive to microtubule inhibitors such as propyzamide and taxol. These results suggest that plant NEKs function in directional cell growth and organ development through the regulation of microtubule organization.
en-copyright=
kn-copyright=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakataniShogo
en-aut-sei=Takatani
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IkedaTatsuya
en-aut-sei=Ikeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=
kn-affil=Division of Biological Sciences; Graduate School of Natural Science and Technology; Okayama University
affil-num=2
en-affil=
kn-affil=Division of Biological Sciences; Graduate School of Natural Science and Technology; Okayama University
affil-num=3
en-affil=
kn-affil=Division of Biological Sciences; Graduate School of Natural Science and Technology; Okayama University
affil-num=4
en-affil=
kn-affil=Division of Biological Sciences; Graduate School of Natural Science and Technology; Okayama University
en-keyword=Arabidopsis
kn-keyword=Arabidopsis
en-keyword=NIMA-related kinase
kn-keyword=NIMA-related kinase
en-keyword=directional growth
kn-keyword=directional growth
en-keyword=epidermis
kn-keyword=epidermis
en-keyword=microtubule
kn-keyword=microtubule
en-keyword=tubulin
kn-keyword=tubulin
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=11
article-no=
start-page=2854
end-page=2859
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2013
dt-pub=201305
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Determination of polyamines in Arabidopsis thaliana by capillary electrophoresis using salicylaldehyde-5-sulfonate as a derivatizing reagent
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Herein, we report a novel method for the determination of polyamines in a sample extracted from Arabidopsis thaliana by capillary electrophoresis (CE) using salicylaldehyde-5-sulfonate (SAS) as a derivatizing reagent. An aldehyde group of SAS forms a Schiff base with amino groups of aliphatic polyamines, resulting in an anionic species with an absorption band in the ultraviolet region. The derivatization method was straightforward since the derivatives were formed by mixing a sample with the derivatizing reagent at a neutral pH. In addition, the negative charges induced by SAS led to a high resolution with a short analysis time. This method permitted the separation of five polyamines, which play important roles in plants. However, further improvement in sensitivity was needed for the determination of the polyamines in plant samples. Therefore, the CE method was coupled with solid-phase extraction (SPE) using an ion-pairing formation with sodium dodecyl benzene sulfonate. The SPE method improved the concentration limits of detection to sub-μM levels, which corresponded with a 10-fold enhancement. The calibration curves for cadaverine, putrescine, and spermidine were linear with concentrations that ranged from 1 to 20 μM and correlation coefficients (R2) were greater than 0.998. The proposed method was applied to the determination of spermidine in a plant sample, Arabidopsis thaliana.
en-copyright=
kn-copyright=
en-aut-name=InoueGenki
en-aut-sei=Inoue
en-aut-mei=Genki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakayanagiToshio
en-aut-sei=Takayanagi
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KakehiJunichi
en-aut-sei=Kakehi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=
kn-affil=Department of Chemistry, Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
affil-num=2
en-affil=
kn-affil=Department of Chemistry, Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
affil-num=3
en-affil=
kn-affil=Department of Life System, Institute of Technology and Science, The University of Tokushima
affil-num=4
en-affil=
kn-affil=Department of Biological Science, Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
affil-num=5
en-affil=
kn-affil=Department of Biological Science, Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
affil-num=6
en-affil=
kn-affil=Department of Biological Science, Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=4
article-no=
start-page=635
end-page=645
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A chemical biology approach reveals an opposite action between thermospermine and auxin in xylem development in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thermospermine, a structural isomer of spermine, is produced through the action of ACAULIS5 (ACL5) and suppresses xylem differentiation in Arabidopsis thaliana. To elucidate the molecular basis of the function of thermospermine, we screened chemical libraries for compounds that can modulate xylem differentiation in the acl5 mutant, which is deficient in thermospermine and shows a severe dwarf phenotype associated with excessive proliferation of xylem vessels. We found that the isooctyl ester of a synthetic auxin, 2,4-D, remarkably enhanced xylem vessel differentiation in acl5 seedlings. 2,4-D, 2,4-D analogs and IAA analogs, including 4-chloro IAA (4-Cl-IAA) and IAA ethyl ester, also enhanced xylem vessel formation, while IAA alone had little or no obvious effect on xylem differentiation. These effects of auxin analogs were observed only in the acl5 mutant but not in the wild type, and were suppressed by the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB) and alpha-(phenyl ethyl-2-one)-IAA (PEO-IAA), and also by thermospermine. Furthermore, the suppressor of acaulis51-d (sac51-d) mutation, which causes SAC51 overexpression in the absence of thermospermine and suppresses the dwarf phenotype of acl5, also suppressed the effect of auxin analogs in acl5. These results suggest that the auxin signaling that promotes xylem differentiation is normally limited by SAC51-mediated thermospermine signaling but can be continually stimulated by exogenous auxin analogs in the absence of thermospermine. The opposite action between thermospermine and auxin may fine-tune the timing and spatial pattern of xylem differentiation.
en-copyright=
kn-copyright=
en-aut-name=YoshimotoKaori
en-aut-sei=Yoshimoto
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HayashiKen-ichiro
en-aut-sei=Hayashi
en-aut-mei=Ken-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShirasuKen
en-aut-sei=Shirasu
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=
kn-affil=
affil-num=3
en-affil=
kn-affil=Okayama Univ Sci
affil-num=4
en-affil=
kn-affil=RIKEN
affil-num=5
en-affil=
kn-affil=Okayama Univ
affil-num=6
en-affil=
kn-affil=Okayama Univ
en-keyword=ACAULIS5
kn-keyword=ACAULIS5
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
en-keyword=Auxin
kn-keyword=Auxin
en-keyword=2.4-D
kn-keyword=2.4-D
en-keyword=Thermospermine
kn-keyword=Thermospermine
en-keyword=Xylem differentiation
kn-keyword=Xylem differentiation
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=8
article-no=
start-page=937
end-page=939
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2012
dt-pub=201208
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thermospermine, a structural isomer of spermine, is synthesized by a thermospermine synthase designated ACAULIS5 (ACL5). Thermospermine-deficient acl5 mutant of Arabidopsis thaliana shows severe dwarfism and excessive xylem differentiation. By screening for compounds that affect xylem differentiation in the acl5 mutant, we identified auxin analogs that remarkably enhanced xylem vessel differentiation in the acl5 mutant but not in the wild type. The xylem-inducing effect of auxin analogs was clearly suppressed by thermospermine, indicating that auxin-inducible xylem differentiation is normally limited by thermospermine. Here, we further characterized xylem-inducing effect of auxin analogs in various organs. Auxin analogs promoted protoxylem differentiation in roots and cotyledons in the acl5 mutant. Our results indicate that the opposite action between thermospermine and auxin in xylem differentiation is common in different organs and also suggest that thermospermine might be required for the suppression of protoxylem differentiation.
en-copyright=
kn-copyright=
en-aut-name=YoshimotoKaori
en-aut-sei=Yoshimoto
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HayashiKen-ichiro
en-aut-sei=Hayashi
en-aut-mei=Ken-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShirasuKen
en-aut-sei=Shirasu
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=
kn-affil=Division of Bioscience; Graduate School of Natural Science and Technology; Okayama University
affil-num=2
en-affil=
kn-affil=Research Core for Interdisciplinary Sciences; Okayama University
affil-num=3
en-affil=
kn-affil=Department of Biochemistry; Okayama University of Science
affil-num=4
en-affil=
kn-affil=Plant Science Center; RIKEN
affil-num=5
en-affil=
kn-affil=Division of Bioscience; Graduate School of Natural Science and Technology; Okayama University
affil-num=6
en-affil=
kn-affil=Division of Bioscience; Graduate School of Natural Science and Technology; Okayama University
en-keyword=2,4-D
kn-keyword=2,4-D
en-keyword=ACAULIS5
kn-keyword=ACAULIS5
en-keyword=auxin
kn-keyword=auxin
en-keyword=chemical biology
kn-keyword=chemical biology
en-keyword=thermospermine
kn-keyword=thermospermine
en-keyword=xylem differentiation
kn-keyword=xylem differentiation
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=6
article-no=
start-page=993
end-page=1005
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=201109
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=NimA-related kinase 6 (NEK6) has been implicated in microtubule regulation to suppress the ectopic outgrowth of epidermal cells; however, its molecular functions remain to be elucidated. Here, we analyze the function of NEK6 and other members of the NEK family with regard to epidermal cell expansion and cortical microtubule organization. The functional NEK6-green fluorescent protein fusion localizes to cortical microtubules, predominantly in particles that exhibit dynamic movement along microtubules. The kinase-dead mutant of NEK6 (ibo1-1) exhibits a disturbance of the cortical microtubule array at the site of ectopic protrusions in epidermal cells. Pharmacological studies with microtubule inhibitors and quantitative analysis of microtubule dynamics indicate excessive stabilization of cortical microtubules in ibo1/nek6 mutants. In addition, NEK6 directly binds to microtubules in vitro and phosphorylates beta-tubulin. NEK6 interacts and co-localizes with NEK4 and NEK5 in a transient expression assay. The ibo1-3 mutation markedly reduces the interaction between NEK6 and NEK4 and increases the interaction between NEK6 and NEK5. NEK4 and NEK5 are required for the ibo1/nek6 ectopic outgrowth phenotype in epidermal cells. These results demonstrate that NEK6 homodimerizes and forms heterodimers with NEK4 and NEK5 to regulate cortical microtubule organization possibly through the phosphorylation of beta-tubulins.
en-copyright=
kn-copyright=
en-aut-name=MotoseHiroyasu
en-aut-sei=Motose
en-aut-mei=Hiroyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HamadaTakahiro
en-aut-sei=Hamada
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshimotoKaori
en-aut-sei=Yoshimoto
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MurataTakashi
en-aut-sei=Murata
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HasebeMitsuyasu
en-aut-sei=Hasebe
en-aut-mei=Mitsuyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WatanabeYuichiro
en-aut-sei=Watanabe
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HashimotoTakashi
en-aut-sei=Hashimoto
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakaiTatsuya
en-aut-sei=Sakai
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiTaku
en-aut-sei=Takahashi
en-aut-mei=Taku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=
kn-affil=Okayama Univ
affil-num=2
en-affil=
kn-affil=Univ Massachusetts
affil-num=3
en-affil=
kn-affil=Okayama Univ
affil-num=4
en-affil=
kn-affil=Natl Inst Basic Biol
affil-num=5
en-affil=
kn-affil=Natl Inst Basic Biol
affil-num=6
en-affil=
kn-affil=Univ Tokyo
affil-num=7
en-affil=
kn-affil=Nara Inst Sci & Technol
affil-num=8
en-affil=
kn-affil=Niigata Univ
affil-num=9
en-affil=
kn-affil=Okayama Univ
en-keyword=NimA-related kinase
kn-keyword=NimA-related kinase
en-keyword=cell expansion
kn-keyword=cell expansion
en-keyword=microtubule
kn-keyword=microtubule
en-keyword=epidermal cell
kn-keyword=epidermal cell
en-keyword=Arabidopsis thaliana
kn-keyword=Arabidopsis thaliana
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2011
dt-pub=20110325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=シロイヌナズナにおけるミニ染色体の分子構造と安定性
kn-title=Molecular structure and stability of minichromosomes in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YokotaEtsuko
en-aut-sei=Yokota
en-aut-mei=Etsuko
kn-aut-name=横田悦子
kn-aut-sei=横田
kn-aut-mei=悦子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
END
start-ver=1.4
cd-journal=joma
no-vol=279
cd-vols=
no-issue=3
article-no=
start-page=303
end-page=312
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2008
dt-pub=20080301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
Flagellin, a component of the flagellar filament of Pseudomonas syringae pv. tabaci 6605 (Pta), induces hypersensitive reaction in its non-host Arabidopsis thaliana. We identified the WRKY41 gene, which belongs to a multigene family encoding WRKY plant-specific transcription factors, as one of the flagellin-inducible genes in A. thaliana. Expression of WRKY41 is induced by inoculation with the incompatible pathogen P. syringae pv. tomato DC3000 (Pto) possessing AvrRpt2 and the non-host pathogens Pta within 6-h after inoculation, but not by inoculation with the compatible Pto. Expression of WRKY41 was also induced by inoculation of A. thaliana with an hrp-type three secretion system (T3SS)-defective mutant of Pto, indicating that effectors produced by T3SS in the Pto wild-type suppress the activation of WRKY41. Arabidopsis overexpressing WRKY41 showed enhanced resistance to the Pto wild-type but increased susceptibility to Erwinia carotovora EC1. WRKY41-overexpressing Arabidopsis constitutively expresses the PR5 gene, but suppresses the methyl jasmonate-induced PDF1.2 gene expression. These results demonstrate that WRKY41 may be a key regulator in the cross talk of salicylic acid and jasmonic acid pathways.
en-copyright= kn-copyright= en-aut-name=HigashiKuniaki en-aut-sei=Higashi en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshigaYasuhiro en-aut-sei=Ishiga en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InagakiYoshishige en-aut-sei=Inagaki en-aut-mei=Yoshishige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University en-keyword=flagellin kn-keyword=flagellin en-keyword=flg22 kn-keyword=flg22 en-keyword=FLS2 kn-keyword=FLS2 en-keyword=MAMP signaling pathway kn-keyword=MAMP signaling pathway en-keyword=WRKY41 kn-keyword=WRKY41 END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=4 article-no= start-page=281 end-page=285 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070705 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=N-terminal domain including conserved flg22 is required for flagellin-induced hypersensitive cell death in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Flagellin in Pseudomonas syringae is a potent elicitor of defense responses including hypersensitive cell death in dicot plants. The oligopeptides flg22 consisting of 22 conserved amino acids near the N-terminus of flagellins is reported to induce plant defense responses. Because glycosylation of the central domain of flagellin affects its elicitor activity, we investigated whether any peptide sequence in addition to flg22 is required for flagellin-induced hypersensitive reaction. A study of recombinant flagellin polypeptides indicated that the N-terminal domain including the conserved flg22 is required for flagellin-induced hypersensitive cell death in Arabidopsis thaliana.
en-copyright= kn-copyright= en-aut-name=KanaNaito en-aut-sei=Kana en-aut-mei=Naito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YasuhiroIshiga en-aut-sei=Yasuhiro en-aut-mei=Ishiga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KazuhiroToyoda en-aut-sei=Kazuhiro en-aut-mei=Toyoda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomonoriShiraishi en-aut-sei=Tomonori en-aut-mei=Shiraishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YukiIchinose en-aut-sei=Yuki en-aut-mei=Ichinose kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=Flagellin kn-keyword=Flagellin en-keyword=Flg22 kn-keyword=Flg22 en-keyword=FLS2 kn-keyword=FLS2 en-keyword=HR cell death kn-keyword=HR cell death END start-ver=1.4 cd-journal=joma no-vol=117 cd-vols= no-issue=14 article-no= start-page=2963 end-page=2970 dt-received= dt-revised= dt-accepted= dt-pub-year=2004 dt-pub=20046 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=The 180 bp family of tandem repetitive sequences, which constitutes the major centromeric satellite in Arabidopsis thaliana, is thought to play important roles in kinetochore assembly. To assess the centromere activities of the 180 bp repeats, we performed indirect fluorescence immunolabeling with antibodies against phosphorylated histone H3 at Serl0, HTR12 (Arabidopsis centromeric histone H3 variant) and AtCENP-C (Arabidopsis CENP-C homologue) for the A. thaliana cell cultures. The immunosignals from all three antibodies appeared on all sites of the 180 bp,repeats detected by fluorescence in situ hybridization. However, some of the 180 bp repeat clusters, particularly those that were long or stretched at interphase, were not fully covered with the signals from anti-HTR12 or AtCENP-C. Chromatin fiber immunolabeling clearly revealed that the centromeric proteins examined in this study, localize only at the knobs on the extended chromatin fibers, which form a limited part of the 180 bp clusters. Furthermore, outer HTR12 and inner phosphohistone H3 (Ser1O) localization at the kinetochores of metaphase chromosomes suggests that two kinds of histone H3 (a centromere variant and a phosphorylated form) might be linked to different roles in centromere functionality; the former for spindle-fiber attachment, and the latter for chromatid cohesion.
en-copyright= kn-copyright= en-aut-name=ShibataFukashi en-aut-sei=Shibata en-aut-mei=Fukashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurataMinoru en-aut-sei=Murata en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Japan Science and Technology, Kawaguchi affil-num=2 en-affil= kn-affil=Okayama University en-keyword=180 bp repeat kn-keyword=180 bp repeat en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=Centromere kn-keyword=Centromere en-keyword=proteins kn-keyword=proteins en-keyword=Histone H3 kn-keyword=Histone H3 en-keyword=Phosphorylation kn-keyword=Phosphorylation END start-ver=1.4 cd-journal=joma no-vol=133 cd-vols= no-issue=18 article-no= start-page=3575 end-page=3585 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=20060915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene en-subtitle= kn-subtitle= en-abstract= kn-abstract=Loss-of-function mutants of the Arabidopsis thaliana ACAULIS 5 (ACL5) gene, which encodes spermine synthase, exhibit a severe dwarf phenotype. To elucidate the ACL5-mediated regulatory pathways of stem internocle elongation, we isolated four suppressor of acaulis (sac) mutants that reverse the acl5 dwarf phenotype. Because these mutants do not rescue the dwarfism of known phytohormone-related mutants, the SAC genes appear to act specifically on the ACL5 pathways. We identify the gene responsible for the dominant sac51-d mutant, which almost completely suppresses the acl5 phenotype. sac51-d disrupts a short upstream open reading frame (uORF) of SAC51, which encodes a bHLH-type transcription factor. Our results indicate that premature termination of the uORF in sac51-d results in an increase in its own transcript level, probably as a result of an increased translation of the main ORF. We suggest a model in which ACL5 plays a role in the translational activation of SAC51, which may lead to the expression of a subset of genes required for stem elongation. en-copyright= kn-copyright= en-aut-name=ImaiAkihiro en-aut-sei=Imai en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HanzawaYoshie en-aut-sei=Hanzawa en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KomuraMio en-aut-sei=Komura en-aut-mei=Mio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoKotaro T. en-aut-sei=Yamamoto en-aut-mei=Kotaro T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KomedaYoshibumi en-aut-sei=Komeda en-aut-mei=Yoshibumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Division of Biological Sciences, Graduate School of Science, Hokkaido University affil-num=3 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Division of Biological Sciences, Graduate School of Science, Hokkaido University affil-num=5 en-affil= kn-affil=Division of Biological Sciences, Graduate School of Science, Hokkaido University affil-num=6 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=Polyamine kn-keyword=Polyamine en-keyword=Spermine kn-keyword=Spermine en-keyword=Stem elongation kn-keyword=Stem elongation en-keyword=Upstream ORF kn-keyword=Upstream ORF END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナ孔辺細胞のアブシジン酸シグナリングにおけるグルタチオンの役割 kn-title=Roles of glutathione in abscisic acid signaling in guard cells of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=MD. SARWARJAHAN kn-aut-sei=MD. SARWAR kn-aut-mei=JAHAN aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=2 article-no= start-page=145 end-page=153 dt-received= dt-revised= dt-accepted= dt-pub-year=1998 dt-pub=1998 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナ由来過酸化リン脂質グルタチオンペルオキシダーゼ様遺伝子のクローニングと発現 kn-title=Molecular Cloning,Sequencing and Expression of a cDNA Encoding Putative Phospholipid Hydroperoxide Glutathione Peroxidase from Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract=シロイヌナズナから過酸化リン脂質グルタチオンペルオキシダーゼと高い相同性を持つタンパク質をコードするcDNAを単離し、その塩基配列を決定した。本遺伝子は、全長803bpからなり、169アミノ酸残基のタンパク質をコードしていた。アミノ酸配列は植物由来過酸化リン脂質グルタチオンペルオキシダーゼ様タンパク質と約80%の相同性を、哺乳類由来過酸化リン脂質グルタチオンペルオキシダーゼと約50%の相同性を示した。本遺伝子を大腸菌中で発現させた結果、遺伝子から予測される分子量をもつタンパク質が新たに生産された。 kn-abstract=A cDNA encoding Arabidopsis purative phosphplipid hydroperoxide gultathione peroxidase (PHGPX) was cloned and sequenced by the reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends methods. The cDNA comprised 803 bp, and included an open reading frame which encodes a polypeptide of 169 amino acid residues with a molecular mass of 18,600 Da. The deduced amino acid sequence showed homology to plant putative PHGPXs and mammalian PHGPXs. The cloned gene was expressed in Escherichia coli cells to prouce an extra protein, which showed a molecular mass similar to the deduced one. en-copyright= kn-copyright= en-aut-name=SugimotoManabu en-aut-sei=Sugimoto en-aut-mei=Manabu kn-aut-name=杉本学 kn-aut-sei=杉本 kn-aut-mei=学 aut-affil-num=1 ORCID= en-aut-name=KawaiFusako en-aut-sei=Kawai en-aut-mei=Fusako kn-aut-name=河合富佐子 kn-aut-sei=河合 kn-aut-mei=富佐子 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=Phospholipid hydroperoxide glutathione peroxidase kn-keyword=Phospholipid hydroperoxide glutathione peroxidase en-keyword=Nucleotide sequence kn-keyword=Nucleotide sequence en-keyword=Gene expression kn-keyword=Gene expression END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1997 dt-pub=19970325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナの遺伝子発現における転写制御とDNA-タンパク質相互作用 kn-title=Transcriptional Regulation and DNA- Protein Interaction in Gene Expression in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=磯野協一 kn-aut-sei=磯野 kn-aut-mei=協一 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2000 dt-pub=20000325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナの花器特異的に発現するmyrosinase-binding protein様タンパク質遺伝子の分子生物学的研究 kn-title=Molecular analysis of a gene encoding a putative myrosinase-binding protein specifically expressed in flowers of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=武智克彰 kn-aut-sei=武智 kn-aut-mei=克彰 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1998 dt-pub=19980930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Arabidopsis thalianaにおける花器で特異的に発現する遺伝子の分子生物学的研究 kn-title=MOLECULAR BIOLOGICAL STUDY ON FLOWER-SPECIFIC GENES IN ARABIDOPSIS THALIANA en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=宇都木繁子 kn-aut-sei=宇都木 kn-aut-mei=繁子 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END