start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=1 article-no= start-page=2480231 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Specific enhancement of the translation of thermospermine-responsive uORF-containing mRNAs by ribosomal mutations in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Auxin-induced xylem formation in angiosperms is negatively regulated by thermospermine, whose biosynthesis is also induced by auxin. In Arabidopsis thaliana, loss-of-function mutants of ACL5, which encodes thermospermine synthase, exhibit a dwarf phenotype accompanied by excessive xylem formation. Studies of suppressor mutants that recover from the acl5 dwarf phenotype suggest that thermospermine alleviates the inhibitory effect of an upstream open-reading frame (uORF) on the main ORF translation of SAC51 mRNA. Many suppressor mutations for acl5 have been mapped to the uORF conserved in the SAC51 family or to ribosomal protein genes, such as RPL10A, RPL4A, and RACK1A. In this study, we identified newly isolated acl5 suppressors, sac501, sac504, and sac506, which are additional alleles of RPL10A and the uORFs of SAC51 family members, SACL1 and SACL3, respectively. To investigate whether acl5-suppressor alleles of ribosomal genes broadly affect translation of uORF-containing mRNAs, we examined GUS activity in several 5'-GUS fusion constructs. Our results showed that these alleles enhanced GUS activity in SAC51 and SACL3 5'-fusion constructs but had no effect on other 5'-fusion constructs unrelated to thermospermine response. This suggests that these ribosomal proteins are specifically involved in the thermospermine-mediated regulation of mRNA translation. en-copyright= kn-copyright= en-aut-name=MutsudaKoki en-aut-sei=Mutsuda en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiYuichi en-aut-sei=Nishii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToyoshimaTomohiko en-aut-sei=Toyoshima en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukushimaHiroko en-aut-sei=Fukushima en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=mRNA translation kn-keyword=mRNA translation en-keyword=RPL10 kn-keyword=RPL10 en-keyword=suppressor mutant kn-keyword=suppressor mutant en-keyword=thermospermine kn-keyword=thermospermine en-keyword=uORF kn-keyword=uORF END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=塩ストレス下での根の成長制御におけるシロイヌナズナ外向き整流カリウムイオンチャネルの役割 kn-title=Roles of outward-rectifying potassium channels in regulation of root growth under salt stress in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Hafsa Jahan Hiya en-aut-sei=Hafsa Jahan Hiya en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=11 article-no= start-page=1769 end-page=1786 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240824 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nutrient Requirements Shape the Preferential Habitat of Allorhizobium vitis VAR03-1, a Commensal Bacterium, in the Rhizosphere of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=A diverse range of commensal bacteria inhabit the rhizosphere, influencing host plant growth and responses to biotic and abiotic stresses. While root-released nutrients can define soil microbial habitats, the bacterial factors involved in plant–microbe interactions are not well characterized. In this study, we investigated the colonization patterns of two plant disease biocontrol agents, Allorhizobium vitis VAR03-1 and Pseudomonas protegens Cab57, in the rhizosphere of Arabidopsis thaliana using Murashige and Skoog (MS) agar medium. VAR03-1 formed colonies even at a distance from the roots, preferentially in the upper part, while Cab57 colonized only the root surface. The addition of sucrose to the agar medium resulted in excessive proliferation of VAR03-1, similar to its pattern without sucrose, whereas Cab57 formed colonies only near the root surface. Overgrowth of both bacterial strains upon nutrient supplementation inhibited host growth, independent of plant immune responses. This inhibition was reduced in the VAR03-1 ΔrecA mutant, which exhibited increased biofilm formation, suggesting that some activities associated with the free-living lifestyle rather than the sessile lifestyle may be detrimental to host growth. VAR03-1 grew in liquid MS medium with sucrose alone, while Cab57 required both sucrose and organic acids. Supplementation of sugars and organic acids allowed both bacterial strains to grow near and away from Arabidopsis roots in MS agar. These results suggest that nutrient requirements for bacterial growth may determine their growth habitats in the rhizosphere, with nutrients released in root exudates potentially acting as a limiting factor in harnessing microbiota. en-copyright= kn-copyright= en-aut-name=HemeldaNiarsi Merry en-aut-sei=Hemelda en-aut-mei=Niarsi Merry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BaoJiyuan en-aut-sei=Bao en-aut-mei=Jiyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Commensal bacteria kn-keyword=Commensal bacteria en-keyword=Nutrient requirements kn-keyword=Nutrient requirements en-keyword=Organic acids kn-keyword=Organic acids en-keyword=Plant-microbe interactions kn-keyword=Plant-microbe interactions en-keyword=Rhizosphere kn-keyword=Rhizosphere en-keyword=Sugars kn-keyword=Sugars END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=zbae092 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cytosolic acidification and oxidation are the toxic mechanisms of SO2 in Arabidopsis guard cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=SO2/H2SO3 can damage plants. However, its toxic mechanism has still been controversial. Two models have been proposed, cytosolic acidification model and cellular oxidation model. Here, we assessed the toxic mechanism of H2SO3 in three cell types of Arabidopsis thaliana, mesophyll cells, guard cells (GCs), and petal cells. The sensitivity of GCs of Chloride channel a (CLCa)-knockout mutants to H2SO3 was significantly lower than those of wildtype plants. Expression of other CLC genes in mesophyll cells and petal cells were different from GCs. Treatment with antioxidant, disodium 4,5-dihydroxy-1,3-benzenedisulfonate (tiron), increased the median lethal concentration (LC50) of H2SO3 in GCs indicating the involvement of cellular oxidation, while the effect was negligible in mesophyll cells and petal cells. These results indicate that there are two toxic mechanisms of SO2 to Arabidopsis cells: cytosolic acidification and cellular oxidation, and the toxic mechanism may vary among cell types. en-copyright= kn-copyright= en-aut-name=MozhganiMahdi en-aut-sei=Mozhgani en-aut-mei=Mahdi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OoiLia en-aut-sei=Ooi en-aut-mei=Lia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EspagneChristelle en-aut-sei=Espagne en-aut-mei=Christelle kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FilleurSophie en-aut-sei=Filleur en-aut-mei=Sophie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoriIzumi C en-aut-sei=Mori en-aut-mei=Izumi C kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) kn-affil= affil-num=4 en-affil=Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=cytosolic acidification kn-keyword=cytosolic acidification en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=cellular oxidation kn-keyword=cellular oxidation en-keyword=chloride channel a kn-keyword=chloride channel a en-keyword=sulfur dioxide kn-keyword=sulfur dioxide END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=RP88822 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH. en-copyright= kn-copyright= en-aut-name=KatoYusuke en-aut-sei=Kato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaHiroshi en-aut-sei=Kuroda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OzawaShin-Ichiro en-aut-sei=Ozawa en-aut-mei=Shin-Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoKeisuke en-aut-sei=Saito en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DograVivek en-aut-sei=Dogra en-aut-mei=Vivek kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ScholzMartin en-aut-sei=Scholz en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangGuoxian en-aut-sei=Zhang en-aut-mei=Guoxian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=de VitryCatherine en-aut-sei=de Vitry en-aut-mei=Catherine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KimChanhong en-aut-sei=Kim en-aut-mei=Chanhong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HipplerMichael en-aut-sei=Hippler en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakahashiYuichiro en-aut-sei=Takahashi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=5 en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Institute of Plant Biology and Biotechnology, University of Münster kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=8 en-affil=Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université Pierre et Marie Curie kn-affil= affil-num=9 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=10 en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=13 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=post-translational modification kn-keyword=post-translational modification en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=protein degradation kn-keyword=protein degradation en-keyword=photosystem II kn-keyword=photosystem II en-keyword=photo-oxidative damage kn-keyword=photo-oxidative damage en-keyword=tryptophan oxidation kn-keyword=tryptophan oxidation en-keyword=Chlamydomonas reinhardtii kn-keyword=Chlamydomonas reinhardtii END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=2281159 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231115 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microtubule-associated proteins WDL5 and WDL6 play a critical role in pollen tube growth in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Morphological response of cells to environment involves concerted rearrangements of microtubules and actin microfilaments. A mutant of WAVE-DAMPENED2-LIKE5 (WDL5), which encodes an ethylene-regulated microtubule-associated protein belonging to the WVD2/WDL family in Arabidopsis thaliana, shows attenuation in the temporal root growth reduction in response to mechanical stress. We found that a T-DNA knockout of WDL6, the closest homolog of WDL5, oppositely shows an enhancement of the response. To know the functional relationship between WDL5 and WDL6, we attempted to generate the double mutant by crosses but failed in isolation. Close examination of gametophytes in plants that are homozygous for one and heterozygous for the other revealed that these plants produce pollen grains with a reduced rate of germination and tube growth. Reciprocal cross experiments of these plants with the wild type confirmed that the double mutation is not inherited paternally. These results suggest a critical and cooperative function of WDL5 and WDL6 in pollen tube growth. en-copyright= kn-copyright= en-aut-name=OkamotoTakashi en-aut-sei=Okamoto en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=pollen germination kn-keyword=pollen germination en-keyword=pollen tube growth kn-keyword=pollen tube growth en-keyword=the WVD2/WDL family kn-keyword=the WVD2/WDL family END start-ver=1.4 cd-journal=joma no-vol=236 cd-vols= no-issue=3 article-no= start-page=864 end-page=877 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220817 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A tonoplast‐localized magnesium transporter is crucial for stomatal opening in Arabidopsis under high Mg2+ conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plant stomata play an important role in CO2 uptake for photosynthesis and transpiration, but the mechanisms underlying stomatal opening and closing under changing environmental conditions are still not completely understood.
Through large-scale genetic screening, we isolated an Arabidopsis mutant (closed stomata2 (cst2)) that is defective in stomatal opening. We cloned the causal gene (MGR1/CST2) and functionally characterized this gene.
The mutant phenotype was caused by a mutation in a gene encoding an unknown protein with similarities to the human magnesium (Mg2+) efflux transporter ACDP/CNNM. MGR1/CST2 was localized to the tonoplast and showed transport activity for Mg2+. This protein was constitutively and highly expressed in guard cells. Knockout of this gene resulted in stomatal closing, decreased photosynthesis and growth retardation, especially under high Mg2+ conditions, while overexpression of this gene increased stomatal opening and tolerance to high Mg2+ concentrations. Furthermore, guard cell-specific expression of MGR1/CST2 in the mutant partially restored its stomatal opening.
Our results indicate that MGR1/CST2 expression in the leaf guard cells plays an important role in maintaining cytosolic Mg2+ concentrations through sequestering Mg2+ into vacuoles, which is required for stomatal opening, especially under high Mg2+ conditions. en-copyright= kn-copyright= en-aut-name=InoueShin‐ichiro en-aut-sei=Inoue en-aut-mei=Shin‐ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HayashiMaki en-aut-sei=Hayashi en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokoshoKengo en-aut-sei=Yokosho en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotohEiji en-aut-sei=Gotoh en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkematsuShuka en-aut-sei=Ikematsu en-aut-mei=Shuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkumuraMasaki en-aut-sei=Okumura en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzukiTakamasa en-aut-sei=Suzuki en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KamuraTakumi en-aut-sei=Kamura en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KinoshitaToshinori en-aut-sei=Kinoshita en-aut-mei=Toshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=2 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University kn-affil= affil-num=6 en-affil=Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University kn-affil= affil-num=7 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=8 en-affil=Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=9 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=10 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=11 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=ACDP kn-keyword=ACDP en-keyword=CNNM kn-keyword=CNNM en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=magnesium transport kn-keyword=magnesium transport en-keyword=plant growth kn-keyword=plant growth en-keyword=stomatal opening kn-keyword=stomatal opening END start-ver=1.4 cd-journal=joma no-vol=45 cd-vols= no-issue=11 article-no= start-page=3322 end-page=3337 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=FE UPTAKE‐INDUCING PEPTIDE1 maintains Fe translocation by controlling Fe deficiency response genes in the vascular tissue of Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=FE UPTAKE-INDUCING PEPTIDE1 (FEP1), also named IRON MAN3 (IMA3) is a short peptide involved in the iron deficiency response in Arabidopsis thaliana. Recent studies uncovered its molecular function, but its physiological function in the systemic Fe response is not fully understood. To explore the physiological function of FEP1 in iron homoeostasis, we performed a transcriptome analysis using the FEP1 loss-of-function mutant fep1-1 and a transgenic line with oestrogen-inducible expression of FEP1. We determined that FEP1 specifically regulates several iron deficiency-responsive genes, indicating that FEP1 participates in iron translocation rather than iron uptake in roots. The iron concentration in xylem sap under iron-deficient conditions was lower in the fep1-1 mutant and higher in FEP1-induced transgenic plants compared with the wild type (WT). Perls staining revealed a greater accumulation of iron in the cortex of fep1-1 roots than in the WT root cortex, although total iron levels in roots were comparable in the two genotypes. Moreover, the fep1-1 mutation partially suppressed the iron overaccumulation phenotype in the leaves of the oligopeptide transporter3-2 (opt3-2) mutant. These data suggest that FEP1 plays a pivotal role in iron movement and in maintaining the iron quota in vascular tissues in Arabidopsis. en-copyright= kn-copyright= en-aut-name=OkadaSatoshi en-aut-sei=Okada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LeiGui J. en-aut-sei=Lei en-aut-mei=Gui J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaJian F. en-aut-sei=Ma en-aut-mei=Jian F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirayamaTakashi en-aut-sei=Hirayama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Group of Plant Stress Physiology, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Crop Design Research Team, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Group of Environmental Stress Response Systems, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=oestrogen induction system kn-keyword=oestrogen induction system en-keyword=fep1-1 kn-keyword=fep1-1 en-keyword=iron-deficiency response kn-keyword=iron-deficiency response en-keyword=transcriptome kn-keyword=transcriptome END start-ver=1.4 cd-journal=joma no-vol=596 cd-vols= no-issue=23 article-no= start-page=3005 end-page=3014 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Loss of function of an Arabidopsis homologue of JMJD6 suppresses the dwarf phenotype of acl5, a mutant defective in thermospermine biosynthesis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In Arabidopsis thaliana, the ACL5 gene encodes thermospermine synthase and its mutant, acl5, exhibits a dwarf phenotype with excessive xylem formation. Studies of suppressor mutants of acl5 reveal the involvement of thermospermine in enhancing mRNA translation of the SAC51 gene family. We show here that a mutant, sac59, which partially suppresses the acl5 phenotype, has a point mutation in JMJ22 encoding a D6-class Jumonji C protein (JMJD6). A T-DNA insertion allele, jmj22-2, also partially suppressed the acl5 phenotype while mutants of its closest two homologs JMJ21 and JMJ20 had no such effects, suggesting a unique role for JMJ22 in plant development. We found that mRNAs of the SAC51 family are more stabilized in acl5 jmj22-2 than in acl5. en-copyright= kn-copyright= en-aut-name=MatsuoHirotoshi en-aut-sei=Matsuo en-aut-mei=Hirotoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukushimaHiroko en-aut-sei=Fukushima en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurokawaShinpei en-aut-sei=Kurokawa en-aut-mei=Shinpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawanoEri en-aut-sei=Kawano en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkamotoTakashi en-aut-sei=Okamoto en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=JMJD6 kn-keyword=JMJD6 en-keyword=mRNA stability kn-keyword=mRNA stability en-keyword=thermospermine kn-keyword=thermospermine en-keyword=xylem development kn-keyword=xylem development END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Rhizoctonia solani種複合体の分類群とシロイヌナズナに対する病原性との関連性 kn-title=Relationship between classification of Rhizoctonia solani species complex and pathogenicity on Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Mai Mohsen Ahmed Abdelghany Ahmed en-aut-sei=Mai Mohsen Ahmed Abdelghany Ahmed en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナの内生サプレッサーとしての CEP ペプチドの作用機序に関する研究 kn-title=Study on the mode of action of CEP peptide as an endogenous suppressor in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=APRILIA NUR FITRIANTI en-aut-sei=APRILIA NUR FITRIANTI en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナにおけるリンゴ酸誘導気孔閉口のメカニズム kn-title=The mechanism of malate-induced stomatal closure in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MimataYoshiharu en-aut-sei=Mimata en-aut-mei=Yoshiharu kn-aut-name=三俣好令 kn-aut-sei=三俣 kn-aut-mei=好令 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=76 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surveillance of Pathogenicity of Rhizoctonia solani Japanese Isolates with Varied Anastomosis Groups and Subgroups on Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a necrotrophic plant pathogen with a wide host range. R. solani is a species complex consisting of thirteen anastomosis groups (AGs) defined by compatibility of hyphal fusion reaction and subgroups based on cultural morphology. The relationship between such classifications and host specificity remains elusive. Here, we investigated the pathogenicity of seventeen R. solani isolates (AG-1 to 7) in Japan towards Arabidopsis thaliana using leaf and soil inoculations. The tested AGs, except AG-3 and AG-6, induced symptoms in both methods with variations in pathogenicity. The virulence levels differed even within the same AG and subgroup. Some isolates showed tissue-specific infection behavior. Thus, the AGs and their subgroups are suggested to be not enough to define the virulence (host and tissue specificity) of R. solani. We also evaluated the virulence of the isolates on Arabidopsis plants pretreated with salicylic acid, jasmonic acid, and ethylene. No obvious effects were detected on the symptom formation by the virulence isolates, but ethylene and salicylic acid slightly enhanced the susceptibility to the weak and nonvirulent isolates. R. solani seems to be able to overcome the induced defense by these phytohormones in the infection to Arabidopsis. en-copyright= kn-copyright= en-aut-name=AbdelghanyMai Mohsen Ahmed en-aut-sei=Abdelghany en-aut-mei=Mai Mohsen Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurikawaMaria en-aut-sei=Kurikawa en-aut-mei=Maria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMikihiro en-aut-sei=Yamamoto en-aut-mei=Mikihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Agriculture, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Rhizoctonia solani kn-keyword=Rhizoctonia solani en-keyword=anastomosis group kn-keyword=anastomosis group en-keyword=phytohormones kn-keyword=phytohormones en-keyword=pathogenicity kn-keyword=pathogenicity en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=12 article-no= start-page=3283 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Responses of Polyamine-Metabolic Genes to Polyamines and Plant Stress Hormones in Arabidopsis Seedlings en-subtitle= kn-subtitle= en-abstract= kn-abstract=In plants, many of the enzymes in polyamine metabolism are encoded by multiple genes, whose expressions are differentially regulated under different physiological conditions. For comprehensive understanding of their regulation during the seedling growth stage, we examined the expression of polyamine metabolic genes in response to polyamines and stress-related plant hormones in Arabidopsis thaliana. While confirming previous findings such as induction of many of the genes by abscisic acid, induction of arginase genes and a copper amine oxidase gene, CuAO alpha 3, by methyl jasmonate, that of an arginine decarboxylase gene, ADC2, and a spermine synthase gene, SPMS, by salicylic acid, and negative feedback regulation of thermospermine biosynthetic genes by thermospermine, our results showed that expressions of most of the genes are not responsive to exogenous polyamines. We thus examined expression of OsPAO6, which encodes an apoplastic polyamine oxidase and is strongly induced by polyamines in rice, by using the promoter-GUS fusion in transgenic Arabidopsis seedlings. The GUS activity was increased by treatment with methyl jasmonate but neither by polyamines nor by other plant hormones, suggesting a difference in the response to polyamines between Arabidopsis and rice. Our results provide a framework to study regulatory modules directing expression of each polyamine metabolic gene. en-copyright= kn-copyright= en-aut-name=YariuchiYusaku en-aut-sei=Yariuchi en-aut-mei=Yusaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoTakashi en-aut-sei=Okamoto en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=abscisic acid kn-keyword=abscisic acid en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=jasmonate kn-keyword=jasmonate en-keyword=polyamine metabolism kn-keyword=polyamine metabolism en-keyword=salicylic acid kn-keyword=salicylic acid END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210924 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=イソチオシアネートに対するシロイヌナズナの気孔応答 kn-title=Stomatal response to isothiocyanates in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SONYA AFRIN en-aut-sei=SONYA AFRIN en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=647684 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210810 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Purification, Characterization, and Gene Expression of Rice Endo-beta-N-Acetylglucosaminidase, Endo-Os en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the endoplasmic reticulum-associated degradation system of plant and animal cells, high-mannose type free N-glycans (HMT-FNGs) are produced from misfolded glycoproteins prior to proteasomal degradation, and two enzymes, cytosolic peptide:N-glycanase (cPNGase) and endo-beta-N-acetylglucosaminidase (endo-beta-GlcNAc-ase), are involved in the deglycosylation. Although the physiological functions of these FNGs in plant growth and development remain to be elucidated, detailed characterization of cPNGase and endo-beta-GlcNAc-ase is required. In our previous work, we described the purification, characterization, and subcellular distribution of some plant endo-beta-GlcNAc-ases and preliminarily reported the gene information of rice endo-beta-GlcNAc-ase (Endo-Os). Furthermore, we analyzed the changes in gene expression of endo-beta-GlcNAc-ase during tomato fruit maturation and constructed a mutant line of Arabidopsis thaliana, in which the two endo-beta-GlcNAc-ase genes were knocked-out based on the Endo-Os gene. In this report, we describe the purification, characterization, amino acid sequence, and gene cloning of Endo-Os in detail. Purified Endo-Os, with an optimal pH of 6.5, showed high activity for high-mannose type N-glycans bearing the Man alpha 1-2Man alpha 1-3Man beta 1 unit; this substrate specificity was almost the same as that of other plant endo-beta-GlcNAc-ases, suggesting that Endo-Os plays a critical role in the production of HTM-FNGs in the cytosol. Electrospray ionization-mass spectrometry analysis of the tryptic peptides revealed 17 internal amino acid sequences, including the C terminus; the N-terminal sequence could not be identified due to chemical modification. These internal amino acid sequences were consistent with the amino acid sequence (UniProt ID: Q5W6R1) deduced from the Oryza sativa cDNA clone AK112067 (gene ID: Os05g0346500). Recombinant Endo-Os expressed in Escherichia coli using cDNA showed the same enzymatic properties as those of native Endo-Os. en-copyright= kn-copyright= en-aut-name=MaedaMegumi en-aut-sei=Maeda en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoNaoko en-aut-sei=Okamoto en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ArakiNode en-aut-sei=Araki en-aut-mei=Node kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KimuraYoshinobu en-aut-sei=Kimura en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University kn-affil= affil-num=4 en-affil=Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=endo-beta-N-acetylglucosaminidase kn-keyword=endo-beta-N-acetylglucosaminidase en-keyword=free N-glycans kn-keyword=free N-glycans en-keyword=Oryza sativa kn-keyword=Oryza sativa en-keyword=ER associated degradation kn-keyword=ER associated degradation en-keyword=peptide:N-glycanase kn-keyword=peptide:N-glycanase END start-ver=1.4 cd-journal=joma no-vol=231 cd-vols= no-issue=1 article-no= start-page=75 end-page=84 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Divergence in red light responses associated with thermal reversion of phytochrome B between high‐ and low‐latitude species en-subtitle= kn-subtitle= en-abstract= kn-abstract=Summary
・Phytochromes play a central role in mediating adaptive responses to light and temperature throughout plant life cycles. Despite evidence for adaptive importance of natural variation in phytochromes, little information is known about molecular mechanisms that modulate physiological responses of phytochromes in nature.
・We show evolutionary divergence in physiological responses relevant to thermal stability of a physiologically active form of phytochrome (Pfr) between two sister species of Brassicaceae growing at different latitudes.
The higher latitude species (Cardamine bellidifolia; Cb) responded more strongly to light‐limited conditions compared with its lower latitude sister (C. nipponica; Cn). Moreover, CbPHYB conferred stronger responses to both light‐limited and warm conditions in the phyB‐deficient mutant of Arabidopsis thaliana than CnPHYB: that is Pfr CbphyB was more stable in nuclei than CnphyB.
・Our findings suggest that fine tuning Pfr stability is a fundamental mechanism for plants to optimise phytochrome‐related traits in their evolution and adapt to spatially varying environments, and open a new avenue to understand molecular mechanisms that fine tune phytochrome responses in nature. en-copyright= kn-copyright= en-aut-name=IkedaHajime en-aut-sei=Ikeda en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiTomomi en-aut-sei=Suzuki en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkaYoshito en-aut-sei=Oka en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GustafssonA. Lovisa S. en-aut-sei=Gustafsson en-aut-mei=A. Lovisa S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BrochmannChristian en-aut-sei=Brochmann en-aut-mei=Christian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MochizukiNobuyoshi en-aut-sei=Mochizuki en-aut-mei=Nobuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagataniAkira en-aut-sei=Nagatani en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Science, Kyoto University kn-affil= affil-num=3 en-affil=Graduate School of Science, Kyoto University kn-affil= affil-num=4 en-affil=Natural History Museum, University of Oslo kn-affil= affil-num=5 en-affil=Natural History Museum, University of Oslo kn-affil= affil-num=6 en-affil=Graduate School of Science, Kyoto University kn-affil= affil-num=7 en-affil=Graduate School of Science, Kyoto University kn-affil= en-keyword=alpine plants kn-keyword=alpine plants en-keyword=Brassicaceae kn-keyword=Brassicaceae en-keyword=Cardamine kn-keyword=Cardamine en-keyword=phytochrome kn-keyword=phytochrome en-keyword=thermal reversion kn-keyword=thermal reversion END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=3 article-no= start-page=119 end-page=131 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ribosome rescue activity of an Arabidopsis thaliana ArfB homolog en-subtitle= kn-subtitle= en-abstract= kn-abstract=A homolog of the bacterial ribosome rescue factor ArfB was identified in Arabidopsis thaliana. The factor, named AtArfB for Arabidopsis thaliana ArfB, showed ribosome rescue activity in both in vivo and in vitro assays based on the bacterial translation system. As has been shown for ArfB, the ribosome rescue activity of AtArfB was dependent on the GGQ motif, the crucial motif for the function of class I release factors and ArfB. The C-terminal region of AtArfB was also important for its function. The N-terminal region of AtArfB, which is absent in bacterial ArfB, functioned as a transit peptide for chloroplast targeting in tobacco cells. These results strongly suggest that AtArfB is a ribosome rescue factor that functions in chloroplasts. en-copyright= kn-copyright= en-aut-name=NagaoMichiaki en-aut-sei=Nagao en-aut-mei=Michiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsuchiyaFumina en-aut-sei=Tsuchiya en-aut-mei=Fumina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MotohashiReiko en-aut-sei=Motohashi en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AboTatsuhiko en-aut-sei=Abo en-aut-mei=Tatsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Integrated Science and Technology, Shizuoka University kn-affil= affil-num=3 en-affil=Graduate School of Integrated Science and Technology, Shizuoka University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=ArfB kn-keyword=ArfB en-keyword=chloroplast kn-keyword=chloroplast en-keyword=ribosome rescue kn-keyword=ribosome rescue en-keyword=translation kn-keyword=translation END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナの気孔閉口における活性カルボニル種の役割 kn-title=Roles of reactive carbonyl species in stomatal closure of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=Rhaman Mohammad Saidur en-aut-sei=Rhaman Mohammad Saidur en-aut-mei= kn-aut-name=RHAMAN MOHAMMAD SAIDUR kn-aut-sei=RHAMAN MOHAMMAD SAIDUR kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=6 article-no= start-page=779 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200622 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Easy-to-Use InDel Markers for Genetic Mapping between Col-0 and Ler-0 Accessions of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Map-based gene cloning has played a key role in many genetic studies using the model plant,Arabidopsis thaliana. In the post-next generation sequencing era, identification of point mutations and their corresponding genes is increasingly becoming a powerful and important approach to define plant gene function. To perform initial mapping experiments efficiently on Arabidopsis mutants, enrichment of easy-to-use and reliable polymorphic DNA markers would be desirable. We present here a list of InDel polymorphic markers between Col-0 and Ler-0 accessions that can be detected in standard agarose gel electrophoresis. en-copyright= kn-copyright= en-aut-name=TanakaTakahiro en-aut-sei=Tanaka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiYuichi en-aut-sei=Nishii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuoHirotoshi en-aut-sei=Matsuo en-aut-mei=Hirotoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=InDel markers kn-keyword=InDel markers en-keyword=SSLP kn-keyword=SSLP en-keyword=chromosome mapping kn-keyword=chromosome mapping en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=mutants kn-keyword=mutants END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year= dt-pub= dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Arabidopsis thaliana (L.) Heynh. kn-title=シロイヌナズナ en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-keyword=アブラナ科 (Brassicaceae) kn-keyword=アブラナ科 (Brassicaceae) END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナに存在する内生サプレッサーに関する研究 kn-title=Study on the endogenous suppressor(s) in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MAI THANH LUAN en-aut-sei=MAI THANH LUAN en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Okayama University kn-affil=岡山大学大学院 END start-ver=1.4 cd-journal=joma no-vol=57 cd-vols= no-issue=8 article-no= start-page=1779 end-page=1990 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract= Methyl jasmonate (MeJA) induces stomatal closure. It has been shown that stomata of many ABA-insensitive mutants are also insensitive to MeJA, and a low amount of ABA is a prerequisite for the MeJA response. However, the molecular mechanisms of the interaction between ABA and MeJA signaling remain to be elucidated. Here we studied the interplay of signaling of the two hormones in guard cells using the quadruple ABA receptor mutant pyr1 pyl1 pyl2 pyl4 and ABA-activated protein kinase mutants ost1-2 and srk2e. In the quadruple mutant, MeJA-induced stomatal closure, H2O2 production, nitric oxide (NO) production, cytosolic alkalization and plasma membrane Ca(2+)-permeable current (ICa) activation were not impaired. At the same time, the inactivation of the inward-rectifying K(+) current was impaired. In contrast to the quadruple mutant, MeJA-induced stomatal closure, H2O2 production, NO production and cytosolic alkalization were impaired in ost1-2 and srk2e as well as in aba2-2, the ABA-deficient mutant. The activation of ICa was also impaired in srk2e. Collectively, these results indicated that OST1 was essential for MeJA-induced stomatal closure, while PYR1, PYL1, PYL2 and PYL4 ABA receptors were not sufficient factors. MeJA did not appear to activate OST1 kinase activity. This implies that OST1 mediates MeJA signaling through an undetectable level of activity or a non-enzymatic action. MeJA induced the expression of an ABA synthesis gene, NCED3, and increased ABA contents only modestly. Taken together with previous reports, this study suggests that MeJA signaling in guard cells is primed by ABA and is not brought about through the pathway mediated by PYR1, PYL1 PYL2 and PYL4. en-copyright= kn-copyright= en-aut-name=YinYe en-aut-sei=Yin en-aut-mei=Ye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AdachiYuji en-aut-sei=Adachi en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=ABA kn-keyword=ABA en-keyword=ABA receptors kn-keyword=ABA receptors en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=Guard cells kn-keyword=Guard cells en-keyword=Methyl jasmonate kn-keyword=Methyl jasmonate en-keyword=OST1 protein kinase kn-keyword=OST1 protein kinase END start-ver=1.4 cd-journal=joma no-vol=57 cd-vols= no-issue=8 article-no= start-page=1583 end-page=1592 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201608 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The SAC51 Family Plays a Central Role in Thermospermine Responses in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract= The acaulis5 (acl5) mutant of Arabidopsis thaliana is defective in the biosynthesis of thermospermine and shows a dwarf phenotype associated with excess xylem differentiation. SAC51 was identified from a dominant suppressor of acl5, sac51-d, and encodes a basic helix-loop-helix protein. The sac51-d mutant has a premature termination codon in an upstream open reading frame (uORF) that is conserved among all four members of the SAC51 family, SAC51 and SACL1-SACL3 This suggests that thermospermine cancels the inhibitory effect of the uORF in main ORF translation. Another suppressor, sac57-d, has a mutation in the conserved uORF of SACL3 To define further the function of the SAC51 family in the thermospermine response, we analyzed T-DNA insertion mutants of each gene. Although sacl1-1 may not be a null allele, the quadruple mutant showed a semi-dwarf phenotype but with an increased level of thermospermine and decreased sensitivity to exogenous thermospermine that normally represses xylem differentiation. The sac51-1 sacl3-1 double mutant was also insensitive to thermospermine. These results suggest that SAC51 and SACL3 play a key role in thermospermine-dependent negative control of thermospermine biosynthesis and xylem differentiation. Using 5' leader-GUS (β-glucuronidase) fusion constructs, however, we detected a significant enhancement of the GUS activity by thermospermine only in SAC51 and SACL1 constructs. Furthermore, while acl5-1 sac51-1 showed the acl5 dwarf phenotype, acl5-1 sacl3-1 exhibited an extremely tiny-plant phenotype. These results suggest a complex regulatory network for the thermospermine response in which SAC51 and SACL3 function in parallel pathways. en-copyright= kn-copyright= en-aut-name=CaiQingqing en-aut-sei=Cai en-aut-mei=Qingqing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukushimaHiroko en-aut-sei=Fukushima en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoMai en-aut-sei=Yamamoto en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshiiNami en-aut-sei=Ishii en-aut-mei=Nami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoTomoaki en-aut-sei=Sakamoto en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurataTetsuya en-aut-sei=Kurata en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology kn-affil= affil-num=6 en-affil=Graduate School of Biological Sciences, Nara Institute of Science and Technology kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=Thermospermine kn-keyword=Thermospermine en-keyword=Translation kn-keyword=Translation en-keyword=Xylem differentiation kn-keyword=Xylem differentiation en-keyword=uORF kn-keyword=uORF END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page=21487 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chemical control of xylem differentiation by thermospermine, xylemin and auxin en-subtitle= kn-subtitle= en-abstract= kn-abstract= The xylem conducts water and minerals from the root to the shoot and provides mechanical strength to the plant body. The vascular precursor cells of the procambium differentiate to form continuous vascular strands, from which xylem and phloem cells are generated in the proper spatiotemporal pattern. Procambium formation and xylem differentiation are directed by auxin. In angiosperms, thermospermine, a structural isomer of spermine, suppresses xylem differentiation by limiting auxin signalling. However, the process of auxin-inducible xylem differentiation has not been fully elucidated and remains difficult to manipulate. Here, we found that an antagonist of spermidine can act as an inhibitor of thermospermine biosynthesis and results in excessive xylem differentiation, which is a phenocopy of a thermospermine-deficient mutant acaulis5 in Arabidopsis thaliana. We named this compound xylemin owing to its xylem-inducing effect. Application of a combination of xylemin and thermospermine to wild-type seedlings negates the effect of xylemin, whereas co-treatment with xylemin and a synthetic proauxin, which undergoes hydrolysis to release active auxin, has a synergistic inductive effect on xylem differentiation. Thus, xylemin may serve as a useful transformative chemical tool not only for the study of thermospermine function in various plant species but also for the control of xylem induction and woody biomass production. en-copyright= kn-copyright= en-aut-name=YoshimotoKaori en-aut-sei=Yoshimoto en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page=21487 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chemical control of xylem differentiation by thermospermine, xylemin, and auxin en-subtitle= kn-subtitle= en-abstract= kn-abstract=The xylem conducts water and minerals from the root to the shoot and provides mechanical strength to the plant body. The vascular precursor cells of the procambium differentiate to form continuous vascular strands, from which xylem and phloem cells are generated in the proper spatiotemporal pattern. Procambium formation and xylem differentiation are directed by auxin. In angiosperms, thermospermine, a structural isomer of spermine, suppresses xylem differentiation by limiting auxin signalling. However, the process of auxin-inducible xylem differentiation has not been fully elucidated and remains difficult to manipulate. Here, we found that an antagonist of spermidine can act as an inhibitor of thermospermine biosynthesis and results in excessive xylem differentiation, which is a phenocopy of a thermospermine-deficient mutant acaulis5 in Arabidopsis thaliana. We named this compound xylemin owing to its xylem-inducing effect. Application of a combination of xylemin and thermospermine to wild-type seedlings negates the effect of xylemin, whereas co-treatment with xylemin and a synthetic proauxin, which undergoes hydrolysis to release active auxin, has a synergistic inductive effect on xylem differentiation. Thus, xylemin may serve as a useful transformative chemical tool not only for the study of thermospermine function in various plant species but also for the control of xylem induction and woody biomass production. en-copyright= kn-copyright= en-aut-name=YoshimotoKaori en-aut-sei=Yoshimoto en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil= kn-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=128 cd-vols= no-issue=6 article-no= start-page=875 end-page=891 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=201511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation en-subtitle= kn-subtitle= en-abstract= kn-abstract=icrotubules are highly dynamic structures that control the spatiotemporal pattern of cell growth and division. Microtubule dynamics are regulated by reversible protein phosphorylation involving both protein kinases and phosphatases. Never in mitosis A (NIMA)-related kinases (NEKs) are a family of serine/threonine kinases that regulate microtubule-related mitotic events in fungi and animal cells (e.g. centrosome separation and spindle formation). Although plants contain multiple members of the NEK family, their functions remain elusive. Recent studies revealed that NEK6 of Arabidopsis thaliana regulates cell expansion and morphogenesis through β-tubulin phosphorylation and microtubule destabilization. In addition, plant NEK members participate in organ development and stress responses. The present phylogenetic analysis indicates that plant NEK genes are diverged from a single NEK6-like gene, which may share a common ancestor with other kinases involved in the control of microtubule organization. On the contrary, another mitotic kinase, polo-like kinase, might have been lost during the evolution of land plants. We propose that plant NEK members have acquired novel functions to regulate cell growth, microtubule organization, and stress responses. en-copyright= kn-copyright= en-aut-name=TakataniShogo en-aut-sei=Takatani en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaniKento en-aut-sei=Otani en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanazawaMai en-aut-sei=Kanazawa en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=4 en-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Biology, Faculty of Science, Okayama University kn-affil= en-keyword=NIMA-related kinase kn-keyword=NIMA-related kinase en-keyword=Phosphorylation kn-keyword=Phosphorylation en-keyword=Tubulin kn-keyword=Tubulin en-keyword=Microtubule kn-keyword=Microtubule en-keyword=Cell expansion kn-keyword=Cell expansion en-keyword=Cell division kn-keyword=Cell division END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue= article-no= start-page=11364 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Abscisic acid induces ectopic outgrowth in epidermal cells through cortical microtubule reorganization in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Abscisic acid (ABA) regulates seed maturation, germination and various stress responses in plants. The roles of ABA in cellular growth and morphogenesis, however, remain to be explored. Here, we report that ABA induces the ectopic outgrowth of epidermal cells in Arabidopsis thaliana. Seedlings of A. thaliana germinated and grown in the presence of ABA developed ectopic protrusions in the epidermal cells of hypocotyls, petioles and cotyledons. One protrusion was formed in the middle of each epidermal cell. In the hypocotyl epidermis, two types of cell files are arranged alternately into non-stoma cell files and stoma cell files, ectopic protrusions being restricted to the non-stoma cell files. This suggests the presence of a difference in the degree of sensitivity to ABA or in the capacity of cells to form protrusions between the two cell files. The ectopic outgrowth was suppressed in ABA insensitive mutants, whereas it was enhanced in ABA hypersensitive mutants. Interestingly, ABA-induced ectopic outgrowth was also suppressed in mutants in which microtubule organization was compromised. Furthermore, cortical microtubules were disorganized and depolymerized by the ABA treatment. These results suggest that ABA signaling induces ectopic outgrowth in epidermal cells through microtubule reorganization. en-copyright= kn-copyright= en-aut-name=TakataniShogo en-aut-sei=Takatani en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirayamaTakashi en-aut-sei=Hirayama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HashimotoTakashi en-aut-sei=Hashimoto en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Biological Science, Nara Institute of Science and Technology affil-num=4 en-affil= kn-affil=Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=自然科学研究科 en-keyword=Cell growth kn-keyword=Cell growth en-keyword=Plant cytoskeleton kn-keyword=Plant cytoskeleton END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナの木部分化におけるサーモスペルミンの作用に関するケミカルバイオロジー解析 kn-title=A chemical biology analysis of the action of thermospermine in xylem differentiation of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YoshimotoKaori en-aut-sei=Yoshimoto en-aut-mei=Kaori kn-aut-name=吉本香織 kn-aut-sei=吉本 kn-aut-mei=香織 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院 END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=20150105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown. Here we show that AtPHT4;4, a member of the phosphate transporter 4 family of Arabidopsis thaliana, functions as an ascorbate transporter. In vitro analysis shows that proteoliposomes containing the purified AtPHT4;4 protein exhibit membrane potential- and Cl-dependent ascorbate uptake. The AtPHT4;4 protein is abundantly expressed in the chloroplast envelope membrane. Knockout of AtPHT4;4 results in decreased levels of the reduced form of ascorbate in the leaves and the heat dissipation process of excessive energy during photosynthesis is compromised. Taken together, these observations indicate that the AtPHT4;4 protein is an ascorbate transporter at the chloroplast envelope membrane, which may be required for tolerance to strong light stress. en-copyright= kn-copyright= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuromoriTakashi en-aut-sei=Kuromori en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeuchiYu en-aut-sei=Takeuchi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoshoKengo en-aut-sei=Yokosho en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimazawaAtsushi en-aut-sei=Shimazawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugimotoEriko en-aut-sei=Sugimoto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoteHiroshi en-aut-sei=Omote en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ShinozakiKazuo en-aut-sei=Shinozaki en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MoriyamaYoshinori en-aut-sei=Moriyama en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Advanced Science Research Center, Okayama University affil-num=2 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=3 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=4 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=5 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=6 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=8 en-affil= kn-affil=Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=9 en-affil= kn-affil=Institute of Plant Science and Resources, Okayama University affil-num=10 en-affil= kn-affil=Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science affil-num=11 en-affil= kn-affil=Advanced Science Research Center, Okayama University END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナにおけるポリアミンに対する応答の分子遺伝学的解析 kn-title=A molecular and genetic study of the response to polyamines in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name= 日 娜 kn-aut-sei= 日 娜 kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナのガンマ線照射への応答におけるカタラーゼの役割 kn-title=Roles of catalases in response to gamma irradiation in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SultanaAmena en-aut-sei=Sultana en-aut-mei=Amena kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=20130325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナの茎の伸長におけるサーモスペルミンの作用機構の研究 kn-title=A study on the mode of action of thermospermine in stem elongation of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KakehiJunichi en-aut-sei=Kakehi en-aut-mei=Junichi kn-aut-name=懸樋潤一 kn-aut-sei=懸樋 kn-aut-mei=潤一 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=12 article-no= start-page=1552 end-page=1555 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NIMA-related kinases regulate directional cell growth and organ development through microtubule function in Arabidopsis thaliana. en-subtitle= kn-subtitle= en-abstract= kn-abstract=NIMA-related kinase 6 (NEK6) regulates cellular expansion and morphogenesis through microtubule organizaiton in Arabidopsis thaliana. Loss-of-function mutations in NEK6 (nek6/ibo1) cause ectopic outgrowth and microtubule disorganization in epidermal cells. We recently found that NEK6 forms homodimers and heterodimers with NEK4 and NEK5 to destabilize cortical microtubules possibly by direct binding to microtubules and the β-tubulin phosphorylation. Here, we identified a new allele of NEK6 and further analyzed the morphological phenotypes of nek6/ibo1 mutants, along with alleles of nek4 and nek5 mutants. Phenotypic analysis demonstrated that NEK6 is required for the directional growth of roots and hypocotyls, petiole elongation, cell file formation, and trichome morphogenesis. In addition, nek4, nek5, and nek6/ibo1 mutants were hypersensitive to microtubule inhibitors such as propyzamide and taxol. These results suggest that plant NEKs function in directional cell growth and organ development through the regulation of microtubule organization. en-copyright= kn-copyright= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakataniShogo en-aut-sei=Takatani en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IkedaTatsuya en-aut-sei=Ikeda en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=Division of Biological Sciences; Graduate School of Natural Science and Technology; Okayama University affil-num=2 en-affil= kn-affil=Division of Biological Sciences; Graduate School of Natural Science and Technology; Okayama University affil-num=3 en-affil= kn-affil=Division of Biological Sciences; Graduate School of Natural Science and Technology; Okayama University affil-num=4 en-affil= kn-affil=Division of Biological Sciences; Graduate School of Natural Science and Technology; Okayama University en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=NIMA-related kinase kn-keyword=NIMA-related kinase en-keyword=directional growth kn-keyword=directional growth en-keyword=epidermis kn-keyword=epidermis en-keyword=microtubule kn-keyword=microtubule en-keyword=tubulin kn-keyword=tubulin END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=11 article-no= start-page=2854 end-page=2859 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=201305 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Determination of polyamines in Arabidopsis thaliana by capillary electrophoresis using salicylaldehyde-5-sulfonate as a derivatizing reagent en-subtitle= kn-subtitle= en-abstract= kn-abstract=Herein, we report a novel method for the determination of polyamines in a sample extracted from Arabidopsis thaliana by capillary electrophoresis (CE) using salicylaldehyde-5-sulfonate (SAS) as a derivatizing reagent. An aldehyde group of SAS forms a Schiff base with amino groups of aliphatic polyamines, resulting in an anionic species with an absorption band in the ultraviolet region. The derivatization method was straightforward since the derivatives were formed by mixing a sample with the derivatizing reagent at a neutral pH. In addition, the negative charges induced by SAS led to a high resolution with a short analysis time. This method permitted the separation of five polyamines, which play important roles in plants. However, further improvement in sensitivity was needed for the determination of the polyamines in plant samples. Therefore, the CE method was coupled with solid-phase extraction (SPE) using an ion-pairing formation with sodium dodecyl benzene sulfonate. The SPE method improved the concentration limits of detection to sub-μM levels, which corresponded with a 10-fold enhancement. The calibration curves for cadaverine, putrescine, and spermidine were linear with concentrations that ranged from 1 to 20 μM and correlation coefficients (R2) were greater than 0.998. The proposed method was applied to the determination of spermidine in a plant sample, Arabidopsis thaliana. en-copyright= kn-copyright= en-aut-name=InoueGenki en-aut-sei=Inoue en-aut-mei=Genki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakayanagiToshio en-aut-sei=Takayanagi en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KakehiJunichi en-aut-sei=Kakehi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Department of Life System, Institute of Technology and Science, The University of Tokushima affil-num=4 en-affil= kn-affil=Department of Biological Science, Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Department of Biological Science, Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Department of Biological Science, Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue=4 article-no= start-page=635 end-page=645 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A chemical biology approach reveals an opposite action between thermospermine and auxin in xylem development in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thermospermine, a structural isomer of spermine, is produced through the action of ACAULIS5 (ACL5) and suppresses xylem differentiation in Arabidopsis thaliana. To elucidate the molecular basis of the function of thermospermine, we screened chemical libraries for compounds that can modulate xylem differentiation in the acl5 mutant, which is deficient in thermospermine and shows a severe dwarf phenotype associated with excessive proliferation of xylem vessels. We found that the isooctyl ester of a synthetic auxin, 2,4-D, remarkably enhanced xylem vessel differentiation in acl5 seedlings. 2,4-D, 2,4-D analogs and IAA analogs, including 4-chloro IAA (4-Cl-IAA) and IAA ethyl ester, also enhanced xylem vessel formation, while IAA alone had little or no obvious effect on xylem differentiation. These effects of auxin analogs were observed only in the acl5 mutant but not in the wild type, and were suppressed by the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB) and alpha-(phenyl ethyl-2-one)-IAA (PEO-IAA), and also by thermospermine. Furthermore, the suppressor of acaulis51-d (sac51-d) mutation, which causes SAC51 overexpression in the absence of thermospermine and suppresses the dwarf phenotype of acl5, also suppressed the effect of auxin analogs in acl5. These results suggest that the auxin signaling that promotes xylem differentiation is normally limited by SAC51-mediated thermospermine signaling but can be continually stimulated by exogenous auxin analogs in the absence of thermospermine. The opposite action between thermospermine and auxin may fine-tune the timing and spatial pattern of xylem differentiation. en-copyright= kn-copyright= en-aut-name=YoshimotoKaori en-aut-sei=Yoshimoto en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HayashiKen-ichiro en-aut-sei=Hayashi en-aut-mei=Ken-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil= kn-affil= affil-num=3 en-affil= kn-affil=Okayama Univ Sci affil-num=4 en-affil= kn-affil=RIKEN affil-num=5 en-affil= kn-affil=Okayama Univ affil-num=6 en-affil= kn-affil=Okayama Univ en-keyword=ACAULIS5 kn-keyword=ACAULIS5 en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=Auxin kn-keyword=Auxin en-keyword=2.4-D kn-keyword=2.4-D en-keyword=Thermospermine kn-keyword=Thermospermine en-keyword=Xylem differentiation kn-keyword=Xylem differentiation END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=8 article-no= start-page=937 end-page=939 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thermospermine, a structural isomer of spermine, is synthesized by a thermospermine synthase designated ACAULIS5 (ACL5). Thermospermine-deficient acl5 mutant of Arabidopsis thaliana shows severe dwarfism and excessive xylem differentiation. By screening for compounds that affect xylem differentiation in the acl5 mutant, we identified auxin analogs that remarkably enhanced xylem vessel differentiation in the acl5 mutant but not in the wild type. The xylem-inducing effect of auxin analogs was clearly suppressed by thermospermine, indicating that auxin-inducible xylem differentiation is normally limited by thermospermine. Here, we further characterized xylem-inducing effect of auxin analogs in various organs. Auxin analogs promoted protoxylem differentiation in roots and cotyledons in the acl5 mutant. Our results indicate that the opposite action between thermospermine and auxin in xylem differentiation is common in different organs and also suggest that thermospermine might be required for the suppression of protoxylem differentiation. en-copyright= kn-copyright= en-aut-name=YoshimotoKaori en-aut-sei=Yoshimoto en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HayashiKen-ichiro en-aut-sei=Hayashi en-aut-mei=Ken-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShirasuKen en-aut-sei=Shirasu en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Division of Bioscience; Graduate School of Natural Science and Technology; Okayama University affil-num=2 en-affil= kn-affil=Research Core for Interdisciplinary Sciences; Okayama University affil-num=3 en-affil= kn-affil=Department of Biochemistry; Okayama University of Science affil-num=4 en-affil= kn-affil=Plant Science Center; RIKEN affil-num=5 en-affil= kn-affil=Division of Bioscience; Graduate School of Natural Science and Technology; Okayama University affil-num=6 en-affil= kn-affil=Division of Bioscience; Graduate School of Natural Science and Technology; Okayama University en-keyword=2,4-D kn-keyword=2,4-D en-keyword=ACAULIS5 kn-keyword=ACAULIS5 en-keyword=auxin kn-keyword=auxin en-keyword=chemical biology kn-keyword=chemical biology en-keyword=thermospermine kn-keyword=thermospermine en-keyword=xylem differentiation kn-keyword=xylem differentiation END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=6 article-no= start-page=993 end-page=1005 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201109 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=NimA-related kinase 6 (NEK6) has been implicated in microtubule regulation to suppress the ectopic outgrowth of epidermal cells; however, its molecular functions remain to be elucidated. Here, we analyze the function of NEK6 and other members of the NEK family with regard to epidermal cell expansion and cortical microtubule organization. The functional NEK6-green fluorescent protein fusion localizes to cortical microtubules, predominantly in particles that exhibit dynamic movement along microtubules. The kinase-dead mutant of NEK6 (ibo1-1) exhibits a disturbance of the cortical microtubule array at the site of ectopic protrusions in epidermal cells. Pharmacological studies with microtubule inhibitors and quantitative analysis of microtubule dynamics indicate excessive stabilization of cortical microtubules in ibo1/nek6 mutants. In addition, NEK6 directly binds to microtubules in vitro and phosphorylates beta-tubulin. NEK6 interacts and co-localizes with NEK4 and NEK5 in a transient expression assay. The ibo1-3 mutation markedly reduces the interaction between NEK6 and NEK4 and increases the interaction between NEK6 and NEK5. NEK4 and NEK5 are required for the ibo1/nek6 ectopic outgrowth phenotype in epidermal cells. These results demonstrate that NEK6 homodimerizes and forms heterodimers with NEK4 and NEK5 to regulate cortical microtubule organization possibly through the phosphorylation of beta-tubulins. en-copyright= kn-copyright= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HamadaTakahiro en-aut-sei=Hamada en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshimotoKaori en-aut-sei=Yoshimoto en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurataTakashi en-aut-sei=Murata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasebeMitsuyasu en-aut-sei=Hasebe en-aut-mei=Mitsuyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanabeYuichiro en-aut-sei=Watanabe en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HashimotoTakashi en-aut-sei=Hashimoto en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakaiTatsuya en-aut-sei=Sakai en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ affil-num=2 en-affil= kn-affil=Univ Massachusetts affil-num=3 en-affil= kn-affil=Okayama Univ affil-num=4 en-affil= kn-affil=Natl Inst Basic Biol affil-num=5 en-affil= kn-affil=Natl Inst Basic Biol affil-num=6 en-affil= kn-affil=Univ Tokyo affil-num=7 en-affil= kn-affil=Nara Inst Sci & Technol affil-num=8 en-affil= kn-affil=Niigata Univ affil-num=9 en-affil= kn-affil=Okayama Univ en-keyword=NimA-related kinase kn-keyword=NimA-related kinase en-keyword=cell expansion kn-keyword=cell expansion en-keyword=microtubule kn-keyword=microtubule en-keyword=epidermal cell kn-keyword=epidermal cell en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナにおけるミニ染色体の分子構造と安定性 kn-title=Molecular structure and stability of minichromosomes in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YokotaEtsuko en-aut-sei=Yokota en-aut-mei=Etsuko kn-aut-name=横田悦子 kn-aut-sei=横田 kn-aut-mei=悦子 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=279 cd-vols= no-issue=3 article-no= start-page=303 end-page=312 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Flagellin, a component of the flagellar filament of Pseudomonas syringae pv. tabaci 6605 (Pta), induces hypersensitive reaction in its non-host Arabidopsis thaliana. We identified the WRKY41 gene, which belongs to a multigene family encoding WRKY plant-specific transcription factors, as one of the flagellin-inducible genes in A. thaliana. Expression of WRKY41 is induced by inoculation with the incompatible pathogen P. syringae pv. tomato DC3000 (Pto) possessing AvrRpt2 and the non-host pathogens Pta within 6-h after inoculation, but not by inoculation with the compatible Pto. Expression of WRKY41 was also induced by inoculation of A. thaliana with an hrp-type three secretion system (T3SS)-defective mutant of Pto, indicating that effectors produced by T3SS in the Pto wild-type suppress the activation of WRKY41. Arabidopsis overexpressing WRKY41 showed enhanced resistance to the Pto wild-type but increased susceptibility to Erwinia carotovora EC1. WRKY41-overexpressing Arabidopsis constitutively expresses the PR5 gene, but suppresses the methyl jasmonate-induced PDF1.2 gene expression. These results demonstrate that WRKY41 may be a key regulator in the cross talk of salicylic acid and jasmonic acid pathways.

en-copyright= kn-copyright= en-aut-name=HigashiKuniaki en-aut-sei=Higashi en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshigaYasuhiro en-aut-sei=Ishiga en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InagakiYoshishige en-aut-sei=Inagaki en-aut-mei=Yoshishige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShiraishiTomonori en-aut-sei=Shiraishi en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University affil-num=6 en-affil= kn-affil=Graduate School of Natural Science and Technology, Okayama University en-keyword=flagellin kn-keyword=flagellin en-keyword=flg22 kn-keyword=flg22 en-keyword=FLS2 kn-keyword=FLS2 en-keyword=MAMP signaling pathway kn-keyword=MAMP signaling pathway en-keyword=WRKY41 kn-keyword=WRKY41 END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=4 article-no= start-page=281 end-page=285 dt-received= dt-revised= dt-accepted= dt-pub-year=2007 dt-pub=20070705 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=N-terminal domain including conserved flg22 is required for flagellin-induced hypersensitive cell death in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Flagellin in Pseudomonas syringae is a potent elicitor of defense responses including hypersensitive cell death in dicot plants. The oligopeptides flg22 consisting of 22 conserved amino acids near the N-terminus of flagellins is reported to induce plant defense responses. Because glycosylation of the central domain of flagellin affects its elicitor activity, we investigated whether any peptide sequence in addition to flg22 is required for flagellin-induced hypersensitive reaction. A study of recombinant flagellin polypeptides indicated that the N-terminal domain including the conserved flg22 is required for flagellin-induced hypersensitive cell death in Arabidopsis thaliana.

en-copyright= kn-copyright= en-aut-name=KanaNaito en-aut-sei=Kana en-aut-mei=Naito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YasuhiroIshiga en-aut-sei=Yasuhiro en-aut-mei=Ishiga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KazuhiroToyoda en-aut-sei=Kazuhiro en-aut-mei=Toyoda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomonoriShiraishi en-aut-sei=Tomonori en-aut-mei=Shiraishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YukiIchinose en-aut-sei=Yuki en-aut-mei=Ichinose kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Natural Science and Technology, Okayama University en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=Flagellin kn-keyword=Flagellin en-keyword=Flg22 kn-keyword=Flg22 en-keyword=FLS2 kn-keyword=FLS2 en-keyword=HR cell death kn-keyword=HR cell death END start-ver=1.4 cd-journal=joma no-vol=117 cd-vols= no-issue=14 article-no= start-page=2963 end-page=2970 dt-received= dt-revised= dt-accepted= dt-pub-year=2004 dt-pub=20046 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Differential localization of the centromere-specific proteins in the major centromeric satellite of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The 180 bp family of tandem repetitive sequences, which constitutes the major centromeric satellite in Arabidopsis thaliana, is thought to play important roles in kinetochore assembly. To assess the centromere activities of the 180 bp repeats, we performed indirect fluorescence immunolabeling with antibodies against phosphorylated histone H3 at Serl0, HTR12 (Arabidopsis centromeric histone H3 variant) and AtCENP-C (Arabidopsis CENP-C homologue) for the A. thaliana cell cultures. The immunosignals from all three antibodies appeared on all sites of the 180 bp,repeats detected by fluorescence in situ hybridization. However, some of the 180 bp repeat clusters, particularly those that were long or stretched at interphase, were not fully covered with the signals from anti-HTR12 or AtCENP-C. Chromatin fiber immunolabeling clearly revealed that the centromeric proteins examined in this study, localize only at the knobs on the extended chromatin fibers, which form a limited part of the 180 bp clusters. Furthermore, outer HTR12 and inner phosphohistone H3 (Ser1O) localization at the kinetochores of metaphase chromosomes suggests that two kinds of histone H3 (a centromere variant and a phosphorylated form) might be linked to different roles in centromere functionality; the former for spindle-fiber attachment, and the latter for chromatid cohesion.

en-copyright= kn-copyright= en-aut-name=ShibataFukashi en-aut-sei=Shibata en-aut-mei=Fukashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurataMinoru en-aut-sei=Murata en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Japan Science and Technology, Kawaguchi affil-num=2 en-affil= kn-affil=Okayama University en-keyword=180 bp repeat kn-keyword=180 bp repeat en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=Centromere kn-keyword=Centromere en-keyword=proteins kn-keyword=proteins en-keyword=Histone H3 kn-keyword=Histone H3 en-keyword=Phosphorylation kn-keyword=Phosphorylation END start-ver=1.4 cd-journal=joma no-vol=133 cd-vols= no-issue=18 article-no= start-page=3575 end-page=3585 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=20060915 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene en-subtitle= kn-subtitle= en-abstract= kn-abstract=Loss-of-function mutants of the Arabidopsis thaliana ACAULIS 5 (ACL5) gene, which encodes spermine synthase, exhibit a severe dwarf phenotype. To elucidate the ACL5-mediated regulatory pathways of stem internocle elongation, we isolated four suppressor of acaulis (sac) mutants that reverse the acl5 dwarf phenotype. Because these mutants do not rescue the dwarfism of known phytohormone-related mutants, the SAC genes appear to act specifically on the ACL5 pathways. We identify the gene responsible for the dominant sac51-d mutant, which almost completely suppresses the acl5 phenotype. sac51-d disrupts a short upstream open reading frame (uORF) of SAC51, which encodes a bHLH-type transcription factor. Our results indicate that premature termination of the uORF in sac51-d results in an increase in its own transcript level, probably as a result of an increased translation of the main ORF. We suggest a model in which ACL5 plays a role in the translational activation of SAC51, which may lead to the expression of a subset of genes required for stem elongation. en-copyright= kn-copyright= en-aut-name=ImaiAkihiro en-aut-sei=Imai en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HanzawaYoshie en-aut-sei=Hanzawa en-aut-mei=Yoshie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KomuraMio en-aut-sei=Komura en-aut-mei=Mio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoKotaro T. en-aut-sei=Yamamoto en-aut-mei=Kotaro T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KomedaYoshibumi en-aut-sei=Komeda en-aut-mei=Yoshibumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Division of Biological Sciences, Graduate School of Science, Hokkaido University affil-num=3 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Division of Biological Sciences, Graduate School of Science, Hokkaido University affil-num=5 en-affil= kn-affil=Division of Biological Sciences, Graduate School of Science, Hokkaido University affil-num=6 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=Polyamine kn-keyword=Polyamine en-keyword=Spermine kn-keyword=Spermine en-keyword=Stem elongation kn-keyword=Stem elongation en-keyword=Upstream ORF kn-keyword=Upstream ORF END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナ孔辺細胞のアブシジン酸シグナリングにおけるグルタチオンの役割 kn-title=Roles of glutathione in abscisic acid signaling in guard cells of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=MD. SARWARJAHAN kn-aut-sei=MD. SARWAR kn-aut-mei=JAHAN aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=2 article-no= start-page=145 end-page=153 dt-received= dt-revised= dt-accepted= dt-pub-year=1998 dt-pub=1998 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナ由来過酸化リン脂質グルタチオンペルオキシダーゼ様遺伝子のクローニングと発現 kn-title=Molecular Cloning,Sequencing and Expression of a cDNA Encoding Putative Phospholipid Hydroperoxide Glutathione Peroxidase from Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract=シロイヌナズナから過酸化リン脂質グルタチオンペルオキシダーゼと高い相同性を持つタンパク質をコードするcDNAを単離し、その塩基配列を決定した。本遺伝子は、全長803bpからなり、169アミノ酸残基のタンパク質をコードしていた。アミノ酸配列は植物由来過酸化リン脂質グルタチオンペルオキシダーゼ様タンパク質と約80%の相同性を、哺乳類由来過酸化リン脂質グルタチオンペルオキシダーゼと約50%の相同性を示した。本遺伝子を大腸菌中で発現させた結果、遺伝子から予測される分子量をもつタンパク質が新たに生産された。 kn-abstract=A cDNA encoding Arabidopsis purative phosphplipid hydroperoxide gultathione peroxidase (PHGPX) was cloned and sequenced by the reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends methods. The cDNA comprised 803 bp, and included an open reading frame which encodes a polypeptide of 169 amino acid residues with a molecular mass of 18,600 Da. The deduced amino acid sequence showed homology to plant putative PHGPXs and mammalian PHGPXs. The cloned gene was expressed in Escherichia coli cells to prouce an extra protein, which showed a molecular mass similar to the deduced one. en-copyright= kn-copyright= en-aut-name=SugimotoManabu en-aut-sei=Sugimoto en-aut-mei=Manabu kn-aut-name=杉本学 kn-aut-sei=杉本 kn-aut-mei=学 aut-affil-num=1 ORCID= en-aut-name=KawaiFusako en-aut-sei=Kawai en-aut-mei=Fusako kn-aut-name=河合富佐子 kn-aut-sei=河合 kn-aut-mei=富佐子 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=岡山大学 en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=Phospholipid hydroperoxide glutathione peroxidase kn-keyword=Phospholipid hydroperoxide glutathione peroxidase en-keyword=Nucleotide sequence kn-keyword=Nucleotide sequence en-keyword=Gene expression kn-keyword=Gene expression END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1997 dt-pub=19970325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナの遺伝子発現における転写制御とDNA-タンパク質相互作用 kn-title=Transcriptional Regulation and DNA- Protein Interaction in Gene Expression in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=磯野協一 kn-aut-sei=磯野 kn-aut-mei=協一 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2000 dt-pub=20000325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=シロイヌナズナの花器特異的に発現するmyrosinase-binding protein様タンパク質遺伝子の分子生物学的研究 kn-title=Molecular analysis of a gene encoding a putative myrosinase-binding protein specifically expressed in flowers of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=武智克彰 kn-aut-sei=武智 kn-aut-mei=克彰 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=1998 dt-pub=19980930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Arabidopsis thalianaにおける花器で特異的に発現する遺伝子の分子生物学的研究 kn-title=MOLECULAR BIOLOGICAL STUDY ON FLOWER-SPECIFIC GENES IN ARABIDOPSIS THALIANA en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name= en-aut-sei= en-aut-mei= kn-aut-name=宇都木繁子 kn-aut-sei=宇都木 kn-aut-mei=繁子 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 END