start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=109 end-page=116 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between Personality Traits and Postpartum Depressive Symptoms in Women who Became Pregnant via Infertility Treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=The status of postpartum depression was elucidated herein with the use of the Edinburgh Postnatal Depression Scale (EPDS) in women in Shikoku, Japan who became pregnant and gave birth after undergoing infertility treatment, including assisted reproductive technology (ART). The assessment was performed during their children’s 4-month health examination. The relationships between postpartum depression and the mothers’ background factors and scores on the Big Five personality traits scale were also examined. Of the Big Five personality traits, the scores for neuroticism were significantly higher in the ART group (n=71) than in the general infertility treatment (n=118) and natural pregnancy (n=872) groups. No significant differences in EPDS scores were seen among these three groups. A logistic regression analysis showed that neuroticism was associated with an EPDS score ≧9 points, (which is suggestive of postpartum depression, ) in all groups. Moreover, although a long-standing marriage had an inhibitory effect on postpartum depression in the natural pregnancy group, no such trend was seen in the ART group, which included many women with long-standing marriages. Particularly for women who become pregnant by ART, an individualized response that pays close attention to the woman’s personality traits is needed. en-copyright= kn-copyright= en-aut-name=AwaiKyoko en-aut-sei=Awai en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakatsukaMikiya en-aut-sei=Nakatsuka en-aut-mei=Mikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Health Sciences, Okayama University kn-affil= en-keyword=infertility treatment kn-keyword=infertility treatment en-keyword=assisted reproductive technology kn-keyword=assisted reproductive technology en-keyword=postpartum kn-keyword=postpartum en-keyword=postpartum depression kn-keyword=postpartum depression en-keyword=personality trait kn-keyword=personality trait END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=12633 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association of emergency intensive care unit occupancy due to brain-dead organ donors with ambulance diversion en-subtitle= kn-subtitle= en-abstract= kn-abstract=Our study aims to explore how intensive care unit (ICU) occupancy by brain-dead organ donors affects emergency ambulance diversions. In this retrospective, single-center study at an emergency ICU (EICU), brain-dead organ donors were managed until organ procurement. We classified each day between August 1, 2021, and July 31, 2023, as either an exposure day (any day with a brain-dead organ donor in the EICU from admission to organ procurement) or a control day (all other days). The study compared these days and used multiple logistic regression analysis to assess the impact of EICU occupancy by brain-dead organ donors on ambulance diversions. Over two years, 6,058 emergency patients were transported by ambulance, with 1327 admitted to the EICU, including 13 brain-dead organ donors. Brain-dead donors had longer EICU stays (17 vs. 2 days, P < 0.001). With 168 exposure and 562 control days, EICU occupancy was higher on exposure days (75% vs. 67%, P = 0.003), leading to more ambulance diversions. Logistic regression showed exposure days significantly increased ambulance diversions, with an odds ratio of 1.79 (95% CIs 1.10-2.88). This study shows that managing brain-dead organ donors in the EICU leads to longer stays and higher occupancy, resulting in more frequent ambulance diversions. These findings highlight the critical need for policies that optimize ICU resource allocation while maintaining the infrastructure necessary to support organ donation programs and ensuring continued care for brain-dead donors, who play an essential role in addressing the organ shortage crisis. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HisamuraMasaki en-aut-sei=Hisamura en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Ambulance diversion kn-keyword=Ambulance diversion en-keyword=Bed occupancy kn-keyword=Bed occupancy en-keyword=Brain death kn-keyword=Brain death en-keyword=Emergency medical services kn-keyword=Emergency medical services en-keyword=Intensive care units kn-keyword=Intensive care units en-keyword=Organ donation kn-keyword=Organ donation END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=7 article-no= start-page=2221 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Length Estimation of Pneumatic Artificial Muscle with Optical Fiber Sensor Using Machine Learning en-subtitle= kn-subtitle= en-abstract= kn-abstract=A McKibben artificial muscle is a soft actuator driven by air pressure, characterized by its flexibility, lightweight design, and high power-to-weight ratio. We have developed a smart artificial muscle that is capable of sensing its motion. To enable this sensing function, an optical fiber was integrated into the sleeve consisting of multiple fibers and serving as a component of the McKibben artificial muscle. By measuring the macrobending loss of the optical fiber, the length of the smart artificial muscle is expected to be estimated. However, experimental results indicated that the sensor's characteristics depend not only on the length but also on the load and the applied air pressure. This dependency arises because the stress applied to the optical fiber increases, causing microbending loss. In this study, we employed a machine learning model, primarily composed of Long Short-Term Memory (LSTM) neural networks, to estimate the length of the smart artificial muscle. The experimental results demonstrate that the length estimation obtained through machine learning exhibits a smaller error. This suggests that machine learning is a feasible approach to enhancing the length measurement accuracy of the smart artificial muscle. en-copyright= kn-copyright= en-aut-name=NiYilei en-aut-sei=Ni en-aut-mei=Yilei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WakimotoShuichi en-aut-sei=Wakimoto en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TianWeihang en-aut-sei=Tian en-aut-mei=Weihang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TodaYuichiro en-aut-sei=Toda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KandaTakefumi en-aut-sei=Kanda en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamaguchiDaisuke en-aut-sei=Yamaguchi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=McKibben artificial muscle kn-keyword=McKibben artificial muscle en-keyword=machine learning kn-keyword=machine learning en-keyword=optical fiber kn-keyword=optical fiber en-keyword=motion estimation kn-keyword=motion estimation END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=1 article-no= start-page=16 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The preoperative flexion tear gap affects postoperative meniscus stability after pullout repair for medial meniscus posterior root tear en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background We investigated whether the preoperative flexion tear gap (FTG) observed in open magnetic resonance imaging (MRI) affects meniscus stability after medial meniscus (MM) posterior root (MMPR) repairs. Furthermore, time-correlated MRI findings from MMPR tear occurrence were evaluated.
Methods This retrospective observational study included 54 patients (mean age, 64.6 years; 13 males and 41 females) who underwent pullout repair for radial degenerative MMPR tear. Meniscus stability (scored 0-4 points) was assessed using a semi-quantitative arthroscopic scoring system during second-look arthroscopy 1 year postoperatively. The FTG was evaluated on preoperative axial MRI at 90 degrees knee flexion. Other MRI measurements included MM extrusion (MME) at 10 degrees knee flexion, MM posterior extrusion (MMPE) at 90 degrees knee flexion, and MM posteromedial extrusion (MMpmE) at 90 degrees knee flexion preoperatively and 1 year postoperatively. The correlation between the arthroscopic stability score and MRI findings was investigated. A receiver-operating characteristic curve was calculated to predict a good meniscus healing score (3-4 points). The correlation between the FTG and patient demographics, including time from injury to MRI, was analyzed.
Results At 1 year postoperatively, MME increased by 1.1 mm, while MMpmE and MMPE decreased by 0.4 mm and 1.0 mm, respectively. The meniscus stability score was negatively correlated with the preoperative FTG (r = -0.61, p < 0.01). The time from injury to MRI was significantly correlated with the preoperative FTG. The receiver-operating characteristic curve identified an FTG cut-off value of 8.7 mm for predicting good postoperative stability, with sensitivity and specificity of 67% and 85%, respectively.
Conclusions FTG evaluated with open MRI at 90 degrees knee flexion was associated with time from injury and affected meniscus stability following pullout repair. MMPR tears should be treated in the early phase to increase meniscus healing stability. en-copyright= kn-copyright= en-aut-name=TamuraMasanori en-aut-sei=Tamura en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurumatsuTakayuki en-aut-sei=Furumatsu en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KitayamaTakahiro en-aut-sei=Kitayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokoyamaYusuke en-aut-sei=Yokoyama en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkazakiYuki en-aut-sei=Okazaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawadaKoki en-aut-sei=Kawada en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Medial meniscus kn-keyword=Medial meniscus en-keyword=Posterior root tear kn-keyword=Posterior root tear en-keyword=Distance kn-keyword=Distance en-keyword=Pullout repair kn-keyword=Pullout repair en-keyword=Second-look arthroscopy kn-keyword=Second-look arthroscopy END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=10462 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250326 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gingipain regulates isoform switches of PD-L1 in macrophages infected with Porphyromonas gingivalis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Periodontal pathogen Porphyromonas gingivalis (P. gingivalis) is believed to possess immune evasion capabilities, but it remains unclear whether this immune evasion is related to host gene alternative splicing (AS). In this study, RNA-sequencing revealed significant changes in both AS landscape and transcriptomic profile of macrophages following P. gingivalis infection with/without knockout of gingipain (a unique toxic protease of P. gingivalis). P. gingivalis infection increased the PD-L1 transcripts expression and selectively upregulated a specific coding isoform that more effectively binds to PD-1 on T cells, thereby inhibiting immune function. Biological experiments also detected AS switch of PD-L1 in P. gingivalis-infected or gingipain-treated macrophages. AlphaFold 3 predictions indicated that the protein docking compatibility between PD-1 and P. gingivalis-upregulated PD-L1 isoform was over 80% higher than another coding isoform. These findings suggest that P. gingivalis employs gingipain to modulate the AS of PD-L1, facilitating immune evasion. en-copyright= kn-copyright= en-aut-name=ZhengYilin en-aut-sei=Zheng en-aut-mei=Yilin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WengYao en-aut-sei=Weng en-aut-mei=Yao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SitosariHeriati en-aut-sei=Sitosari en-aut-mei=Heriati kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HeYuhan en-aut-sei=He en-aut-mei=Yuhan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhangXiu en-aut-sei=Zhang en-aut-mei=Xiu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShiotsuNoriko en-aut-sei=Shiotsu en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FukuharaYoko en-aut-sei=Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkegameMika en-aut-sei=Ikegame en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkamuraHirohiko en-aut-sei=Okamura en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=2 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=7 en-affil=Comprehensive Dental Clinic, Okayama University Hospital, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Hospital, Okayama University kn-affil= en-keyword=Porphyromonas gingivalis kn-keyword=Porphyromonas gingivalis en-keyword=Gingipain kn-keyword=Gingipain en-keyword=Macrophage kn-keyword=Macrophage en-keyword=Alternative splicing kn-keyword=Alternative splicing en-keyword=PD-L1 kn-keyword=PD-L1 en-keyword=Immune evasion kn-keyword=Immune evasion END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=3 article-no= start-page=143 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Hair Drawing Evaluation Algorithm for Exactness Assessment Method in Portrait Drawing Learning Assistant System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, portrait drawing has become increasingly popular as a means of developing artistic skills and nurturing emotional expression. However, it is challenging for novices to start learning it, as they usually lack a solid grasp of proportions and structural foundations of the five senses. To address this problem, we have studied Portrait Drawing Learning Assistant System (PDLAS) for guiding novices by providing auxiliary lines of facial features, generated by utilizing OpenPose and OpenCV libraries. For PDLAS, we have also presented the exactness assessment method to evaluate drawing accuracy using the Normalized Cross-Correlation (NCC) algorithm. It calculates the similarity score between the drawing result and the initial portrait photo. Unfortunately, the current method does not assess the hair drawing, although it occupies a large part of a portrait and often determines its quality. In this paper, we present a hair drawing evaluation algorithm for the exactness assessment method to offer comprehensive feedback to users in PDLAS. To emphasize hair lines, this algorithm extracts the texture of the hair region by computing the eigenvalues and eigenvectors of the hair image. For evaluations, we applied the proposal to drawing results by seven students from Okayama University, Japan and confirmed the validity. In addition, we observed the NCC score improvement in PDLAS by modifying the face parts with low similarity scores from the exactness assessment method. en-copyright= kn-copyright= en-aut-name=ZhangYue en-aut-sei=Zhang en-aut-mei=Yue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FebriantiErita Cicilia en-aut-sei=Febrianti en-aut-mei=Erita Cicilia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SudarsonoAmang en-aut-sei=Sudarsono en-aut-mei=Amang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HsuChenchien en-aut-sei=Hsu en-aut-mei=Chenchien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya kn-affil= affil-num=4 en-affil=Department of Electrical Engineering, Politeknik Elektronika Negeri Surabaya kn-affil= affil-num=5 en-affil=Department of Electrical Engineering, National Taiwan Normal University kn-affil= en-keyword=portrait drawing kn-keyword=portrait drawing en-keyword=auxiliary lines kn-keyword=auxiliary lines en-keyword=OpenPose kn-keyword=OpenPose en-keyword=OpenCV kn-keyword=OpenCV en-keyword=normalized cross-correlation (NCC) kn-keyword=normalized cross-correlation (NCC) en-keyword=hair texture kn-keyword=hair texture en-keyword=exactness assessment method kn-keyword=exactness assessment method END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=3 article-no= start-page=033907 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of density measurement at high pressure and high temperature using the x-ray absorption method combined with laser-heated diamond anvil cell en-subtitle= kn-subtitle= en-abstract= kn-abstract=The densities of liquid materials at high pressures and high temperatures are important information to understand the elastic behavior of liquids at extreme conditions, which is closely related to the formation and evolution processes of the Earth and planetary interiors. The x-ray absorption method is an effective method to measure the density of non-crystalline materials at high pressures. However, the temperature condition of the x-ray absorption method using a diamond anvil cell (DAC) has been limited to 720 K to date. To significantly expand the measurable temperature condition of this method, in this study, we developed a density measurement technique using the x-ray absorption method in combination with a laser-heated DAC. The density of solid Ni was measured up to 26 GPa and 1800 K using the x-ray absorption method and evaluated by comparison with the density obtained from the x-ray diffraction. The density of solid Ni with a thickness >17 μm was determined with an accuracy of 0.01%?2.2% (0.001?0.20 g/cm3) and a precision of 0.8%?1.8% (0.07?0.16 g/cm3) in the x-ray absorption method. The density of liquid Ni was also determined to be 8.70 ± 0.15?8.98 ± 0.38 g/cm3 at 16?23 GPa and 2230?2480 K. Consequently, the temperature limit of the x-ray absorption method can be expanded from 720 to 2480 K by combining it with a laser-heated DAC in this study. en-copyright= kn-copyright= en-aut-name=TerasakiHidenori en-aut-sei=Terasaki en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KaminaHiroyuki en-aut-sei=Kamina en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaguchiSaori I. en-aut-sei=Kawaguchi en-aut-mei=Saori I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoTadashi en-aut-sei=Kondo en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoriokaKo en-aut-sei=Morioka en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsuruokaRyo en-aut-sei=Tsuruoka en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakuraiMoe en-aut-sei=Sakurai en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YonedaAkira en-aut-sei=Yoneda en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KamadaSeiji en-aut-sei=Kamada en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HiraoNaohisa en-aut-sei=Hirao en-aut-mei=Naohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=3 en-affil=Japan Synchrotron Radiation Research Institute, SPring-8 kn-affil= affil-num=4 en-affil=Department of Earth and Space Science, Osaka University kn-affil= affil-num=5 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Earth and Space Science, Osaka University kn-affil= affil-num=7 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Earth and Space Science, Osaka University kn-affil= affil-num=9 en-affil=AD Science Incorporation kn-affil= affil-num=10 en-affil=Japan Synchrotron Radiation Research Institute, SPring-8 kn-affil= END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=3 article-no= start-page=124 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Facial Privacy Protection with Dynamic Multi-User Access Control for Online Photo Platforms en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the digital age, sharing moments through photos has become a daily habit. However, every face captured in these photos is vulnerable to unauthorized identification and potential misuse through AI-powered synthetic content generation. Previously, we introduced SnapSafe, a secure system for enabling selective image privacy focusing on facial regions for single-party scenarios. Recognizing that group photos with multiple subjects are a more common scenario, we extend SnapSafe to support multi-user facial privacy protection with dynamic access control designed for online photo platforms. Our approach introduces key splitting for access control, an owner-centric permission system for granting and revoking access to facial regions, and a request-based mechanism allowing subjects to initiate access permissions. These features ensure that facial regions remain protected while maintaining the visibility of non-facial content for general viewing. To ensure reproducibility and isolation, we implemented our solution using Docker containers. Our experimental assessment covered diverse scenarios, categorized as "Single", "Small", "Medium", and "Large", based on the number of faces in the photos. The results demonstrate the system's effectiveness across all test scenarios, consistently performing face encryption operations in under 350 ms and achieving average face decryption times below 286 ms across various group sizes. The key-splitting operations maintained a 100% success rate across all group configurations, while revocation operations were executed efficiently with server processing times remaining under 16 ms. These results validate the system's capability in managing facial privacy while maintaining practical usability in online photo sharing contexts. en-copyright= kn-copyright= en-aut-name=SantosoAndri en-aut-sei=Santoso en-aut-mei=Andri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HudaSamsul en-aut-sei=Huda en-aut-mei=Samsul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoderaYuta en-aut-sei=Kodera en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NogamiYasuyuki en-aut-sei=Nogami en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Green Innovation Center, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=facial privacy protection kn-keyword=facial privacy protection en-keyword=selective facial encryption kn-keyword=selective facial encryption en-keyword=multi-user access control kn-keyword=multi-user access control en-keyword=deep-learning applications kn-keyword=deep-learning applications en-keyword=online photo platform kn-keyword=online photo platform END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue= article-no= start-page=670 end-page=679 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250324 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photochemically assisted synthesis of phenacenes fluorinated at the terminal benzene rings and their electronic spectra en-subtitle= kn-subtitle= en-abstract= kn-abstract=[n]Phenacenes ([n] = 5-7), octafluorinated at the terminal benzene rings (F8-phenacenes: F8PIC, F8FUL, and F87PHEN), were photochemically synthesized, and their electronic spectra were investigated to reveal the effects of the fluorination on the electronic features of phenacene molecules. F8-Phenacenes were conveniently synthesized by the Mallory photoreaction of the corresponding fluorinated diarylethenes as the key step. Upon fluorination on the phenacene cores, the absorption and fluorescence bands of the F8-phenacenes in CHCl3 systematically red-shifted by ca. 3-5 nm compared to those of the corresponding parent phenacenes. The vibrational progressions of the absorption and fluorescence bands were little affected by the fluorination in the solution phase. In the solid state, the absorption band of F8-phenacenes appeared in the similar wavelength region for the corresponding parent phenacenes whereas their fluorescence bands markedly red-shifted and broadened. These observations suggest that the intermolecular interactions of excited-state F8-phenacene molecules are significantly different from those of the corresponding parent molecules, most likely due to different crystalline packing motifs. en-copyright= kn-copyright= en-aut-name=IshiiYuuki en-aut-sei=Ishii en-aut-mei=Yuuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamajiMinoru en-aut-sei=Yamaji en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaniFumito en-aut-sei=Tani en-aut-mei=Fumito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotoKenta en-aut-sei=Goto en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KubozonoYoshihiro en-aut-sei=Kubozono en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkamotoHideki en-aut-sei=Okamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Molecular Science, Graduate School of Science and Engineering, Gunma University kn-affil= affil-num=3 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=4 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=fluorescence kn-keyword=fluorescence en-keyword=fluorinated aromatics kn-keyword=fluorinated aromatics en-keyword=phenacene kn-keyword=phenacene en-keyword=photoreaction kn-keyword=photoreaction END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=3 article-no= start-page=e81476 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250330 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Natural Course From Primary Intraocular Lymphoma to Brain Lymphoma in Four Years According to Patient's Choice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Primary intraocular lymphoma or vitreoretinal lymphoma is a rare entity of diffuse large B-cell lymphoma that presents vitreous opacity and retinal and choroidal infiltration. Primary central nervous system lymphoma would occur previously, later, or concurrently with respect to primary intraocular lymphoma. This study reported a 72-year-old patient with a pathological diagnosis of primary intraocular lymphoma who developed central nervous system lymphoma four years later in the course of no treatment. She presented with a four-year history of blurred vision in both eyes after cataract surgeries. Three weeks previously, she underwent a vitrectomy in the left eye at a clinic, and measurements of the vitreous fluid showed a high level of interleukin-10 at 5739 pg/mL, in contrast with interleukin-6 at 142 pg/mL. Cytology of the vitreous fluid was class III on the Papanicolaou classification. Head magnetic resonance imaging detected nothing abnormal. She underwent vitrectomy in the right eye as a diagnostic procedure to show large cells in the vitreous which were positive for CD20 and Ki-67 and negative for CD3, leading to a pathological diagnosis of large B-cell lymphoma. Prophylactic chemotherapy with high-dose methotrexate was recommended as a therapeutic option, but she chose observation since she did not have any eye or systemic symptoms. In the follow-up every three months by an oncologist and an ophthalmologist, she did not have any symptoms, and serum levels of soluble interleukin-2 receptor were in the normal range at each visit. She was well for four years until the age of 76 years when she fell and hit her head, and an emergency head computed tomography scan showed a mass in the left occipital lobe. Magnetic resonance imaging demonstrated a well-defined circular mass in the left occipital lobe with a hyperintense signal in the T2-weighted fluid-attenuated inversion recovery (FLAIR) image and diffusion-weighted image. Fluorodeoxyglucose positron emission tomography showed no abnormal uptake systemically, except for the left occipital lesion. She underwent a brain biopsy by craniotomy to pathologically prove diffuse large B-cell lymphoma. She was recommended to receive first-line chemotherapy as the standard treatment but chose observation with no treatment and died of brain lymphoma nine months later. This case happened to illustrate a natural course of primary intraocular lymphoma which proceeded to central nervous system lymphoma four years later. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoShotaro en-aut-sei=Kondo en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Kurashiki Municipal Hospital kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=brain biopsy kn-keyword=brain biopsy en-keyword=cell block pathology kn-keyword=cell block pathology en-keyword=diffuse large b-cell lymphoma kn-keyword=diffuse large b-cell lymphoma en-keyword=natural course kn-keyword=natural course en-keyword=primary central nervous system lymphoma kn-keyword=primary central nervous system lymphoma en-keyword=primary intraocular (vitreoretinal) lymphoma kn-keyword=primary intraocular (vitreoretinal) lymphoma en-keyword=vitrectomy kn-keyword=vitrectomy en-keyword=vitreous opacity kn-keyword=vitreous opacity END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=8366 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local-structure insight into the improved superconducting properties of Pb-substituted La(O, F)BiS2: a photoelectron holography study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pb-substituted La(O, F)BiS2 (Pb-LaOFBiS2) exhibits improved superconducting properties and a resistivity anomaly around 100 K that is attributed to a structural transition. We have performed temperature(T)-dependent photoelectron holography (PEH) to study dopant incorporation sites and the local structure change across the anomaly. The PEH study of Pb-LaOFBiS2 provided evidence for the dominant incorporation sites of Pb and F: Pb atoms are incorporated into the Bi sites and F atoms are incorporated into the O site. No remarkable difference in the local structures around Pb and Bi atoms was observed. Across the temperature of the resistivity anomaly (T*), photoelectron holograms of Bi 4f changed. Comparisons of holograms with those of non-substituted LaOFBiS2 sample, as well as simulated holograms, suggested that (1), above T*, the tetragonal structure of Pb-LaOFBiS2 is different from the tetragonal structure of LaOFBiS2 and (2), below T*, the tetragonal structure still remains in Pb-LaOFBiS2. We discuss a possible origin of the difference in the structure above T* and the implication of the result below T*, which are necessary ingredients to understand the physical properties of Pb-LaOFBiS2. en-copyright= kn-copyright= en-aut-name=LiYajun en-aut-sei=Li en-aut-mei=Yajun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HashimotoYusuke en-aut-sei=Hashimoto en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KataokaNoriyuki en-aut-sei=Kataoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SunZexu en-aut-sei=Sun en-aut-mei=Zexu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamuraSota en-aut-sei=Kawamura en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomitaHiroto en-aut-sei=Tomita en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SetoguchiTaro en-aut-sei=Setoguchi en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiSoichiro en-aut-sei=Takeuchi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KogaShunjo en-aut-sei=Koga en-aut-mei=Shunjo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamagamiKohei en-aut-sei=Yamagami en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KotaniYoshinori en-aut-sei=Kotani en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DemuraSatoshi en-aut-sei=Demura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NoguchiKanako en-aut-sei=Noguchi en-aut-mei=Kanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakataHideaki en-aut-sei=Sakata en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatsushitaTomohiro en-aut-sei=Matsushita en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=5 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=6 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=9 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=10 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=11 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=12 en-affil=Department of Physics, College of Science and Technology(CST), Nihon University kn-affil= affil-num=13 en-affil=Tokyo University of Science kn-affil= affil-num=14 en-affil=Tokyo University of Science kn-affil= affil-num=15 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=16 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=18 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=133 end-page=145 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250328 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The Image of Mushroom Created by Junior High School Science Textbooks: Suggestions for Learning about Mushroom from Diachronic Surveys kn-title=中学校理科教科書がつくり上げてきたきのこ像 ―通時的調査から得るきのこを巡る学習への示唆― en-subtitle= kn-subtitle= en-abstract= In this paper, we examined the image of mushroom in postwar junior high school science textbooks from four perspectives: (1) which species of mushroom were covered, (2) whether they were classified as plants or not, (3) what makes up the body of a mushroom, and (4) how they functioned in an ecosystem. The 47 species were identified through a periodic survey. Although a total of 47 species have appeared in science textbooks, we pointed out that in recent years, the focus has shifted to the role of mushroom as decomposers, rather than to species awareness. We also pointed out that although mycorrhizal fungi have been discussed in textbooks, there was no reference to the perspective in a plant-fungal symbiosis, which raises the possibility of developing learning that aims to understand symbiosis/interactions within a nature ecosystem. kn-abstract= 本稿では,戦後中学校理科検定教科書におけるきのこの扱われ方,すなわち学習者が受け取ることになるきのこ像について,@どのようなきのこが扱われてきたのか,A植物に分類されているか否か,Bきのこのからだは何で形成されているのか,C生態系における働きの四つの観点から,通時的な調査によって明らかにした。全47種がこれまでの理科教科書で登場してきたが,近年は種への意識というよりも,きのこが分解者としての役割を持つことにのみ焦点が当てられてきていることを指摘した。また,これまで教科書においては菌根性のきのこ自体について取り上げられつつも,その生態系における相利共生の観点への言及はないことから,相利共生の理解を目指す学習の開発が可能性として浮かび上がってくることも指摘した。 en-copyright= kn-copyright= en-aut-name=TAKAGIRisa en-aut-sei=TAKAGI en-aut-mei=Risa kn-aut-name=木里彩 kn-aut-sei=木 kn-aut-mei=里彩 aut-affil-num=1 ORCID= en-aut-name=IKEDAMasafumi en-aut-sei=IKEDA en-aut-mei=Masafumi kn-aut-name=池田匡史 kn-aut-sei=池田 kn-aut-mei=匡史 aut-affil-num=2 ORCID= en-aut-name=YAMAMOTOMasaya en-aut-sei=YAMAMOTO en-aut-mei=Masaya kn-aut-name=山本将也 kn-aut-sei=山本 kn-aut-mei=将也 aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Education (Professional Degree Corse), Okayama University kn-affil=岡山大学大学院教育学研究科大学院生 affil-num=2 en-affil=Faculty of Education, Okayama University kn-affil=岡山大学学術研究院教育学域 affil-num=3 en-affil=Hyogo University of Teacher Education kn-affil=兵庫教育大学大学院学校教育研究科 en-keyword=菌類 (Fungus) kn-keyword=菌類 (Fungus) en-keyword=菌根菌 (Mycorrhizal Fungi) kn-keyword=菌根菌 (Mycorrhizal Fungi) en-keyword=腐生菌 (Saprobic Fungi) kn-keyword=腐生菌 (Saprobic Fungi) en-keyword=相利共生 (Symbiosis) kn-keyword=相利共生 (Symbiosis) en-keyword=教材史 (History of teaching materials) kn-keyword=教材史 (History of teaching materials) END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=45 end-page=58 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250328 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Childcare and Support in Nursery Schools for the Development of Geometry and Number Sense for Five-Year-Old Children kn-title=5歳児を対象とした数量・図形感覚を育む保育所保育の実際と援助の在り方 en-subtitle= kn-subtitle= en-abstract=This study focuses on “the interest and sense of numbers, geometry, and words”, which is regarded as one of "the Ideal Image by the End of Childhood". The focus is on 5-year-old pre-schoolers and their experiences with numbers and shapes in daily lives and games at nursery schools with a comparison with the mathematics classes in the first grade of elementary school. We also aim to provide insights for nursery schools on how to arouse children’s interest and support them to get familiar with geometry and numbers through games.
Our finding reveals that children naturally become familiar with geometry and numbers in their daily lives and their experiences become the foundation when they cope with elementary school mathematics. We also come to know that nursery teachers have to visualize the connection between their games with elementary school mathematics and actively arouse children’s interests and understanding. kn-abstract= 本研究では、幼児期の終わりまでに育って欲しい10の姿のひとつである、「数量・図形、文字等への関心・感覚」に着目し、就学前の5歳児に焦点を当て、保育所の日常生活や遊びにおいて子どもがどのような数量・図形に関する事柄を経験しているのか、また、その経験を小学校1年生の算数科の学習内容と照らして検討した。さらに、子どもが園生活や遊びの中で数量・図形に関心をもって親しみ、学びを得ることを支える保育の在り方について検討した。
 その結果、子どもは日常の中で主体的に数量・図形に親しむ経験をすると共に、その経験が小学校算数科の内容に連続する学びの基礎となっていることが明らかになった。また、保育士自身が小学校算数との繋がりを見通しながら、眼前の子どもの興味や関心に沿って援助することが専門的力量として求められることが示唆された。 en-copyright= kn-copyright= en-aut-name=SUZUKIFuka en-aut-sei=SUZUKI en-aut-mei=Fuka kn-aut-name=鈴木楓花 kn-aut-sei=鈴木 kn-aut-mei=楓花 aut-affil-num=1 ORCID= en-aut-name=KATAYAMAMika en-aut-sei=KATAYAMA en-aut-mei=Mika kn-aut-name=片山美香 kn-aut-sei=片山 kn-aut-mei=美香 aut-affil-num=2 ORCID= affil-num=1 en-affil=Mitsu Kanagawa Certified childcare center kn-affil=岡山市御津金川認定こども園 affil-num=2 en-affil=Graduate School of Education, Okayama University kn-affil=岡山大学学術研究院教育学域 幼児教育講座 en-keyword=10 の姿 kn-keyword=10 の姿 en-keyword=数量・図形 kn-keyword=数量・図形 en-keyword=保育士 kn-keyword=保育士 en-keyword=専門的力量 kn-keyword=専門的力量 en-keyword=小学校算数科 kn-keyword=小学校算数科 en-keyword=the Ideal Image by the End of Childhood kn-keyword=the Ideal Image by the End of Childhood en-keyword=numbers & geometry kn-keyword=numbers & geometry en-keyword=professional nursery school teachers kn-keyword=professional nursery school teachers en-keyword=elementary school kn-keyword=elementary school en-keyword=mathematics kn-keyword=mathematics END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=1 article-no= start-page=2480231 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Specific enhancement of the translation of thermospermine-responsive uORF-containing mRNAs by ribosomal mutations in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=Auxin-induced xylem formation in angiosperms is negatively regulated by thermospermine, whose biosynthesis is also induced by auxin. In Arabidopsis thaliana, loss-of-function mutants of ACL5, which encodes thermospermine synthase, exhibit a dwarf phenotype accompanied by excessive xylem formation. Studies of suppressor mutants that recover from the acl5 dwarf phenotype suggest that thermospermine alleviates the inhibitory effect of an upstream open-reading frame (uORF) on the main ORF translation of SAC51 mRNA. Many suppressor mutations for acl5 have been mapped to the uORF conserved in the SAC51 family or to ribosomal protein genes, such as RPL10A, RPL4A, and RACK1A. In this study, we identified newly isolated acl5 suppressors, sac501, sac504, and sac506, which are additional alleles of RPL10A and the uORFs of SAC51 family members, SACL1 and SACL3, respectively. To investigate whether acl5-suppressor alleles of ribosomal genes broadly affect translation of uORF-containing mRNAs, we examined GUS activity in several 5'-GUS fusion constructs. Our results showed that these alleles enhanced GUS activity in SAC51 and SACL3 5'-fusion constructs but had no effect on other 5'-fusion constructs unrelated to thermospermine response. This suggests that these ribosomal proteins are specifically involved in the thermospermine-mediated regulation of mRNA translation. en-copyright= kn-copyright= en-aut-name=MutsudaKoki en-aut-sei=Mutsuda en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiYuichi en-aut-sei=Nishii en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToyoshimaTomohiko en-aut-sei=Toyoshima en-aut-mei=Tomohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukushimaHiroko en-aut-sei=Fukushima en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=mRNA translation kn-keyword=mRNA translation en-keyword=RPL10 kn-keyword=RPL10 en-keyword=suppressor mutant kn-keyword=suppressor mutant en-keyword=thermospermine kn-keyword=thermospermine en-keyword=uORF kn-keyword=uORF END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Droplet Impact Behavior on Convex Surfaces with a Circumferential Wettability Difference en-subtitle= kn-subtitle= en-abstract= kn-abstract=Controlling the bouncing behavior of the impacting droplets is an important issue for splay cooling, icing prevention, and other applications. The bouncing behavior of impacting droplets on superhydrophobic curved surfaces and flat substrates with a wettability difference has been widely investigated, and droplets impacting these surfaces show shorter contact times than those on superhydrophobic flat surfaces and droplet transport. However, there have been few studies on the droplet impact behavior on curved surfaces with a wettability difference, where efficient droplet control could be achieved by combining the features. In the present study, droplet impact experiments were conducted using copper cylinders with different circumferential wettabilities from hydrophilic to superhydrophobic, varying the impact velocity, cylinder diameter, and rotation angle. Droplets that impacted the wettability boundary showed asymmetric deformation and moved to the hydrophilic side, owing to the driving force of the wettability difference. Moreover, the droplet behavior was classified into four types: the droplet bounced off the surface, the droplet bounced off the surface and split, the droplet attached to the surface, and the droplet attached to the surface and split. The droplet behavior was estimated by using the maximum spreading width of the droplet impacted on the flat substrate. We evaluated whether the droplets attached to the surface or bounced off the surface after impact using the Weber number and rotation angle, and the estimations were in agreement with the experimental results for cylinder diameters of 4 and 6 mm. en-copyright= kn-copyright= en-aut-name=IshikawaTaku en-aut-sei=Ishikawa en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamadaYutaka en-aut-sei=Yamada en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsobeKazuma en-aut-sei=Isobe en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeAkihiko en-aut-sei=Horibe en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=8502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250312 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Age-specific assessment of initial hemoglobin levels and shock index for predicting life-saving interventions in pediatric blunt liver and spleen injuries en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study aimed to evaluate the effectiveness of combining initial hemoglobin levels with the shock index for predicting the need for life-saving interventions (LSI) in pediatric patients with blunt liver and spleen injuries (BLSI), specifically tailored to different age groups. This was a multicenter retrospective cohort study of pediatric patients with BLSI in Japan. The area under the receiver operating characteristic curve (AUROC) were used to assess predictive accuracy. The study included 1,370 patients. LSI was required in 59 of 247 (23.9%) aged 1 to 6 years, 100 of 402 (24.9%) aged 7 to 12 years, and 125 of 297 (42.1%) patients aged 13 to 16 years. Within each specific age group, the predictability was categorized as fair and appeared higher than that of the entire cohort or when using either parameter alone. Notably, in the 1 to 6-year age group, the combined values showed the highest predictability, which was statistically superior to the shock index alone (AUROC of 0.770 vs. 0.671, P = 0.025). Tailoring initial hemoglobin levels and shock index to specific age groups enhances predictability of LSI in pediatric BLSI, showing a fair level of predictive accuracy. en-copyright= kn-copyright= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IidaAtsuyoshi en-aut-sei=Iida en-aut-mei=Atsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatsuraMorihiro en-aut-sei=Katsura en-aut-mei=Morihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KondoYutaka en-aut-sei=Kondo en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YasudaHideto en-aut-sei=Yasuda en-aut-mei=Hideto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KushimotoShigeki en-aut-sei=Kushimoto en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SHIPPs Study Group en-aut-sei=SHIPPs Study Group en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Surgery, Okinawa Chubu Hospital kn-affil= affil-num=7 en-affil=Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital kn-affil= affil-num=8 en-affil=Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center kn-affil= affil-num=9 en-affil=Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil= kn-affil= en-keyword=Abdominal injuries kn-keyword=Abdominal injuries en-keyword=Blood transfusions kn-keyword=Blood transfusions en-keyword=Hemoglobin kn-keyword=Hemoglobin en-keyword=Hemostasis kn-keyword=Hemostasis en-keyword=Shock index kn-keyword=Shock index END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=1757 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Keratinocyte-driven dermal collagen formation in the axolotl skin en-subtitle= kn-subtitle= en-abstract= kn-abstract=Type I collagen is a major component of the dermis and is formed by dermal fibroblasts. The development of dermal collagen structures has not been fully elucidated despite the major presence and importance of the dermis. This lack of understanding is due in part to the opacity of mammalian skin and it has been an obstacle to cosmetic and medical developments. We reveal the process of dermal collagen formation using the highly transparent skin of the axolotl and fluorescent collagen probes. We clarify that epidermal cells, not dermal fibroblasts, contribute to dermal collagen formation. Mesenchymal cells (fibroblasts) play a role in modifying the collagen fibers already built by keratinocytes. We confirm that collagen production by keratinocytes is a widely conserved mechanism in other model organisms. Our findings warrant a change in the current consensus about dermal collagen formation and could lead to innovations in cosmetology and skin medication. en-copyright= kn-copyright= en-aut-name=OhashiAyaka en-aut-sei=Ohashi en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurodaJunpei en-aut-sei=Kuroda en-aut-mei=Junpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoYohei en-aut-sei=Kondo en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KameiYasuhiro en-aut-sei=Kamei en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NonakaShigenori en-aut-sei=Nonaka en-aut-mei=Shigenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FurukawaSaya en-aut-sei=Furukawa en-aut-mei=Saya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoSakiya en-aut-sei=Yamamoto en-aut-mei=Sakiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatohAkira en-aut-sei=Satoh en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Frontier Biosciences, Osaka University kn-affil= affil-num=4 en-affil=Center for One Medicine Innovative Translational Research (COMIT), Nagoya University kn-affil= affil-num=5 en-affil=Laboratory for Biothermology, National Institute for Basic Biology kn-affil= affil-num=6 en-affil=The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=7 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=7506 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A glucocorticoid-regulating molecule, Fkbp5, may interact with mitogen-activated protein kinase signaling in the organ of Corti of mice cochleae en-subtitle= kn-subtitle= en-abstract= kn-abstract=FKBP5 is a 51-Da FK506-binding protein and member of the immunophilin family involved in controlling the signaling of glucocorticoid receptor from the cytosol to nucleus. Fkbp5 has previously been shown to be expressed in murine cochlear tissue, including the organ of Corti (i.e., the sensory epithelium of the cochlea). Fkbp5-/- mice as used in this study show hearing loss in the low-frequency (8-kHz) range and click-evoked auditory brainstem response (ABR) threshold compared to wild-type mice. Both Fkbp5-/- and wild-type mice showed hearing loss at all frequencies and click-ABR thresholds at 24 h and 14 days following acoustic overexposure (AO). Tissues of the organ of Corti were subjected to RNA sequencing and KEGG pathway analysis. In Fkbp5-/- mice before AO, the mitogen-activated protein kinase (MAPK) signaling pathway was dysregulated compared to wild-type mice. In wild-type mice at 12 h following AO, the most significantly modulated KEGG pathway was the TNF signaling pathway and major MAPK molecules p38 and Jun were involved in the TNF signaling pathway. In Fkbp5-/- mice at 12 h following AO, the MAPK signaling pathway was dysregulated compared to wild-type mice following AO. In conclusion, Fkbp5 interacts with MAPK signaling in the organ of Corti in mice cochleae. en-copyright= kn-copyright= en-aut-name=SatoAsuka en-aut-sei=Sato en-aut-mei=Asuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OmichiRyotaro en-aut-sei=Omichi en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MaedaYukihide en-aut-sei=Maeda en-aut-mei=Yukihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AndoMizuo en-aut-sei=Ando en-aut-mei=Mizuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Otolaryngology-Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=The organ of Corti kn-keyword=The organ of Corti en-keyword=Acoustic trauma kn-keyword=Acoustic trauma en-keyword=RNA sequencing kn-keyword=RNA sequencing en-keyword=51-Da FK506-binding protein kn-keyword=51-Da FK506-binding protein en-keyword=Mitogen-activated protein kinase signaling kn-keyword=Mitogen-activated protein kinase signaling en-keyword=Tumor necrosis factor signaling kn-keyword=Tumor necrosis factor signaling END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue= article-no= start-page=33 end-page=48 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250314 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Old Stories, Original Retellings : The Heike-related Tales in the Repertory of the Blind Biwa Players of Kyushu en-subtitle= kn-subtitle= en-abstract= kn-abstract=While higobiwa, the blind biwa players' tradition of Kyushu, is regarded as a historically distinctive genre, its evolution has been influenced by interactions with other storytelling traditions. It is evident that higobiwa borrowed stories from other genres and adapted them to its own distinctive narrative style. The findings of this research focused on the Heike-related tales reveal significant similarities between the tales of Ichi-no-Tani and Ko-Atsumori in the blind biwa players' tradition and Ko-Atsumori in the kojoruri tradition. These parallels suggest a shared narrative lineage between these two performance genres, prompting a reevaluation of our understanding of the transmission and evolution of oral narratives within the blind biwa players' tradition of Kyushu and shedding light on the dynamic nature and the interconnectedness of different performance traditions within Japan. en-copyright= kn-copyright= en-aut-name=KHALMIRZAEVASaida en-aut-sei=KHALMIRZAEVA en-aut-mei=Saida kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Institute of Global Human Resource Development, Okayama University kn-affil= en-keyword=higobiwa kn-keyword=higobiwa en-keyword=the blind biwa players' tradition kn-keyword=the blind biwa players' tradition en-keyword=kojoruri kn-keyword=kojoruri en-keyword=Ichi-no-Tani kn-keyword=Ichi-no-Tani en-keyword=Ko-Atsumori kn-keyword=Ko-Atsumori END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue=9 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160908 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=S-nitrosylation of laforin inhibits its phosphatase activity and is implicated in Lafora disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, the relation between S-nitrosylation by nitric oxide (NO), which is over?produced under pathological conditions and neurodegenerative diseases, includingAlzheimer’s and Parkinson’s diseases, has become a focus of attention. Although mostcases of Parkinson’s disease are known to be caused by mutations in the Parkin gene, arecent finding has indicated that S-nitrosylation of Parkin affects its enzymatic activityand leads to the Parkinsonian phenotype. Therefore, it is important to understand thefunction of S-nitrosylated proteins in the pathogenesis of neurodegenerative diseases.Lafora disease (LD, OMIM 254780) is a neurodegenerative disease characterized by theaccumulation of insoluble glucans called Lafora bodies (LBs). LD is caused by mutationsin genes that encode the glucan phosphatase, Laforin, or the E3 ubiquitin ligase, Malin.In this study, we hypothesized that LD may be caused by S-nitrosylation of Laforin,which is similar to the finding that Parkinson’s disease is caused by S-nitrosylation ofParkin. To test this hypothesis, we first determined whether Laforin was S-nitrosylatedusing a biotin switch assay, and compared the three main functions of unmodified andS-nitrosylated Laforin, namely glucan- and Malin-binding activity and phosphataseactivity. Furthermore, we examined whether the numbers of LBs were changed byNO in the cells expressing wild-type Laforin. Here, we report for the first time thatS-nitrosylation of Laforin inhibited its phosphatase activity and that LB formation wasincreased by an NO donor. Our results suggest a possible hypothesis for LD pathogenesis; that is, the decrease in phosphatase activity of Laforin by S-nitrosylation leads toincreased LB formation. Therefore, LD may be caused not only by mutations in theLaforin or Malin genes, but also by the S-nitrosylation of Laforin. en-copyright= kn-copyright= en-aut-name=ToyotaRikako en-aut-sei=Toyota en-aut-mei=Rikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HonjoYasuko en-aut-sei=Honjo en-aut-mei=Yasuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ImajoRisa en-aut-sei=Imajo en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University; Research Institute for Radiation Biology and Medicine, Hiroshima University kn-affil= en-keyword=S-Nitrosylation Of Laforin kn-keyword=S-Nitrosylation Of Laforin en-keyword=Post-Translational Modification kn-keyword=Post-Translational Modification en-keyword=Nitrosylation kn-keyword=Nitrosylation en-keyword=Phosphatase kn-keyword=Phosphatase en-keyword=Glucan-Binding kn-keyword=Glucan-Binding END start-ver=1.4 cd-journal=joma no-vol=210 cd-vols= no-issue= article-no= start-page=112952 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A microfluidic paper-based analytical device that uses gelatin film to assay protease activity via time readout en-subtitle= kn-subtitle= en-abstract= kn-abstract=Food processing, detergents, and pharmaceuticals frequently employ proteases, which are enzymes that break the chemical bonds of both proteins and peptides. In this work, we developed a microfluidic paper-based analytical device (?PAD) for protease activity assays via time readout. To accomplish this, we folded the ?PAD to form layers, then inserted a water-insoluble gelatin film between the layers of paper to form the device. Lamination helps to maintain the gelatin film between the introduction zone, which is the upper layer, and the detection channel, which is the lower layer. Proteases decompose the gelatin film when it enters the introduction zone, which then allows it to flow into the detection channel. The protease activity in the sample solution determines the time required to dissolve the gelatin film, which leads to a linear relationship between the logarithm of the protease concentration and the time required to flow the solution a specific distance on the detection channel. The ?PAD was used to measure proteases in concentrations that ranged from 0.25 to 1 mg L?1 for bromelain, 2.5 to 10 mg L?1 for papain, and 1 to 8 mg L?1 for trypsin. The limits of quantification for bromelain, papain, and trypsin were 0.41, 2.7, and 9.2 mg mL?1, respectively. The relative standard deviations for bromelain were smaller than 2 % for concentrations ranging from 0.5 to 1.0 mg L?1. We compared the ?PAD to a commercially available protease activity assay kit, which relies on quenching fluorescein isothiocyanate-labeled casein. Both methods demonstrated the same order of activity: bromelain > papain > trypsin. The proposed device allowed the assay of bromelain in both pineapple pulp and juice, which were stored at room temperature. When first using the proposed device, the bromelain in the pulp gradually lost its activity, while the activity of the bromelain in the juice showed no significant change for five days. The ?PAD requires no analytical instruments for quality control and monitoring of the protease activity in food. en-copyright= kn-copyright= en-aut-name=RenJianchao en-aut-sei=Ren en-aut-mei=Jianchao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Protease kn-keyword=Protease en-keyword=Enzyme assay kn-keyword=Enzyme assay en-keyword=Time readout kn-keyword=Time readout END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=25 article-no= start-page=4757 end-page=4773 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Recent development of azahelicenes showing circularly polarized luminescence en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, a variety of circularly polarized luminescence (CPL) dyes have been developed as next-generation chiroptical materials. Helicenes, ortho-fused aromatics, have been recognized as some of the most promising CPL dyes. Although typical carbohelicenes show CPL, weak fluorescence is often emitted in the blue region. In contrast, heteroatom-embedded helicenes (heterohelicenes) can show intense fluorescence and CPL in the visible region because heteroatoms alter the electronic states of helicene frameworks. Among various heterohelicenes, nitrogen-embedded helicenes (azahelicenes) have unique features such as facile functionalization and sensitive responses to acid/base or metal ions. Furthermore, polycyclic aromatic hydrocarbons (PAHs) containing azaborine units have been recognized as excellent luminescent materials, and the helical derivatives, B,N-embedded helicenes, have been rapidly growing recently. In this feature article, we review and summarize the synthesis and chiroptical properties of azahelicenes, which are classified into imine-type and amine-type azahelicenes and B,N-embedded helicenes. CPL switching systems of azahelicenes are also reviewed. en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=5 article-no= start-page=2421 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deep Reinforcement Learning for Dynamic Pricing and Ordering Policies in Perishable Inventory Management en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perishable goods have a limited shelf life, and inventory should be discarded once it exceeds its shelf life. Finding optimal inventory management policies is essential since inefficient policies can lead to increased waste and higher costs. While many previous studies assume the perishable inventory is processed following the First In, First Out rule, it does not reflect customer purchasing behavior. In practice, customers' preferences are influenced by the shelf life and price of products. This study optimizes inventory and pricing policies for a perishable inventory management problem considering age-dependent probabilistic demand. However, introducing dynamic pricing significantly increases the complexity of the problem. To tackle this challenge, we propose eliminating irrational actions in dynamic programming without sacrificing optimality. To solve this problem more efficiently, we also implement a deep reinforcement learning algorithm, proximal policy optimization, to solve this problem. The results show that dynamic programming with action reduction achieved an average of 63.1% reduction in computation time compared to vanilla dynamic programming. In most cases, proximal policy optimization achieved an optimality gap of less than 10%. Sensitivity analysis of the demand model revealed a negative correlation between customer sensitivity to shelf lives or prices and total profits. en-copyright= kn-copyright= en-aut-name=NomuraYusuke en-aut-sei=Nomura en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=reinforcement learning kn-keyword=reinforcement learning en-keyword=supply chain kn-keyword=supply chain en-keyword=inventory management kn-keyword=inventory management en-keyword=perishable inventory kn-keyword=perishable inventory en-keyword=dynamic pricing kn-keyword=dynamic pricing END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=5248 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Changes of leucine-rich alpha 2 glycoprotein could be a marker of changes of endoscopic and histologic activity of ulcerative colitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Leucine-rich alpha 2 glycoprotein (LRG) is one of the serum biomarkers for disease activity of ulcerative colitis (UC). We focused on the correlation between the changes of LRG and the changes of endoscopic and histologic activity of UC, in comparison to the changes of fecal calprotectin (Fcal), fecal immunochemical test (FIT), and C-reactive protein (CRP). Seventy-nine patients with two or more colonoscopies were enrolled, and 123 paired colonoscopies and 121 paired biopsies were examined. With regard to the change of endoscopic/histologic activity between the preceding and subsequent colonoscopy, there was improvement (n = 29/45), unchanging (n = 63/36), and worsening (n = 31/40). The correlations between the changes of marker levels and endoscopic/histologic activity were Fcal; r = 0.50/0.39 and FIT; r = 0.41/0.40, LRG; r = 0.42/0.40 and CRP; r = 0.22/0.17. Furthermore, when the correlation between the changes of LRG levels and the changes of endoscopic/histological activity was compared with those of other markers, the correlation of LRG tended to be superior to those of CRP (CRP vs. LRG; p = 0.08/0.01). LRG is equivalent to fecal markers and superior to CRP, when inferring changes in disease activity of UC based on changes in its level. en-copyright= kn-copyright= en-aut-name=AoyamaYuki en-aut-sei=Aoyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiraokaSakiko en-aut-sei=Hiraoka en-aut-mei=Sakiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasutomiEriko en-aut-sei=Yasutomi en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InokuchiToshihiro en-aut-sei=Inokuchi en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakeiKensuke en-aut-sei=Takei en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IgawaShoko en-aut-sei=Igawa en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiKeiko en-aut-sei=Takeuchi en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakaharaMasahiro en-aut-sei=Takahara en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyosawaJunki en-aut-sei=Toyosawa en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamasakiYasushi en-aut-sei=Yamasaki en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KinugasaHideaki en-aut-sei=Kinugasa en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KatoJun en-aut-sei=Kato en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Gastroenterology, Graduate School of Medicine, Chiba University kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Ulcerative colitis kn-keyword=Ulcerative colitis en-keyword=Leucine-rich alpha 2 glycoprotein kn-keyword=Leucine-rich alpha 2 glycoprotein en-keyword=Biomarker kn-keyword=Biomarker END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page=1543543 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Empowering pediatric, adolescent, and young adult patients with cancer utilizing generative AI chatbots to reduce psychological burden and enhance treatment engagement: a pilot study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Pediatric and adolescent/young adult (AYA) cancer patients face profound psychological challenges, exacerbated by limited access to continuous mental health support. While conventional therapeutic interventions often follow structured protocols, the potential of generative artificial intelligence (AI) chatbots to provide continuous conversational support remains unexplored. This study evaluates the feasibility and impact of AI chatbots in alleviating psychological distress and enhancing treatment engagement in this vulnerable population.
Methods: Two age-appropriate AI chatbots, leveraging GPT-4, were developed to provide natural, empathetic conversations without structured therapeutic protocols. Five pediatric and AYA cancer patients participated in a two-week intervention, engaging with the chatbots via a messaging platform. Pre- and post-intervention anxiety and stress levels were self-reported, and usage patterns were analyzed to assess the chatbots' effectiveness.
Results: Four out of five participants reported significant reductions in anxiety and stress levels post-intervention. Participants engaged with the chatbot every 2-3 days, with sessions lasting approximately 10 min. All participants noted improved treatment motivation, with 80% disclosing personal concerns to the chatbot they had not shared with healthcare providers. The 24/7 availability particularly benefited patients experiencing nighttime anxiety.
Conclusions: This pilot study demonstrates the potential of generative AI chatbots to complement traditional mental health services by addressing unmet psychological needs in pediatric and AYA cancer patients. The findings suggest these tools can serve as accessible, continuous support systems. Further large-scale studies are warranted to validate these promising results. en-copyright= kn-copyright= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HanzawaMana en-aut-sei=Hanzawa en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaganoAkihito en-aut-sei=Nagano en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaNaoko en-aut-sei=Maeda en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaShinichirou en-aut-sei=Yoshida en-aut-mei=Shinichirou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EndoMakoto en-aut-sei=Endo en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokoyamaNobuhiko en-aut-sei=Yokoyama en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OchiMotoharu en-aut-sei=Ochi en-aut-mei=Motoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshidaHisashi en-aut-sei=Ishida en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatayamaHideki en-aut-sei=Katayama en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Orthopedic Surgery, Gifu University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Pediatrics, NHO National Hospital Organization Nagoya Medical Center kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=7 en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=8 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Palliative and Supportive Care, Okayama University Hospital kn-affil= affil-num=11 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=generative AI chatbot kn-keyword=generative AI chatbot en-keyword=large language model kn-keyword=large language model en-keyword=pediatric cancer kn-keyword=pediatric cancer en-keyword=adolescent and young adult (AYA) kn-keyword=adolescent and young adult (AYA) en-keyword=psychological support kn-keyword=psychological support END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=6666 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Microfluidic fabrication of rattle shaped biopolymer microcapsules via sequential phase separation in oil droplets en-subtitle= kn-subtitle= en-abstract= kn-abstract=Multilayer microcapsules containing a small particle within a larger capsule have recently attracted considerable attention owing to their potential applications in diverse fields, including drug delivery, active ingredient storage, and chemical reactions. These complex capsules have been fabricated using interfacial polymerization or seeded emulsion polymerization. However, these methods often require complex and lengthy polymerization processes, limiting their utility, particularly in biopolymer systems. This study introduces a simple and efficient approach for preparing rattle-shaped cellulose acetate (CA) microcapsules through sequential phase separation in droplets. We systematically examine the effects of various preparation parameters, including the amount of co-solvent, initial droplet size, and flow rates, and reveal that the incorporation of a co-solvent-ethyl acetate (EA)- in the dispersed phase significantly impacts the microcapsule morphology. Our findings demonstrate a transition from a core-shell to a rattle-shaped structure as the EA concentration increases. Furthermore, the initial droplet diameter and flow rates influence microcapsule formation-larger droplets and reduced continuous-phase flow rates favor the development of multi-layered structures. These results indicate that the formation mechanism of these rattle-shaped microcapsules arises from the establishment of a radial solvent concentration gradient and subsequent phase separation within the droplets, driven by kinetic rather than thermodynamic factors. en-copyright= kn-copyright= en-aut-name=WatanabeTakaichi en-aut-sei=Watanabe en-aut-mei=Takaichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakaiYuko en-aut-sei=Sakai en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriKurumi en-aut-sei=Mori en-aut-mei=Kurumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoTsutomu en-aut-sei=Ono en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=3 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= affil-num=4 en-affil=Department of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology kn-affil= en-keyword=Microfluidics kn-keyword=Microfluidics en-keyword=Phase separation kn-keyword=Phase separation en-keyword=Nucleation kn-keyword=Nucleation en-keyword=Multi-core kn-keyword=Multi-core en-keyword=Rattle-shaped kn-keyword=Rattle-shaped END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=4 article-no= start-page=1055 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Natural Course and Long-Term Outcomes of Gastric Subepithelial Lesions: A Systematic Review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Gastric subepithelial lesions (SELs) are often incidentally detected during endoscopic examinations, with most patients being asymptomatic and lesions measuring <20 mm. Despite their generally indolent nature, certain SELs, such as gastrointestinal stromal tumors, require resection. Current guidelines recommend periodic surveillance; however, the natural course and long-term outcomes of gastric SELs have not been sufficiently investigated. This systematic review aimed to synthesize evidence on the progression, growth rate, and risk factors associated with gastric SELs to inform clinical management strategies. Methods: A comprehensive search of PubMed was conducted for peer-reviewed studies published between January 2000 and November 2024. Eligible studies included original studies on the follow-up and progression of gastric SELs. Non-English articles, reviews, case reports, and unrelated topics were excluded. In total, 277 articles were screened, with 15 additional articles identified through manual screening. Ultimately, 41 articles were included in the analysis. The study protocol is registered in PROSPERO (CRD42024614865). Results: Large-scale studies reported low growth rates of 2.0-8.5% over 2.0-5.0 years, while smaller studies reported a broader range of growth rates of 5.4-28.4%. The factors contributing to these discrepancies include patient selection, follow-up duration, and growth criteria. Risk factors for lesion size increase include larger initial lesion size, irregular margins, heterogeneous echo patterns, and certain tumor locations. Conclusions: These findings underscore the need for individualized management strategies based on lesion size, imaging characteristics, and risk factors. The close monitoring of high-risk lesions is crucial for timely intervention. Standardized growth criteria and optimized follow-up protocols are essential for improving clinical decision making and patient outcomes. en-copyright= kn-copyright= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=esophagogastroduodenoscopy kn-keyword=esophagogastroduodenoscopy en-keyword=gastric lesions kn-keyword=gastric lesions en-keyword=gastrointestinal stromal tumor kn-keyword=gastrointestinal stromal tumor en-keyword=subepithelial lesion kn-keyword=subepithelial lesion en-keyword=submucosal tumor kn-keyword=submucosal tumor END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=2 article-no= start-page=235 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizoctonia solani is a basidiomycete phytopathogenic fungus that causes rapid necrosis in a wide range of crop species, leading to substantial agricultural losses worldwide. The species complex is divided into 13 anastomosis groups (AGs) based on hyphal fusion compatibility and further subdivided by culture morphology. While R. solani classifications were shown to be independent of host specificity, it remains unclear whether different R. solani isolates share similar virulence mechanisms. Here, we investigated the infectivity of Japanese R. solani isolates on Brachypodium distachyon and barley. Two isolates, AG-1 IA (from rice) and AG-4 HG-I+II (from cauliflower), infected leaves of both plants, but only AG-4 HG-I+II infected roots. B. distachyon accessions Bd3-1 and Gaz-4 and barley cultivar 'Morex' exhibited enhanced resistance to both isolates compared to B. distachyon Bd21 and barley cultivars 'Haruna Nijo' and 'Golden Promise'. During AG-1 IA infection, but not AG-4 HG-I+II infection, resistant Bd3-1 and Morex induced genes for salicylic acid (SA) and N-hydroxypipecolic acid (NHP) biosynthesis. Pretreatment with SA or NHP conferred resistance to AG-1 IA, but not AG-4 HG-I+II, in susceptible B. distachyon Bd21 and barley Haruna Nijo. On the leaves of susceptible Bd21 and Haruna Nijo, AG-1 IA developed extensive mycelial networks with numerous infection cushions, which are specialized infection structures well-characterized in rice sheath blight. In contrast, AG-4 HG-I+II formed dispersed mycelial masses associated with underlying necrosis. We propose that the R. solani species complex encompasses at least two distinct infection strategies: AG-1 IA exhibits a hemibiotrophic lifestyle, while AG-4 HG-I+II follows a predominantly necrotrophic strategy. en-copyright= kn-copyright= en-aut-name=MahadevanNiranjan en-aut-sei=Mahadevan en-aut-mei=Niranjan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FernandaRozi en-aut-sei=Fernanda en-aut-mei=Rozi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KouzaiYusuke en-aut-sei=Kouzai en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KohnoNatsuka en-aut-sei=Kohno en-aut-mei=Natsuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagaoReiko en-aut-sei=Nagao en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NyeinKhin Thida en-aut-sei=Nyein en-aut-mei=Khin Thida kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakataNanami en-aut-sei=Sakata en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HisanoHiroshi en-aut-sei=Hisano en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Agriculture, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=13 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=14 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Rhizoctonia solani species complex kn-keyword=Rhizoctonia solani species complex en-keyword=virulence mechanism kn-keyword=virulence mechanism en-keyword=infection behavior kn-keyword=infection behavior en-keyword=salicylic acid kn-keyword=salicylic acid en-keyword=N-hydroxypipecolic acid kn-keyword=N-hydroxypipecolic acid END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=108 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Implementation of Sensor Input Setup Assistance Service Using Generative AI for SEMAR IoT Application Server Platform en-subtitle= kn-subtitle= en-abstract= kn-abstract=For rapid deployments of various IoT application systems, we have developed Smart Environmental Monitoring and Analytical in Real-Time (SEMAR) as an integrated server platform. It is equipped with rich functions for collecting, analyzing, and visualizing various data. Unfortunately, the proper configuration of SEMAR with a variety of IoT devices can be complex and challenging for novice users, since it often requires technical expertise. The assistance of Generative AI can be helpful to solve this drawback. In this paper, we present an implementation of a sensor input setup assistance service for SEMAR using prompt engineering techniques and Generative AI. A user needs to define the requirement specifications and environments of the IoT application system for sensor inputs, and give them to the service. Then, the service provides step-by-step guidance on sensor connections, communicating board configurations, network connections, and communication protocols to the user, which can help the user easily set up the configuration to connect the relevant devices to SEMAR. For evaluations, we applied the proposal to the input sensor setup processes of three practical IoT application systems with SEMAR, namely, a smart light, water heater, and room temperature monitoring system. In addition, we applied it to the setup process of an IoT application system for a course for undergraduate students at the Insitut Bisnis dan Teknologi (INSTIKI), Indonesia. The results demonstrate the effectiveness of the proposed service for SEMAR. en-copyright= kn-copyright= en-aut-name=KotamaI. Nyoman Darma en-aut-sei=Kotama en-aut-mei=I. Nyoman Darma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PradhanaAnak Agung Surya en-aut-sei=Pradhana en-aut-mei=Anak Agung Surya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Noprianto en-aut-sei=Noprianto en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DesnanjayaI. Gusti Made Ngurah en-aut-sei=Desnanjaya en-aut-mei=I. Gusti Made Ngurah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Computer System Engineering, Institute of Business and Technology Indonesia kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= generative AI kn-keyword= generative AI en-keyword= review kn-keyword= review en-keyword= application server platform kn-keyword= application server platform en-keyword= SEMAR kn-keyword= SEMAR en-keyword= sensor input kn-keyword= sensor input END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=91 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Application of SEMAR IoT Application Server Platform to Drone-Based Wall Inspection System Using AI Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, artificial intelligence (AI) has been adopted in a number of Internet of Things (IoT) application systems to enhance intelligence. We have developed a ready-made server with rich built-in functions to collect, process, display, analyze, and store data from various IoT devices, the SEMAR (Smart Environmental Monitoring and Analytics in Real-Time) IoT application server platform, in which various AI techniques have been implemented to enhance its capabilities. In this paper, we present an application of SEMAR to a drone-based wall inspection system using an object detection AI model called You Only Look Once (YOLO). This system aims to detect wall cracks at high places using images taken via a camera on a flying drone. An edge computing device is installed to control the drone, sending the taken images through the Kafka system, storing them with the drone flight data, and sending the data to SEMAR. The images are analyzed via YOLO through SEMAR. For evaluations, we implemented the system using Ryze Tello for the drone and Raspberry Pi for the edge, and we evaluated the detection accuracy. The preliminary experiment results confirmed the effectiveness of the proposal. en-copyright= kn-copyright= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HusnaRadhiatul en-aut-sei=Husna en-aut-mei=Radhiatul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NopriantoNobuo en-aut-sei=Noprianto en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamakiShunya en-aut-sei=Sakamaki en-aut-mei=Shunya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukaridhotoSritrusta en-aut-sei=Sukaridhoto en-aut-mei=Sritrusta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SyaifudinYan Watequlis en-aut-sei=Syaifudin en-aut-mei=Yan Watequlis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Informatics and Computer, Politeknik Elektronika Negeri Surabaya kn-affil= affil-num=7 en-affil=Department of Information Technology, State Polytechnic of Malang kn-affil= affil-num=8 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= AI kn-keyword= AI en-keyword= SEMAR kn-keyword= SEMAR en-keyword= crack detection kn-keyword= crack detection en-keyword= drone kn-keyword= drone en-keyword= Kafka kn-keyword= Kafka END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=2 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancing Campus Environment: Real-Time Air Quality Monitoring Through IoT and Web Technologies en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, enhancing campus environments through mitigations of air pollutions is an essential endeavor to support academic achievements, health, and safety of students and staffs in higher educational institutes. In laboratories, pollutants from welding, auto repairs, or chemical experiments can drastically degrade the air quality in the campus, endangering the respiratory and cognitive health of students and staffs. Besides, in universities in Indonesia, automobile emissions of harmful substances such as carbon monoxide (CO), nitrogen dioxide (NO2), and hydrocarbon (HC) have been a serious problem for a long time. Almost everybody is using a motorbike or a car every day in daily life, while the number of students is continuously increasing. However, people in many campuses including managements do not be aware these problems, since air quality is not monitored. In this paper, we present a real-time air quality monitoring system utilizing Internet of Things (IoT) integrated sensors capable of detecting pollutants and measuring environmental conditions to visualize them. By transmitting data to the SEMAR IoT application server platform via an ESP32 microcontroller, this system provides instant alerts through a web application and Telegram notifications when pollutant levels exceed safe thresholds. For evaluations of the proposed system, we adopted three sensors to measure the levels of CO, NO2, and HC and conducted experiments in three sites, namely, Mechatronics Laboratory, Power and Emission Laboratory, and Parking Lot, at the State Polytechnic of Malang, Indonesia. Then, the results reveal Good, Unhealthy, and Dangerous for them, respectively, among the five categories defined by the Indonesian government. The system highlighted its ability to monitor air quality fluctuations, trigger warnings of hazardous conditions, and inform the campus community. The correlation of the sensor levels can identify the relationship of each pollutant, which provides insight into the characteristics of pollutants in a particular scenario. en-copyright= kn-copyright= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SyaifudinYan Watequlis en-aut-sei=Syaifudin en-aut-mei=Yan Watequlis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SetiawanBudhy en-aut-sei=Setiawan en-aut-mei=Budhy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=2 en-affil=Department of Information Technology, State Polytechnic of Malang kn-affil= affil-num=3 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= campus air quality kn-keyword= campus air quality en-keyword= pollutant detection kn-keyword= pollutant detection en-keyword= SEMAR kn-keyword= SEMAR en-keyword= sensor technology kn-keyword= sensor technology en-keyword= web application kn-keyword= web application END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e202403213 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250218 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antifouling Activity of Xylemin, Its Structural Analogs, and Related Polyamines en-subtitle= kn-subtitle= en-abstract= kn-abstract=Biofouling, which is the accumulation of organisms on undersea structures, poses significant global, social, and economic issues. Although organotin compounds were effective antifoulants since the 1960s, they were banned in 2008 due to their toxicity to marine life. Although tin-free alternatives have been developed, they also raise environmental concerns. This underscores the need for effective, nontoxic antifouling agents. We previously synthesized N-(4-aminobutyl)propylamine (xylemin) and its structural analogs. In this study, we assayed the antifouling activity and toxicity of xylemin, its structural analogs, and related polyamines toward cypris larvae of the barnacle Amphibalanus amphitrite. Xylemin and its Boc-protected analog exhibited antifouling activities with 50% effective concentrations (EC50) of 4.25 and 6.11 ?g/mL, respectively. Four xylemin analogs did not show a settlement-inhibitory effect at a concentration of 50 ?g/mL. Putrescine, spermidine, spermine, and thermospermine, which are xylemin-related polyamines, did not display antifoulant effects (EC50 > 50 ?g/mL). All evaluated compounds were nontoxic at a concentration of 50 ?g/mL. These findings indicate that the size and structure of the N-alkyl group are essential for the antifouling activity of xylemin. Therefore, xylemin and its analogs hold promise as nontoxic, eco-friendly antifouling agents, offering a sustainable solution to biofouling in marine environments. en-copyright= kn-copyright= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YorisueTakefumi en-aut-sei=Yorisue en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Institute of Natural and Environmental Sciences, University of Hyogo kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Amines kn-keyword=Amines en-keyword=Antifouling activity kn-keyword=Antifouling activity en-keyword=Barnacle kn-keyword=Barnacle en-keyword=Structure?activity relationships kn-keyword=Structure?activity relationships en-keyword=Xylemin kn-keyword=Xylemin END start-ver=1.4 cd-journal=joma no-vol=197 cd-vols= no-issue= article-no= start-page=115301 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fraglide-1 from traditional Chinese aromatic vinegar: A natural AhR antagonist for atopic dermatitis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Traditional Chinese Zhenjiang aromatic vinegar (Kozu) contains Fraglide-1 (FG1), a bioactive lactone with demonstrated peroxisome proliferator-activated receptor gamma (PPARγ) agonist and antioxidant activities. This study explored FG1's novel ability to antagonize the aryl hydrocarbon receptor (AhR) signaling pathway, which regulates artemin expression and contributes to itching and inflammation in atopic dermatitis. Through molecular docking simulations and cell-based assays in human keratinocytes, we demonstrated FG1's potent antagonistic activity against AhR signaling. FG1 effectively suppressed FICZ-induced inflammatory responses, including artemin expression, with potency (half maximal inhibitory concentration, IC50 = 5.1 μM) comparable to the synthetic antagonist StemRegenin 1 (SR1) while demonstrating a superior safety profile (median lethal concentration, LC50 > 100 μM vs. 27.5 μM for SR1). These findings expand our understanding of bioactive compounds from traditional fermented foods and their regulatory effects on AhR signaling, providing a foundation for future studies on FG1's role in modulating skin inflammation. en-copyright= kn-copyright= en-aut-name=KatoKosuke en-aut-sei=Kato en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkamatsuMiki en-aut-sei=Akamatsu en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KakimaruSaya en-aut-sei=Kakimaru en-aut-mei=Saya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoreishiMayuko en-aut-sei=Koreishi en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakagiMasahiro en-aut-sei=Takagi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyashitaMasahiro en-aut-sei=Miyashita en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsujinoYoshio en-aut-sei=Tsujino en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=School of Materials Science, Japan Advanced Institute of Science and Technology kn-affil= affil-num=6 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Science, Technology and Innovation, Kobe University kn-affil= en-keyword=AhR kn-keyword=AhR en-keyword=Xenobiotic responsive element kn-keyword=Xenobiotic responsive element en-keyword=StemRegenin 1 kn-keyword=StemRegenin 1 en-keyword=ARNT kn-keyword=ARNT en-keyword=Atopic dermatitis kn-keyword=Atopic dermatitis en-keyword=Artemin kn-keyword=Artemin END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=8 article-no= start-page=e202418546 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=B,N‐Embedded Helical Nanographenes Showing an Ion‐Triggered Chiroptical Switching Function en-subtitle= kn-subtitle= en-abstract= kn-abstract=Intramolecular oxidative aromatic coupling of 3,6-bis(m-terphenyl-2’-yl)carbazole provided a bis(m-terphenyl)-fused carbazole, while that of 3,6-bis(m-terphenyl-2’-yl)-1,8-diphenylcarbazole afforded a bis(quaterphenyl)-fused carbazole. Borylation of the latter furnished a B,N-embedded helical nanographene binding a fluoride anion via a structural change from the three-coordinate boron to the four-coordinate boron. The anionic charge derived from the fluoride anion is stabilized over the expanded π-framework, which leads to the high binding constant (Ka) of 1×105?M?1. The four-coordinate boron species was converted back to the parent three-coordinate boron species with Ag+, and the chiroptical switch between the three-coordinate boron and four-coordinate boron species has been achieved via the ion recognition with the change in the color and glum values. en-copyright= kn-copyright= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MichishitaSayaka en-aut-sei=Michishita en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasutomoIssa en-aut-sei=Yasutomo en-aut-mei=Issa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Boron kn-keyword=Boron en-keyword=Chirality kn-keyword=Chirality en-keyword=Circularly polarized luminescence kn-keyword=Circularly polarized luminescence en-keyword=Helical nanographenes kn-keyword=Helical nanographenes en-keyword=Ion sensing kn-keyword=Ion sensing END start-ver=1.4 cd-journal=joma no-vol=96 cd-vols= no-issue=10 article-no= start-page=1241 end-page=1252 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Validated international definition of the thrombocytopenia, anasarca, fever, reticulin fibrosis, renal insufficiency, and organomegaly clinical subtype (TAFRO) of idiopathic multicentric Castleman disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thrombocytopenia, anasarca, fever, reticulin fibrosis, renal insufficiency, and organomegaly (TAFRO) syndrome is a heterogeneous entity manifesting with a constellation of symptoms described above that can occur in the context of idiopathic multicentric Castleman disease (iMCD) as well as infectious diseases, malignancies, and rheumatologic disorders. So, iMCD-TAFRO is an aggressive subtype of iMCD with TAFRO syndrome and often hyper-vascularized lymph nodes. Since we proposed diagnostic criteria of iMCD-TAFRO in 2016, we have accumulated new insights on the disorder and additional cases have been reported worldwide. In this systematic review and cohort analysis, we established and validated a definition for iMCD-TAFRO. First, we searched PubMed and Japan Medical Abstracts Society databases using the keyword “TAFRO” to extract cases. Patients with possible systemic autoimmune diseases and hematologic malignancies were excluded. Our search identified 54 cases from 50 articles. We classified cases into three categories: (1) iMCD-TAFRO (TAFRO syndrome with lymph node histopathology consistent with iMCD), (2) possible iMCD-TAFRO (TAFRO syndrome with no lymph node biopsy performed and no other co-morbidities), and (3) TAFRO without iMCD or other co-morbidities (TAFRO syndrome with lymph node histopathology not consistent with iMCD or other comorbidities). Based on the findings, we propose an international definition requiring four clinical criteria (thrombocytopenia, anasarca, fever/hyperinflammatory status, organomegaly), renal dysfunction or characteristic bone marrow findings, and lymph node features consistent with iMCD. The definition was validated with an external cohort (the ACCELERATE Natural History Registry). The present international definition will facilitate a more precise and comprehensive approach to the diagnosis of iMCD-TAFRO. en-copyright= kn-copyright= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FajgenbaumDavid C. en-aut-sei=Fajgenbaum en-aut-mei=David C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PiersonSheila K. en-aut-sei=Pierson en-aut-mei=Sheila K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwakiNoriko en-aut-sei=Iwaki en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawanoMitsuhiro en-aut-sei=Kawano en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraNaoya en-aut-sei=Nakamura en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IzutsuKoji en-aut-sei=Izutsu en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakeuchiKengo en-aut-sei=Takeuchi en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshizakiKazuyuki en-aut-sei=Yoshizaki en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OksenhendlerEric en-aut-sei=Oksenhendler en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=van RheeFrits en-aut-sei=van Rhee en-aut-mei=Frits kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Center for Cytokine Storm Treatment & Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=3 en-affil=Center for Cytokine Storm Treatment & Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=4 en-affil=Hematology/Respiratory Medicine, Kanazawa University Graduate School of Medical Science kn-affil= affil-num=5 en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=6 en-affil=Department of Rheumatology, Kanazawa University Graduate School of Medical Science kn-affil= affil-num=7 en-affil=Department of Pathology, Tokai University School of Medicine kn-affil= affil-num=8 en-affil=Department of Hematology, National Cancer Center Hospital kn-affil= affil-num=9 en-affil=Department of Pathology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research kn-affil= affil-num=10 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Organic Fine Chemicals, Institute of Scientific and Industrial Research, Osaka University kn-affil= affil-num=14 en-affil=Department of Clinical Immunology, H?pital Saint-Louis kn-affil= affil-num=15 en-affil=Myeloma Center, University of Arkansas for Medical Sciences kn-affil= affil-num=16 en-affil=Division of Pathophysiology, Okayama University Graduate School of Health Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue=1 article-no= start-page=3 end-page=10 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250131 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Investigation of SNPs associated with reproductive and body growth traits in Vietnamese and Nepalese native buffaloes en-subtitle= kn-subtitle= en-abstract= kn-abstract=Water buffaloes are essential to the rural economies of many developing countries, including Vietnam and Nepal, but native buffalo populations in these countries face challenges such as low productivity due to fertility and body growth issues. This study analyzed 34 SNPs in 18 genes associated with reproductive and body growth traits reported in cattle and buffalo in Vietnamese and Nepalese native buffaloes. Results showed no polymorphism at bovine SNPs in either buffalo. Further analysis with SNPs previously reported only in popular buffalo breeds, such as Murrah, found that Vietnamese buffalo were monomorphic at all sites, which may reflect reduced genetic diversity due to population decline. In contrast, Nepalese buffalo, consisting of two native breeds, showed polymorphism in 11 SNPs in 7 genes, with 10 of these matching those found in the Murrah buffalo analyzed here. These findings suggest that these SNPs may be applicable for genetic improvement in Nepalese native buffalo. This study provides valuable insights for future conservation and breeding programs aimed at enhancing reproductive and body growth performance of native buffalo in Vietnam and Nepal. en-copyright= kn-copyright= en-aut-name=Thuy ThanhNguyen en-aut-sei=Thuy Thanh en-aut-mei=Nguyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuniedaTetsuo en-aut-sei=Kunieda en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Manoj KumarShah en-aut-sei=Manoj Kumar en-aut-mei=Shah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Thu Nu AnhLe en-aut-sei=Thu Nu Anh en-aut-mei=Le kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=Van HuuNguyen en-aut-sei=Van Huu en-aut-mei=Nguyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NagaeMayuko en-aut-sei=Nagae en-aut-mei=Mayuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsujiTakehito en-aut-sei=Tsuji en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=National Swine Research Program kn-affil= affil-num=4 en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University kn-affil= affil-num=5 en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Vietnamese native buffalo kn-keyword=Vietnamese native buffalo en-keyword=Nepalese native buffalo kn-keyword=Nepalese native buffalo en-keyword=SNPs kn-keyword=SNPs en-keyword=Reproduction kn-keyword=Reproduction en-keyword=Body growth kn-keyword=Body growth END start-ver=1.4 cd-journal=joma no-vol=111 cd-vols= no-issue=6 article-no= start-page=064502 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Josephson effect and odd-frequency pairing in superconducting junctions with unconventional magnets en-subtitle= kn-subtitle= en-abstract= kn-abstract=We consider Josephson junctions formed by coupling two conventional superconductors via an unconventional magnet and investigate the formation of Andreev bound states, their impact on the Josephson effect, and the emergent superconducting correlations. In particular, we focus on unconventional magnets known as ?-wave altermagnets and ?-wave magnets. We find that the Andreev bound states in ?-wave altermagnet and ??-wave magnet Josephson junctions strongly depend on the transverse momentum, with a spin splitting and low-energy minima as a function of the superconducting phase difference ?. In contrast, the Andreev bound states for ??-wave magnets are insensitive to the transverse momentum. We then show that the Andreev bound states can be probed by the local density of states in the middle of the junction, which also reveals that ??2??2- and ?-wave magnet junctions are prone to host zero energy peaks. While the zero-energy peak in ??2??2-wave altermagnet junctions tends to oscillate with the magnetic order, it remains robust in ?-wave magnet junctions. We then discover that the Josephson current in ?-wave altermagnet junctions is composed of higher harmonics of ?, which originate a ?-Josephson junction behavior entirely controlled by the magnetic order in ????-wave altermagnets. In contrast, the Josephson current in Josephson junctions with ?-wave magnets exhibits a conventional sinelike profile with a fast sign change at ?=? due to zero-energy Andreev bound states. We also demonstrate that the critical currents in ?-wave altermagnet Josephson junctions exhibit an oscillatory decay with the increase of the magnetic order, while the oscillations are absent in ?-wave magnet junctions albeit the currents exhibit a slow decay. Furthermore, we also demonstrate that the interplay of the Josephson effect and unconventional magnetic order of ?-wave altermagnets and ?-wave magnets originates from odd-frequency spin-triplet ?-wave superconducting correlations that are otherwise absent. Our results can serve as a guide to pursue the new functionality of Josephson junctions based on unconventional magnets. en-copyright= kn-copyright= en-aut-name=FukayaYuri en-aut-sei=Fukaya en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaedaKazuki en-aut-sei=Maeda en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YadaKeiji en-aut-sei=Yada en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=CayaoJorge en-aut-sei=Cayao en-aut-mei=Jorge kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanakaYukio en-aut-sei=Tanaka en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LuBo en-aut-sei=Lu en-aut-mei=Bo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Faculty of Environmental Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Physics, Nagoya University kn-affil= affil-num=3 en-affil=Department of Applied Physics, Nagoya University kn-affil= affil-num=4 en-affil=Department of Physics and Astronomy, Uppsala University kn-affil= affil-num=5 en-affil=Department of Applied Physics, Nagoya University kn-affil= affil-num=6 en-affil=Center for Joint Quantum Studies, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Tianjin University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=57 cd-vols= no-issue=2 article-no= start-page=54 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=White coat color in Vietnamese native buffalo is attributed to the LINE1 insertion in ASIP en-subtitle= kn-subtitle= en-abstract= kn-abstract=The coat color of the swamp buffalo is commonly dark gray, while the white coat color variant, which may have potential heat stress advantages, is also present in some Asian countries, including Vietnam. This study analyzed the most likely candidate genes, ASIP and TYR, responsible for the white coat color of Vietnamese native buffaloes. We found that LINE1 insertion in ASIP, a mutation previously reported in white swamp buffalo from other Asian countries, was exclusively found in white Vietnamese buffalo. Moreover, significantly higher expression of ASIP was confirmed in the hair follicles of white buffalo. On the other hand, no variants associated with the white phenotype were found in TYR. These findings indicate that the LINE1 insertion in ASIP is responsible for the white coat color in Vietnamese native buffalo, and that provides a crucial step towards their utilization and improved productivity in Vietnam. en-copyright= kn-copyright= en-aut-name=NguyenThuy Thanh en-aut-sei=Nguyen en-aut-mei=Thuy Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LeQuan Viet en-aut-sei=Le en-aut-mei=Quan Viet kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NguyenVan Huu en-aut-sei=Nguyen en-aut-mei=Van Huu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DuongHai Thanh en-aut-sei=Duong en-aut-mei=Hai Thanh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsujiTakehito en-aut-sei=Tsuji en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University kn-affil= affil-num=4 en-affil=Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Vietnamese buffalo kn-keyword=Vietnamese buffalo en-keyword=White coat color kn-keyword=White coat color en-keyword=LINE1 insertion kn-keyword=LINE1 insertion en-keyword=ASIP kn-keyword=ASIP END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of caffeine on the longevity and locomotion activity of the common green bottle fly, Lucilia sericata (Diptera: Calliphoridae) en-subtitle= kn-subtitle= en-abstract= kn-abstract=The common green bottle fly, Lucilia sericata (Meigen) (Diptera: Calliphoridae), is a promising and useful managed pollinator for greenhouse agricultural crops. The fly can pollinate at lower and higher temperatures than European honeybee. However, management of the longevity of pollinators is important for growers using greenhouses. Previous studies using other insects showed that caffeine affects insect longevity and behaviors. For instance, European honeybee live longer and have increased memory after caffeine consumption. How caffeine affects the longevity and behavior of pollinators is worth investigating because it can affect pollinator’s behavior, extend longevity, or be an insecticide against pollinators. In the present study, therefore, the longevity and locomotion of L. sericata were investigated when they were given different caffeine concentrations. First, the longevity of L. sericata with five different caffeine concentrations was compared to the control. The results showed that higher concentrations of caffeine (2%, 1%, and 0.5%) significantly decreased the life span compared to lower concentrations (0.05% and 0.01%). Second, the locomotion activities of L. sericata were examined at those two caffeine concentrations with treated and control male and female flies utilizing a Drosophila Activity Monitor (DAM). Treatment with 0.05% caffeine dramatically reduced locomotion, but treatment of 0.01% caffeine did not. We also compared lipid concentrations of flies: flies treated with 0.05% caffeine had a lower lipid concentration compared to flies treated with 0% and 0.01% caffeine. These results indicate that caffeine had negative effects on the longevity and locomotion activities of the pollinator L. sericata in laboratory conditions. en-copyright= kn-copyright= en-aut-name=NaingShine Shane en-aut-sei=Naing en-aut-mei=Shine Shane kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiokaHaruna en-aut-sei=Fujioka en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuuraTeruhisa en-aut-sei=Matsuura en-aut-mei=Teruhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Caffeine kn-keyword=Caffeine en-keyword=Life span kn-keyword=Life span en-keyword=Locomotor activity kn-keyword=Locomotor activity en-keyword=Pollinator kn-keyword=Pollinator END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=24 article-no= start-page=4606 end-page=4620 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nano/microparticle-based tough and recyclable polymers toward a sustainable society en-subtitle= kn-subtitle= en-abstract= kn-abstract=By virtue of their unique properties, polymer nano/microparticles constitute important building blocks for the construction of functional nanomaterials. Although intense research efforts in this field have laid the foundation for the applications of polymer nano/microparticle-based latex films, cutting-edge innovations in the recycling of polymer materials are still required for the realization of a sustainable society. This feature article reviews our recent attempts to develop the applications of polymer nano/microparticles in the context of a circular society on the basis of the precise synthesis of single nano/microparticles and multiscale structural analysis. en-copyright= kn-copyright= en-aut-name=SasakiYuma en-aut-sei=Sasaki en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishizawaYuichiro en-aut-sei=Nishizawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurehaTakuma en-aut-sei=Kureha en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=12 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Voice analysis and deep learning for detecting mental disorders in pregnant women: a cross-sectional study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction Perinatal mental disorders are prevalent, affecting 10-20% of pregnant women, and can negatively impact both maternal and neonatal outcomes. Traditional screening tools, such as the Edinburgh Postnatal Depression Scale (EPDS), present limitations due to subjectivity and time constraints in clinical settings. Recent advances in voice analysis and machine learning have shown potential for providing more objective screening methods. This study aimed to develop a deep learning model that analyzes the voices of pregnant women to screen for mental disorders, thereby offering an alternative to the traditional tools.
Methods A cross-sectional study was conducted among 204 pregnant women, from whom voice samples were collected during their one-month postpartum checkup. The audio data were preprocessed into 5000 ms intervals, converted into mel-spectrograms, and augmented using TrivialAugment and context-rich minority oversampling. The EfficientFormer V2-L model, pretrained on ImageNet, was employed with transfer learning for classification. The hyperparameters were optimized using Optuna, and an ensemble learning approach was used for the final predictions. The model's performance was compared to that of the EPDS in terms of sensitivity, specificity, and other diagnostic metrics.
Results Of the 172 participants analyzed (149 without mental disorders and 23 with mental disorders), the voice-based model demonstrated a sensitivity of 1.00 and a recall of 0.82, outperforming the EPDS in these areas. However, the EPDS exhibited higher specificity (0.97) and precision (0.84). No significant difference was observed in the area under the receiver operating characteristic curve between the two methods (p = 0.759).
Discussion The voice-based model showed higher sensitivity and recall, suggesting that it may be more effective in identifying at-risk individuals than the EPDS. Machine learning and voice analysis are promising objective screening methods for mental disorders during pregnancy, potentially improving early detection.
Conclusion We developed a lightweight machine learning model to analyze pregnant women's voices for screening various mental disorders, achieving high sensitivity and demonstrating the potential of voice analysis as an effective and objective tool in perinatal mental health care. en-copyright= kn-copyright= en-aut-name=OobaHikaru en-aut-sei=Ooba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Perinatal mental disorders kn-keyword=Perinatal mental disorders en-keyword=Voice analysis kn-keyword=Voice analysis en-keyword=Machine learning kn-keyword=Machine learning en-keyword=Screening kn-keyword=Screening en-keyword=Pregnant women kn-keyword=Pregnant women END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=1 end-page=7 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Endothelial Cell Polarity in Health and Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Endothelial cell polarity is fundamental to the organization and function of blood vessels, influencing processes such as angiogenesis, vascular stability, and response to shear stress. This review elaborates on the molecular mechanisms that regulate endothelial cell polarity, focusing on key players like the PAR polarity complex and Rho family GTPases. These pathways coordinate the front?rear, apical?basal and planar polarity of endothelial cells, which are essential for the proper formation and maintenance of vascular structures. In health, endothelial polarity ensures not only the orderly development of blood vessels, with tip cells adopting distinct polarities during angiogenesis, but also ensures proper vascular integrity and function. In disease states, however, disruptions in polarity contribute to pathologies such as coronary artery disease, where altered planar polarity exacerbates atherosclerosis, and cancer, where disrupted polarity in tumor vasculature leads to abnormal vessel growth and function. Understanding cell polarity and its disruption is fundamental not only to comprehending how cells interact with their microenvironment and organize themselves into complex, organ-specific tissues but also to developing novel, targeted, and therapeutic strategies for a range of diseases, from cardiovascular disorders to malignancies, ultimately improving patient outcomes. en-copyright= kn-copyright= en-aut-name=ThihaMoe en-aut-sei=Thiha en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HikitaTakao en-aut-sei=Hikita en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaMasanori en-aut-sei=Nakayama en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pathophysiology and Drug Discovery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=blood vessel kn-keyword=blood vessel en-keyword=endothelial cell kn-keyword=endothelial cell en-keyword=cell polarity kn-keyword=cell polarity en-keyword=atherosclerosis kn-keyword=atherosclerosis en-keyword=cancer kn-keyword=cancer END start-ver=1.4 cd-journal=joma no-vol=170 cd-vols= no-issue= article-no= start-page=109242 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250315 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of small fatigue crack deflection behavior on copper using electron backscatter diffraction and crystal plasticity finite element analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, it was conducted to observe the propagation behavior of small fatigue cracks generated on the surface of α-brass and pure copper, using an electrodynamic plane bending fatigue testing machine. The EBSD method was also used to analyze the crystal orientation near the bottom of the notch on the surface of the test piece. For each slip system of the grain, we calculated the slip factor, defined as the ratio of resolved shear stresses that considers the singular stress field at the crack tip, and investigated the relationship between the propagation behavior of small cracks and the slip factor. Furthermore, we performed a crystal plasticity finite element analysis (CP-FEM) using a crystal plasticity FEM model created from the grains obtained by the EBSD method to predict the deflection behavior of small fatigue cracks when propagating through the grain boundaries. The results indicated that when a crack propagates across a grain boundary, it is difficult to predict the deflection behavior using slip factors, however, the deflection behavior of a crack can be predicted from the resolved shear stress calculated using CP-FEM, which considers the mechanical interactions between crystal grains. en-copyright= kn-copyright= en-aut-name=ArakawaJinta en-aut-sei=Arakawa en-aut-mei=Jinta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YabukiRyo en-aut-sei=Yabuki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoMasato en-aut-sei=Ito en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YaguchiKenichi en-aut-sei=Yaguchi en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Innovation Center, Mitsubishi Materials Corporation kn-affil= affil-num=5 en-affil=Innovation Center, Mitsubishi Materials Corporation kn-affil= en-keyword=Small fatigue crack kn-keyword=Small fatigue crack en-keyword=Crystal orientation kn-keyword=Crystal orientation en-keyword=CP-FEM kn-keyword=CP-FEM en-keyword=EBSD kn-keyword=EBSD END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=2485 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cesarean delivery on child health and development in Japanese nationwide birth cohort en-subtitle= kn-subtitle= en-abstract= kn-abstract=The long-term effects of cesarean delivery (CD) on child health and development remain controversial. This study aimed to investigate these effects using an outcome-wide approach in a Japanese context, where perinatal mortality rates are among the world's lowest. We analyzed data from 2,114 children in a nationwide Japanese birth cohort, linking the 21st Century Longitudinal Survey of Newborns with the Perinatal Research Network database. We examined associations between CD and various health and developmental outcomes up to 9 years of age, including hospitalizations, obesity, and developmental milestones. After adjusting for potential confounders, CD was not significantly associated with most outcomes, including all-cause hospitalization (adjusted risk ratio 1.25, 95% CI 0.997-1.56), obesity at 5.5 and 9 years, and various developmental milestones. Subgroup analyses for multiple births and preterm infants showed some differences in point estimates, but were limited by small sample sizes. CD was not significantly associated with adverse long-term child health or developmental outcomes in this Japanese cohort. These findings provide reassurance regarding CD safety when medically indicated in advanced perinatal care settings. Further research with larger samples and longer follow-up is needed, especially for specific subgroups. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsuiTakashi en-aut-sei=Mitsui en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamaiKei en-aut-sei=Tamai en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirotaTomoya en-aut-sei=Hirota en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Division of Neonatology, NHO Okayama Medical Center kn-affil= affil-num=4 en-affil=Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Cesarean delivery kn-keyword=Cesarean delivery en-keyword=Delivery methods kn-keyword=Delivery methods en-keyword=Long-term outcome kn-keyword=Long-term outcome en-keyword=Child development kn-keyword=Child development en-keyword=Outcome-wide approach kn-keyword=Outcome-wide approach END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=RP99858 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241031 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for molecular assembly of fucoxanthin chlorophyll a/c-binding proteins in a diatom photosystem I supercomplex en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthetic organisms exhibit remarkable diversity in their light-harvesting complexes (LHCs). LHCs are associated with photosystem I (PSI), forming a PSI-LHCI supercomplex. The number of LHCI subunits, along with their protein sequences and pigment compositions, has been found to differ greatly among the PSI-LHCI structures. However, the mechanisms by which LHCIs recognize their specific binding sites within the PSI core remain unclear. In this study, we determined the cryo-electron microscopy structure of a PSI supercomplex incorporating fucoxanthin chlorophyll a/c-binding proteins (FCPs), designated as PSI-FCPI, isolated from the diatom Thalassiosira pseudonana CCMP1335. Structural analysis of PSI-FCPI revealed five FCPI subunits associated with a PSI monomer; these subunits were identified as RedCAP, Lhcr3, Lhcq10, Lhcf10, and Lhcq8. Through structural and sequence analyses, we identified specific protein-protein interactions at the interfaces between FCPI and PSI subunits, as well as among FCPI subunits themselves. Comparative structural analyses of PSI-FCPI supercomplexes, combined with phylogenetic analysis of FCPs from T. pseudonana and the diatom Chaetoceros gracilis, underscore the evolutionary conservation of protein motifs crucial for the selective binding of individual FCPI subunits. These findings provide significant insights into the molecular mechanisms underlying the assembly and selective binding of FCPIs in diatoms. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=XingJian en-aut-sei=Xing en-aut-mei=Jian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KumazawaMinoru en-aut-sei=Kumazawa en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaHaruya en-aut-sei=Ogawa en-aut-mei=Haruya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=4 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Faculty of Agriculture, Shizuoka University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=114 cd-vols= no-issue= article-no= start-page=11 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Uncovering the role of arcuate kisspeptin neurons as a source of the gonadotropin-releasing hormone pulse generator using gene-modified rats kn-title=遺伝子改変ラットを用いた弓状核キスペプチンニューロンの性腺刺激ホルモン放出ホルモンパルスジェネレーターとしての役割解明 en-subtitle= kn-subtitle= en-abstract= 世界において,乳牛の受胎率(妊娠率)が低下しており,家畜の繁殖成績向上のための効果的な治療法が必要とされている.家畜を含む哺乳類において,生殖機能は視床下部−下垂体−性腺軸から分泌されるホルモンによって制御されている.これらのホルモンのうち,性腺刺激ホルモン放出ホルモン(GnRH)のパルス状分泌(GnRH パルス)は,性腺刺激ホルモン分泌と性腺機能に本質的に重要である.したがって,GnRH パルスを制御するメカニズム(GnRH パルスジェネレーター)を解明することは,家畜の生殖技術を向上させるために不可欠である.本総説では,著者らの遺伝子改変ラットモデルを用いた弓状核キスペプチンニューロン(ΚNDy ニューロンとしても知られる)がGnRH パルスジェネレーターの本体であることの直接的な証拠を示した研究を中心として,過去20年間の研究を概説した.また,ΚNDy ニューロンが分泌するニューロキニンB,グルタミン酸,ダイノルフィンA がΚNDy ニューロンの神経活動を同期させ,GnRH パルスを発生させるメカニズムについて論じた.遺伝子改変ラットモデルから得られた知識は,GnRH/ 性腺刺激ホルモンパルスを刺激して,家畜の繁殖能力を向上させる新規繁殖促進剤開発に寄与すると期待できる. kn-abstract= Strategies for increasing reproductive performance are needed for domestic animals because for example the conception (pregnancy) rate has decreased in dairy cows around the world. Reproductive function is controlled by hormones released by the hypothalamus-pituitary-gonadal axis in mammals, including domestic animals. Of those hormones, tonic (pulsatile) gonadotropin-releasing hormone (GnRH) release is fundamentally important for gonadotropin release and gonadal activity. Therefore, uncovering the mechanism controlling GnRH pulses, that is GnRH pulse generator, is essential to improve reproductive technologies for domestic animals. The present review is focused on the indispensable role of arcuate nucleus (ARC) kisspeptin neurons (also known as KNDy neurons) as the GnRH pulse generator in mammals. First, we give a brief overview of studies on hypothalamic kisspeptin neurons throughout the past two decades. Second, we review studies that have provided direct evidence that ARC kisspeptin neurons serve as the GnRH pulse generator, with a special focus on our gene-modified rat models. Finally, we discuss the mechanism underlying GnRH pulse generation. The knowledge obtained from gene-modified rat models should be clinically important and could be adapted to new tools to improve reproductive performance in livestock by stimulating GnRH/gonadotropin pulses. en-copyright= kn-copyright= en-aut-name=NagaeMayuko en-aut-sei=Nagae en-aut-mei=Mayuko kn-aut-name=長江麻佑子 kn-aut-sei=長江 kn-aut-mei=麻佑子 aut-affil-num=1 ORCID= en-aut-name=UenoyamaYoshihisa en-aut-sei=Uenoyama en-aut-mei=Yoshihisa kn-aut-name=上野山賀久 kn-aut-sei=上野山 kn-aut-mei=賀久 aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学大学院環境生命自然科学研究科 affil-num=2 en-affil=Graduate School of Bioagricultural Sciences, Nagoya University kn-affil=名古屋大学大学院生命農学研究科 en-keyword=gene-modified rats kn-keyword=gene-modified rats en-keyword=GnRH kn-keyword=GnRH en-keyword=kisspeptin kn-keyword=kisspeptin en-keyword=LH kn-keyword=LH en-keyword=pulse generator kn-keyword=pulse generator END start-ver=1.4 cd-journal=joma no-vol=114 cd-vols= no-issue= article-no= start-page=1 end-page=10 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of dark respiration on dry matter production of various crop species en-subtitle= kn-subtitle= en-abstract= kn-abstract= Eleven crops were cultivated: maize, sunflower, soybean, groundnuts, sesame, kenaf, barley, wheat, rice, potato, and sweet potato. The crop growth rate (CGR) and specific dark-respiration rate (Rs) were measured, and growth efficiency GE =CGR/(CGR+R) (R, respiratory loss) was calculated. In each crop, whole-plant Rs reached a maximum in the earlier stages of growth, declined rapidly until the early reproductive growth, and remained almost constant during the ripening period. The Rs of leaves was higher than that of stems during the reproductive growth period, except for maize and potato. The Rs of storage organs was highest in the earlier stages, followed by a rapid decline to similar or lower values than those of leaves and stems during the ripening period. The GE in whole plant was higher than 60% in wheat, maize, barley, sunflower, rice, kenaf, sesame, but lower in soybean, sweet potato and groundnuts, and lowest in potato, which was affected by the higher respiratory loss. The GE in whole plant during the reproductive growth period was significantly lower, which we attributed to increased maintenance costs due to the increase of non-assimilative organs, and decrease in the dry weight of vegetative organs. A positive correlation was observed between the carbohydrate content of storage organs and GE, indicating that a crop with higher carbohydrate content in storage organs tended to have a higher GE. Crops with higher protein and crude fat content in storage organs tended to have lower GE. The GE over the growing season was low for kenaf, a fiber crop which contains high molecular weight compounds such as lignin and cellulose, and lower for sesame, groundnuts, and soybean, which contain high oil and protein and have high respiration costs for the synthesis of storage materials, suggesting that these higher respiration costs are related to lower dry matter production and hence lower yields. en-copyright= kn-copyright= en-aut-name=SaitohKuniyuki en-aut-sei=Saitoh en-aut-mei=Kuniyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurakamiTomohiro en-aut-sei=Murakami en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraYumi en-aut-sei=Nakamura en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiboriMisa en-aut-sei=Nishibori en-aut-mei=Misa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakagoshiYuki en-aut-sei=Takagoshi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HiraiYoshihiko en-aut-sei=Hirai en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=School of Agriculture, Okayama University kn-affil= affil-num=4 en-affil=School of Agriculture, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Cereal crops kn-keyword=Cereal crops en-keyword=Oil crops kn-keyword=Oil crops en-keyword=Crop growth rate kn-keyword=Crop growth rate en-keyword=Dark-respiration kn-keyword=Dark-respiration en-keyword=Growth efficiency kn-keyword=Growth efficiency en-keyword=Leguminous crops kn-keyword=Leguminous crops en-keyword=Nutrients composition kn-keyword=Nutrients composition en-keyword=Respiratory loss kn-keyword=Respiratory loss en-keyword=Root and tuber crops kn-keyword=Root and tuber crops END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=3267 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250125 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel treatment strategy targeting interleukin-6 induced by cancer associated fibroblasts for peritoneal metastasis of gastric cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and alpha-smooth muscle (alpha-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro. Anti-tumor effects of anti-IL-6R Ab on PM of GC were investigated in an orthotopic murine PM model. IL-6 expression was significantly correlated with alpha-SMA expression in clinical samples of GC, and higher IL-6 expression in the primary tumor was associated with poor prognosis of GC. Higher IL-6 and alpha-SMA expressions were also observed in PM of GC. In vitro, differentiation of fibroblasts into CAFs and chemoresistance were observed in GC cells cocultured with fibroblasts. Anti-IL-6R Ab inhibited the progression of PM in GC cells cocultured with fibroblasts in the orthotopic mouse model but could not inhibit the progression of PM consisting of GC cells alone. IL-6 expression in the TME was associated with poor prognosis of GC, and CAFs were associated with establishment and progression of PM via IL-6. Anti-IL-6R Ab could inhibit PM of GC by the blockade of IL-6 secreted by CAFs, which suggests its therapeutic potential for PM of GC. en-copyright= kn-copyright= en-aut-name=MitsuiEma en-aut-sei=Mitsui en-aut-mei=Ema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkuraTomohiro en-aut-sei=Okura en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UneYuta en-aut-sei=Une en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiwakiNoriyuki en-aut-sei=Nishiwaki en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OhtsukaJunko en-aut-sei=Ohtsuka en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OhkiRieko en-aut-sei=Ohki en-aut-mei=Rieko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Laboratory of Fundamental Oncology, National Cancer Center Research Institute kn-affil= affil-num=12 en-affil=Laboratory of Fundamental Oncology, National Cancer Center Research Institute kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Peritoneal metastasis kn-keyword=Peritoneal metastasis en-keyword=Gastric cancer kn-keyword=Gastric cancer en-keyword=Interleukin-6 kn-keyword=Interleukin-6 en-keyword=Cancer-associated fibroblasts kn-keyword=Cancer-associated fibroblasts en-keyword=Interleukin-6 receptor antibody kn-keyword=Interleukin-6 receptor antibody END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=2486 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nomogram models for predicting outcomes in thyroid cancer patients with distant metastasis receiving 131iodine therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study aimed to establish and validate prognostic nomogram models for patients who underwent I-131 therapy for thyroid cancer with distant metastases. The cohort was divided into training (70%) and validation (30%) sets for nomogram development. Univariate and multivariate Cox regression analyses were used to identify independent predictors for overall survival (OS) and progression-free survival (PFS). Nomograms were developed based on these predictors, and Kaplan-Meier curves were constructed for validation. Among 451 patients who were screened, 412 met the inclusion criteria and were followed-up for a median duration of 65.2 months. The training and validation sets included 288 and 124 patients, respectively. Pathological type, first I-131 administrated activity, and lesion I-131 uptake in lesions were independent predictors for PFS. For OS, predictors included gender, age, metastasis site, first I-131 administrated activity, I-131 uptake, pulmonary lesion size, and stimulated thyroglobulin levels. These predictors were used to construct nomograms for predicting PFS and OS. Low-risk patients had significantly longer PFS and OS compared to high-risk patients, with 10-year PFS rates of 81.1% vs. 51.9% and 10-year OS rates of 86.2% vs. 37.4%. These may aid individualized prognostic assessment and clinical decision-making, especially in determining the prescribed activity for the first I-131 treatment. en-copyright= kn-copyright= en-aut-name=JinShui en-aut-sei=Jin en-aut-mei=Shui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YeXuemei en-aut-sei=Ye en-aut-mei=Xuemei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YeTing en-aut-sei=Ye en-aut-mei=Ting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChenXinyu en-aut-sei=Chen en-aut-mei=Xinyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=JiJianfeng en-aut-sei=Ji en-aut-mei=Jianfeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WangJinyu en-aut-sei=Wang en-aut-mei=Jinyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhuXin en-aut-sei=Zhu en-aut-mei=Xin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaoXiaochun en-aut-sei=Mao en-aut-mei=Xiaochun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiguchiTakahiro en-aut-sei=Higuchi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YiHeqing en-aut-sei=Yi en-aut-mei=Heqing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital kn-affil= affil-num=2 en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital kn-affil= affil-num=3 en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital kn-affil= affil-num=4 en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg kn-affil= affil-num=5 en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital kn-affil= affil-num=6 en-affil=Medical records and statistics office, Zhejiang Cancer Hospital kn-affil= affil-num=7 en-affil=Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital kn-affil= affil-num=8 en-affil=Department of Thyroid Surgery, Zhejiang Cancer Hospital kn-affil= affil-num=9 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital kn-affil= en-keyword=131iodine kn-keyword=131iodine en-keyword=Activity kn-keyword=Activity en-keyword=Distant metastasis kn-keyword=Distant metastasis en-keyword=Iodine radioisotopes kn-keyword=Iodine radioisotopes en-keyword=Thyroid cancer kn-keyword=Thyroid cancer END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=63 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Impact of Task Context on Pleasantness and Softness Estimations: A Study Based on Three Touch Strategies en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the two distinct perceptions (pleasantness and softness) of deformable stimuli with different degrees of compliance under conditions with and without a contextual task. Three tactile strategies-grasping, pinching, and pressing-were used to perceive the stimuli. In Experiment 1 (without a contextual task), participants estimated the perceived intensity of softness or pleasantness for each stimulus. In Experiment 2 (with a contextual task), the participants sequentially perceived two stimuli with different compliance levels and indicated which stimulus they perceived as softer and pleasant. The results showed that the psychophysical relationship between compliance and perceived softness was consistent across all tactile strategies in both experiments, with softness estimates increasing as compliance increased. However, the relationship between compliance and pleasantness differed between the two experiments. In Experiment 1, pleasantness estimates increased monotonically with increased compliance. However, in Experiment 2, across all tactile strategies, pleasantness began to decrease within the compliance range of 0.25-2.0 cm2/N, exhibiting an inverted U-shaped trend. These findings indicate that the relationship between compliance and pleasantness is task-dependent, particularly demonstrating significantly different trends when a contextual task is introduced. In contrast, the relationship between compliance and softness remained consistently monotonic. en-copyright= kn-copyright= en-aut-name=GaoBinyue en-aut-sei=Gao en-aut-mei=Binyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YuYinghua en-aut-sei=Yu en-aut-mei=Yinghua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EjimaYoshimichi en-aut-sei=Ejima en-aut-mei=Yoshimichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WuJinglong en-aut-sei=Wu en-aut-mei=Jinglong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=pleasantness kn-keyword=pleasantness en-keyword=softness kn-keyword=softness en-keyword=touch strategy kn-keyword=touch strategy en-keyword=task context kn-keyword=task context en-keyword=psychophysics kn-keyword=psychophysics END start-ver=1.4 cd-journal=joma no-vol=2025 cd-vols= no-issue=1 article-no= start-page=013C01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241226 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Modification on Thermal Motion in Geant4 for Neutron Capture Simulation in Gadolinium Loaded Water en-subtitle= kn-subtitle= en-abstract= kn-abstract=Neutron tagging is a fundamental technique for electron anti-neutrino detection via the inverse beta decay channel. A reported discrepancy in neutron detection efficiency between observational data and simulation predictions prompted an investigation into neutron capture modeling in Geant4. The study revealed that an overestimation of the thermal motion of hydrogen atoms in Geant4 impacts the fraction of captured nuclei. By manually modifying the Geant4 implementation, the simulation results align with calculations based on evaluated nuclear data and show good agreement with observables derived from the SK-Gd data. en-copyright= kn-copyright= en-aut-name=HinoY. en-aut-sei=Hino en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeK. en-aut-sei=Abe en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsakaR. en-aut-sei=Asaka en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HanS. en-aut-sei=Han en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaM. en-aut-sei=Harada en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshitsukaM. en-aut-sei=Ishitsuka en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoH. en-aut-sei=Ito en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IzumiyamaS. en-aut-sei=Izumiyama en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanemuraY. en-aut-sei=Kanemura en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KoshioY. en-aut-sei=Koshio en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanishiF. en-aut-sei=Nakanishi en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SekiyaH. en-aut-sei=Sekiya en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YanoT. en-aut-sei=Yano en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=3 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= affil-num=4 en-affil=Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=5 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=6 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= affil-num=7 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= affil-num=8 en-affil=Department of Physics, Tokyo Institute of Technology kn-affil= affil-num=9 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=13 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250115 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Investigation of Hand Gestures for Controlling Video Games in a Rehabilitation Exergame System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Musculoskeletal disorders (MSDs) can significantly impact individuals' quality of life (QoL), often requiring effective rehabilitation strategies to promote recovery. However, traditional rehabilitation methods can be expensive and may lack engagement, leading to poor adherence to therapy exercise routines. An exergame system can be a solution to this problem. In this paper, we investigate appropriate hand gestures for controlling video games in a rehabilitation exergame system. The Mediapipe Python library is adopted for the real-time recognition of gestures. We choose 10 easy gestures among 32 possible simple gestures. Then, we specify and compare the best and the second-best groups used to control the game. Comprehensive experiments are conducted with 16 students at Andalas University, Indonesia, to find appropriate gestures and evaluate user experiences of the system using the System Usability Scale (SUS) and User Experience Questionnaire (UEQ). The results show that the hand gestures in the best group are more accessible than in the second-best group. The results suggest appropriate hand gestures for game controls and confirm the proposal's validity. In future work, we plan to enhance the exergame system by integrating a diverse set of video games, while expanding its application to a broader and more diverse sample. We will also study other practical applications of the hand gesture control function. en-copyright= kn-copyright= en-aut-name=HusnaRadhiatul en-aut-sei=Husna en-aut-mei=Radhiatul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnggrainiIrin Tri en-aut-sei=Anggraini en-aut-mei=Irin Tri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FanChih-Peng en-aut-sei=Fan en-aut-mei=Chih-Peng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=6 en-affil=Department of Electrical Engineering, National Chung Hsing University kn-affil= en-keyword=hand gesture kn-keyword=hand gesture en-keyword=application control kn-keyword=application control en-keyword=exergame kn-keyword=exergame en-keyword=SUS kn-keyword=SUS en-keyword=UEQ kn-keyword=UEQ en-keyword=python kn-keyword=python en-keyword=mediapipe kn-keyword=mediapipe END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=2 article-no= start-page=342 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250117 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Proposal of In Situ Authoring Tool with Visual-Inertial Sensor Fusion for Outdoor Location-Based Augmented Reality en-subtitle= kn-subtitle= en-abstract= kn-abstract=In location-based augmented reality (LAR) applications, a simple and effective authoring tool is essential to create immersive AR experiences in real-world contexts. Unfortunately, most of the current tools are primarily desktop-based, requiring manual location acquisitions, the use of software development kits (SDKs), and high programming skills, which poses significant challenges for novice developers and a lack of precise LAR content alignment. In this paper, we propose an intuitive in situ authoring tool with visual-inertial sensor fusions to simplify the LAR content creation and storing process directly using a smartphone at the point of interest (POI) location. The tool localizes the user’s position using smartphone sensors and maps it with the captured smartphone movement and the surrounding environment data in real-time. Thus, the AR developer can place a virtual object on-site intuitively without complex programming. By leveraging the combined capabilities of Visual Simultaneous Localization and Mapping(VSLAM) and Google Street View (GSV), it enhances localization and mapping accuracy during AR object creation. For evaluations, we conducted extensive user testing with 15 participants, assessing the task success rate and completion time of the tool in practical pedestrian navigation scenarios. The Handheld Augmented Reality Usability Scale (HARUS) was used to evaluate overall user satisfaction. The results showed that all the participants successfully completed the tasks, taking 16.76 s on average to create one AR object in a 50 m radius area, while common desktop-based methods in the literature need 1?8 min on average, depending on the user’s expertise. Usability scores reached 89.44 for manipulability and 85.14 for comprehensibility, demonstrating the high effectiveness in simplifying the outdoor LAR content creation process. en-copyright= kn-copyright= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MentariMustika en-aut-sei=Mentari en-aut-mei=Mustika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SyaifudinYan Watequlis en-aut-sei=Syaifudin en-aut-mei=Yan Watequlis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil= Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil= Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil= Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil= Department of Information Technology, Politeknik Negeri Malang kn-affil= affil-num=6 en-affil= Department of Information Technology, Politeknik Negeri Malang kn-affil= en-keyword=location-based augmented reality (LAR) kn-keyword=location-based augmented reality (LAR) en-keyword=authoring tool kn-keyword=authoring tool en-keyword=outdoor kn-keyword=outdoor en-keyword=VSLAM kn-keyword=VSLAM en-keyword=Google Street View (GSV) kn-keyword=Google Street View (GSV) en-keyword=handheld augmented reality usability scale (HARUS) kn-keyword=handheld augmented reality usability scale (HARUS) END start-ver=1.4 cd-journal=joma no-vol=234 cd-vols= no-issue= article-no= start-page=120015 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250305 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reversible chemical modifications of graphene oxide for enhanced viral capture and release in water en-subtitle= kn-subtitle= en-abstract= kn-abstract=Detecting low concentrations of viruses in sewage water is crucial for monitoring the spread of emerging viral diseases. However, current detection methods, which involve concentrating viruses using traditional materials such as gauze or cotton, have limitations in effectively accomplishing this task. This study demonstrates that graphene oxide (GO), a two-dimensional carbon material, possesses strong viral adsorption capabilities. However, it lacks efficiency for effective viral release. Therefore, we designed a series of new GO-based materials, which exhibited a viral adsorption similar to pristine GO, while significantly enhancing their release performance by attaching alkyl chains and hydrophilic functional groups. Among the synthesized materials, 1,8-aminooctanol grafted to GO (GO-NH2C8OH) has emerged as the most promising candidate, achieving a viral release rate higher than 50 %. This superior performance can be attributed to the synergistic effect of the alkyl chain and the terminal OH group, which enhances both its affinity for viruses and water dispersibility. Furthermore, we have successfully applied GO-NH2C8OH in a new protocol for concentrating viruses from sewage wastewater. This approach has demonstrated a 200-fold increase in virus concentration, allowing PCR detection of this type of pathogens present in wastewater below the detection limit by direct analysis, underscoring its significant potential for virus surveillance. en-copyright= kn-copyright= en-aut-name=Ferr?-PujolPilar en-aut-sei=Ferr?-Pujol en-aut-mei=Pilar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObataSeiji en-aut-sei=Obata en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RayaJ?sus en-aut-sei=Raya en-aut-mei=J?sus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BiancoAlberto en-aut-sei=Bianco en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatayamaHiroyuki en-aut-sei=Katayama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoTakashi en-aut-sei=Kato en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Institut de Chimie, UMR 7177 CNRS, Universit? de Strasbourg kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Urban Engineering, School of Engineering, The University of Tokyo kn-affil= affil-num=6 en-affil=Research Center for Water Environment Technology, School of Engineering, The University of Tokyo kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Carbon nanomaterials kn-keyword=Carbon nanomaterials en-keyword=Functionalization kn-keyword=Functionalization en-keyword=Adsorption kn-keyword=Adsorption en-keyword=Desorption kn-keyword=Desorption en-keyword=Pathogens kn-keyword=Pathogens END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The perception of plastic waste and composition of boathouse waste in floating villages on Tonl? Sap Lake, Cambodia en-subtitle= kn-subtitle= en-abstract= kn-abstract=Villagers living on Tonl? Sap (TS) Lake have low incomes and no access to basic public services, such as waste management, domestic water, electricity, and health care. Knowledge of the villagers’ perceptions and the composition of the waste from their boathouses will contribute to constructing a waste collection system with community participation within the framework of waste prevention and reduction. This study surveyed residents living in boathouses in four floating villages on TS Lake, Cambodia, regarding their perceptions and boathouse waste composition to assess the status of plastic waste and the villagers’ environmental awareness and their willingness to participate in waste collection. The household waste survey sought to clarify the amount of plastic waste and other recyclable waste discharged from floating houses. The perception survey revealed that in the wet season, 36% of respondents disposed of plastic waste by open burning/dumping and 40% by discharge into TS Lake; in the dry season, 76% disposed of waste by open burning/dumping, and only 4% discharged waste into TS Lake. An analysis of the boathouse plastic waste composition showed that residents of the floating villages generated 40.21 g plastic waste/day/capita, which was much lower than 340 g/day/capita in the USA, 120 g/day/capita in China, and even 70 g/day/capita in Cambodian on average, but higher than the 10 g/day/capita in India. This study proposes a novel and valuable framework to estimate and determine the level of awareness of people in floating villages related to plastic pollution effects and waste components from boathouses. At the same time, the research results provide an essential scientific basis to be able to develop an effective waste collection system in the area of TS Lake. The proposed framework of this study will help the policy decision-makers in the TS Lake area and those in similar geographical regions facing similar problems. en-copyright= kn-copyright= en-aut-name=Habuer en-aut-sei=Habuer en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraTakeshi en-aut-sei=Fujiwara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=VinSpoann en-aut-sei=Vin en-aut-mei=Spoann kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChandaraPhat en-aut-sei=Chandara en-aut-mei=Phat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsukijiMakoto en-aut-sei=Tsukiji en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Environmental Management Course, Architecture, Civil Engineering and Environmental Management Program, School of Engineering, Okayama University kn-affil= affil-num=2 en-affil=Environmental Management Course, Architecture, Civil Engineering and Environmental Management Program, School of Engineering, Okayama University kn-affil= affil-num=3 en-affil=Department of Economic Development, Faculty of Development Studies, Royal University of Phnom Penh kn-affil= affil-num=4 en-affil=Department of Natural Resource Management and Development, Faculty of Development Studies, Royal University of Phnom Penh kn-affil= affil-num=5 en-affil=Environmental Management Course, Architecture, Civil Engineering and Environmental Management Program, School of Engineering, Okayama University kn-affil= en-keyword=Boathouse waste composition kn-keyword=Boathouse waste composition en-keyword=Cambodia kn-keyword=Cambodia en-keyword=Floating villages kn-keyword=Floating villages en-keyword=Perception survey kn-keyword=Perception survey en-keyword=Plastic waste kn-keyword=Plastic waste END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=4 article-no= start-page=2679 end-page=2687 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Formation of Nanowindow between Graphene Oxide and Carbon Nanohorn Assisted by Metal Ions en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study presents a novel nanostructured material formed by inserting oxidized carbon nanohorns (CNHox) between layered graphene oxide (GO) nanosheets using metal ions (M) from nitrate as intermediates. The resulting GO?CNHox-M structure effectively mitigated interlayer aggregation of the GO nanosheets. This insertion strategy promoted the formation of nanowindows on the surface of the GO sheets and larger mesopores between the GO nanosheets, improving material porosity. Characterization revealed successful CNHox insertion, which increased interlayer spacing and reduced GO stacking. The GO?CNHox-Ca exhibited a significantly higher specific surface area (SSA) and pore volume than pure GO, with values of 374 m2 g?1 and 0.36 mL g?1, respectively. The GO?CNHox-K composite also exhibited a well-developed pore structure with an SSA of 271 m2 g?1 and pore volume of 0.26 mL g?1. These findings demonstrate that Ca2+ or K+ ions effectively link GO and CNHox, validating the success of this insertion approach in reducing GO aggregation. Metal ions played a crucial role in the insertion process by facilitating electrostatic interactions and coordination bonds between GO and CNHox. This study provides new insights into reducing GO agglomeration and expanding the application of GO-based materials. en-copyright= kn-copyright= en-aut-name=LiZhao en-aut-sei=Li en-aut-mei=Zhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ToyotaMoeto en-aut-sei=Toyota en-aut-mei=Moeto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhkuboTakahiro en-aut-sei=Ohkubo en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=361 cd-vols= no-issue= article-no= start-page=114657 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings en-subtitle= kn-subtitle= en-abstract= kn-abstract=The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation. RT-qPCR and immunohistochemistry analyses revealed that PRLRs are predominantly localized in the pulp rather than in the epidermal layer of the feather follicle. Treatment of primary cultured feather pulp cells with PRL increased the expression of mRNAs for insulin-like growth factors (IGFs; IGF-1 and IGF-2) and type 2 deiodinase (DIO2). Furthermore, treatments with IGF-1 and triiodothyronine (T3) reciprocally enhanced the expression of mRNAs for DIO2 and IGFs. Additionally, BrdU staining in neonatal chicks showed that T3 promoted cell proliferation in both the epidermal layer and pulp cells, while this effect was suppressed by an IGF-1 receptor (IGF1R) inhibitor. These findings suggest a novel model in which PRL upregulates IGFs and DIO2 in feather pulp cells, creating a positive feedback loop between IGFs and T3, ultimately leading to the promotion of cell proliferation in both the epidermal layer and the pulp cells by IGFs. This is the first report proposing crosstalk between PRL, thyroid hormone (TH), and IGFs in feather follicles. en-copyright= kn-copyright= en-aut-name=NozawaYuri en-aut-sei=Nozawa en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamuraAyako en-aut-sei=Okamura en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuchiHibiki en-aut-sei=Fukuchi en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShinoharaMasamichi en-aut-sei=Shinohara en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AizawaSayaka en-aut-sei=Aizawa en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Prolactin kn-keyword=Prolactin en-keyword=Thyroid hormone kn-keyword=Thyroid hormone en-keyword=IGF kn-keyword=IGF en-keyword=Iodothyronine deiodinase kn-keyword=Iodothyronine deiodinase en-keyword=Feather growth kn-keyword=Feather growth END start-ver=1.4 cd-journal=joma no-vol=941 cd-vols= no-issue= article-no= start-page=149244 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250315 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of pennaceous barbule cell factor (PBCF), a novel gene with spatiotemporal expression in barbule cells during feather development en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization. PBCF is expressed in barbule cells adjacent to the ramus during pennaceous barbule formation, where these cells fuse with the ramus to establish the feather’s branching structure. PBCF expression occurs transiently after melanin pigmentation of the barbule plates but before the expression of barbule-specific keratin 1 (BlSK1). Orthologues of PBCF, predicted to be secreted proteins, are conserved across avian species, with potential homologues detected in reptiles, suggesting an evolutionary lineage-specific adaptation. Additionally, PBCF is expressed in non-vacuolated notochord cells and the extra-embryonic ectoderm of the yolk sac, hinting at its broader developmental significance. The PBCF gene produces two mRNA isoforms via alternative splicing, encoding a secreted protein and a glycophosphatidylinositol (GPI)-anchored membrane-bound protein, indicating functional versatility. These findings suggest that PBCF may be involved as an avian-specific extracellular matrix component in cell adhesion and/or communication, potentially contributing to both feather development and embryogenesis. Further investigation of PBCF’s role in feather evolution and its potential functions in other vertebrates could provide new insights into the interplay between development and evolution. en-copyright= kn-copyright= en-aut-name=NakaokaMinori en-aut-sei=Nakaoka en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukuchiHibiki en-aut-sei=Fukuchi en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgoshiMaho en-aut-sei=Ogoshi en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AizawaSayaka en-aut-sei=Aizawa en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Feather kn-keyword=Feather en-keyword=Barbule kn-keyword=Barbule en-keyword=Branching kn-keyword=Branching en-keyword=Chicken kn-keyword=Chicken en-keyword=Yolk sac membrane kn-keyword=Yolk sac membrane en-keyword=Notochord kn-keyword=Notochord END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=2577 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plasma S100A8/A9 level predicts response to immune checkpoint inhibitors in patients with advanced non-small cell lung cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Blood-based predictive markers for the efficacy of immune checkpoint inhibitors (ICIs) have not yet been established. We investigated the association of the plasma level of S100A8/A9 with the efficacy of immunotherapy. We evaluated patients with unresectable stage III/IV or recurrent non-small cell lung cancer (NSCLC) who were treated with ICIs at Okayama University Hospital. The pre-treatment plasma levels of S100A8/A9 were analyzed. Eighty-one eligible patients were included (median age, 69 years). Sixty-two patients were men, 54 had adenocarcinoma, 74 had performance status (PS) 0?1, and 47 received ICIs as first-line treatment. The median time to treatment failure (TTF) for ICIs was 5.7 months, and the median overall survival (OS) was 19.6 months. The TTF and OS were worse in patients with high plasma S100A8/A9 levels (??2.475 ?g/mL) (median TTF: 4.3 vs. 8.5 months, p?=?0.009; median OS: 15.4 vs. 38.0 months, p?=?0.001). Multivariate analysis revealed that PS???2, liver metastasis, and high plasma S100A8/A9 levels were significantly associated with short TTF and OS. In conclusion, plasma S100A8/A9 level may have a limited effect on ICI therapy for NSCLC. en-copyright= kn-copyright= en-aut-name=KuribayashiTadahiro en-aut-sei=Kuribayashi en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NinomiyaKiichiro en-aut-sei=Ninomiya en-aut-mei=Kiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuboToshio en-aut-sei=Kubo en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RaiKammei en-aut-sei=Rai en-aut-mei=Kammei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TabataMasahiro en-aut-sei=Tabata en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OhashiKadoaki en-aut-sei=Ohashi en-aut-mei=Kadoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Center for Clinical Oncology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= en-keyword=S100A8/A9 kn-keyword=S100A8/A9 en-keyword=Lung cancer kn-keyword=Lung cancer en-keyword=Immune checkpoint inhibitors kn-keyword=Immune checkpoint inhibitors END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=60 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel Drug Delivery Particles Can Provide Dual Effects on Cancer "Theranostics" in Boron Neutron Capture Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction 10B (n, alpha) 7Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, “AB-type” Lactosome? nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely o-Carborane (Carb) or 1,2-dihexyl-o-Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the “molecular glue” effect. Here we present in vivo and ex vivo studies with human pancreatic cancer (AsPC-1) cells to find therapeutically optimal formulas and the appropriate treatment conditions for these particles. The biodistribution of the particles was assessed by the tumor/normal tissue ratio (T/N) in terms of tumor/muscle (T/M) and tumor/blood (T/B) ratios using near-infrared fluorescence (NIRF) imaging with indocyanine green (ICG). The in vivo and ex vivo accumulation of B delivered by the injected AB-Lac particles in tumor lesions reached a maximum by 12 h post-injection. Irradiation studies conducted both in vitro and in vivo showed that AB-Lac particles-loaded with either 10B-Carb or 10B-diC6-Carb significantly inhibited the growth of AsPC-1 cancer cells or strongly inhibited their growth, with the latter method being significantly more effective. Surprisingly, a similar in vitro and in vivo irradiation study showed that ICG-labeled AB-Lac particles alone, i.e., without any 10B compounds, also revealed a significant inhibition. Therefore, we expect that our ICG-labeled AB-Lac particles-loaded with 10B compound(s) may be a novel and promising candidate for providing not only NIRF imaging for a practical diagnosis but also the dual therapeutic effects of induced cancer cell death, i.e., “theranostics”. en-copyright= kn-copyright= en-aut-name=FithroniAbdul Basith en-aut-sei=Fithroni en-aut-mei=Abdul Basith kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InoueHaruki en-aut-sei=Inoue en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZhouShengli en-aut-sei=Zhou en-aut-mei=Shengli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HakimTaufik Fatwa Nur en-aut-sei=Hakim en-aut-mei=Taufik Fatwa Nur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TadaTakashi en-aut-sei=Tada en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiMinoru en-aut-sei=Suzuki en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakuraiYoshinori en-aut-sei=Sakurai en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshimotoManabu en-aut-sei=Ishimoto en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamadaNaoyuki en-aut-sei=Yamada en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SauriasariRani en-aut-sei=Sauriasari en-aut-mei=Rani kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SauerweinWolfgang A. G. en-aut-sei=Sauerwein en-aut-mei=Wolfgang A. G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatsuuraEiji en-aut-sei=Matsuura en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=7 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=8 en-affil=J-BEAM, Inc. kn-affil= affil-num=9 en-affil=Nihon Fukushi Fuiin Holding, Co., Ltd. kn-affil= affil-num=10 en-affil=Faculty of Pharmacy, Universitas Indonesia kn-affil= affil-num=11 en-affil=Deutsche Gesellschaft f?r Bor-Neutroneneinfangtherapie DGBNCT e.V., University Hospital Essen, Klinik f?r Strahlentherapie kn-affil= affil-num=12 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=13 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=14 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=boron neutron capture therapy (BNCT) kn-keyword=boron neutron capture therapy (BNCT) en-keyword=dual therapeutic effects kn-keyword=dual therapeutic effects en-keyword=Lactosome ? kn-keyword=Lactosome ? en-keyword=hydrophobic boron compound kn-keyword=hydrophobic boron compound en-keyword=neutron irradiation kn-keyword=neutron irradiation en-keyword=theranostics kn-keyword=theranostics END start-ver=1.4 cd-journal=joma no-vol=126 cd-vols= no-issue=1 article-no= start-page=012901 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dynamic domain motion enhancing electro-optic performance in ferroelectric films en-subtitle= kn-subtitle= en-abstract= kn-abstract=With the rapid advancement of information technology, there is a pressing need to develop ultracompact and energy-efficient thin-film-based electro-optic (EO) devices. A high EO coefficient in ferroelectric materials is crucial. However, substrate clamping can positively or negatively influence various physical properties, including the EO response of these films, thus complicating the development of next-generation thin-film-based devices. This study demonstrates that reversible dynamic domain motion, achieved through substrate clamping, significantly enhances the EO coefficient in epitaxial ferroelectric rhombohedral Pb(Zr, Ti)O3 thin films, where the (111) and (? 111?) domains coexist with distinct optical axes. In principle, this approach can be applied to different film-substrate systems, thereby contributing to the advancement of sophisticated EO devices based on ferroelectrics. en-copyright= kn-copyright= en-aut-name=KondoShinya en-aut-sei=Kondo en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamotoKazuki en-aut-sei=Okamoto en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakataOsami en-aut-sei=Sakata en-aut-mei=Osami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TeranishiTakashi en-aut-sei=Teranishi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KishimotoAkira en-aut-sei=Kishimoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagasakiTakanori en-aut-sei=Nagasaki en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamadaTomoaki en-aut-sei=Yamada en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Energy Engineering, Nagoya University kn-affil= affil-num=3 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Energy Engineering, Nagoya University kn-affil= affil-num=7 en-affil=Department of Energy Engineering, Nagoya University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=E108-B cd-vols= no-issue=1 article-no= start-page=1 end-page=13 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Overloaded MIMO Spatial Multiplexing Independent of Antenna Setups en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper proposes overloaded MIMO spatial multiplexing that can increase the number of spatially multiplexed signal streams despite of the number of antennas on a terminal and that on a receiver. We propose extension of the channel matrix for the spatial multiplexing to achieve the superb multiplexing performance. Precoding based on the extended channel matrix plays a crucial role in carrying out such spatial multiplexing. We consider three types of QR-decomposition techniques for the proposed spatial multiplexing to improve the transmission performance. The transmission performance of the proposed spatial multiplexing is evaluated by computer simulation. The simulation reveals that the proposed overloaded MIMO spatial multiplexing can implement 6 stream-spatial multiplexing in a 2×2 MIMO system, i.e., the overloading ratio of 3.0. The superior transmission performance is achieved by the proposed overloaded MIMO spatial multiplexing with one of the QR-decomposition techniques. en-copyright= kn-copyright= en-aut-name=DennoSatoshi en-aut-sei=Denno en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugimotoTakumi en-aut-sei=Sugimoto en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatobaKoki en-aut-sei=Matoba en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HouYafei en-aut-sei=Hou en-aut-mei=Yafei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=overloaded MIMO kn-keyword=overloaded MIMO en-keyword=spatial multiplexing kn-keyword=spatial multiplexing en-keyword=QR-decomposition kn-keyword=QR-decomposition en-keyword=precoding kn-keyword=precoding en-keyword=overloading ratio kn-keyword=overloading ratio END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=24 article-no= start-page=4878 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Implementation of Web-Based Answer Platform in the Flutter Programming Learning Assistant System Using Docker Compose en-subtitle= kn-subtitle= en-abstract= kn-abstract=Programming has gained significant importance worldwide as societies increasingly rely on computer application systems. To support novices in learning various programming languages, we have developed the Programming Learning Assistant System (PLAS). It offers several types of exercise problems with different learning goals and levels for step-by-step self-study. As a personal answer platform in PLAS, we have implemented a web application using Node.js and EJS for Java and Python programming. Recently, the Flutter framework with Dart programming has become popular, enabling developers to build applications for mobile, web, and desktop environments from a single codebase. Thus, we have extended PLAS by implementing the Flutter environment with Visual Studio Code to support it. Additionally, we have developed an image-based user interface (UI) testing tool to verify student source code by comparing its generated UI image with the standard one using the ORB and SIFT algorithms in OpenCV. For efficient distribution to students, we have generated Docker images of the answer platform, Flutter environment, and image-based UI testing tool. In this paper, we present the implementation of a web-based answer platform for the Flutter Programming Learning Assistant System (FPLAS) by integrating three Docker images using Docker Compose. Additionally, to capture UI images automatically, an Nginx web application server is adopted with its Docker image. For evaluations, we asked 10 graduate students at Okayama University, Japan, to install the answer platform on their PCs and solve five exercise problems. All the students successfully completed the problems, which confirms the validity and effectiveness of the proposed system. en-copyright= kn-copyright= en-aut-name=AungLynn Htet en-aut-sei=Aung en-aut-mei=Lynn Htet kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KyawHtoo Htoo Sandi en-aut-sei=Kyaw en-aut-mei=Htoo Htoo Sandi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KaoWen-Chung en-aut-sei=Kao en-aut-mei=Wen-Chung kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Computer and Information Science, Tokyo University of Agriculture and Technology kn-affil= affil-num=5 en-affil=Department of Electrical Engineering, National Taiwan Normal University kn-affil= en-keyword=Flutter kn-keyword=Flutter en-keyword=Dart kn-keyword=Dart en-keyword=answer platform kn-keyword=answer platform en-keyword=Flutter environment kn-keyword=Flutter environment en-keyword=Nginx kn-keyword=Nginx en-keyword=UI testing tool kn-keyword=UI testing tool en-keyword=Docker Compose kn-keyword=Docker Compose END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=52 article-no= start-page=35202 end-page=35213 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241216 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bright Quantum-Grade Fluorescent Nanodiamonds en-subtitle= kn-subtitle= en-abstract= kn-abstract=Optically accessible spin-active nanomaterials are promising as quantum nanosensors for probing biological samples. However, achieving bioimaging-level brightness and high-quality spin properties for these materials is challenging and hinders their application in quantum biosensing. Here, we demonstrate bright fluorescent nanodiamonds (NDs) containing 0.6?1.3-ppm negatively charged nitrogen-vacancy (NV) centers by spin-environment engineering via enriching spin-less 12C-carbon isotopes and reducing substitutional nitrogen spin impurities. The NDs, readily introduced into cultured cells, exhibited improved optically detected magnetic resonance (ODMR) spectra; peak splitting (E) was reduced by 2?3 MHz, and microwave excitation power required was 20 times lower to achieve a 3% ODMR contrast, comparable to that of conventional type-Ib NDs. They show average spin-relaxation times of T1 = 0.68 ms and T2 = 3.2 μs (1.6 ms and 5.4 μs maximum) that were 5- and 11-fold longer than those of type-Ib, respectively. Additionally, the extended T2 relaxation times of these NDs enable shot-noise-limited temperature measurements with a sensitivity of approximately 0.28K/√Hz. The combination of bulk-like NV spin properties and enhanced fluorescence significantly improves the sensitivity of ND-based quantum sensors for biological applications. en-copyright= kn-copyright= en-aut-name=OshimiKeisuke en-aut-sei=Oshimi en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshiwataHitoshi en-aut-sei=Ishiwata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakashimaHiromu en-aut-sei=Nakashima en-aut-mei=Hiromu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Mandi?Sara en-aut-sei=Mandi? en-aut-mei=Sara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiHina en-aut-sei=Kobayashi en-aut-mei=Hina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TeramotoMinori en-aut-sei=Teramoto en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsujiHirokazu en-aut-sei=Tsuji en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishibayashiYoshiki en-aut-sei=Nishibayashi en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShikanoYutaka en-aut-sei=Shikano en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AnToshu en-aut-sei=An en-aut-mei=Toshu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraMasazumi en-aut-sei=Fujiwara en-aut-mei=Masazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=The National Institutes for Quantum Science and Technology (QST), Institute for Quantum Life Science (iQLS) kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd. kn-affil= affil-num=7 en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd. kn-affil= affil-num=8 en-affil=Advanced Materials Laboratory, Sumitomo Electric Industries, Ltd. kn-affil= affil-num=9 en-affil=Institute of Systems and Information Engineering, University of Tsukuba kn-affil= affil-num=10 en-affil=School of Materials Science, Japan Advanced Institute of Science and Technology kn-affil= affil-num=11 en-affil=Department of Chemistry, Graduate School of Life, Environmental, Natural Science and Technology, Okayama University kn-affil= en-keyword=nanodiamonds kn-keyword=nanodiamonds en-keyword=nitrogen-vacancy centers kn-keyword=nitrogen-vacancy centers en-keyword=spins kn-keyword=spins en-keyword=spin-relaxation times kn-keyword=spin-relaxation times en-keyword=quantum biosensor kn-keyword=quantum biosensor en-keyword=cellular probes kn-keyword=cellular probes END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=24 article-no= start-page=2045 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=iPSC-Derived Biological Pacemaker-From Bench to Bedside en-subtitle= kn-subtitle= en-abstract= kn-abstract=Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control. These cells can differentiate into cardiomyocytes capable of autonomous electrical activity, integrating into heart tissue. However, challenges such as achieving cellular maturity, long-term functionality, and immune response remain significant barriers to clinical translation. Future research should focus on refining gene-editing techniques, optimizing differentiation, and developing scalable production processes to enhance the safety and effectiveness of these biological pacemakers. With further advancements, iPSC-derived pacemakers could offer a patient-specific, durable alternative for cardiac rhythm management. This review discusses key advancements in differentiation protocols and preclinical studies, demonstrating their potential in treating dysrhythmias. en-copyright= kn-copyright= en-aut-name=VoQuan Duy en-aut-sei=Vo en-aut-mei=Quan Duy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IidaToshihiro en-aut-sei=Iida en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaMasashi en-aut-sei=Yoshida en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AmiokaNaofumi en-aut-sei=Amioka en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=sinoatrial node kn-keyword=sinoatrial node en-keyword=HCN channels kn-keyword=HCN channels en-keyword=induced pluripotent stem cell kn-keyword=induced pluripotent stem cell END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=12 article-no= start-page=789 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Yoga Pose Difficulty Level Estimation Method Using OpenPose for Self-Practice System to Yoga Beginners en-subtitle= kn-subtitle= en-abstract= kn-abstract=Yoga is an exercise preferable for various users at different ages to enhance physical and mental health. To help beginner yoga self-practitioners avoid getting injured by selecting difficult yoga poses, the information of the difficulty level of yoga poses is very important to provide an objective metric to assist yoga self-practitioners in selecting appropriate exercises on the basis of their skill level by using the yoga self-practice system. To enhance the developed yoga self-practice system, the yoga difficulty level estimation function will enable users to clearly understand whether the selected yoga poses are suitable for them. In this paper, the newest difficulty level estimation method of yoga poses is proposed by using and analyzing OpenPose two-dimensional (2D) human body keypoints. The proposed method effectively uses the selected six keypoints areas of the upper and lower body, body support types, center of gravity calculations, and body tilt angles and slopes to produce estimations. Firstly, the method calculates the weighted centers of the upper and lower human body for each pose by using keypoints. Secondly, it refers the slope of the centroid line between the two centers and infers the body's balance state. Lastly, the system estimates the difficulty level by additionally considering the keypoints of the body to contact the ground. For evaluations of the proposal, more than one hundred yoga poses are collected from the Internet and applied to classify them into five difficulty levels. Through comparisons with subjective levels from one instructor and 10 users, the validity of the estimation results is confirmed, a comparison is performed with existing designs, and it is implemented in embedded systems. en-copyright= kn-copyright= en-aut-name=ShihCheng-Liang en-aut-sei=Shih en-aut-mei=Cheng-Liang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuJun-You en-aut-sei=Liu en-aut-mei=Jun-You kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnggrainiIrin Tri en-aut-sei=Anggraini en-aut-mei=Irin Tri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=XiaoYanqi en-aut-sei=Xiao en-aut-mei=Yanqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FanChih-Peng en-aut-sei=Fan en-aut-mei=Chih-Peng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Electrical Engineering, National Chung Hsing University kn-affil= affil-num=2 en-affil=Department of Electrical Engineering, National Chung Hsing University kn-affil= affil-num=3 en-affil=Department of Electrical and Communication Engineering, Okayama University kn-affil= affil-num=4 en-affil=Department of Electrical and Communication Engineering, Okayama University kn-affil= affil-num=5 en-affil=Department of Electrical and Communication Engineering, Okayama University kn-affil= affil-num=6 en-affil=Department of Electrical Engineering, National Chung Hsing University kn-affil= en-keyword=yoga kn-keyword=yoga en-keyword=self-practice kn-keyword=self-practice en-keyword=OpenPose kn-keyword=OpenPose en-keyword=pose difficulty level kn-keyword=pose difficulty level en-keyword=body keypoint kn-keyword=body keypoint END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=12 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multi-dimensional optimisation of the scanning strategy for the LiteBIRD space mission en-subtitle= kn-subtitle= en-abstract= kn-abstract=Large angular scale surveys in the absence of atmosphere are essential for measuring the primordial B-mode power spectrum of the Cosmic Microwave Background (CMB). Since this proposed measurement is about three to four orders of magnitude fainter than the temperature anisotropies of the CMB, in-flight calibration of the instruments and active suppression of systematic effects are crucial. We investigate the effect of changing the parameters of the scanning strategy on the in-flight calibration effectiveness, the suppression of the systematic effects themselves, and the ability to distinguish systematic effects by null-tests. Next-generation missions such as LiteBIRD, modulated by a Half-Wave Plate (HWP), will be able to observe polarisation using a single detector, eliminating the need to combine several detectors to measure polarisation, as done in many previous experiments and hence avoiding the consequent systematic effects. While the HWP is expected to suppress many systematic effects, some of them will remain. We use an analytical approach to comprehensively address the mitigation of these systematic effects and identify the characteristics of scanning strategies that are the most effective for implementing a variety of calibration strategies in the multi-dimensional space of common spacecraft scan parameters. We verify that LiteBIRD's standard configuration yields good performance on the metrics we studied. We also present Falcons.jl, a fast spacecraft scanning simulator that we developed to investigate this scanning parameter space. en-copyright= kn-copyright= en-aut-name=TakaseY. en-aut-sei=Takase en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=VacherL. en-aut-sei=Vacher en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshinoH. en-aut-sei=Ishino en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PatanchonG. en-aut-sei=Patanchon en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MontierL. en-aut-sei=Montier en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SteverS.L. en-aut-sei=Stever en-aut-mei=S.L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshizakaK. en-aut-sei=Ishizaka en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NaganoY. en-aut-sei=Nagano en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=WangW. en-aut-sei=Wang en-aut-mei=W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AumontJ. en-aut-sei=Aumont en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AizawaK. en-aut-sei=Aizawa en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AnandA. en-aut-sei=Anand en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=BaccigalupiC. en-aut-sei=Baccigalupi en-aut-mei=C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=BallardiniM. en-aut-sei=Ballardini en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=BandayA.J. en-aut-sei=Banday en-aut-mei=A.J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=BarreiroR.B. en-aut-sei=Barreiro en-aut-mei=R.B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=BartoloN. en-aut-sei=Bartolo en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=BasakS. en-aut-sei=Basak en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=BersanelliM. en-aut-sei=Bersanelli en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=BortolamiM. en-aut-sei=Bortolami en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=BrinckmannT. en-aut-sei=Brinckmann en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=CalabreseE. en-aut-sei=Calabrese en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=CampetiP. en-aut-sei=Campeti en-aut-mei=P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=CarinosE. en-aut-sei=Carinos en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=CaronesA. en-aut-sei=Carones en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=CasasF.J. en-aut-sei=Casas en-aut-mei=F.J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=CheungK. en-aut-sei=Cheung en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=ClermontL. en-aut-sei=Clermont en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=ColumbroF. en-aut-sei=Columbro en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=CoppolecchiaA. en-aut-sei=Coppolecchia en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=CuttaiaF. en-aut-sei=Cuttaia en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=D'AlessandroG. en-aut-sei=D'Alessandro en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=de BernardisP. en-aut-sei=de Bernardis en-aut-mei=P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=de HaanT. en-aut-sei=de Haan en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=de la HozE. en-aut-sei=de la Hoz en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=Della TorreS. en-aut-sei=Della Torre en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=Diego-PalazuelosP. en-aut-sei=Diego-Palazuelos en-aut-mei=P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=EriksenH.K. en-aut-sei=Eriksen en-aut-mei=H.K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=ErrardJ. en-aut-sei=Errard en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=FinelliF. en-aut-sei=Finelli en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=FuskelandU. en-aut-sei=Fuskeland en-aut-mei=U. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=GalloniG. en-aut-sei=Galloni en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=GallowayM. en-aut-sei=Galloway en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=GervasiM. en-aut-sei=Gervasi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=GhignaT. en-aut-sei=Ghigna en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=GiardielloS. en-aut-sei=Giardiello en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=Gimeno-AmoC. en-aut-sei=Gimeno-Amo en-aut-mei=C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=Gjerl?wE. en-aut-sei=Gjerl?w en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=Gonz?lez Gonz?lezR. en-aut-sei=Gonz?lez Gonz?lez en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=GruppusoA. en-aut-sei=Gruppuso en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=HazumiM. en-aut-sei=Hazumi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=Henrot-Versill?S. en-aut-sei=Henrot-Versill? en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=HergtL.T. en-aut-sei=Hergt en-aut-mei=L.T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=IkumaK. en-aut-sei=Ikuma en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=KohriK. en-aut-sei=Kohri en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=LamagnaL. en-aut-sei=Lamagna en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=LattanziM. en-aut-sei=Lattanzi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=LeloupC. en-aut-sei=Leloup en-aut-mei=C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=LemboM. en-aut-sei=Lembo en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=LevrierF. en-aut-sei=Levrier en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=LonappanA.I. en-aut-sei=Lonappan en-aut-mei=A.I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= en-aut-name=L?pez-CaniegoM. en-aut-sei=L?pez-Caniego en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=62 ORCID= en-aut-name=LuzziG. en-aut-sei=Luzzi en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=63 ORCID= en-aut-name=MaffeiB. en-aut-sei=Maffei en-aut-mei=B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=64 ORCID= en-aut-name=Mart?nez-Gonz?lezE. en-aut-sei=Mart?nez-Gonz?lez en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=65 ORCID= en-aut-name=MasiS. en-aut-sei=Masi en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=66 ORCID= en-aut-name=MatarreseS. en-aut-sei=Matarrese en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=67 ORCID= en-aut-name=MatsudaF.T. en-aut-sei=Matsuda en-aut-mei=F.T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=68 ORCID= en-aut-name=MatsumuraT. en-aut-sei=Matsumura en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=69 ORCID= en-aut-name=MicheliS. en-aut-sei=Micheli en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=70 ORCID= en-aut-name=MigliaccioM. en-aut-sei=Migliaccio en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=71 ORCID= en-aut-name=MonelliM. en-aut-sei=Monelli en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=72 ORCID= en-aut-name=MorganteG. en-aut-sei=Morgante en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=73 ORCID= en-aut-name=MotB. en-aut-sei=Mot en-aut-mei=B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=74 ORCID= en-aut-name=NagataR. en-aut-sei=Nagata en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=75 ORCID= en-aut-name=NamikawaT. en-aut-sei=Namikawa en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=76 ORCID= en-aut-name=NovelliA. en-aut-sei=Novelli en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=77 ORCID= en-aut-name=OdagiriK. en-aut-sei=Odagiri en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=78 ORCID= en-aut-name=OguriS. en-aut-sei=Oguri en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=79 ORCID= en-aut-name=OmaeR. en-aut-sei=Omae en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=80 ORCID= en-aut-name=PaganoL. en-aut-sei=Pagano en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=81 ORCID= en-aut-name=PaolettiD. en-aut-sei=Paoletti en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=82 ORCID= en-aut-name=PiacentiniF. en-aut-sei=Piacentini en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=83 ORCID= en-aut-name=PincheraM. en-aut-sei=Pinchera en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=84 ORCID= en-aut-name=PolentaG. en-aut-sei=Polenta en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=85 ORCID= en-aut-name=PorcelliL. en-aut-sei=Porcelli en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=86 ORCID= en-aut-name=RaffuzziN. en-aut-sei=Raffuzzi en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=87 ORCID= en-aut-name=RemazeillesM. en-aut-sei=Remazeilles en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=88 ORCID= en-aut-name=RitaccoA. en-aut-sei=Ritacco en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=89 ORCID= en-aut-name=Ruiz-GrandaM. en-aut-sei=Ruiz-Granda en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=90 ORCID= en-aut-name=SakuraiY. en-aut-sei=Sakurai en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=91 ORCID= en-aut-name=ScottD. en-aut-sei=Scott en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=92 ORCID= en-aut-name=SekimotoY. en-aut-sei=Sekimoto en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=93 ORCID= en-aut-name=ShiraishiM. en-aut-sei=Shiraishi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=94 ORCID= en-aut-name=SignorelliG. en-aut-sei=Signorelli en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=95 ORCID= en-aut-name=SullivanR.M. en-aut-sei=Sullivan en-aut-mei=R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=96 ORCID= en-aut-name=TakakuraH. en-aut-sei=Takakura en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=97 ORCID= en-aut-name=TerenziL. en-aut-sei=Terenzi en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=98 ORCID= en-aut-name=TomasiM. en-aut-sei=Tomasi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=99 ORCID= en-aut-name=TristramM. en-aut-sei=Tristram en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=100 ORCID= en-aut-name=van TentB. en-aut-sei=van Tent en-aut-mei=B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=101 ORCID= en-aut-name=VielvaP. en-aut-sei=Vielva en-aut-mei=P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=102 ORCID= en-aut-name=WehusI.K. en-aut-sei=Wehus en-aut-mei=I.K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=103 ORCID= en-aut-name=WestbrookB. en-aut-sei=Westbrook en-aut-mei=B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=104 ORCID= en-aut-name=Weymann-DespresG. en-aut-sei=Weymann-Despres en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=105 ORCID= en-aut-name=WollackE.J. en-aut-sei=Wollack en-aut-mei=E.J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=106 ORCID= en-aut-name=ZannoniM. en-aut-sei=Zannoni en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=107 ORCID= en-aut-name=ZhouY. en-aut-sei=Zhou en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=108 ORCID= affil-num=1 en-affil=Okayama University, Department of Physics kn-affil= affil-num=2 en-affil=International School for Advanced Studies (SISSA) kn-affil= affil-num=3 en-affil=Okayama University, Department of Physics kn-affil= affil-num=4 en-affil=ILANCE, CNRS, University of Tokyo International Research Laboratory kn-affil= affil-num=5 en-affil=IRAP, Universit? de Toulouse, CNRS, CNES, UPS kn-affil= affil-num=6 en-affil=Okayama University, Department of Physics kn-affil= affil-num=7 en-affil=Okayama University, Department of Physics kn-affil= affil-num=8 en-affil=Okayama University, Department of Physics kn-affil= affil-num=9 en-affil=Universit? Paris Cit?, CNRS, Astroparticule et Cosmologie kn-affil= affil-num=10 en-affil=IRAP, Universit? de Toulouse, CNRS, CNES, UPS kn-affil= affil-num=11 en-affil=The University of Tokyo, Department of Physics kn-affil= affil-num=12 en-affil=Dipartimento di Fisica, Universit? di Roma Tor Vergata kn-affil= affil-num=13 en-affil=International School for Advanced Studies (SISSA) kn-affil= affil-num=14 en-affil=Dipartimento di Fisica e Scienze della Terra, Universit? di Ferrara kn-affil= affil-num=15 en-affil=IRAP, Universit? de Toulouse, CNRS, CNES, UPS kn-affil= affil-num=16 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=17 en-affil=Dipartimento di Fisica e Astronomia "G. Galilei", Universit? degli Studi di Padova kn-affil= affil-num=18 en-affil=School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram kn-affil= affil-num=19 en-affil=Dipartimento di Fisica, Universit? degli Studi di Milano kn-affil= affil-num=20 en-affil=Dipartimento di Fisica e Scienze della Terra, Universit? di Ferrara kn-affil= affil-num=21 en-affil=Dipartimento di Fisica e Scienze della Terra, Universit? di Ferrara kn-affil= affil-num=22 en-affil=School of Physics and Astronomy, Cardiff University kn-affil= affil-num=23 en-affil=INFN Sezione di Ferrara kn-affil= affil-num=24 en-affil=IRAP, Universit? de Toulouse, CNRS, CNES, UPS kn-affil= affil-num=25 en-affil=International School for Advanced Studies (SISSA) kn-affil= affil-num=26 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=27 en-affil=Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester kn-affil= affil-num=28 en-affil=Centre Spatial de Li?ge, Universit? de Li?ge kn-affil= affil-num=29 en-affil=Dipartimento di Fisica, Universit? La Sapienza kn-affil= affil-num=30 en-affil=Dipartimento di Fisica, Universit? La Sapienza kn-affil= affil-num=31 en-affil=INAF, OAS Bologna kn-affil= affil-num=32 en-affil=Dipartimento di Fisica, Universit? La Sapienza kn-affil= affil-num=33 en-affil=Dipartimento di Fisica, Universit? La Sapienza kn-affil= affil-num=34 en-affil=Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=35 en-affil=CNRS-UCB International Research Laboratory, Centre Pierre Bin?truy, UMI2007 kn-affil= affil-num=36 en-affil=INFN Sezione Milano Bicocca kn-affil= affil-num=37 en-affil=Max Planck Institute for Astrophysics kn-affil= affil-num=38 en-affil=Institute of Theoretical Astrophysics, University of Oslo kn-affil= affil-num=39 en-affil=Universit? Paris Cit?, CNRS, Astroparticule et Cosmologie kn-affil= affil-num=40 en-affil=INAF, OAS Bologna kn-affil= affil-num=41 en-affil=Institute of Theoretical Astrophysics, University of Oslo kn-affil= affil-num=42 en-affil=Dipartimento di Fisica e Scienze della Terra, Universit? di Ferrara kn-affil= affil-num=43 en-affil=Institute of Theoretical Astrophysics, University of Oslo kn-affil= affil-num=44 en-affil=University of Milano Bicocca, Physics Department kn-affil= affil-num=45 en-affil=International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=46 en-affil=School of Physics and Astronomy, Cardiff University kn-affil= affil-num=47 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=48 en-affil=Institute of Theoretical Astrophysics, University of Oslo kn-affil= affil-num=49 en-affil=Instituto de Astrof?sica de Canarias kn-affil= affil-num=50 en-affil=INAF, OAS Bologna kn-affil= affil-num=51 en-affil=International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=52 en-affil=Universit? Paris-Saclay, CNRS/IN2P3, IJCLab kn-affil= affil-num=53 en-affil=Department of Physics and Astronomy, University of British Columbia kn-affil= affil-num=54 en-affil=Okayama University, Department of Physics kn-affil= affil-num=55 en-affil=Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=56 en-affil=Dipartimento di Fisica, Universit? La Sapienza kn-affil= affil-num=57 en-affil=INFN Sezione di Ferrara kn-affil= affil-num=58 en-affil=Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo kn-affil= affil-num=59 en-affil=Dipartimento di Fisica e Scienze della Terra, Universit? di Ferrara kn-affil= affil-num=60 en-affil=Laboratoire de Physique de l'?cole Normale Sup?rieure, ENS, Universit? PSL, CNRS, Sorbonne Universit?, Universit? de Paris kn-affil= affil-num=61 en-affil=University of California, San Diego, Department of Physics kn-affil= affil-num=62 en-affil=Aurora Technology for the European Space Agency kn-affil= affil-num=63 en-affil=Space Science Data Center, Italian Space Agency kn-affil= affil-num=64 en-affil=Universit? Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale kn-affil= affil-num=65 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=66 en-affil=Dipartimento di Fisica, Universit? La Sapienza kn-affil= affil-num=67 en-affil=Dipartimento di Fisica e Astronomia "G. Galilei", Universit? degli Studi di Padova kn-affil= affil-num=68 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=69 en-affil=Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo kn-affil= affil-num=70 en-affil=Dipartimento di Fisica, Universit? La Sapienza kn-affil= affil-num=71 en-affil=Dipartimento di Fisica, Universit? di Roma Tor Vergata kn-affil= affil-num=72 en-affil=Max Planck Institute for Astrophysics kn-affil= affil-num=73 en-affil=INAF, OAS Bologna kn-affil= affil-num=74 en-affil=IRAP, Universit? de Toulouse, CNRS, CNES, UPS kn-affil= affil-num=75 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=76 en-affil=Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo kn-affil= affil-num=77 en-affil=Dipartimento di Fisica, Universit? La Sapienza kn-affil= affil-num=78 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=79 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=80 en-affil=Okayama University, Department of Physics kn-affil= affil-num=81 en-affil=Dipartimento di Fisica e Scienze della Terra, Universit? di Ferrara kn-affil= affil-num=82 en-affil=INAF, OAS Bologna kn-affil= affil-num=83 en-affil=Dipartimento di Fisica, Universit? La Sapienza kn-affil= affil-num=84 en-affil=INFN Sezione di Pisa kn-affil= affil-num=85 en-affil=Space Science Data Center, Italian Space Agency kn-affil= affil-num=86 en-affil=Istituto Nazionale di Fisica Nucleare-aboratori Nazionali di Frascati (INFN-LNF) kn-affil= affil-num=87 en-affil=Dipartimento di Fisica e Scienze della Terra, Universit? di Ferrara kn-affil= affil-num=88 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=89 en-affil=Dipartimento di Fisica, Universit? di Roma Tor Vergata kn-affil= affil-num=90 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=91 en-affil=Suwa University of Science kn-affil= affil-num=92 en-affil=Department of Physics and Astronomy, University of British Columbia kn-affil= affil-num=93 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=94 en-affil=Suwa University of Science kn-affil= affil-num=95 en-affil=Dipartimento di Fisica, Universit? di Pisa kn-affil= affil-num=96 en-affil=Department of Physics and Astronomy, University of British Columbia kn-affil= affil-num=97 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=98 en-affil=INAF, OAS Bologna kn-affil= affil-num=99 en-affil=Dipartimento di Fisica, Universit? degli Studi di Milano kn-affil= affil-num=100 en-affil=Universit? Paris-Saclay, CNRS/IN2P3, IJCLab kn-affil= affil-num=101 en-affil=Universit? Paris-Saclay, CNRS/IN2P3, IJCLab kn-affil= affil-num=102 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=103 en-affil=Institute of Theoretical Astrophysics, University of Oslo kn-affil= affil-num=104 en-affil=University of California, Berkeley, Department of Physics, Berkeley kn-affil= affil-num=105 en-affil=Universit? Paris-Saclay, CNRS/IN2P3, IJCLab kn-affil= affil-num=106 en-affil=NASA Goddard Space Flight Center kn-affil= affil-num=107 en-affil=University of Milano Bicocca, Physics Department kn-affil= affil-num=108 en-affil=International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK) kn-affil= en-keyword=CMBR experiments kn-keyword=CMBR experiments en-keyword=CMBR polarisation kn-keyword=CMBR polarisation en-keyword=gravitational waves and CMBR polarization kn-keyword=gravitational waves and CMBR polarization END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=JAMDSM0001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of tool life prediction system for square end-mills based on database of servo motor current value en-subtitle= kn-subtitle= en-abstract= kn-abstract=Accurate prediction of tool life is crucial for reducing production costs and enhancing quality in the machining process. However, such predictions often rely on empirical knowledge, which may limit inexperienced engineers to reliably obtain accurate predictions. This study explores a method to predict the tool life of a cutting machine using servo motor current data collected during the initial stages of tool wear, which is a cost-effective approach. The LightGBM model was identified as suitable for predicting tool life from current data, given the challenges associated with predicting from the average variation of current values. By identifying and utilizing the top 50 features from the current data for prediction, the accuracy of tool life prediction in the early wear stage improved. As this prediction method was developed based on current data obtained during the very early wear stage in experiments with square end-mills, it was tested on extrapolated data using different end-mill diameters. The findings revealed average accuracy rates of 71.2% and 69.4% when using maximum machining time and maximum removal volume as thresholds, respectively. en-copyright= kn-copyright= en-aut-name=KODAMAHiroyuki en-aut-sei=KODAMA en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SUZUKIMakoto en-aut-sei=SUZUKI en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OHASHIKazuhito en-aut-sei=OHASHI en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Milling kn-keyword=Milling en-keyword=LightGBM kn-keyword=LightGBM en-keyword=Tool life prediction kn-keyword=Tool life prediction en-keyword=Square end-mill kn-keyword=Square end-mill en-keyword=Servo motor current kn-keyword=Servo motor current END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e202404400 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Graphene Oxide as a Self‐Carbocatalyst to Facilitate the Ring‐Opening Polymerization of Glycidol for Efficient Polyglycerol Grafting en-subtitle= kn-subtitle= en-abstract= kn-abstract=Grafting carbon-based nanomaterials (CNMs) with polyglycerol (PG) improves their application potentials in biomedicine and electronics. Although “grafting from” method offers advantages over “grafting to” one in terms of operability and versatility, little is known about the reaction process of glycidol with the surface groups onto CNMs. By using graphene oxide (GO) as a multi-functional model material, we examined the reactivity of the surface groups on GO toward glycidol molecules via a set of model reactions. We reveal that carboxyl groups spontaneously react with the epoxide ring with no need of catalyst, while GO catalyzes the reactions of hydroxyl groups with the epoxide of glycidol. In addition, the hydroxyl group of glycidol can open the epoxide in the basal plane of GO. The subsequent polymerization of PG is supposed to propagate at the primary and/or the secondary hydroxyl groups, generating a ramified PG macromolecule with random branch-on-branch topology. In addition, ketones, benzyl esters and aromatic ethers are found not to react with glycidol even in the presence of GO, while the aldehydes are easily oxidized into carboxyl groups under ambient condition, behaving then as the carboxyl groups. Our findings pose the foundation for understanding the polymerization mechanism of PG on CNMs. en-copyright= kn-copyright= en-aut-name=ZouYajuan en-aut-sei=Zou en-aut-mei=Yajuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhkuraKentaro en-aut-sei=Ohkura en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Ortiz‐AnayaIsrael en-aut-sei=Ortiz‐Anaya en-aut-mei=Israel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KimuraRyota en-aut-sei=Kimura en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BiancoAlberto en-aut-sei=Bianco en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Carbon nanomaterials kn-keyword=Carbon nanomaterials en-keyword=Epoxide ring-opening kn-keyword=Epoxide ring-opening en-keyword=Catalysis kn-keyword=Catalysis en-keyword=Polyglycerol functionalization kn-keyword=Polyglycerol functionalization END start-ver=1.4 cd-journal=joma no-vol=391 cd-vols= no-issue= article-no= start-page=158 end-page=176 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Magnesium isotope composition of volcanic rocks from cold and warm subduction zones: Implications for the recycling of subducted serpentinites and carbonates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Magnesium (Mg) isotopes are regarded as a sensitive tracer to the contribution from subducted serpentinites and carbonates. However, the source, distribution, and controlling factors of the Mg isotope composition of arc magmas remain unclear. In this study, we investigated the intra-arc and inter-arc variations in Mg isotope compositions of volcanic rocks from two typical cold subduction zones [NE Japan (NEJ) and Izu arcs] and a typical hot subduction zone [SW Japan (SWJ) arc] to address the question. The volcanic rocks from the frontal-arc regions of NEJ and Izu have isotopically heavy Mg (δ26Mg = ?0.20 to ?0.08 ‰) compared to the mantle-like δ26Mg values of most of volcanic rocks from SWJ and the rear regions of NEJ and Izu arcs (?0.28 to ?0.17 ‰). It is also worth noting that NEJ arc includes samples with δ26Mg values (?0.61 to ?0.39 ‰) significantly lower than the mantle, but similar to the < 110 Ma intra-continental basalts from eastern China, which is the first observation in modern arc rocks. No obvious effects of post-eruptive alteration, fractional crystallization, partial melting, or the addition of silicate-rich sediment and oceanic crust components could be identified in the Mg isotope compositions of these volcanic rocks. By contrast, the correlations between the δ26Mg values and the proxy for serpentinite component (i.e., 11B/10B and Nb/B ratios) indicate that the component exerts a strong control on the Mg-isotopic signature of these arc rocks. Considering metamorphic reactions in subduction lithologies under P-T conditions postulated for these arcs, the variations in δ26Mg values of these arc magmas are unlikely to have been controlled by dehydration of serpentinites in subducted oceanic lithosphere (slab serpentinite). Instead, the high-δ26Mg values of frontal-arc rocks are delivered by the fluids from serpentinite formed in the lowermost part of the sub-arc mantle (mantle wedge serpentinite) in channelized flow. Comparatively, such a high-δ26Mg signature is invisible in volcanic rocks from rear-arc regions of NEJ and Izu, and the entire SWJ, suggesting that the major Mg carriers in subducted serpentinites (e.g., talc, chlorite, and serpentine) were broken down completely before subducted slabs reached the depth beneath these volcanoes. Moreover, the volcanic rocks with low δ26Mg values from the rear arc of NEJ are characterized by high La/Yb and U/Nb ratios as well as low Ti/Eu, Ti/Ti*, and Hf/Hf* ratios, suggesting the involvements of carbonates in their magma sources. The quantitative modeling suggests that < 20 % of sedimentary carbonate (dolomite) was recycled into their mantle source, revealing that Mg-rich carbonate could be incorporated into a deep mantle wedge at rear-arc depths of 150?400 km in subduction zones. en-copyright= kn-copyright= en-aut-name=ZhangWei en-aut-sei=Zhang en-aut-mei=Wei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitagawaHiroshi en-aut-sei=Kitagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HuangFang en-aut-sei=Huang en-aut-mei=Fang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China kn-affil= en-keyword=Magnesium isotopes kn-keyword=Magnesium isotopes en-keyword=Arc magmas kn-keyword=Arc magmas en-keyword=Mantle wedge serpentinite kn-keyword=Mantle wedge serpentinite en-keyword=Slab serpentinite kn-keyword=Slab serpentinite en-keyword=Carbonate recycle kn-keyword=Carbonate recycle END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=3-4 article-no= start-page=116 end-page=125 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241230 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deep Reinforcement Learning Enabled Adaptive Virtual Machine Migration Control in Multi-Stage Information Processing Systems en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper tackles a Virtual Machine (VM) migration control problem to maximize the progress (accuracy) of information processing tasks in multi-stage information processing systems. The conventional methods for this problem are effective only for specific situations, such as when the system load is high. In this paper, in order to adaptively achieve high accuracy in various situations, we propose a VM migration method using a Deep Reinforcement Learning (DRL) algorithm. It is difficult to directly apply a DRL algorithm to the VM migration control problem because the size of the solution space of the problem dynamically changes according to the number of VMs staying in the system while the size of the agent’s action space is fixed in DRL algorithms. To cope with this difficulty, the proposed method divides the VM migration control problem into two problems: the problem of determining only the VM distribution (i.e., the proportion of the number of VMs deployed on each edge server) and the problem of determining the locations of all the VMs so that it follows the determined VM distribution. The former problem is solved by a DRL algorithm, and the latter by a heuristic method. This approach makes it possible to apply a DRL algorithm to the VM migration control problem because the VM distribution is expressed by a vector with a fixed number of dimensions and can be directly outputted by the agent. The simulation results confirm that our proposed method can adaptively achieve quasi-optimal accuracy in various situations with different link delays, types of the information processing tasks and the number of VMs. en-copyright= kn-copyright= en-aut-name=FukushimaYukinobu en-aut-sei=Fukushima en-aut-mei=Yukinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KoujitaniYuki en-aut-sei=Koujitani en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakaneKazutoshi en-aut-sei=Nakane en-aut-mei=Kazutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TarutaniYuya en-aut-sei=Tarutani en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WuCelimuge en-aut-sei=Wu en-aut-mei=Celimuge kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JiYusheng en-aut-sei=Ji en-aut-mei=Yusheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokohiraTokumi en-aut-sei=Yokohira en-aut-mei=Tokumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MuraseTutomu en-aut-sei=Murase en-aut-mei=Tutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Information Science Nagoya University kn-affil= affil-num=4 en-affil=Graduate School of Engineering Osaka University kn-affil= affil-num=5 en-affil=Graduate School of Informatics and Engineering The Univ. of Electro-Commun. kn-affil= affil-num=6 en-affil=Information Systems Architecture Research Division National Institute of Informatics kn-affil= affil-num=7 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Information Science Nagoya University kn-affil= en-keyword=Multi-stage information processing system kn-keyword=Multi-stage information processing system en-keyword=VM migration control kn-keyword=VM migration control en-keyword=Deep reinforcement learning kn-keyword=Deep reinforcement learning en-keyword=Deep Deterministic Policy Gradient (DDPG) kn-keyword=Deep Deterministic Policy Gradient (DDPG) END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue= article-no= start-page=19 end-page=52 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Mineralogy and geochemistry of magnetite-garnet bearing skarn deposits surrounding iron-smelting sites in the Kibi region of Japan kn-title=吉備製鉄遺跡周辺地域の磁鉄鉱ざくろ石スカルン鉄鉱石の鉱物学的・地球化学的特徴 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We conducted mineralogical and geochemical analysis of ore samples taken from locations surrounding the Jinmu, Sanp?, and K?moto mines in order to determine the source of iron ore uncovered from archaeological sites. The mineral composition of the magnetite-garnet bearing skarn deposits varies from mine to mine: while clinopyroxene and amphibole are present in the Jinmu and Sanp? samples, only a small amount of clinopyroxene occurs in the K?moto samples. The chemical compositions of magnetite and garnet are distinctive for each mine. Among the trace elements contained in the magnetite, Mg and Mn tend to be higher in the K?moto samples, Ti in the Jinmu samples, and Ca and Si in the Sanp? samples. The garnet from all the mines is andradite, but while the K?moto samples contain almost no Al, it is present in the Jinmu and Sanp? samples. Although samples were taken from a limited number of mine areas (three), our analysis provides an index for comparison with iron ore uncovered from archaeological sites, which will aid in provenance determination. en-copyright= kn-copyright= en-aut-name=TAKECHIYasushi en-aut-sei=TAKECHI en-aut-mei=Yasushi kn-aut-name=武智泰史 kn-aut-sei=武智 kn-aut-mei=泰史 aut-affil-num=1 ORCID= en-aut-name=NAKAMURADaisuke en-aut-sei=NAKAMURA en-aut-mei=Daisuke kn-aut-name=中村大輔 kn-aut-sei=中村 kn-aut-mei=大輔 aut-affil-num=2 ORCID= en-aut-name=SUZUKIShigeyuki en-aut-sei=SUZUKI en-aut-mei=Shigeyuki kn-aut-name=鈴木茂之 kn-aut-sei=鈴木 kn-aut-mei=茂之 aut-affil-num=3 ORCID= en-aut-name=RYANJoseph en-aut-sei=RYAN en-aut-mei=Joseph kn-aut-name=ライアンジョセフ kn-aut-sei=ライアン kn-aut-mei=ジョセフ aut-affil-num=4 ORCID= en-aut-name=UWAGAKITakeshi en-aut-sei=UWAGAKI en-aut-mei=Takeshi kn-aut-name=上栫武 kn-aut-sei=上栫 kn-aut-mei=武 aut-affil-num=5 ORCID= en-aut-name=NAGAHARAMasato en-aut-sei=NAGAHARA en-aut-mei=Masato kn-aut-name=長原正人 kn-aut-sei=長原 kn-aut-mei=正人 aut-affil-num=6 ORCID= en-aut-name=YOSHIEYuta en-aut-sei=YOSHIE en-aut-mei=Yuta kn-aut-name=吉江雄太 kn-aut-sei=吉江 kn-aut-mei=雄太 aut-affil-num=7 ORCID= en-aut-name=IKEHATAKei en-aut-sei=IKEHATA en-aut-mei=Kei kn-aut-name=池端慶 kn-aut-sei=池端 kn-aut-mei=慶 aut-affil-num=8 ORCID= en-aut-name=KIMURAOsamu en-aut-sei=KIMURA en-aut-mei=Osamu kn-aut-name=木村理 kn-aut-sei=木村 kn-aut-mei=理 aut-affil-num=9 ORCID= en-aut-name=HATTORIRyoichi en-aut-sei=HATTORI en-aut-mei=Ryoichi kn-aut-name=服部亮一 kn-aut-sei=服部 kn-aut-mei=亮一 aut-affil-num=10 ORCID= affil-num=1 en-affil=Kurashiki Museum of Natural History kn-affil= affil-num=2 en-affil=Okayama University, Department of Earth Sciences kn-affil= affil-num=3 en-affil=Okayama University, Department of Earth Sciences kn-affil= affil-num=4 en-affil=Okayama University, Research Institute for the Dynamics of Civilizations kn-affil= affil-num=5 en-affil=Okayama Prefectural Board of Education kn-affil= affil-num=6 en-affil=The Historical Study Group of Mining and Metallurgy of Japan kn-affil= affil-num=7 en-affil=Mitsui Mining & Smelting Co., Ltd. kn-affil= affil-num=8 en-affil=University of Tsukuba, Faculty of Life and Environmental Sciences kn-affil= affil-num=9 en-affil=Okayama University, Research Institute for the Dynamics of Civilizations kn-affil= affil-num=10 en-affil=Osaka University, Graduate School of Humanities kn-affil= en-keyword=Iron-smithing sites kn-keyword=Iron-smithing sites en-keyword=skarn deposits kn-keyword=skarn deposits en-keyword=mineral composition of ore kn-keyword=mineral composition of ore en-keyword=geochemical analysis kn-keyword=geochemical analysis END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=3 article-no= start-page=769 end-page=774 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Review: Nicotinic acetylcholine receptors to regulate important brain activity?what occurs at the molecular level? en-subtitle= kn-subtitle= en-abstract= kn-abstract=Herein, we briefly review the role of nicotinic acetylcholine receptors in regulating important brain activity by controlled release of acetylcholine from subcortical neuron groups, focusing on a microscopic viewpoint and considering the nonlinear dynamics of biological macromolecules associated with neuron activity and how they give rise to advanced brain functions of brain. en-copyright= kn-copyright= en-aut-name=NaraShigetoshi en-aut-sei=Nara en-aut-mei=Shigetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamagutiYutaka en-aut-sei=Yamaguti en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsudaIchiro en-aut-sei=Tsuda en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Information Engineering, Fukuoka Institute of Technology kn-affil= affil-num=3 en-affil=Chubu University Academy of Emerging Sciences/Center for Mathematical Science and Artificial Intelligence, Chubu University kn-affil= en-keyword=Neuromodulator kn-keyword=Neuromodulator en-keyword=Nichotinic kn-keyword=Nichotinic en-keyword=Acetylcholine kn-keyword=Acetylcholine en-keyword=Receptors kn-keyword=Receptors en-keyword=Brain activity kn-keyword=Brain activity END start-ver=1.4 cd-journal=joma no-vol=33 cd-vols= no-issue=4 article-no= start-page=213 end-page=218 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=β-catenin Binds to Gsk-3β in Liquid-Liquid Phase Separation Compartment in HEK293 Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Liquid-liquid phase separation (LLPS) has emerged as a significant mechanism for cellular organization, impacting various biological processes, including Wnt/β-catenin signaling. This study investigates the role of LLPS in the regulation of β-catenin in HEK293 cells, particularly in response to Wnt3a signaling. Our findings demonstrate that β-catenin is regulated by LLPS, forming spherical droplets indicative of this phenomenon. Fluorescence recovery after photobleaching (FRAP) assays revealed that these droplets exhibit reversible dynamics, further confirming their phase-separated nature. Importantly, treatment with Wnt3a led to an increase in β-catenin levels, while simultaneously reducing the recovery of fluorescence intensity in FRAP experiments, suggesting that enhanced Wnt signaling may stimulate the release of β-catenin from LLPS. Immunoprecipitation studies indicated that β-catenin binds to glycogen synthase kinase 3β (Gsk-3β) within the LLPS state, highlighting a potential regulatory mechanism whereby LLPS facilitates the phosphorylation and subsequent degradation of β-catenin. The addition of 1,6-hexanediol disrupted the β-catenin/Gsk-3β interaction, reinforcing the idea that LLPS plays a critical role in modulating these biochemical interactions. The findings presented in this study suggest that LLPS is not only crucial for the spatial organization of β-catenin but also serves as a regulatory mechanism for its signaling functions in the Wnt pathway. Given the association of aberrant Wnt signaling with various diseases, including cancer and neurodegenerative disorders, understanding the role of LLPS in this context may provide new insights into therapeutic strategies targeting these pathological conditions. en-copyright= kn-copyright= en-aut-name=KatoMari en-aut-sei=Kato en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanaiAiri en-aut-sei=Tanai en-aut-mei=Airi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuharaYoko en-aut-sei=Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhengXinyu en-aut-sei=Zheng en-aut-mei=Xinyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SitosariHeriati en-aut-sei=Sitosari en-aut-mei=Heriati kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IkegameMika en-aut-sei=Ikegame en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkamuraHirohiko en-aut-sei=Okamura en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=β-catenin kn-keyword=β-catenin en-keyword=Gsk-3β kn-keyword=Gsk-3β en-keyword=LLPS kn-keyword=LLPS en-keyword=Wnt kn-keyword=Wnt END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241214 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of aged microplastics on paddy soil properties and greenhouse gas emissions under laboratory aerobic conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Microplastics (MPs) formed after changes in chemical or physical properties may alter soil properties, which in turn may affect microbial activities and greenhouse gas (GHG) emissions. However, few studies have focused on the effects of aged MPs changes on soil properties and greenhouse gas emissions. Therefore, we aimed to investigate the impact of MPs with different aging times on soil GHG emissions and dissolved organic carbon (DOC). Low-density polyethylene (PE) and polylactic acid (PLA) were treated with ultraviolet (UV) irradiation for 0?2?weeks. Soil was incubated with PE or PLA 1% (w/w) concentration at 60% water holding capacity (WHC) for 35?days. Emissions of nitrous oxide (N2O) and carbon dioxide (CO2) were measured on days 0, 1, 3, 5, 7, 14, 21, 28, and 35. Results showed that CO2 and N2O emissions were higher (p? Conclusion: In this Japanese cohort, IVF conception was not associated with adverse long-term health or developmental outcomes. These findings provide reassurance about the safety of IVF, particularly in the context of single embryo transfer policies. Further research is needed to explore specific IVF protocols and subgroups. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsuiTakashi en-aut-sei=Mitsui en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HirotaTomoya en-aut-sei=Hirota en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=In vitro fertilization (IVF) kn-keyword=In vitro fertilization (IVF) en-keyword=Assisted reproductive technology (ART) kn-keyword=Assisted reproductive technology (ART) en-keyword=Long-term outcome kn-keyword=Long-term outcome en-keyword=Development kn-keyword=Development END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=1 article-no= start-page=46 end-page=60 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Terpolymerization reactions of epoxides, CO2, and the third monomers toward sustainable CO2-based polymers with controllable chemical and physical properties en-subtitle= kn-subtitle= en-abstract= kn-abstract=Carbon dioxide (CO2) serves as a cheap, abundant, and renewable C1 building block for the synthesis of organic compounds and polymers. Selective and efficient CO2 fixation processes are still challenging because of the kinetic and thermodynamic stability of CO2. Among various CO2 fixation processes, the ring-opening copolymerization (ROCOP) of epoxides and CO2 gives aliphatic polycarbonates with high atom economy, although the chemical and physical properties of the resulting polycarbonates are not necessarily satisfactory. Introducing the third monomers into this ROCOP system provides new terpolymers, and the thermal, optical, mechanical or degradation properties can be added or tuned by incorporating new polymer backbones derived from the third monomers at the expense of the CO2 content. Here we review the terpolymerization reactions of epoxides, CO2, and the third monomers such as cyclic anhydrides, lactones, lactides, heteroallenes, and olefins. The development of catalysts and the control of the polymer structures are described together with the chemical and physical properties of the resulting polymers. en-copyright= kn-copyright= en-aut-name=NakaokaKoichi en-aut-sei=Nakaoka en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue= article-no= start-page=1468230 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241206 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Perspectives of traditional herbal medicines in treating retinitis pigmentosa en-subtitle= kn-subtitle= en-abstract= kn-abstract=Medicinal plants, also known as herbs, have been discovered and utilized in traditional medical practice since prehistoric times. Medicinal plants have been proven rich in thousands of natural products that hold great potential for the development of new drugs. Previously, we reviewed the types of Chinese traditional medicines that a Tang Dynasty monk Jianzhen (Japanese: Ganjin) brought to Japan from China in 742. This article aims to review the origin of Kampo (Japanese traditional medicine), and to present the overview of neurodegenerative diseases and retinitis pigmentosa as well as medicinal plants in some depth. Through the study of medical history of the origin of Kampo, we found that herbs medicines contain many neuroprotective ingredients. It provides us a new perspective on extracting neuroprotective components from herbs medicines to treat neurodegenerative diseases. Retinitis pigmentosa (one of the ophthalmic neurodegenerative diseases) is an incurable blinding disease and has become a popular research direction in global ophthalmology. To date, treatments for retinitis pigmentosa are very limited worldwide. Therefore, we intend to integrate the knowledge and skills from different disciplines, such as medical science, pharmaceutical science and plant science, to take a new therapeutic approach to treat neurodegenerative diseases. In the future, we will use specific active ingredients extracted from medicinal plants to treat retinitis pigmentosa. By exploring the potent bioactive ingredients present in medicinal plants, a valuable opportunity will be offered to uncover novel approaches for the development of drugs which target for retinitis pigmentosa. en-copyright= kn-copyright= en-aut-name=LiuShihui en-aut-sei=Liu en-aut-mei=Shihui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuoChie en-aut-sei=Matsuo en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeTakumi en-aut-sei=Abe en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ChenJinghua en-aut-sei=Chen en-aut-mei=Jinghua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SunChi en-aut-sei=Sun en-aut-mei=Chi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhaoQing en-aut-sei=Zhao en-aut-mei=Qing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Ophthalmology, University of Florida, College of Medicine kn-affil= affil-num=6 en-affil=Department of Ophthalmology and Visual Sciences, Washington University in St. Louis kn-affil= affil-num=7 en-affil=National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences kn-affil= en-keyword=retinitis pigmentosa kn-keyword=retinitis pigmentosa en-keyword=ophthalmology kn-keyword=ophthalmology en-keyword=botany kn-keyword=botany en-keyword=pharmacology kn-keyword=pharmacology en-keyword=medical history kn-keyword=medical history en-keyword=compound kn-keyword=compound en-keyword=drug discovery kn-keyword=drug discovery en-keyword=degenerative diseases kn-keyword=degenerative diseases END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=金属支持型固体酸化物形燃料電池の性能評価に関する研究 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YODAMasakazu en-aut-sei=YODA en-aut-mei=Masakazu kn-aut-name=依田将和 kn-aut-sei=依田 kn-aut-mei=将和 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=イットリア安定化ジルコニア電解質膜の低温成膜技術に関する研究 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MANABEKyohei en-aut-sei=MANABE en-aut-mei=Kyohei kn-aut-name=眞鍋享平 kn-aut-sei=眞鍋 kn-aut-mei=享平 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ロボット操作のための視覚情報処理を用いた不定形ひもの状態認識手法 kn-title=Recognition Methodology of Deformable String State Using Visual Information Processing for Robotic Manipulation en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=WANGJUNXIANG en-aut-sei=WANG en-aut-mei=JUNXIANG kn-aut-name=王俊祥 kn-aut-sei=王 kn-aut-mei=俊祥 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ELiPSベースの暗号文ポリシー属性ベース暗号 kn-title=ELiPS-based Ciphertext-Policy Attribute-Based Encryption en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=LE HOANG ANH en-aut-sei=LE HOANG ANH en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=IoTアプリケーション・システムのための統合サーバ・プラットフォームに関する研究 kn-title=A Study of Integrated Server Platform for IoT Application Systems en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YOHANES YOHANIE FRIDELIN PANDUMAN en-aut-sei=YOHANES YOHANIE FRIDELIN PANDUMAN en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ユーザPCコンピューティングシステムにおける均一ジョブのワーカ割当アルゴリズムに関する研究 kn-title=A Study of Uniform Job Assignment Algorithms to Workers in User-PC Computing System en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ZHOUXUDONG en-aut-sei=ZHOU en-aut-mei=XUDONG kn-aut-name=周旭東 kn-aut-sei=周 kn-aut-mei=旭東 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=プログラミング学習支援システムにおけるPythonコード記述問題とC++値トレース問題に関する研究 kn-title=A Study of Python Code Writing Problem and C++ Value Trace Problem for Programming Learning Assistant Systems en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SHUNE LAE AUNG en-aut-sei=SHUNE LAE AUNG en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Java の解答コード検証プログラムと JavaScriptのコード変更問題の研究 kn-title=A Study of Java Answer Code Validation Program and JavaScript Code Modification Problems en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KHAING HSU WAI en-aut-sei=KHAING HSU WAI en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=リボソーム・トランスロコン複合体の再局在化が、真核生物発生における小胞体出現の重要なイベントである証拠 kn-title=Evidence for the relocalization of the ribosome-translocon complex as a key event for the emergence of endoplasmic reticulum during eukaryogenesis en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=CARILOIsaac en-aut-sei=CARILO en-aut-mei=Isaac kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=新しい種類のBi由来化合物ならびに空間反転対称性の欠如したLaPtGe結晶の超伝導特性に関する研究 kn-title=Study on superconducting properties of new Bi-based compounds and noncentrosymmetric LaPtGe crystal en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ZhangZhiyan en-aut-sei=Zhang en-aut-mei=Zhiyan kn-aut-name=張智炎 kn-aut-sei=張 kn-aut-mei=智炎 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=チェコ共和国・ボヘミア地塊に産する珪長質グラニュライトの変成温度圧力条件 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=NAITOMio en-aut-sei=NAITO en-aut-mei=Mio kn-aut-name=内藤美桜 kn-aut-sei=内藤 kn-aut-mei=美桜 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=キイロショウジョウバエ概日時計を制御する時計神経回路の網羅的機能解析 en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SEKIGUCHIManabu en-aut-sei=SEKIGUCHI en-aut-mei=Manabu kn-aut-name=関口学 kn-aut-sei=関口 kn-aut-mei=学 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=オゾンとアルケンおよびその他の有機分子との反応に関する研究 kn-title=Study on the Reaction of Ozone with Alkenes and Other Organic Molecules en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MOHAMED REDA ELSAYED ELKHOLANY en-aut-sei=MOHAMED REDA ELSAYED ELKHOLANY en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol=300 cd-vols= no-issue=6 article-no= start-page=107360 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nonspecific N-terminal tetrapeptide insertions disrupt the translation arrest induced by ribosome-arresting peptide sequences en-subtitle= kn-subtitle= en-abstract= kn-abstract=The nascent polypeptide chains passing through the ribosome tunnel not only serve as an intermediate of protein synthesis but also, in some cases, act as dynamic genetic information, controlling translation through interaction with the ribosome. One notable example is Escherichia coli SecM, in which translation of the ribosome arresting peptide (RAP) sequence in SecM leads to robust elongation arrest. Translation regulations, including the SecM-induced translation arrest, play regulatory roles such as gene expression control. Recent investigations have indicated that the insertion of a peptide sequence, SKIK (or MSKIK), into the adjacent N-terminus of the RAP sequence of SecM behaves as an "arrest canceler". As the study did not provide a direct assessment of the strength of translation arrest, we conducted detailed biochemical analyses. The results revealed that the effect of SKIK insertion on weakening SecM-induced translation arrest was not specific to the SKIK sequence, that is, other tetrapeptide sequences inserted just before the RAP sequence also attenuated the arrest. Our data suggest that SKIK or other tetrapeptide insertions disrupt the context of the RAP sequence rather than canceling or preventing the translation arrest. en-copyright= kn-copyright= en-aut-name=KoboAkinao en-aut-sei=Kobo en-aut-mei=Akinao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaguchiHideki en-aut-sei=Taguchi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChadaniYuhei en-aut-sei=Chadani en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=2 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=3 article-no= start-page=282 end-page=291 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230821 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating the activity of N-89 as an oral antimalarial drug en-subtitle= kn-subtitle= en-abstract= kn-abstract=Despite the recent progress in public health measures, malaria remains a troublesome disease that needs to be eradicated. It is essential to develop new antimalarial medications that are reliable and secure. This report evaluated the pharmacokinetics and antimalarial activity of 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) using the rodent malaria parasite Plasmodium berghei in vivo. After a single oral dose (75 mg/kg) of N-89, its pharmacokinetic parameters were measured, and t1/2 was 0.97 h, Tmax was 0.75 h, and bioavailability was 7.01%. A plasma concentration of 8.1 ng/ml of N-89 was maintained for 8 h but could not be detected at 10 h. The dose inhibiting 50% of parasite growth (ED50) and ED90 values of oral N-89 obtained following a 4-day suppressive test were 20 and 40 mg/kg, respectively. Based on the plasma concentration of N-89, we evaluated the antimalarial activity and cure effects of oral N-89 at a dose of 75 mg/kg 3 times daily for 3 consecutive days in mice harboring more than 0.5% parasitemia. In all the N-89- treated groups, the parasites were eliminated on day 5 post-treatment, and all mice recovered without a parasite recurrence for 30 days. Additionally, administering oral N-89 at a low dose of 50 mg/kg was sufficient to cure mice from day 6 without parasite recurrence. This work was the first to investigate the pharmacokinetic characteristics and antimalarial activity of N-89 as an oral drug. In the future, the following steps should be focused on developing N-89 for malaria treatments; its administration schedule and metabolic pathways should be investigated. en-copyright= kn-copyright= en-aut-name=AlyNagwa S. M. en-aut-sei=Aly en-aut-mei=Nagwa S. M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumoriHiroaki en-aut-sei=Matsumori en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DinhThi Quyen en-aut-sei=Dinh en-aut-mei=Thi Quyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoAkira en-aut-sei=Sato en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyoshiShin-ichi en-aut-sei=Miyoshi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChangKyung-Soo en-aut-sei=Chang en-aut-mei=Kyung-Soo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YuHak Sun en-aut-sei=Yu en-aut-mei=Hak Sun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubotaTakaaki en-aut-sei=Kubota en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KurosakiYuji en-aut-sei=Kurosaki en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=CaoDuc Tuan en-aut-sei=Cao en-aut-mei=Duc Tuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=RashedGehan A. en-aut-sei=Rashed en-aut-mei=Gehan A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KimHye-Sook en-aut-sei=Kim en-aut-mei=Hye-Sook kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Sanitary Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan kn-affil= affil-num=7 en-affil=Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University kn-affil= affil-num=8 en-affil=Department of Natural Products Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pharmaceutical Formulation Design, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pharmaceutical Chemistry and Quality Control, Faculty of Pharmacy, Hai Phong University of Medicine and Pharmacy kn-affil= affil-num=11 en-affil=Department of Parasitology, Benha Faculty of Medicine, Benha University kn-affil= affil-num=12 en-affil=Department of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=New antimalarial candidate kn-keyword=New antimalarial candidate en-keyword=oral N-89 kn-keyword=oral N-89 en-keyword=pharmacokinetics kn-keyword=pharmacokinetics en-keyword=in vivo kn-keyword=in vivo END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=171824 end-page=171835 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Passability-Based Local Planner Using Growing Neural Gas for an Autonomous Mobile Robot en-subtitle= kn-subtitle= en-abstract= kn-abstract=3D spatial perception is one of the most important abilities for autonomous mobile robots. In environments with unknown objects, the ability to perform a local planner, which modifies the global path based on the perception results, is also required as an indispensable capability. In this paper, we propose a method based on Growing Neural Gas with Different Topologies (GNG-DT), which can be applied to unknown data, as a method for 3D spatial perception and local planner in unknown environments. First, we propose a method for extracting travelability perceptions from the features estimated by the topological structure of the GNG-DT. Next, we learn the topological structure of passability information based on the size of the robot from the extracted traversability percepts. Furthermore, we propose a local planner that uses the topological structure of traversability and passability learned from the point cloud currently perceived by the robot. In the experiments, we compared the cases where only traversability was used and where passability information was used in actual environments, and showed that the proposed method can plan a route that determines the area that the robot can actually pass through. en-copyright= kn-copyright= en-aut-name=OzasaKoki en-aut-sei=Ozasa en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TodaYuichiro en-aut-sei=Toda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasudaToshiki en-aut-sei=Masuda en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KonishiHirohide en-aut-sei=Konishi en-aut-mei=Hirohide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsunoTakayuki en-aut-sei=Matsuno en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Tokyo Metropolitan Industrial Technology Research Institute kn-affil= affil-num=4 en-affil=Tokyo Metropolitan Industrial Technology Research Institute kn-affil= affil-num=5 en-affil=NSK Ltd. kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Autonomous mobile robot kn-keyword=Autonomous mobile robot en-keyword=growing neural gas kn-keyword=growing neural gas en-keyword=local planner kn-keyword=local planner END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=1 article-no= start-page=2 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Abacus Manipulation Understanding by Behavior Sensing Utilizing Document Camera as a Sensor en-subtitle= kn-subtitle= en-abstract= kn-abstract= The abacus (also known as Soroban) is a numerical calculation tool that is traditionally used in East Asian countries. With the advancement of information technologies, the abacus is no longer used as a standard calculation tool. However, abacus learning is garnering global attention due to the secondary skills it can foster, e.g., mental arithmetic ability. Numerical calculation using an abacus requires learning numerical expressions using the beads of the abacus and manipulating beads in multiple ways and in different orders. Due to this complexity, a long period of repeated learning is usually required to acquire the skill of using the abacus. However, the teaching method of the abacus mainly relied on lecturers' observation through finding errors and poor bead manipulations and pointing them out, and there is no other way but to rely on human labor at this moment. In this study, we aim to realize an ICT-based learning support system for arithmetic with a common abacus. This paper proposes a method of estimating input values on an abacus based on image recognition captured by a document camera. Through the evaluation experiments, we have confirmed that the proposed method showed an accuracy of 95.0% in the estimation of 7-digit number input on an abacus. Additionally, this paper will provide discussions to realize the proposed method with other cameras such as wearable camera devices, and to design the coaching system of abacus learning. en-copyright= kn-copyright= en-aut-name=MATSUDAYuki en-aut-sei=MATSUDA en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=70 article-no= start-page=e202402690 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=MoSe2-Sensitized Water Splitting Assisted by C60-Dendrons on the Basal Surface en-subtitle= kn-subtitle= en-abstract= kn-abstract=To facilitate water splitting using MoSe2 as a light absorber, we fabricated water-dispersible MoSe2/C60-dendron nanohybrids via physical modification of the basal plane of MoSe2. Upon photoirradiation, the mixed-dimension MoSe2/C60 (2D/0D) heterojunction generates a charge-separated state (MoSe2?+/C60??) through electron extraction from the exciton in MoSe2 to C60. This process is followed by the hydrogen evolution reaction (HER) from water in the presence of a sacrificial donor (1-benzyl-1,4-dihydronicotinamide) and co-catalyst (Pt-PVP). The apparent quantum yields of the HER were estimated to be 0.06?% and 0.27?% upon photoexcitation at the A- and B-exciton absorption peaks (λmax=800 and 700?nm), respectively. en-copyright= kn-copyright= en-aut-name=TajimaTomoyuki en-aut-sei=Tajima en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuuraTomoki en-aut-sei=Matsuura en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EfendiArif en-aut-sei=Efendi en-aut-mei=Arif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YukimotoMariko en-aut-sei=Yukimoto en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaguchiYutaka en-aut-sei=Takaguchi en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Materials Design and Engineering, University of Toyama kn-affil= affil-num=4 en-affil=Department of Materials Design and Engineering, University of Toyama kn-affil= affil-num=5 en-affil=Department of Materials Design and Engineering, University of Toyama kn-affil= en-keyword=Water splitting kn-keyword=Water splitting en-keyword=Transition metal dichalcogenide kn-keyword=Transition metal dichalcogenide en-keyword=Hydrogen evolution kn-keyword=Hydrogen evolution en-keyword=Photocatalyst kn-keyword=Photocatalyst en-keyword=Fullerene kn-keyword=Fullerene END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=24716 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A nationwide longitudinal survey of infantile injury and its recurrence in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Injury recurrence in young children is a significant public health concern, as it may indicate an unfavorable home environment. This study evaluates whether infantile injuries increase recurrence during preschool years, contributing to more effective prevention strategies for vulnerable families. The study included 20,191 children from "The Longitudinal Survey of Babies in the 21st Century," a representative sample of infants born in Japan between May 10 and 24, 2010. We conducted a logistic regression analysis to compare injury recurrence risk between children aged 18 months to seven years with and without infantile injury histories. The study revealed that infants with a history of injuries had a higher risk of subsequent hospital visits for injuries during preschool years (crude Odds Ratio (cOR) 1.52, 95% CI, 1.41-1.64, adjusted OR (aOR) 1.48, 95% CI 1.37-1.60). Specific injuries, such as falls (aOR 1.34, 95% CI, 1.26-1.43), pinches (aOR 1.22, 95% CI, 1.15-1.29), drowning (aOR 1.29, 95% CI, 1.19-1.40), ingestion (aOR 1.35, 95% CI, 1.17-1.55), and burns (aOR 1.47, 95% CI, 1.31-1.65), independently increased the risk of future injuries. Our findings highlight the necessity of universal safety measures in the home environment and targeted interventions for families with a history of high-risk injuries. en-copyright= kn-copyright= en-aut-name=HiraokaTomohiro en-aut-sei=Hiraoka en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObaraTakafumi en-aut-sei=Obara en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsukaharaKohei en-aut-sei=Tsukahara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HongoTakashi en-aut-sei=Hongo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HisamuraMasaki en-aut-sei=Hisamura en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YumotoTetsuya en-aut-sei=Yumoto en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Retrospective cohort study kn-keyword=Retrospective cohort study en-keyword=Injury recurrence kn-keyword=Injury recurrence en-keyword=Injury prevention kn-keyword=Injury prevention END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=78366 end-page=78378 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Aromug: A Mug-Type Olfactory Interface to Enhance the Sweetness Perception of Beverages en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sugary beverages are a significant contributor to sugar consumption, and their excessive consumption is associated with increased risks of elevated blood glucose levels and diabetes. Many individuals have a strong preference for sugary beverages and often find beverages with lower sugar content to be less satisfying. Attempts to switch to less sugary options are frequently short-lived, leading to a return to higher-sugar beverages. Recognizing that 75 ? 95% of taste perception is influenced by scent, we investigated a scent-based approach to reduce sugar intake while preserving the perception of sweetness. This study introduces an olfactory interface in the form of a mug named “Aromug,” designed to emit a sweet scent in sync with the drinking action. Aromug incorporates motion sensing and scent presentation functions to enhance the perceived sweetness of a beverage, thereby encouraging a gradual reduction in sugar intake. Our experiments, involving 33 participants, demonstrated that the combined scents of sugar-free coffee and chocolate increased the perception of sweetness (p =1.641×10?2 ). The study also found that the simultaneous presentation of scent and visual cues improved taste satisfaction and sweetness perception. Additionally, we observed variations in sweetness preference related to age and frequency of coffee consumption. It was particularly observed that people in their 20s and those who frequently drink coffee tend to perceive the taste of beverages as sweeter. This suggests a potential for Aromug to customize the scent experience based on individual preferences, offering a novel way to encourage healthier beverage choices. en-copyright= kn-copyright= en-aut-name=MayumiDaiki en-aut-sei=Mayumi en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraYugo en-aut-sei=Nakamura en-aut-mei=Yugo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsudaYuki en-aut-sei=Matsuda en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MisakiShinya en-aut-sei=Misaki en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YasumotoKeiichi en-aut-sei=Yasumoto en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Science and Technology, Nara Institute of Science and Technology kn-affil= affil-num=2 en-affil=Faculty of Information Science and Electrical Engineering, Kyushu University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Science and Technology, Nara Institute of Science and Technology kn-affil= affil-num=5 en-affil=Graduate School of Science and Technology, Nara Institute of Science and Technology kn-affil= en-keyword=Olfaction kn-keyword=Olfaction en-keyword=olfactory interfaces kn-keyword=olfactory interfaces en-keyword=olfactory display kn-keyword=olfactory display en-keyword=scents kn-keyword=scents en-keyword=taste evaluation kn-keyword=taste evaluation en-keyword=smell kn-keyword=smell en-keyword=olfactory perception kn-keyword=olfactory perception en-keyword=behavior change support kn-keyword=behavior change support END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=10 article-no= start-page=4585 end-page=4606 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241029 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mobile Augmented Reality Interface for Instruction-based Disaster Preparedness Guidelines en-subtitle= kn-subtitle= en-abstract= kn-abstract=Disaster preparedness guidelines help citizens protect themselves against disasters. Nonetheless, the general public has been found not to read them. Augmented reality (AR) interfaces are known to improve knowledge transfer in studies of education, industry, and elderly assistance. However, this is achieved this by creating specific interfaces for users, not the general public. To test the performance of these interfaces for general public guidance, we designed and implemented a novel AR-assisted disaster prevention guideline that leverages object detection models to identify targets of disaster preparedness advice. We then had a diverse-age audience compare our design against a real traditional paper-based preparedness guide in a room arranged as a common remote work bedroom. By testing their usability, task load, and capacity to make users aware of their environmental hazards, we gained important insights into the performance of different age groups following media developed for the general public. Regardless of different age groups achieving similar usability scores, we found minors improving their performance scores with our novel interface and adults from 20 to 49 years old seemingly performing better than other age groups. In this study, we highlight the importance of guidance alternatives for the young and the less-technology-aware population, contributing to the under-explored area of AR interfaces for the general public. en-copyright= kn-copyright= en-aut-name=AguilarSergio De Le?n en-aut-sei=Aguilar en-aut-mei=Sergio De Le?n kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsudaYuki en-aut-sei=Matsuda en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasumotoKeiichi en-aut-sei=Yasumoto en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Information Science, Nara Institute of Science and Technology kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Information Science, Nara Institute of Science and Technology kn-affil= en-keyword=guidelines kn-keyword=guidelines en-keyword=augmented reality kn-keyword=augmented reality en-keyword=disaster preparedness kn-keyword=disaster preparedness en-keyword=object recognition kn-keyword=object recognition en-keyword=user interface kn-keyword=user interface en-keyword=knowledge transfer kn-keyword=knowledge transfer END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue=11 article-no= start-page=upae196 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=SNAr hexafluoroisopropoxylation of electron-rich aryl fluoride with a catalytic electrical input en-subtitle= kn-subtitle= en-abstract= kn-abstract=Anodic oxidation?promoted SNAr reactions of electron-rich aryl fluoride were developed. The anodic oxidation of 4-fluoroanisole in hexafluoroisopropyl alcohol (HFIP) with K2CO3 led to SNAr-type hexafluoroisopropoxylation, and the reaction was completed with a catalytic electrical input. The results of cyclic voltammetry suggest that the radical cation of 4-fluoroanisole, which would react with the alkoxide of HFIP, is generated. Electron transfer between the intermediate and the starting material constructs the catalytic cycle, and the elimination of fluoride from the Meisenheimer complex produces the desired compound. en-copyright= kn-copyright= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakahamaTomohiro en-aut-sei=Nakahama en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=anodic oxidation kn-keyword=anodic oxidation en-keyword=organic electrochemistry kn-keyword=organic electrochemistry en-keyword=SNAr reaction kn-keyword=SNAr reaction END start-ver=1.4 cd-journal=joma no-vol=169 cd-vols= no-issue= article-no= start-page=106712 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20249 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The parallel stack loading problem of minimizing the exact number of relocations en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study addresses the parallel stack loading problem, a general optimization problem arising in storage facilities such as container yards, slab yards, and warehouses. In this problem, we load incoming items into parallel stacks in the loading phase to minimize the number of relocations in the subsequent retrieval phase. Because of difficulties in treating the nested problem structure originating from the mutual dependence of the two phases, the existing studies approximately minimized the number of relocations using surrogate objective functions. In contrast, this study considers the parallel stack loading problem aiming to minimize the exact number of relocations. We first provide an integer programming formulation and next develop a nested branch-and-bound algorithm. In a computational study, we verify the effectiveness of the proposed branch-and-bound algorithm and evaluate the known surrogate objective functions based on the exact minimization. en-copyright= kn-copyright= en-aut-name=TanakaShunji en-aut-sei=Tanaka en-aut-mei=Shunji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ElWakilMohamed en-aut-sei=ElWakil en-aut-mei=Mohamed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EltawilAmr en-aut-sei=Eltawil en-aut-mei=Amr kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life and Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University kn-affil= affil-num=3 en-affil=Department of Industrial and Manufacturing Engineering, Egypt Japan University of Science and Technology kn-affil= en-keyword=Logistics kn-keyword=Logistics en-keyword=Parallel stack loading problem kn-keyword=Parallel stack loading problem en-keyword=Relocation kn-keyword=Relocation en-keyword=Integer programming kn-keyword=Integer programming en-keyword=Branch-and-bound algorithm kn-keyword=Branch-and-bound algorithm END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=5 article-no= start-page=972 end-page=984 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202411 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A randomized, open-label, clinical trial examined the effects of canagliflozin on albuminuria and eGFR decline using an individual pre-intervention eGFR slope en-subtitle= kn-subtitle= en-abstract= kn-abstract=Demonstrating drug efficacy in slowing kidney disease progression requires large clinical trials when targeting participants with an early stage of chronic kidney disease (CKD). In this randomized, parallel-group, open-labeled trial (CANPIONE study), we assessed the effect of the sodium-glucose cotransporter 2 (SGLT2) inhibitor canagliflozin using the individual’s change in estimated glomerular filtration rate (eGFR) slope before (pre-intervention slope) and during treatment (chronic slope). We randomly assigned (1:1) participants with type 2 diabetes, urinary albumin-to-creatinine ratio (UACR) of 50 to under 300 mg/g, and an eGFR of at least 45 ml/min/1.73m2 to receive canagliflozin or guideline-recommended treatment except for SGLT2 inhibitors (control). The first and second primary outcomes were the geometric mean percentage change from baseline in UACR and the change in eGFR slope, respectively. Of 98 randomized participants, 96 received at least one study treatment. The least-squares mean change from baseline in log-transformed geometric mean UACR was significantly greater in the canagliflozin group than the control group (between group-difference, ?30.8% (95% confidence interval ?42.6 to ?16.8). The between-group difference (canagliflozin group ? control group) of change in eGFR slope (chronic ? pre-intervention) was 4.4 (1.6 to 7.3) ml/min/1.73 m2 per year, which was more pronounced in participants with faster eGFR decline. In summary, canagliflozin reduced albuminuria and the participant-specific natural course of eGFR decline in participants with type 2 diabetes and microalbuminuria. Thus, the CANPIONE study suggests that the within-individual change in eGFR slope may be a novel approach to determine the kidney protective potential of new therapies in early stages of CKD. en-copyright= kn-copyright= en-aut-name=MiyamotoSatoshi en-aut-sei=Miyamoto en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HeerspinkHiddo J.L. en-aut-sei=Heerspink en-aut-mei=Hiddo J.L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=de ZeeuwDick en-aut-sei=de Zeeuw en-aut-mei=Dick kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoKota en-aut-sei=Sakamoto en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaMichihiro en-aut-sei=Yoshida en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaMasao en-aut-sei=Toyoda en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HatanakaTakashi en-aut-sei=Hatanaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraTohru en-aut-sei=Nakamura en-aut-mei=Tohru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KameiShinji en-aut-sei=Kamei en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MuraoSatoshi en-aut-sei=Murao en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HidaKazuyuki en-aut-sei=Hida en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AndoShinichiro en-aut-sei=Ando en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=AkaiHiroaki en-aut-sei=Akai en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakahashiYasushi en-aut-sei=Takahashi en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KitadaMunehiro en-aut-sei=Kitada en-aut-mei=Munehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SuganoHisashi en-aut-sei=Sugano en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NunoueTomokazu en-aut-sei=Nunoue en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NakamuraAkihiko en-aut-sei=Nakamura en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SasakiMotofumi en-aut-sei=Sasaki en-aut-mei=Motofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NakatouTatsuaki en-aut-sei=Nakatou en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=FujimotoKei en-aut-sei=Fujimoto en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KawanamiDaiji en-aut-sei=Kawanami en-aut-mei=Daiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=WadaTakashi en-aut-sei=Wada en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=MiyatakeNobuyuki en-aut-sei=Miyatake en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KuramotoHiromi en-aut-sei=Kuramoto en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=ShikataKenichi en-aut-sei=Shikata en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= affil-num=1 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine kn-affil= affil-num=7 en-affil=Suzuki Diadetes Clinic kn-affil= affil-num=8 en-affil=Department of Diabetes and Endocrinology, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=9 en-affil=Diabetes Internal Medicine, Sumitomo Besshi Hospital kn-affil= affil-num=10 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=11 en-affil=Department of Diabetes and Endocrinology, Takamatsu Hospital kn-affil= affil-num=12 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=13 en-affil=Department of Internal Medicine Diabetic Center, Okayama City Hospital kn-affil= affil-num=14 en-affil=Division of Diabetes and Metabolism, Faculty of Medicine, Tohoku Medical and Pharmaceutical University kn-affil= affil-num=15 en-affil=Department of Diabetes, Ochiai General Hospital kn-affil= affil-num=16 en-affil=Department of Diabetology and Endocrinology, Kanazawa Medical University kn-affil= affil-num=17 en-affil=Department of Diabetes and Endocrinology, Kochi Health Sciences Center kn-affil= affil-num=18 en-affil=Nunoue Clinic kn-affil= affil-num=19 en-affil=Internal Medicine, Osafune Clinic kn-affil= affil-num=20 en-affil=Department of Diabetes and Endocrinology, Matsue City Hospital kn-affil= affil-num=21 en-affil=Diabetes Center, Okayama Saiseikai General Hospital kn-affil= affil-num=22 en-affil=Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University Kashiwa Hospital kn-affil= affil-num=23 en-affil=Department of Endocrinology and Diabetes, Fukuoka University School of Medicine kn-affil= affil-num=24 en-affil=Department of Nephrology and Laboratory Medicine, Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=25 en-affil=Department of Hygiene, Faculty of Medicine, Kagawa University kn-affil= affil-num=26 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=27 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= en-keyword=canagliflozin kn-keyword=canagliflozin en-keyword=CANPIONE study kn-keyword=CANPIONE study en-keyword=chronic kidney disease microalbuminuria kn-keyword=chronic kidney disease microalbuminuria en-keyword=preintervention eGFR slope kn-keyword=preintervention eGFR slope en-keyword=sodium-glucose cotransporter 2 inhibitor kn-keyword=sodium-glucose cotransporter 2 inhibitor END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue= article-no= start-page=foae032 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241018 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Improving the Z3EV promoter system to create the strongest yeast promoter en-subtitle= kn-subtitle= en-abstract= kn-abstract=Promoters for artificial control of gene expression are central tools in genetic engineering. In the budding yeast Saccharomyces cerevisiae, a variety of constitutive and controllable promoters with different strengths have been constructed using endogenous gene promoters, synthetic transcription factors and their binding sequences, and artificial sequences. However, there have been no attempts to construct the highest strength promoter in yeast cells. In this study, by incrementally increasing the binding sequences of the synthetic transcription factor Z3EV, we were able to construct a promoter (P36) with ~1.4 times the strength of the TDH3 promoter. This is stronger than any previously reported promoter. Although the P36 promoter exhibits some leakage in the absence of induction, the expression induction by estradiol is maintained. When combined with a multicopy plasmid, it can express up to ~50% of total protein as a heterologous protein. This promoter system can be used to gain knowledge about the cell physiology resulting from the ultimate overexpression of excess proteins and is expected to be a useful tool for heterologous protein expression in yeast. en-copyright= kn-copyright= en-aut-name=HiguchiRina en-aut-sei=Higuchi en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujitaYuri en-aut-sei=Fujita en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NambaShotaro en-aut-sei=Namba en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriyaHisao en-aut-sei=Moriya en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=yeast kn-keyword=yeast en-keyword=overexpression kn-keyword=overexpression en-keyword=promoter kn-keyword=promoter END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=24968 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Apolipoprotein-B mRNA-editing complex 3B could be a new potential therapeutic target in endometriosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the correlation of Apolipoprotein-B mRNA-editing complex 3B (APOBEC3B) expression with hypoxia inducible factor 1α (HIF-1α), Kirsten rat sarcoma virus (KRAS) and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in endometriosis patients, and the inhibitory effects of APOBEC3B knockdown in a human endometriotic cell line. Here, APOBEC3B, HIF-1α, KRAS, and PIK3CA were examined in patients with and without endometriosis using reverse transcription polymerase chain reaction (RT-PCR). The apoptosis, cell proliferation, invasion, migration, and biological function of APOBEC3B knockdown were explored in 12Z immortalized human endometriotic cell line. We observed APOBEC3B, HIF-1α, KRAS and PIK3CA expressions were significantly higher in endometriosis patients (p? 38 degrees C) in the 2 weeks after esophagectomy in the GCG was significantly fewer than those in the HCG. Perioperative GCT may prevent postoperative TP decline and postoperative dysphagia-related complications after esophagectomy. en-copyright= kn-copyright= en-aut-name=Yamanaka-KohnoReiko en-aut-sei=Yamanaka-Kohno en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShirakawaYasuhiro en-aut-sei=Shirakawa en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokoiAya en-aut-sei=Yokoi en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaNaoaki en-aut-sei=Maeda en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanabeShunsuke en-aut-sei=Tanabe en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShimizuKazuyoshi en-aut-sei=Shimizu en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MituhashiToshiharu en-aut-sei=Mituhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraYoshihide en-aut-sei=Nakamura en-aut-mei=Yoshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NanbaSouto en-aut-sei=Nanba en-aut-mei=Souto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UchidaYurika en-aut-sei=Uchida en-aut-mei=Yurika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=7 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=10 en-affil=Dental Clinic, Kurashiki Medical Check-Up Center kn-affil= affil-num=11 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Oral Health Sciences, Takarazuka University of Medical and Health Care kn-affil= affil-num=14 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Esophageal cancer kn-keyword=Esophageal cancer en-keyword=Esophagectomy kn-keyword=Esophagectomy en-keyword=Gum-chewing training kn-keyword=Gum-chewing training en-keyword=Tongue pressure kn-keyword=Tongue pressure en-keyword=Historical control kn-keyword=Historical control en-keyword=Propensity score matching analysis kn-keyword=Propensity score matching analysis END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=146551 end-page=146559 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Protection Scheme With Speech Processing Against Audio Adversarial Examples en-subtitle= kn-subtitle= en-abstract= kn-abstract=Machine learning technologies have improved the accuracy of speech recognition systems, and devices using those systems, such as smart speakers and AI assistants, are now in wide use. However, speech recognition systems have security vulnerabilities. In particular, a known machine learning vulnerability called audio adversarial examples (AAEs), which causes misrecognition in speech recognition systems, has become a problem. We propose a scheme for using speech processing to protect speech recognition systems from AAEs, preventing misrecognitions by slight processing of input speech that does not affect the recognition of normal speech. We use two kinds of processing: speed and frequency. Evaluation results show that the proposed scheme can reduce the success rate of attack speech to about 1% while maintaining about 85% recognition rates for normal speech. en-copyright= kn-copyright= en-aut-name=TarutaniYuya en-aut-sei=Tarutani en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoTaisei en-aut-sei=Yamamoto en-aut-mei=Taisei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukushimaYukinobu en-aut-sei=Fukushima en-aut-mei=Yukinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YokohiraTokumi en-aut-sei=Yokohira en-aut-mei=Tokumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Speech recognition system kn-keyword=Speech recognition system en-keyword=security kn-keyword=security en-keyword=audio adversarial example kn-keyword=audio adversarial example END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=16337 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of dapagliflozin on myoglobin efflux from cardiomyocyte during myocardial ischemia/reperfusion in anesthetized rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=It has been suggested that sodium-glucose cotransporter 2 (SGLT2) inhibitors have cardioprotective effects during myocardial ischemia/reperfusion (I/R) independent of glucose-lowering action. However, the effects of SGLT2 inhibitors on structural damage to cardiomyocytes in the ischemic region during I/R remain unknown. We applied a microdialysis technique to the heart of anesthetized rats and investigated the effects of an SGLT2 inhibitor, dapagliflozin, on myocardial interstitial myoglobin levels in the ischemic region during coronary occlusion followed by reperfusion. Dapagliflozin was administered systemically (40 mu g/body iv) or locally via a dialysis probe (100 mu M and 1 mM) 30 min before coronary occlusion. In the vehicle group, coronary occlusion increased the dialysate myoglobin concentration in the ischemic region. Reperfusion further increased the dialysate myoglobin concentration. Intravenous administration of dapagliflozin reduced dialysate myoglobin concentration during ischemia and at 0-15 min after reperfusion, but local administration (100 mu M and 1 mM) did not. Therefore, acute systemic administration of dapagliflozin prior to ischemia has cardioprotective effects on structural damage during I/R. en-copyright= kn-copyright= en-aut-name=HayashidaTomohiro en-aut-sei=Hayashida en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurokoYosuke en-aut-sei=Kuroko en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimizuShuji en-aut-sei=Shimizu en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkiyamaTsuyoshi en-aut-sei=Akiyama en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuezawaTakanori en-aut-sei=Suezawa en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KiokaYukio en-aut-sei=Kioka en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KotaniYasuhiro en-aut-sei=Kotani en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShishidoToshiaki en-aut-sei=Shishido en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiac Physiology, National Cerebral and Cardiovascular Center kn-affil= affil-num=5 en-affil=Department of Cardiovascular Surgery, Fukuyama City Hospital kn-affil= affil-num=6 en-affil=Department of Cardiovascular Surgery, Fukuyama City Hospital kn-affil= affil-num=7 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Research Promotion and Management, National Cerebral and Cardiovascular Center kn-affil= affil-num=9 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital kn-affil= en-keyword=Sodium-glucose-cotransporter 2 inhibitor kn-keyword=Sodium-glucose-cotransporter 2 inhibitor en-keyword=Dapagliflozin kn-keyword=Dapagliflozin en-keyword=Myocardial ischemia/reperfusion kn-keyword=Myocardial ischemia/reperfusion en-keyword=Cardiac microdialysis kn-keyword=Cardiac microdialysis en-keyword=Myoglobin kn-keyword=Myoglobin END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=4 article-no= start-page=557 end-page=564 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241019 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Significance of Prior Ramucirumab Use on the Effectiveness of Nivolumab as the Third-Line Regimen in Gastric Cancer: A Multicenter Retrospective Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Objective Because vascular endothelial growth factor inhibition has been suggested to improve immune cell function in the cancer microenvironment, we examined whether using ramucirumab (RAM) before nivolumab usage is more effective in advanced gastric cancer.
Methods This was a multicenter retrospective observational study. We analyzed patients who received nivolumab monotherapy as the third-line regimen for unresectable advanced or recurrent gastric cancer between October 2017 and December 2022. They were divided into the RAM (RAM-treated) group and the non-RAM (non-treated) group according to the RAM usage in the second-line regimen. The primary outcome was to compare the overall survival after nivolumab administration in the third-line regimen between the RAM and non-RAM groups.
Results Fifty-two patients were included in the present study: 42 patients in the RAM group and ten patients in the non-RAM group. The median overall survival was significantly longer in the RAM group than in the non-RAM group (8.5 months vs 6.9 months, p < 0.05). In the RAM group, patients without peritoneal metastasis had significantly better median overall survival than those with peritoneal metastasis (23.8 months vs 7.7 months, p = 0.0033). Multivariate Cox-proportional hazards analyses showed that the presence of peritoneal metastasis (hazard ratio, 2.4; 95% confidence interval 1.0-5.7) alone was significantly associated with overall survival in the RAM group.
Conclusions The use of RAM prior to nivolumab monotherapy may contribute to prolonged survival in patients with gastric cancer, especially those without peritoneal metastasis. en-copyright= kn-copyright= en-aut-name=ObayashiYuka en-aut-sei=Obayashi en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirataShoichiro en-aut-sei=Hirata en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeMakoto en-aut-sei=Abe en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyaharaKoji en-aut-sei=Miyahara en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagawaMasahiro en-aut-sei=Nakagawa en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshidaMichihiro en-aut-sei=Ishida en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ChodaYasuhiro en-aut-sei=Choda en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HamadaKenta en-aut-sei=Hamada en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=6 en-affil=Department of Endoscopy, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=8 en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=9 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=20756 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Basic characteristics of tongue pressure and electromyography generated by articulation of a syllable using the posterior part of the tongue en-subtitle= kn-subtitle= en-abstract= kn-abstract=The basic function of the tongue in pronouncing diadochokinesis and other syllables is not fully understood. This study investigates the influence of sound pressure levels and syllables on tongue pressure and muscle activity in 19 healthy adults (mean age: 28.2 years; range: 22-33 years). Tongue pressure and activity of the posterior tongue were measured using electromyography (EMG) when the velar stops /ka/, /ko/, /ga/, and /go/ were pronounced at 70, 60, 50, and 40 dB. Spearman's rank correlation revealed a significant, yet weak, positive association between tongue pressure and EMG activity (rho = 0.14, p < 0.05). Mixed-effects model analysis showed that tongue pressure and EMG activity significantly increased at 70 dB compared to other sound pressure levels. While syllables did not significantly affect tongue pressure, the syllable /ko/ significantly increased EMG activity (coefficient = 0.048, p = 0.013). Although no significant differences in tongue pressure were observed for the velar stops /ka/, /ko/, /ga/, and /go/, it is suggested that articulation is achieved by altering the activity of both extrinsic and intrinsic tongue muscles. These findings highlight the importance of considering both tongue pressure and muscle activity when examining the physiological factors contributing to sound pressure levels during speech. en-copyright= kn-copyright= en-aut-name=MandaYousuke en-aut-sei=Manda en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KodamaNaoki en-aut-sei=Kodama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriKeitaro en-aut-sei=Mori en-aut-mei=Keitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AdachiReimi en-aut-sei=Adachi en-aut-mei=Reimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsugishiMakoto en-aut-sei=Matsugishi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MinagiShogo en-aut-sei=Minagi en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=142592 end-page=142605 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=MUSIC Spectrum Based Interference Detection, Localization, and Interference Arrival Prediction for mmWave IRS-MIMO System en-subtitle= kn-subtitle= en-abstract= kn-abstract=For a millimeter wave (mmWave) intelligent re-configurable surface (IRS)-MIMO system, if it can correctly detect the interference occurrence and their locations, the patterns of interference signal can be collected and learned using machine learning for the prediction of interference arrival. With the information of interference location and activity pattern, the capacity of the system can be largely improved using many techniques such as beamforming, interference cancellation, and transmission scheduling. This paper aims to detect interference occurrence using a low-complexity MUSIC (MUSIC: multiple signal classification) spectrum-based method, and then localize their sources for mmWave IRS-MIMO system. The MUSIC spectrum of wireless system can be regarded as somehow the 'signature' related to the signals transmitted from different users or interference. We utilize such property to detect the occurrence of interference, and then localize their sources in a low-complexity way. Finally, the pattern of interference occurrence can be learned to predict the interference arrival from the collected data. This paper also proposed an efficient probabilistic neural network (PNN)-based predictor for the interference arrival prediction and showed its prediction accuracy. From simulated results, our proposed method can achieve the correct results with the accuracy near to 100% when the fingerprint samples is over 10. In addition, the localization error can be within 1 m with more than 65% and 43% for Y-axis and X-axis, respectively. Finally, based on the results of the interference occurrence, the proposed PNN-based predictor for the interference arrival prediction can capture correctly the similar distribution function of the coming continuous idle status. en-copyright= kn-copyright= en-aut-name=HouYafei en-aut-sei=Hou en-aut-mei=Yafei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YanoKazuto en-aut-sei=Yano en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugaNorisato en-aut-sei=Suga en-aut-mei=Norisato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WebberJulian en-aut-sei=Webber en-aut-mei=Julian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DennoSatoshi en-aut-sei=Denno en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakanoToshikazu en-aut-sei=Sakano en-aut-mei=Toshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Wave Engineering Laboratories, Advanced Telecommunications Research Institute International kn-affil= affil-num=3 en-affil=Wave Engineering Laboratories, Advanced Telecommunications Research Institute International kn-affil= affil-num=4 en-affil=Wave Engineering Laboratories, Advanced Telecommunications Research Institute International kn-affil= affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Wave Engineering Laboratories, Advanced Telecommunications Research Institute International kn-affil= en-keyword=Interference detection kn-keyword=Interference detection en-keyword=MUSIC spectrum kn-keyword=MUSIC spectrum en-keyword=interference localization kn-keyword=interference localization en-keyword=prediction of interference arrival kn-keyword=prediction of interference arrival en-keyword=probabilistic neural network kn-keyword=probabilistic neural network END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=5 article-no= start-page=6736 end-page=6751 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Superior Efficiency Under PWM Harmonic Current in an Axial-Flux PM Machine for HEV/EV Traction: Comparison With a Radial-Flux PM Machine en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper evaluates the harmonic current caused by a pulse width modulation (PWM) inverter and how it affects the efficiency of a novel axial-flux permanent-magnet machine using a ferrite permanent magnet (AF-FePM) in traction applications. First, differences between the finite element analysis (FEA) and experimental results are discussed using a prototype of the proposed AF-FePM. Second, the AF-FePM is compared with a commercially available radial-flux permanent-magnet machine using a Nd-sintered magnet (RF-NdPM). For both machines, the efficiency and loss are calculated using FEA when applying the sinusoidal and harmonic currents. Additionally, we present the superior efficiency of the AF-FePM under the PWM harmonic current during a WLTC driving cycle because the designed model employs the ferrite magnet and a round copper wire, unlike the RF-NdPM. Finally, motor and inverter losses at different switching frequencies are also evaluated. This paper eventually shows that the proposed AF-FePM would be one of the suitable candidates to enhance high efficiency under PWM harmonic current condition based on comprehensive discussion. en-copyright= kn-copyright= en-aut-name=TsunataRen en-aut-sei=Tsunata en-aut-mei=Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakemotoMasatsugu en-aut-sei=Takemoto en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ImaiJun en-aut-sei=Imai en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoTatsuya en-aut-sei=Saito en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UenoTomoyuki en-aut-sei=Ueno en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Sumitomo Electric Industries Ltd. kn-affil= affil-num=5 en-affil=Sumitomo Electric Industries Ltd. kn-affil= en-keyword=Axial gap motor kn-keyword=Axial gap motor en-keyword=axial-flux machine kn-keyword=axial-flux machine en-keyword=carbon-fiber-reinforced plastic kn-keyword=carbon-fiber-reinforced plastic en-keyword=ferrite magnet kn-keyword=ferrite magnet en-keyword=iron loss kn-keyword=iron loss en-keyword=PWM drive kn-keyword=PWM drive en-keyword=PWM harmonic current kn-keyword=PWM harmonic current en-keyword=radial-flux machine kn-keyword=radial-flux machine en-keyword=soft magnetic composite kn-keyword=soft magnetic composite en-keyword=switching frequency kn-keyword=switching frequency en-keyword=WLTC drive kn-keyword=WLTC drive END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=10 article-no= start-page=103D01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study of the Neutrino?Oxygen Cross Sections of the Charged-Current Reaction 16O(ν?e, e+)16N(0 MeV, 2?) and the Neutral-Current Reaction 16O(ν, ν′)16O(12.97/12.53 MeV, 2?), Producing High-Energy γ Rays en-subtitle= kn-subtitle= en-abstract= kn-abstract=In our previous work, we discussed the cross section and the detection of 4.4 MeV γ rays produced in the neutrino neutral-current (NC)reaction 16O(ν, ν′)16O(12.97 and 12.53 MeV, 2?) in a water Cherenkov detector at low energy below 100 MeV. In this report, we further investigate both the charged-current reaction 16O(ν?e, e+)16N(0 MeV, 2?) and the NC reaction16O(ν, ν′)16O(12.97 and 12.53 MeV, 2?), producing high-energy γ rays, in which a more solid identification of the reactions can be applied via the coincidence method. en-copyright= kn-copyright= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiToshio en-aut-sei=Suzuki en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakazatoKen'Ichiro en-aut-sei=Nakazato en-aut-mei=Ken'Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiHideyuki en-aut-sei=Suzuki en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Physics Department, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, College of Humanities and Sciences, Nihon University kn-affil= affil-num=3 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= affil-num=4 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=5 article-no= start-page=363 end-page=370 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Small-for-Gestational-Age Status and the Risk of Kawasaki Disease: A Nationwide Birth Cohort in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Kawasaki disease (KD) is a pediatric disease of unknown etiology that commonly affects infants in East Asia. Infants born small for gestational age (SGA) have weaker immune systems and are more susceptible to infection. Using data from a nationwide Japanese birth cohort study conducted in 2010 (n=34,579), we investigated whether SGA increases the risk of KD. SGA was defined as birth weight below the 10th percentile for gestational age. The outcome was hospitalization for KD between 6 and 30 months of age. The association between SGA and hospitalization for KD, adjusted for child and maternal factors, was examined using logistic regression. Of the 231 children hospitalized for KD, 9.5% were SGA. Further statistical analysis showed that SGA did not increase the odds ratio (OR) of hospitalization for KD (adjusted OR 1.12, 95% confidence interval 0.71-1.75). This result was not changed with stratification by early daycare attendance and preterm status. Reasons for the lack of association may include the multifactorial pathogenesis of KD; in addition, the types of infections to which SGA infants are predisposed may differ from those triggering KD. Overall, our large nationwide study found no association between SGA and KD. en-copyright= kn-copyright= en-aut-name=TakanagaSatoe en-aut-sei=Takanaga en-aut-mei=Satoe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Kawasaki disease (KD) kn-keyword=Kawasaki disease (KD) en-keyword=small for gestational age (SGA) kn-keyword=small for gestational age (SGA) en-keyword=cohort kn-keyword=cohort en-keyword=epidemiology kn-keyword=epidemiology END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=3 article-no= start-page=295 end-page=312 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240722 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A User Location Reset Method through Object Recognition in Indoor Navigation System Using Unity and a Smartphone (INSUS) en-subtitle= kn-subtitle= en-abstract= kn-abstract=To enhance user experiences of reaching destinations in large, complex buildings, we have developed a indoor navigation system using Unity and a smartphone called INSUS. It can reset the user location using a quick response (QR) code to reduce the loss of direction of the user during navigation. However, this approach needs a number of QR code sheets to be prepared in the field, causing extra loads at implementation. In this paper, we propose another reset method to reduce loads by recognizing information of naturally installed signs in the field using object detection and Optical Character Recognition (OCR) technologies. A lot of signs exist in a building, containing texts such as room numbers, room names, and floor numbers. In the proposal, the Sign Image is taken with a smartphone, the sign is detected by YOLOv8, the text inside the sign is recognized by PaddleOCR, and it is compared with each record in the Room Database using Levenshtein distance. For evaluations, we applied the proposal in two buildings in Okayama University, Japan. The results show that YOLOv8 achieved mAP@0.5 0.995 and mAP@0.5:0.95 0.978, and PaddleOCR could extract text in the sign image accurately with an averaged CER% lower than 10%. The combination of both YOLOv8 and PaddleOCR decreases the execution time by 6.71s compared to the previous method. The results confirmed the effectiveness of the proposal. en-copyright= kn-copyright= en-aut-name=FajriantiEvianita Dewi en-aut-sei=Fajrianti en-aut-mei=Evianita Dewi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HazAmma Liesvarastranta en-aut-sei=Haz en-aut-mei=Amma Liesvarastranta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukaridhotoSritrusta en-aut-sei=Sukaridhoto en-aut-mei=Sritrusta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Informatic and Computer, Politeknik Elektronika Negeri Surabaya kn-affil= en-keyword=indoor navigation system kn-keyword=indoor navigation system en-keyword=INSUS kn-keyword=INSUS en-keyword=location reset method kn-keyword=location reset method en-keyword=natural sign kn-keyword=natural sign en-keyword=text kn-keyword=text en-keyword=YOLO kn-keyword=YOLO en-keyword=PaddleOCR kn-keyword=PaddleOCR END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=22441 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240928 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of data-augmentation on deep learning in evaluating rapid on-site cytopathology at endoscopic ultrasound-guided fine needle aspiration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rapid on-site cytopathology evaluation (ROSE) has been considered an effective method to increase the diagnostic ability of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA); however, ROSE is unavailable in most institutes worldwide due to the shortage of cytopathologists. To overcome this situation, we created an artificial intelligence (AI)-based system (the ROSE-AI system), which was trained with the augmented data to evaluate the slide images acquired by EUS-FNA. This study aimed to clarify the effects of such data-augmentation on establishing an effective ROSE-AI system by comparing the efficacy of various data-augmentation techniques. The ROSE-AI system was trained with increased data obtained by the various data-augmentation techniques, including geometric transformation, color space transformation, and kernel filtering. By performing five-fold cross-validation, we compared the efficacy of each data-augmentation technique on the increasing diagnostic abilities of the ROSE-AI system. We collected 4059 divided EUS-FNA slide images from 36 patients with pancreatic cancer and nine patients with non-pancreatic cancer. The diagnostic ability of the ROSE-AI system without data augmentation had a sensitivity, specificity, and accuracy of 87.5%, 79.7%, and 83.7%, respectively. While, some data-augmentation techniques decreased diagnostic ability, the ROSE-AI system trained only with the augmented data using the geometric transformation technique had the highest diagnostic accuracy (88.2%). We successfully developed a prototype ROSE-AI system with high diagnostic ability. Each data-augmentation technique may have various compatibilities with AI-mediated diagnostics, and the geometric transformation was the most effective for the ROSE-AI system. en-copyright= kn-copyright= en-aut-name=FujiiYuki en-aut-sei=Fujii en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchidaDaisuke en-aut-sei=Uchida en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoRyosuke en-aut-sei=Sato en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ObataTaisuke en-aut-sei=Obata en-aut-mei=Taisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkihiroMatsumi en-aut-sei=Akihiro en-aut-mei=Matsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyamotoKazuya en-aut-sei=Miyamoto en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MorimotoKosaku en-aut-sei=Morimoto en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TerasawaHiroyuki en-aut-sei=Terasawa en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamazakiTatsuhiro en-aut-sei=Yamazaki en-aut-mei=Tatsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsumotoKazuyuki en-aut-sei=Matsumoto en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HoriguchiShigeru en-aut-sei=Horiguchi en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TsutsumiKoichiro en-aut-sei=Tsutsumi en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KatoHironari en-aut-sei=Kato en-aut-mei=Hironari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=InoueHirofumi en-aut-sei=Inoue en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ChoTen en-aut-sei=Cho en-aut-mei=Ten kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TanimotoTakayoshi en-aut-sei=Tanimoto en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OhtoAkimitsu en-aut-sei=Ohto en-aut-mei=Akimitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=10 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=11 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=12 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=14 en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=15 en-affil=Business Strategy Division, Ryobi Systems Co., Ltd. kn-affil= affil-num=16 en-affil=Business Strategy Division, Ryobi Systems Co., Ltd. kn-affil= affil-num=17 en-affil=Business Strategy Division, Ryobi Systems Co., Ltd. kn-affil= affil-num=18 en-affil=Department of Practical Gastrointestinal Endoscopy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= affil-num=19 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science kn-affil= END start-ver=1.4 cd-journal=joma no-vol=416 cd-vols= no-issue=28 article-no= start-page=6679 end-page=6686 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of protein immobilization methods with covalent bonding on paper for paper-based enzyme-linked immunosorbent assay en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, two methods were examined to optimize the immobilization of antibodies on paper when conducting a paper-based enzyme-linked immunosorbent assay (P-ELISA). Human IgG, as a test-capture protein, was immobilized on paper via the formation of Schiff bases. Aldehyde groups were introduced onto the surface of the paper via two methods: NaIO4 and 3-aminopropyltriethoxysilane (APTS) with glutaraldehyde (APTS-glutaraldehyde). In the assay, horseradish peroxidase-conjugated anti-human IgG (HRP-anti-IgG) binds to the immobilized human IgG, and the colorimetric reaction of 3,3′,5,5′-tetramethylbenzyzine (TMB) produces a blue color in the presence of H2O2 and HRP-anti-IgG as a model analyte. The immobilization of human IgG, the enzymatic reaction conditions, and the reduction of the chemical bond between the paper surface and immobilized human IgG all were optimized in order to improve both the analytical performance and the stability. In addition, the thickness of the paper was examined to stabilize the analytical signal. Consequently, the APTS-glutaraldehyde method was superior to the NaIO4 method in terms of sensitivity and reproducibility. Conversely, the reduction of imine to amine with NaBH4 proved to exert only minimal influence on sensitivity and stability, although it tended to degrade reproducibility. We also found that thick paper was preferential when using P-ELISA because a rigid paper substrate prevents distortion of the paper surface that is often caused by repeated washing processes. en-copyright= kn-copyright= en-aut-name=ChenYang en-aut-sei=Chen en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Paper-based enzyme-linked immunosorbent assay kn-keyword=Paper-based enzyme-linked immunosorbent assay en-keyword=ELISA kn-keyword=ELISA en-keyword=Immobilization kn-keyword=Immobilization en-keyword=Covalent bonding kn-keyword=Covalent bonding en-keyword=Protein kn-keyword=Protein END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=9 article-no= start-page=215 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240823 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Study of a Drawing Exactness Assessment Method Using Localized Normalized Cross-Correlations in a Portrait Drawing Learning Assistant System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, portrait drawing has gained significance in cultivating painting skills and human sentiments. In practice, novices often struggle with this art form without proper guidance from professionals, since they lack understanding of the proportions and structures of facial features. To solve this limitation, we have developed a Portrait Drawing Learning Assistant System (PDLAS) to assist novices in learning portrait drawing. The PDLAS provides auxiliary lines as references for facial features that are extracted by applying OpenPose and OpenCV libraries to a face photo image of the target. A learner can draw a portrait on an iPad using drawing software where the auxiliary lines appear on a different layer to the portrait. However, in the current implementation, the PDLAS does not offer a function to assess the exactness of the drawing result for feedback to the learner. In this paper, we present a drawing exactness assessment method using a Localized Normalized Cross-Correlation (NCC) algorithm in the PDLAS. NCC gives a similarity score between the original face photo and drawing result images by calculating the correlation of the brightness distributions. For precise feedback, the method calculates the NCC for each face component by extracting the bounding box. In addition, in this paper, we improve the auxiliary lines for the nose. For evaluations, we asked students at Okayama University, Japan, to draw portraits using the PDLAS, and applied the proposed method to their drawing results, where the application results validated the effectiveness by suggesting improvements in drawing components. The system usability was also confirmed through a questionnaire with a SUS score. The main finding of this research is that the implementation of the NCC algorithm within the PDLAS significantly enhances the accuracy of novice portrait drawings by providing detailed feedback on specific facial features, proving the system's efficacy in art education and training. en-copyright= kn-copyright= en-aut-name=ZhangYue en-aut-sei=Zhang en-aut-mei=Yue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KongZitong en-aut-sei=Kong en-aut-mei=Zitong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HsuChen-Chien en-aut-sei=Hsu en-aut-mei=Chen-Chien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Sciences and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Sciences and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Sciences and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Electrical Engineering, National Taiwan Normal University kn-affil= en-keyword=portrait drawing kn-keyword=portrait drawing en-keyword=auxiliary lines kn-keyword=auxiliary lines en-keyword=OpenPose kn-keyword=OpenPose en-keyword=OpenCV kn-keyword=OpenCV en-keyword=normalized cross-correlation (NCC) kn-keyword=normalized cross-correlation (NCC) en-keyword=exactness assessment kn-keyword=exactness assessment END start-ver=1.4 cd-journal=joma no-vol=88 cd-vols= no-issue=10 article-no= start-page=239 end-page=244 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Reverse Shape Memory Effect and Toughness Recovery of Ti-10V-2Fe-3Al Alloy kn-title=Ti-10V-2Fe-3Al合金の逆形状記憶効果と靭性回復 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ti-10V-2Fe-3Al alloys exhibit shape memory (SM) and reverse shape memory (RSM) effects. When an alloy sample that has been strained by external force at room temperature is heated, the strain recovers and SM effect develops at around 300℃, but as the temperature increases further, the shape changes in the opposite direction due to RSM effect at around 450℃. This RSM effect has potential applications in forming processes such as thin-walled pipes, but has the disadvantage that the RSM treatment makes the material very brittle. Therefore, in this study, a heat treatment to restore toughness while maintaining the shape after forming was investigated. The alloy quenched from 1050℃ had a microstructure consisting of a β matrix phase and α′′-martensite (α′′Mq). Differential scanning calorimetry (DSC) results showed that the continuous heating process occurred in the following order: α′′Mq → β reverse transformation, ω formation, ω disappearance, thermally induced α′′iso phase formation, α precipitation and α → β transformation. Ageing at 300℃, where the SM effect appears, caused significant embrittlement due to the formation of the ageing ω phase. Ageing treatment at 450℃, where the RSM effect is obtained, resulted in the formation of a fine α phase, which also caused significant embrittlement. On the other hand, additional aging at 600℃ for 1.8 ks after RSM treatment significantly improved the toughness and produced material properties comparable to aerospace material specifications. It was found that the embrittlement in the RSM treatment was due to the precipitation of fine α phase, and that the growth of α phase with a width of about 0.2 ?m or more was required for toughness recovery. It was also found that the specimen shape formed by the RSM treatment hardly changed after the additional heat treatment of 1.8 ks at 600℃. en-copyright= kn-copyright= en-aut-name=TakemotoYoshito en-aut-sei=Takemoto en-aut-mei=Yoshito kn-aut-name=竹元嘉利 kn-aut-sei=竹元 kn-aut-mei=嘉利 aut-affil-num=1 ORCID= en-aut-name=ShinomiyaDaiki en-aut-sei=Shinomiya en-aut-mei=Daiki kn-aut-name=四宮大輝 kn-aut-sei=四宮 kn-aut-mei=大輝 aut-affil-num=2 ORCID= en-aut-name=IshiharaTaiki en-aut-sei=Ishihara en-aut-mei=Taiki kn-aut-name=石原大暉 kn-aut-sei=石原 kn-aut-mei=大暉 aut-affil-num=3 ORCID= en-aut-name=YokotaHiroto en-aut-sei=Yokota en-aut-mei=Hiroto kn-aut-name=横田啓人 kn-aut-sei=横田 kn-aut-mei=啓人 aut-affil-num=4 ORCID= en-aut-name=ArakawaJinta en-aut-sei=Arakawa en-aut-mei=Jinta kn-aut-name=荒川仁太 kn-aut-sei=荒川 kn-aut-mei=仁太 aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学環境生命自然科学学域 affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil=岡山大学大学院自然科学研究科 affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学大学院環境生命自然科学研究科 affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学大学院環境生命自然科学研究科 affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学環境生命自然科学学域 en-keyword=reverse shape memory kn-keyword=reverse shape memory en-keyword=α′′-phase kn-keyword=α′′-phase en-keyword=deformation induced martensite kn-keyword=deformation induced martensite en-keyword=β-type titanium alloy kn-keyword=β-type titanium alloy en-keyword=brittle fracture kn-keyword=brittle fracture en-keyword=toughness kn-keyword=toughness en-keyword=shape recovery kn-keyword=shape recovery en-keyword=ω-phase kn-keyword=ω-phase en-keyword=variant kn-keyword=variant END start-ver=1.4 cd-journal=joma no-vol=46 cd-vols= no-issue=1 article-no= start-page=2400604 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elastomer Particle Monolayers Formed by the Compression of Poly(methyl acrylate) Microparticles at an Air/Water Interface en-subtitle= kn-subtitle= en-abstract= kn-abstract=In the previous study (Green Chem., 2023, 25, 3418), highly stretchable and mechanically tough poly(methyl acrylate) (pMA) microparticle-based elastomers can be formed by drying a microparticle-containing aqueous dispersion. This discovery has the potential to overcome the mechanical weakness of industrially produced aqueous latex films. However, in 3D-arranged particle films, structural complexity, such as the existence of defects, makes it difficult to clearly understand the relationship between the particle film structure and its mechanical properties. In this study, 2D-ordered pMA particle monolayers at the air/water interface of a Langmuir trough are prepared. Under high compression at the air/water interface, the microparticles contact their neighboring particles, and the resulting monolayers can be successfully transferred onto a solid substrate. The compression of the monolayer films is linked to an increase in the elastic modulus of the monolayer film on the solid substrate as evident from the local Young's modulus mapping using atomic force microscopy. Thus, pMA particle films with different mechanical properties can be created using a Langmuir trough. en-copyright= kn-copyright= en-aut-name=SasakiYuma en-aut-sei=Sasaki en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishizawaYuichiro en-aut-sei=Nishizawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeNatsuki en-aut-sei=Watanabe en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UchihashiTakayuki en-aut-sei=Uchihashi en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Nagoya University kn-affil= affil-num=4 en-affil=Department of Physics, Nagoya University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Langmuir?Blodgett techniques kn-keyword=Langmuir?Blodgett techniques en-keyword=polymer colloids kn-keyword=polymer colloids en-keyword=polymer structures kn-keyword=polymer structures en-keyword=thin films kn-keyword=thin films en-keyword=tough materials kn-keyword=tough materials END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=11 article-no= start-page=1769 end-page=1786 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240824 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nutrient Requirements Shape the Preferential Habitat of Allorhizobium vitis VAR03-1, a Commensal Bacterium, in the Rhizosphere of Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=A diverse range of commensal bacteria inhabit the rhizosphere, influencing host plant growth and responses to biotic and abiotic stresses. While root-released nutrients can define soil microbial habitats, the bacterial factors involved in plant?microbe interactions are not well characterized. In this study, we investigated the colonization patterns of two plant disease biocontrol agents, Allorhizobium vitis VAR03-1 and Pseudomonas protegens Cab57, in the rhizosphere of Arabidopsis thaliana using Murashige and Skoog (MS) agar medium. VAR03-1 formed colonies even at a distance from the roots, preferentially in the upper part, while Cab57 colonized only the root surface. The addition of sucrose to the agar medium resulted in excessive proliferation of VAR03-1, similar to its pattern without sucrose, whereas Cab57 formed colonies only near the root surface. Overgrowth of both bacterial strains upon nutrient supplementation inhibited host growth, independent of plant immune responses. This inhibition was reduced in the VAR03-1 ΔrecA mutant, which exhibited increased biofilm formation, suggesting that some activities associated with the free-living lifestyle rather than the sessile lifestyle may be detrimental to host growth. VAR03-1 grew in liquid MS medium with sucrose alone, while Cab57 required both sucrose and organic acids. Supplementation of sugars and organic acids allowed both bacterial strains to grow near and away from Arabidopsis roots in MS agar. These results suggest that nutrient requirements for bacterial growth may determine their growth habitats in the rhizosphere, with nutrients released in root exudates potentially acting as a limiting factor in harnessing microbiota. en-copyright= kn-copyright= en-aut-name=HemeldaNiarsi Merry en-aut-sei=Hemelda en-aut-mei=Niarsi Merry kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BaoJiyuan en-aut-sei=Bao en-aut-mei=Jiyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeMegumi en-aut-sei=Watanabe en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuiHidenori en-aut-sei=Matsui en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IchinoseYuki en-aut-sei=Ichinose en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoutoshiYoshiteru en-aut-sei=Noutoshi en-aut-mei=Yoshiteru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Commensal bacteria kn-keyword=Commensal bacteria en-keyword=Nutrient requirements kn-keyword=Nutrient requirements en-keyword=Organic acids kn-keyword=Organic acids en-keyword=Plant-microbe interactions kn-keyword=Plant-microbe interactions en-keyword=Rhizosphere kn-keyword=Rhizosphere en-keyword=Sugars kn-keyword=Sugars END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=1141 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240914 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Contribution of collagen-binding protein Cnm of Streptococcus mutans to induced IgA nephropathy-like nephritis in rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=IgA nephropathy (IgAN), the most common primary glomerulonephritis, is considered an intractable disease with unknown pathogenic factors. In our previous study, Streptococcus mutans, the major causative bacteria of dental caries, which expresses Cnm, was related to the induction of IgAN-like nephritis. In the present study, the Cnm-positive S. mutans parental strain, a Cnm-defective isogenic mutant strain, its complementation strain, and recombinant Cnm (rCnm) protein were administered intravenously to Sprague Dawley rats, and the condition of their kidneys was evaluated focusing on the pathogenicity of Cnm. Rats treated with parental and complement bacterial strains and rCnm protein developed IgAN-like nephritis with mesangial proliferation and IgA and C3 mesangial deposition. Scanning immunoelectron microscopy revealed that rCnm was present in the electron-dense deposition area of the mesangial region in the rCnm protein group. These results demonstrated that the Cnm protein itself is an important factor in the induction of IgAN in rats. en-copyright= kn-copyright= en-aut-name=NakaShuhei en-aut-sei=Naka en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuokaDaiki en-aut-sei=Matsuoka en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MisakiTaro en-aut-sei=Misaki en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagasawaYasuyuki en-aut-sei=Nagasawa en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItoSeigo en-aut-sei=Ito en-aut-mei=Seigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NomuraRyota en-aut-sei=Nomura en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakanoKazuhiko en-aut-sei=Nakano en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Matsumoto-NakanoMichiyo en-aut-sei=Matsumoto-Nakano en-aut-mei=Michiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Division of Nephrology, Seirei Hamamatsu General Hospital kn-affil= affil-num=4 en-affil=Department of General Internal Medicine, Hyogo College of Medicine kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Japan Self-Defense Force Iruma Hospital kn-affil= affil-num=6 en-affil=Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=7 en-affil=Department of Pediatric Dentistry, Graduate School of Dentistry, The University of Osaka kn-affil= affil-num=8 en-affil=Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=1339958 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240829 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Illumina-based transcriptomic analysis of the fast-growing leguminous tree Acacia crassicarpa: functional gene annotation and identification of novel SSR-markers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Acacia crassicarpa is a fast-growing leguminous tree that is widely cultivated in tropical areas such as Indonesia, Malaysia, Australia, and southern China. This tree has versatile utility in timber, furniture, and pulp production. Illumina sequencing of A. crassicarpa was conducted, and the raw data of 124,410,892 reads were filtered and assembled de novo into 93,317 unigenes, with a total of 84,411,793 bases. Blast2GO annotation, Benchmark Universal Single-Copy Ortholog evaluation, and GO-term classification produced a catalogue of unigenes for studying primary metabolism, phytohormone signaling, and transcription factors. Massive transcriptomic analysis has identified microsatellites composed of simple sequence repeat (SSR) loci representing di-, tri-, and tetranucleotide repeat units in the predicted open reading frames. Polymorphism was induced by PCR amplification of microsatellite loci located in several genes encoding auxin response factors and other transcription factors, which successfully distinguished 16 local trees of A. crassicarpa tested, representing potentially exploitable molecular markers for efficient tree breeding for plantation and biomass exploitation. en-copyright= kn-copyright= en-aut-name=IshioShougo en-aut-sei=Ishio en-aut-mei=Shougo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KusunokiKazutaka en-aut-sei=Kusunoki en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NemotoMichiko en-aut-sei=Nemoto en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KanaoTadayoshi en-aut-sei=Kanao en-aut-mei=Tadayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TamuraTakashi en-aut-sei=Tamura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Tsukuba Research Institute, Sumitomo Forestry Co. Ltd. kn-affil= affil-num=2 en-affil=Tsukuba Research Institute, Sumitomo Forestry Co. Ltd. kn-affil= affil-num=3 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Institute of Global Human Resource Development, Okayama University kn-affil= en-keyword=Acacia crassicarpa kn-keyword=Acacia crassicarpa en-keyword= illumina sequencing kn-keyword= illumina sequencing en-keyword= polymorphism kn-keyword= polymorphism en-keyword= auxin response factor kn-keyword= auxin response factor en-keyword= lignin kn-keyword= lignin END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=5 article-no= start-page=464 end-page=473 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240827 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Terrein Exhibits Anti-tumor Activity by Suppressing Angiogenin Expression in Malignant Melanoma Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aim: Malignant melanoma is a tumor with a poor prognosis that can metastasize distally at an early stage. Terrein, a metabolite produced by Aspergillus terreus, suppresses the expression of angiogenin, an angiogenic factor. However, the pharmacological effects of natural terrein have not been elucidated, because only a small amount of terrein can be extracted from large fungal cultures. In this study, we investigated the antineoplastic effects of terrein on human malignant melanoma cells and its underlying mechanisms. Materials and methods: Human malignant melanoma cell lines were cultured in the presence of terrein and analyzed. Angiogenin production was evaluated using ELISA. Ribosome biosynthesis was evaluated using silver staining of the nucleolar organizer region. Intracellular signaling pathways were analyzed using western blotting. Malignant melanoma cells were transplanted subcutaneously into the backs of nude mice. The tumors were removed at 5 weeks and analyzed histopathologically. Results: Terrein inhibited angiogenin expression, proliferation, migration, invasion, and ribosome biosynthesis in malignant melanoma cells. Terrein was shown to inhibit tumor growth and angiogenesis in animal models. Conclusion: This study demonstrated that terrein has anti-tumor effects against malignant melanoma. Furthermore, chemically synthesized non-natural terrein can be mass-produced and serve as a novel potential anti-tumor drug candidate. en-copyright= kn-copyright= en-aut-name=HIROSETAIRA en-aut-sei=HIROSE en-aut-mei=TAIRA kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KUNISADAYUKI en-aut-sei=KUNISADA en-aut-mei=YUKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KADOYAKOICHI en-aut-sei=KADOYA en-aut-mei=KOICHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MANDAIHIROKI en-aut-sei=MANDAI en-aut-mei=HIROKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SAKAMOTOYUMI en-aut-sei=SAKAMOTO en-aut-mei=YUMI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OBATAKYOICHI en-aut-sei=OBATA en-aut-mei=KYOICHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ONOKISHO en-aut-sei=ONO en-aut-mei=KISHO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TAKAKURAHIROAKI en-aut-sei=TAKAKURA en-aut-mei=HIROAKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OMORIKAZUHIRO en-aut-sei=OMORI en-aut-mei=KAZUHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TAKASHIBASHOGO en-aut-sei=TAKASHIBA en-aut-mei=SHOGO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SUGASEIJI en-aut-sei=SUGA en-aut-mei=SEIJI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IBARAGISOICHIRO en-aut-sei=IBARAGI en-aut-mei=SOICHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Head and neck cancer kn-keyword=Head and neck cancer en-keyword=oral cancer kn-keyword=oral cancer en-keyword=malignant melanoma kn-keyword=malignant melanoma en-keyword=angiogenin kn-keyword=angiogenin en-keyword=terrein kn-keyword=terrein END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=20521 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240903 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Suppression of PTBP1 in hippocampal astrocytes promotes neurogenesis and ameliorates recognition memory in mice with cerebral ischemia en-subtitle= kn-subtitle= en-abstract= kn-abstract=The therapeutic potential of suppressing polypyrimidine tract-binding protein 1 (Ptbp1) messenger RNA by viral transduction in a post-stroke dementia mouse model has not yet been examined. In this study, 3 days after cerebral ischemia, we injected a viral vector cocktail containing adeno-associated virus (AAV)-pGFAP-mCherry and AAV-pGFAP-CasRx (control vector) or a cocktail of AAV-pGFAP-mCherry and AAV-pGFAP-CasRx-SgRNA-(Ptbp1) (1:5, 1.0 x 1011 viral genomes) into post-stroke mice via the tail vein. We observed new mCherry/NeuN double-positive neuron-like cells in the hippocampus 56 days after cerebral ischemia. A portion of mCherry/GFAP double-positive astrocyte-like glia could have been converted into new mCherry/NeuN double-positive neuron-like cells with morphological changes. The new neuronal cells integrated into the dentate gyrus and recognition memory was significantly ameliorated. These results demonstrated that the in vivo conversion of hippocampal astrocyte-like glia into functional new neurons by the suppression of Ptbp1 might be a therapeutic strategy for post-stroke dementia. en-copyright= kn-copyright= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HuXinran en-aut-sei=Hu en-aut-mei=Xinran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakanoYumiko en-aut-sei=Nakano en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YunokiTaijun en-aut-sei=Yunoki en-aut-mei=Taijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakemotoMami en-aut-sei=Takemoto en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=CasRx kn-keyword=CasRx en-keyword=Hippocampal neurogenesis kn-keyword=Hippocampal neurogenesis en-keyword=In vivo direct reprogramming kn-keyword=In vivo direct reprogramming en-keyword=Ischemic stroke kn-keyword=Ischemic stroke en-keyword=PHP.eB kn-keyword=PHP.eB en-keyword=Ptbp1 kn-keyword=Ptbp1 en-keyword=Recognition memory kn-keyword=Recognition memory END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=1 article-no= start-page=2398895 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surrogate-Assisted Multi-Objective Optimization for Simultaneous Three-Dimensional Packing and Motion Planning Problems Using the Sequence-Triple Representation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Packing problems are classical optimization problems with wide-ranging applications. With the advancement of robotic manipulation, there are growing demands for the automation of packing tasks. However, the simultaneous optimization of packing and the robot's motion planning is challenging because these two decisions are interconnected, and no previous study has addressed this optimization problem. This paper presents a framework to simultaneously determine the robot's motion planning and packing decision to minimize the robot's processing time and the container's volume. This framework comprises three key components: solution encoding, surrogate modeling, and evolutionary computation. The sequence-triple representation encodes complex packing solutions by a sequence of integers. A surrogate model is trained to predict the processing time for a given packing solution to reduce the computational burden. Training data is generated by solving the motion planning problem for a set of packing solutions using the rapidly exploring random tree algorithm. The Non-Dominated Sorting Genetic Algorithm II searches for the Pareto solutions. Experimental evaluations are conducted using a 6-DOF robot manipulator. The experimental results suggest that implementing the surrogate model can reduce the computational time by 91.1%. The proposed surrogate-assisted optimization method can obtain significantly better solutions than the joint angular velocity-based estimation method. en-copyright= kn-copyright= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawabeTomoya en-aut-sei=Kawabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoShun en-aut-sei=Ito en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraTomofumi en-aut-sei=Fujiwara en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Packing problem kn-keyword=Packing problem en-keyword=sequence-triple kn-keyword=sequence-triple en-keyword=motion planning kn-keyword=motion planning en-keyword=surrogate model kn-keyword=surrogate model en-keyword=multi-objective optimization kn-keyword=multi-objective optimization END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=8 article-no= start-page=1005 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240807 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Enhanced Active Access-Point Configuration Algorithm Using the Throughput Request Satisfaction Method for an Energy-Efficient Wireless Local-Area Network en-subtitle= kn-subtitle= en-abstract= kn-abstract=Wireless Local-Area Networks (WLANs), as a popular internet access solution, are widely used in numerous places, including enterprises, campuses, and public venues. As the number of devices increases, large-scale deployments will cause the problem of dense wireless networks, including a lot of energy consumption. Thus, the optimization of energy-efficient wireless AP devices has become a focal point of attention. To reduce energy consumption, we have proposed the active access-point (AP) configuration algorithm for WLANs using APs with a dual interface. This uses the greedy algorithm combined with the local search optimization method to find the minimum number of activated APs while satisfying the minimum throughput constraint. However, the previous algorithm basically satisfies only the average throughput among the multiple hosts associated with one AP, wherein some hosts may not reach the required one. In this paper, to overcome this limitation, we propose an enhanced active AP configuration algorithm by incorporating the throughput request satisfaction method that controls the actual throughput at the target value (target throughput) for every host by applying traffic shaping. The target throughput is calculated from the single and concurrent communicating throughput of each host based on channel occupancy time. The minimum throughput constraint will be iteratively adjusted to obtain the required target throughput and achieve the fair throughput allocation. For evaluations, we conducted simulations using the WIMNET simulator and experiments using the testbed system with a Raspberry Pi 4B for APs in four topology cases with five APs and ten hosts. The results show that the proposed method always achieved the required minimum throughput in simulations as well as in experiments, while minimizing the number of active APs. Thus, the validity and effectiveness of our proposal were confirmed. en-copyright= kn-copyright= en-aut-name=WuBin en-aut-sei=Wu en-aut-mei=Bin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KongDezheng en-aut-sei=Kong en-aut-mei=Dezheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangXuan en-aut-sei=Wang en-aut-mei=Xuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SetoTaishiro en-aut-sei=Seto en-aut-mei=Taishiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FanYu-Cheng en-aut-sei=Fan en-aut-mei=Yu-Cheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Electronic Engineering, National Taipei University of Technology kn-affil= en-keyword=energy-efficient WLAN kn-keyword=energy-efficient WLAN en-keyword=IoT kn-keyword=IoT en-keyword=active AP configuration algorithm kn-keyword=active AP configuration algorithm en-keyword=throughput request satisfaction method kn-keyword=throughput request satisfaction method en-keyword=throughput control kn-keyword=throughput control en-keyword=traffic shaping kn-keyword=traffic shaping END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=8 article-no= start-page=464 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Image-Based User Interface Testing Method for Flutter Programming Learning Assistant System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Flutter has become popular for providing a uniform development environment for user interfaces (UIs) on smart phones, web browsers, and desktop applications. We have developed the Flutter programming learning assistant system (FPLAS) to assist its novice students' self-study. We implemented the Docker-based Flutter environment with Visual Studio Code and three introductory exercise projects. However, the correctness of students' answers is manually checked, although automatic checking is necessary to reduce teachers' workload and provide quick responses to students. This paper presents an image-based user interface (UI) testing method to automate UI testing by the answer code using the Flask framework. This method produces the UI image by running the answer code and compares it with the image made by the model code for the assignment using ORB and SIFT algorithms in the OpenCV library. One notable aspect is the necessity to capture multiple UI screenshots through page transitions by user input actions for the accurate detection of changes in UI elements. For evaluations, we assigned five Flutter exercise projects to fourth-year bachelor and first-year master engineering students at Okayama University, Japan, and applied the proposed method to their answers. The results confirm the effectiveness of the proposal. en-copyright= kn-copyright= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AungLynn Htet en-aut-sei=Aung en-aut-mei=Lynn Htet kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinariSafira Adine en-aut-sei=Kinari en-aut-mei=Safira Adine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WaiKhaing Hsu en-aut-sei=Wai en-aut-mei=Khaing Hsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MentariMustika en-aut-sei=Mentari en-aut-mei=Mustika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=Flutter kn-keyword=Flutter en-keyword=FPLAS kn-keyword=FPLAS en-keyword=testing kn-keyword=testing en-keyword=image kn-keyword=image en-keyword=Flask kn-keyword=Flask en-keyword=OpenCV kn-keyword=OpenCV en-keyword=user interface kn-keyword=user interface END start-ver=1.4 cd-journal=joma no-vol=357 cd-vols= no-issue= article-no= start-page=114601 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Revisiting the hormonal control of sexual dimorphism in chicken feathers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sexual dimorphism in plumage is widespread among avian species. In chickens, adult females exhibit countershading, characterized by dull-colored round feathers lacking fringe on the saddle, while adult males display vibrant plumage with deeply fringed bright feathers. This dimorphism is estrogen-dependent, and administering estrogen to males transforms their showy plumage into cryptic female-like plumage. Extensive studies have shown that estrogen’s role in female plumage formation requires thyroid hormone; however, the precise mechanisms of their interaction remain unclear. In this study, we investigated the roles of estrogen and thyroid hormone in creating sexual dimorphism in the structure and coloration of saddle feathers by administering each hormone to adult males and observing the resulting changes in regenerated feathers induced by plucking. RT-PCR analysis revealed that the expression of type 3 deiodinase (DIO3), responsible for thyroid hormone inactivation, correlates with fringing. Estrogen suppressed DIO3 and agouti signaling protein (ASIP) expression while stimulating BlSK1, a marker of barbule cells, resulting in female-like feathers with mottled patterns and lacking fringes. Administration of thyroxine (T4) stimulated BlSK1 and proopiomelanocortin (POMC) expression, with no effect on ASIP, leading to the formation of solid black feathers lacking fringes. Triiodothyronine (T3) significantly increased POMC expression in pulp cells in culture. Taken together, these findings suggest that estrogen promotes the formation of solid vanes by suppressing DIO3 expression, while also inducing the formation of mottled patterns through inhibition of ASIP expression and indirect stimulation of melanocortin expression via changes in local T3 concentration. This is the first report describing molecular mechanism underlying hormonal crosstalk in creating sexual dimorphism in feathers. en-copyright= kn-copyright= en-aut-name=YouLi en-aut-sei=You en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishioKaori en-aut-sei=Nishio en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KowataKinue en-aut-sei=Kowata en-aut-mei=Kinue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HorikawaMinaru en-aut-sei=Horikawa en-aut-mei=Minaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukuchiHibiki en-aut-sei=Fukuchi en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OgoshiMaho en-aut-sei=Ogoshi en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AizawaSayaka en-aut-sei=Aizawa en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biology, Faculty of Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Melanocortin kn-keyword=Melanocortin en-keyword=Thyroid hormone kn-keyword=Thyroid hormone en-keyword=ASIP kn-keyword=ASIP en-keyword=Estrogen kn-keyword=Estrogen en-keyword=Deiodinase kn-keyword=Deiodinase END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=16 article-no= start-page=9038 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quercetin Attenuates Acetaldehyde-Induced Cytotoxicity via the Heme Oxygenase-1-Dependent Antioxidant Mechanism in Hepatocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection. en-copyright= kn-copyright= en-aut-name=LiKexin en-aut-sei=Li en-aut-mei=Kexin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KidawaraMinori en-aut-sei=Kidawara en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChenQiguang en-aut-sei=Chen en-aut-mei=Qiguang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraToshiyuki en-aut-sei=Nakamura en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=quercetin kn-keyword=quercetin en-keyword=acetaldehyde kn-keyword=acetaldehyde en-keyword=glutathione kn-keyword=glutathione en-keyword=aldehyde dehydrogenase kn-keyword=aldehyde dehydrogenase en-keyword=heme oxygenase-1 kn-keyword=heme oxygenase-1 END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=1403922 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lentil adaptation to drought stress: response, tolerance, and breeding approaches en-subtitle= kn-subtitle= en-abstract= kn-abstract=Lentil (Lens culinaris Medik.) is a cool season legume crop that plays vital roles in food and nutritional security, mostly in the least developed countries. Lentil is often cultivated in dry and semi-dry regions, where the primary abiotic factor is drought, which negatively impacts lentil growth and development, resulting in a reduction of yield. To withstand drought-induced multiple negative effects, lentil plants evolved a variety of adaptation strategies that can be classified within three broad categories of drought tolerance mechanisms (i.e., escape, avoidance, and tolerance). Lentil adapts to drought by the modulation of various traits in the root system, leaf architecture, canopy structure, branching, anatomical features, and flowering process. Furthermore, the activation of certain defensive biochemical pathways as well as the regulation of gene functions contributes to lentil drought tolerance. Plant breeders typically employ conventional and mutational breeding approaches to develop lentil varieties that can withstand drought effects; however, little progress has been made in developing drought-tolerant lentil varieties using genomics-assisted technologies. This review highlights the current understanding of morpho-physiological, biochemical, and molecular mechanisms of lentil adaptation to drought stress. We also discuss the potential application of omics-assisted breeding approaches to develop lentil varieties with superior drought tolerance traits. en-copyright= kn-copyright= en-aut-name=NoorMd. Mahmud Al en-aut-sei=Noor en-aut-mei=Md. Mahmud Al kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Tahjib-Ul-ArifMd. en-aut-sei=Tahjib-Ul-Arif en-aut-mei=Md. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AlimS. M. Abdul en-aut-sei=Alim en-aut-mei=S. M. Abdul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IslamMd. Mohimenul en-aut-sei=Islam en-aut-mei=Md. Mohimenul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasanMd. Toufiq en-aut-sei=Hasan en-aut-mei=Md. Toufiq kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BabarMd. Ali en-aut-sei=Babar en-aut-mei=Md. Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HossainMohammad Anwar en-aut-sei=Hossain en-aut-mei=Mohammad Anwar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=JewelZilhas Ahmed en-aut-sei=Jewel en-aut-mei=Zilhas Ahmed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MostofaMohammad Golam en-aut-sei=Mostofa en-aut-mei=Mohammad Golam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture kn-affil= affil-num=4 en-affil=Horticulture Division, Bangladesh Institute of Nuclear Agriculture kn-affil= affil-num=5 en-affil=Department of Biotechnology, Bangladesh Agricultural University kn-affil= affil-num=6 en-affil=Agronomy Departments, University of Florida kn-affil= affil-num=7 en-affil=Department of Genetics and Plant Breeding, Bangladesh Agricultural University kn-affil= affil-num=8 en-affil=Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Department of Biochemistry and Molecular Biology, Michigan State University kn-affil= en-keyword=abiotic stress kn-keyword=abiotic stress en-keyword=morphology kn-keyword=morphology en-keyword=pulse crop kn-keyword=pulse crop en-keyword=plant growth kn-keyword=plant growth en-keyword=omics kn-keyword=omics en-keyword=water-deficit kn-keyword=water-deficit END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=14543 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240624 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cervical spinal cord stimulation exerts anti-epileptic effects in a rat model of epileptic seizure through the suppression of CCL2-mediated cascades en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epidural spinal cord stimulation (SCS) is indicated for the treatment of intractable pain and is widely used in clinical practice. In previous basic research, the therapeutic effects of SCS have been demonstrated for epileptic seizure. However, the mechanism has not yet been elucidated. In this study, we investigated the therapeutic effect of SCS and the influence of epileptic seizure. First, SCS in the cervical spine was performed. The rats were divided into four groups: control group and treatment groups with SCS conducted at 2, 50, and 300 Hz frequency. Two days later, convulsions were induced by the intraperitoneal administration of kainic acid, followed by video monitoring to assess seizures. We also evaluated glial cells in the hippocampus by fluorescent immunostaining, electroencephalogram measurements, and inflammatory cytokines such as C-C motif chemokine ligand 2 (CCL2) by quantitative real-time polymerase chain reaction. Seizure frequency and the number of glial cells were significantly lower in the 300 Hz group than in the control group. SCS at 300 Hz decreased gene expression level of CCL2, which induces monocyte migration. SCS has anti-seizure effects by inhibiting CCL2-mediated cascades. The suppression of CCL2 and glial cells may be associated with the suppression of epileptic seizure. en-copyright= kn-copyright= en-aut-name=OkazakiYosuke en-aut-sei=Okazaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HosomotoKakeru en-aut-sei=Hosomoto en-aut-mei=Kakeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanimotoShun en-aut-sei=Tanimoto en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawaiKoji en-aut-sei=Kawai en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagaseTakayuki en-aut-sei=Nagase en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YabunoSatoru en-aut-sei=Yabuno en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Kure Kyosai Hospital kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neurosurgery, Okayama Rosai Hospital kn-affil= en-keyword=Epileptic seizure kn-keyword=Epileptic seizure en-keyword=Glial cells kn-keyword=Glial cells en-keyword=Spinal cord stimulation kn-keyword=Spinal cord stimulation en-keyword=C-C motif chemokine ligand 2 kn-keyword=C-C motif chemokine ligand 2 END start-ver=1.4 cd-journal=joma no-vol=206 cd-vols= no-issue=1-2 article-no= start-page=37 end-page=45 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240822 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Does a coexisting congener of a mixed mating species affect the genetic structure and selfing rate via reproductive interference? en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reproductive interference is defined as an interspecific interaction that reduces fitness via mating processes. Although its ecological and evolutionary consequences have attracted much attention, how reproductive interference affects the population genetic structures of interacting species is still unclear. In flowering plants, recent studies found that self-pollination can mitigate the negative effects of reproductive interference. Selfing-biased seed production is expected to increase population-level inbreeding and the selfing rate, and limits gene flow via pollinator outcrossing among populations. We examined the population genetics of the mixed-mating annual herb Commelina communis f. ciliata, focusing on reproductive interference by the sympatric competing congener C. communis using microsatellite markers. First, we found that almost all C. c. f. ciliata populations had relatively high inbreeding coefficients. Then, comparing sympatric and allopatric populations, we found evidence that reproductive interference from a competing congener increased the inbreeding coefficient and selfing rate. Allopatric populations exhibit varied selfing rates while almost all sympatric populations exhibit extremely high selfing rates, suggesting that population selfing rates were also influenced by unexamined factors, such as pollinator limitation. Besides, our findings revealed that reproductive interference from a competing congener did not limit gene flow among populations. We present the first report on how reproductive interference affects the genetic aspects of populations. Our results suggested that the high selfing rate of C. c. f. ciliata promotes its sympatric distribution with C. communis, even in the presence of reproductive interference, although it is not clear whether reproductive interference directly causes the high selfing rate. en-copyright= kn-copyright= en-aut-name=KatsuharaKoki R. en-aut-sei=Katsuhara en-aut-mei=Koki R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UshimaruAtushi en-aut-sei=Ushimaru en-aut-mei=Atushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyazakiYuko en-aut-sei=Miyazaki en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Human Development and Environment, Kobe University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Commelina kn-keyword=Commelina en-keyword=Genetic diversity kn-keyword=Genetic diversity en-keyword=Inbreeding coefficient kn-keyword=Inbreeding coefficient en-keyword=Mixed mating kn-keyword=Mixed mating en-keyword=Population genetics kn-keyword=Population genetics END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=111371 end-page=111385 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Adaptive Resonance Theory-Based Global Topological Map Building for an Autonomous Mobile Robot en-subtitle= kn-subtitle= en-abstract= kn-abstract=3D space perception is one of the key technologies for autonomous mobile robots that perform tasks in unknown environments. Among these, building global topological maps for autonomous mobile robots is a challenging task. In this study, we propose a method for learning topological structures from unknown data distributions based on competitive learning, a type of unsupervised learning. For this purpose, adaptive resonance theory-based Topological Clustering (ATC), which can avoid catastrophic forgetting of previously measured point clouds, is applied as a learning method. Furthermore, by extending ATC with Different Topologies (ATC-DT) with multiple topological structures for extracting the traversable information of terrain environments, a path planning method is realized that can reach target points set in an unknown environment. Path planning experiments in unknown environments show that, compared to other methods, ATC-DT can build a global topology map with high accuracy and stability using only measured 3D point cloud and robot position information. en-copyright= kn-copyright= en-aut-name=TodaYuichiro en-aut-sei=Toda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MasuyamaNaoki en-aut-sei=Masuyama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Informatics, Osaka Metropolitan University kn-affil= en-keyword=Adaptive resonance theory kn-keyword=Adaptive resonance theory en-keyword=autonomous mobile robot kn-keyword=autonomous mobile robot en-keyword=topological map kn-keyword=topological map END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=18063 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Human heart-on-a-chip microphysiological system comprising endothelial cells, fibroblasts, and iPSC-derived cardiomyocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=In recent years, research on organ-on-a-chip technology has been flourishing, particularly for drug screening and disease model development. Fibroblasts and vascular endothelial cells engage in crosstalk through paracrine signaling and direct cell-cell contact, which is essential for the normal development and function of the heart. Therefore, to faithfully recapitulate cardiac function, it is imperative to incorporate fibroblasts and vascular endothelial cells into a heart-on-a-chip model. Here, we report the development of a human heart-on-a-chip composed of induced pluripotent stem cell (iPSC)-derived cardiomyocytes, fibroblasts, and vascular endothelial cells. Vascular endothelial cells cultured on microfluidic channels responded to the flow of culture medium mimicking blood flow by orienting themselves parallel to the flow direction, akin to in vivo vascular alignment in response to blood flow. Furthermore, the flow of culture medium promoted integrity among vascular endothelial cells, as evidenced by CD31 staining and lower apparent permeability. The tri-culture condition of iPSC-derived cardiomyocytes, fibroblasts, and vascular endothelial cells resulted in higher expression of the ventricular cardiomyocyte marker IRX4 and increased contractility compared to the bi-culture condition with iPSC-derived cardiomyocytes and fibroblasts alone. Such tri-culture-derived cardiac tissues exhibited cardiac responses similar to in vivo hearts, including an increase in heart rate upon noradrenaline administration. In summary, we have achieved the development of a heart-on-a-chip composed of cardiomyocytes, fibroblasts, and vascular endothelial cells that mimics in vivo cardiac behavior. en-copyright= kn-copyright= en-aut-name=LiuYun en-aut-sei=Liu en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KamranRumaisa en-aut-sei=Kamran en-aut-mei=Rumaisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HanXiaoxia en-aut-sei=Han en-aut-mei=Xiaoxia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangMengxue en-aut-sei=Wang en-aut-mei=Mengxue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiQiang en-aut-sei=Li en-aut-mei=Qiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LaiDaoyue en-aut-sei=Lai en-aut-mei=Daoyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Induced pluripotent stem cells kn-keyword=Induced pluripotent stem cells en-keyword=Fibroblasts kn-keyword=Fibroblasts en-keyword=Endothelial cells kn-keyword=Endothelial cells en-keyword=Heart kn-keyword=Heart en-keyword=Heart-on-a-chip kn-keyword=Heart-on-a-chip en-keyword=Organ-on-a-chip kn-keyword=Organ-on-a-chip END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=100347 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reduction with zinc - Impact on the determination of nitrite and nitrate ions using microfluidic paper-based analytical devices en-subtitle= kn-subtitle= en-abstract= kn-abstract=We used a microfluidic paper-based analytical device (mu PAD) to investigate the influence that zinc reduction exerts on the determination of nitrite and nitrate ions in natural water samples. The mu PAD consists of layered channels for the reduction of nitrate to nitrite with zinc powder and the subsequent detection of nitrite with Griess reagent. The amount of zinc, number of layers, and reaction time for the reduction were optimized to obtain an intense signal for nitrate. Initially, the sensitivity to nitrate corresponded to 55% that of nitrite, which implied an incomplete reduction. We found, however, that zinc decreased the sensitivity to nitrite in both the mu PAD and spectrophotometry. The sensitivity to nitrite was decreased by 48% in spectrophotometry and 68% in the mu PAD following the reaction with zinc. One of the reasons for the decreased sensitivity is attributed to the production of ammonia, as we elucidated that both nitrite and nitrate produced ammonia via the reaction with zinc. The results suggest that the total concentration of nitrite and nitrate must be corrected by constructing a calibration curve for nitrite with zinc, in addition to developing curves for nitrate with zinc and for nitrite without zinc. Using these calibration curves, the absorbance at different concentration ratios of nitrite and nitrate ions could be reproduced via calculation using the calibration curves with zinc for nitrite and nitrate. Eventually, the developed mu PAD was applied to the determination of nitrite and nitrate ions in natural water samples, and the results were compared with those using a conventional spectrophotometric method. The results of the mu PAD are in good agreement with those of conventional spectrophotometry, which suggests that the mu PAD is reliable for the measurement of nitrite and nitrate ions in natural water samples. en-copyright= kn-copyright= en-aut-name=UmedaMika I. en-aut-sei=Umeda en-aut-mei=Mika I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiiTakatoshi en-aut-sei=Fujii en-aut-mei=Takatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HinoEiichi en-aut-sei=Hino en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DateYusuke en-aut-sei=Date en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AokiKaoru en-aut-sei=Aoki en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=National Institute of Technology, Yonago College kn-affil= affil-num=4 en-affil=National Institute of Technology, Yonago College kn-affil= affil-num=5 en-affil=National Institute of Technology, Yonago College kn-affil= affil-num=6 en-affil=National Institute of Technology, Yonago College kn-affil= affil-num=7 en-affil=Okayama University kn-affil= en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Nitrite ion kn-keyword=Nitrite ion en-keyword=Nitrate ion kn-keyword=Nitrate ion en-keyword=On-site analysis kn-keyword=On-site analysis en-keyword=Environmental analysis kn-keyword=Environmental analysis END start-ver=1.4 cd-journal=joma no-vol=378 cd-vols= no-issue= article-no= start-page=113269 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mesoporous carbon with extremely low micropore content synthesized from graphene oxide modified with alkali metal nitrates en-subtitle= kn-subtitle= en-abstract= kn-abstract=High-temperature thermal exfoliation is a simple, rapid, and cost-efficient method for transforming graphene oxide (GO) materials into reduced graphene oxide (rGO) materials. In this study, GO materials were dispersed with alkali metal nitrates (MNO3), leading to the preparation of porous rGO materials characterized by high specific surface area (SSA) and pore volume via high-temperature thermal exfoliation. Experimental data indicate that the metal cations of MNO3 tend to react directly with the oxygen functional groups (OFG) of GO, modulating the OFG content. Simultaneously, nitrate anions have preferential interaction with alkali metal ions and adhere to the surface of the GO. The presence of MNO3 on the surface of GO facilitates the thermal exfoliation process and leads to the formation of structures with an extremely high proportion of mesoporous content. The isothermal gas adsorption results show that the exfoliation efficiency of the samples activated with different nitrate salts decreases in the order rGO-KNO3 > rGO-NaNO3 > rGO-LiNO3. Among these samples, rGO modified with KNO3 exhibited the greatest exfoliation efficiency, with a mesopore-to-micropore volume ratio of 22.4, more than 1.7 times that of rGO. Its SSA and pore volume were 359 m2 g?1 and 1.26 cm3 g?1, respectively. These values significantly surpass those of rGO. Our research findings demonstrate that activation with MNO3 significantly increases the SSA and pore volume of the GO material after high-temperature annealing. en-copyright= kn-copyright= en-aut-name=LiZhao en-aut-sei=Li en-aut-mei=Zhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ToyotaMoeto en-aut-sei=Toyota en-aut-mei=Moeto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OhkuboTakahiro en-aut-sei=Ohkubo en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Mesoporous carbon kn-keyword=Mesoporous carbon en-keyword=Alkali metal nitrates kn-keyword=Alkali metal nitrates en-keyword=Oxygen functional groups kn-keyword=Oxygen functional groups en-keyword=Activation kn-keyword=Activation en-keyword=Thermal exfoliation kn-keyword=Thermal exfoliation END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=32 article-no= start-page=16994 end-page=17000 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Droplet-Removal Processes on Fog-Harvesting Performance on Wettability-Controlled Wire Array with Staggered Arrangement en-subtitle= kn-subtitle= en-abstract= kn-abstract=Development of freshwater resources is vital to overcoming severe worldwide water scarcity. Fog harvesting has attracted attention as a candidate technology that can be used to obtain fresh water from a stream of foggy air without energy input. Drainage of captured droplets from fog harvesters is necessary to maintain the permeability of harp-shaped harvesters. In the present study, we investigated the effect of the droplet-removal process on the amount of water harvested using a harvester constructed by wettability-controlled wires with an alternating and staggered arrangement. Droplet transfer from hydrophobic to hydrophilic wires, located upstream and downstream of the fog flow, respectively, was observed with a fog velocity greater than 1.5 m/s. The proportion of harvesting resulting from droplet transfer exceeded 30% of the total, and it reflected more than 20% increase of the harvesting performance compared with that of a harvester with wires of the same wettability: this value varied with the adhesive property of the wires and fog velocity. Scaled-up and multilayered harvesters were developed to enhance harvesting performance. We demonstrated certain enhancements under multilayered conditions and obtained 15.99 g/30 min as the maximum harvested amount, which corresponds to 13.3% of the liquid contained in the fog stream and is enhanced by 10% compared with that without droplet transfer. en-copyright= kn-copyright= en-aut-name=YamadaYutaka en-aut-sei=Yamada en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkaJunya en-aut-sei=Oka en-aut-mei=Junya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsobeKazuma en-aut-sei=Isobe en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeAkihiko en-aut-sei=Horibe en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue=8 article-no= start-page=upae146 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240726 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrochemical synthesis of heterocyclic compounds via carbon?heteroatom bond formation: direct and indirect electrolysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Electrochemical organic synthesis has attracted attention as an environmentally friendly method for constructing heterocyclic compounds via carbon?heteroatom bond formation. Herein, we describe the representative examples of electrochemical reactions to produce heterocycles and discuss them according to whether they involve direct or indirect electrolysis. en-copyright= kn-copyright= en-aut-name=OkumuraYasuyuki en-aut-sei=Okumura en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=carbon?heteroatom bond formation kn-keyword=carbon?heteroatom bond formation en-keyword=electrochemical synthesis kn-keyword=electrochemical synthesis en-keyword=heterocyclic compounds kn-keyword=heterocyclic compounds END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=2 article-no= start-page=152 end-page=158 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Death Feigning in Larvae of Scorpionflies (Mecoptera: Panorpidae): Frequency and Postural Changes Based on Larval Instars en-subtitle= kn-subtitle= en-abstract= kn-abstract=Death feigning is thought to have evolved primarily as a predator avoidance behavior, and has been reported in 10 of the 31 orders of insects. However, there have been no reports of death-feigning behavior in Mecoptera species. We found that larvae of two scorpionfly species, Panorpa japonica and P. pryeri, showed death feigning in response to external stimuli by brush poking stimulation. First, we examined the frequencies of death-feigning postures. The two species showed two different postures of death feigning, “straight” and “ball.” Most of the 1st instar larvae of P. japonica and P. pryeri adopted the straight death-feigning posture. Next, we examined duration of death feigning. As the larval instar progressed, the death-feigning posture shifted from straight to ball in both Panorpa species. In P. japonica, the longest durations of death feigning were found in the 2nd to 3rd instars, while the longest duration of death feigning was found in the late 4th instar in P. pryeri larvae. en-copyright= kn-copyright= en-aut-name=IshiharaRyo en-aut-sei=Ishihara en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Anti-predator behavior kn-keyword=Anti-predator behavior en-keyword=freezing kn-keyword=freezing en-keyword=larvae kn-keyword=larvae en-keyword=thanatosis kn-keyword=thanatosis en-keyword=tonic immobility kn-keyword=tonic immobility END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=17591 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Training high-performance deep learning classifier for diagnosis in oral cytology using diverse annotations en-subtitle= kn-subtitle= en-abstract= kn-abstract=The uncertainty of true labels in medical images hinders diagnosis owing to the variability across professionals when applying deep learning models. We used deep learning to obtain an optimal convolutional neural network (CNN) by adequately annotating data for oral exfoliative cytology considering labels from multiple oral pathologists. Six whole-slide images were processed using QuPath for segmenting them into tiles. The images were labeled by three oral pathologists, resulting in 14,535 images with the corresponding pathologists' annotations. Data from three pathologists who provided the same diagnosis were labeled as ground truth (GT) and used for testing. We investigated six models trained using the annotations of (1) pathologist A, (2) pathologist B, (3) pathologist C, (4) GT, (5) majority voting, and (6) a probabilistic model. We divided the test by cross-validation per slide dataset and examined the classification performance of the CNN with a ResNet50 baseline. Statistical evaluation was performed repeatedly and independently using every slide 10 times as test data. For the area under the curve, three cases showed the highest values (0.861, 0.955, and 0.991) for the probabilistic model. Regarding accuracy, two cases showed the highest values (0.988 and 0.967). For the models using the pathologists and GT annotations, many slides showed very low accuracy and large variations across tests. Hence, the classifier trained with probabilistic labels provided the optimal CNN for oral exfoliative cytology considering diagnoses from multiple pathologists. These results may lead to trusted medical artificial intelligence solutions that reflect diverse diagnoses of various professionals. en-copyright= kn-copyright= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaFuta en-aut-sei=Tanaka en-aut-mei=Futa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaraTakeshi en-aut-sei=Hara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OchiaiTakanaga en-aut-sei=Ochiai en-aut-mei=Takanaga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimadaKatsumitsu en-aut-sei=Shimada en-aut-mei=Katsumitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=InoueYuta en-aut-sei=Inoue en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakiYoshihiro en-aut-sei=Taki en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakaiFumi en-aut-sei=Nakai en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakaiYasuhiro en-aut-sei=Nakai en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshihamaTakanori en-aut-sei=Ishihama en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyazakiRyo en-aut-sei=Miyazaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MurakamiSatoshi en-aut-sei=Murakami en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MiyakeMinoru en-aut-sei=Miyake en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=5 en-affil=Division of Oral Pathogenesis and Disease Control, Department of Oral Pathology, Asahi University School of Dentistry kn-affil= affil-num=6 en-affil=Department of Oral Pathology, Graduate School of Oral Medicine, Matsumoto Dental University kn-affil= affil-num=7 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=8 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=11 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=12 en-affil=Stony Brook Cancer Center, Stony Brook University kn-affil= affil-num=13 en-affil=Department of Oral Pathology, Graduate School of Oral Medicine, Matsumoto Dental University kn-affil= affil-num=14 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= en-keyword=Deep learning kn-keyword=Deep learning en-keyword=Oral cytology kn-keyword=Oral cytology en-keyword=Classification kn-keyword=Classification en-keyword=Convolutional neural network kn-keyword=Convolutional neural network en-keyword=Probabilistic labeling kn-keyword=Probabilistic labeling END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=15 article-no= start-page=2930 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Performance Investigations of VSLAM and Google Street View Integration in Outdoor Location-Based Augmented Reality under Various Lighting Conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=The growing demand for Location-based Augmented Reality (LAR) experiences has driven the integration of Visual Simultaneous Localization And Mapping (VSLAM) with Google Street View (GSV) to enhance the accuracy. However, the impact of the ambient light intensity on the accuracy and reliability is underexplored, posing significant challenges in outdoor LAR implementations. This paper investigates the impact of light conditions on the accuracy and reliability of the VSLAM/GSV integration approach in outdoor LAR implementations. This study fills a gap in the current literature and offers valuable insights into vision-based approach implementation under different light conditions. Extensive experiments were conducted at five Point of Interest (POI) locations under various light conditions with a total of 100 datasets. Descriptive statistic methods were employed to analyze the data and assess the performance variation. Additionally, the Analysis of Variance (ANOVA) analysis was utilized to assess the impact of different light conditions on the accuracy metric and horizontal tracking time, determining whether there are significant differences in performance across varying levels of light intensity. The experimental results revealed that a significant correlation (p < 0.05) exists between the ambient light intensity and the accuracy of the VSLAM/GSV integration approach. Through the confidence interval estimation, the minimum illuminance 434 lx is needed to provide a feasible and consistent accuracy. Variations in visual references, such as wet surfaces in the rainy season, also impact the horizontal tracking time and accuracy. en-copyright= kn-copyright= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RiyantokoPrismahardi Aji en-aut-sei=Riyantoko en-aut-mei=Prismahardi Aji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MentariMustika en-aut-sei=Mentari en-aut-mei=Mustika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=light intensity kn-keyword=light intensity en-keyword=Location-based Augmented Reality (LAR) kn-keyword=Location-based Augmented Reality (LAR) en-keyword=outdoor kn-keyword=outdoor en-keyword=Visual Simultaneous Localization And Mapping (VSLAM) kn-keyword=Visual Simultaneous Localization And Mapping (VSLAM) en-keyword=Google Street View (GSV) kn-keyword=Google Street View (GSV) END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=8 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240729 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=New lineages of RNA viruses from clinical isolates of Rhizopus microsporus revealed by fragmented and primer-ligated dsRNA sequencing (FLDS) analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhizopus microsporus is a species in the order Mucorales that is known to cause mucormycosis, but it is poorly understood as a host of viruses. Here, we examined 25 clinical strains of R. microsporus for viral infection with a conventional double-stranded RNA (dsRNA) assay using agarose gel electrophoresis (AGE) and the recently established fragmented and primer-ligated dsRNA sequencing (FLDS) protocol. By AGE, five virus-infected strains were detected. Then, full-length genomic sequences of 12 novel RNA viruses were revealed by FLDS, which were related to the families Mitoviridae, Narnaviridae, and Endornaviridae, ill-defined groups of single-stranded RNA (ssRNA) viruses with similarity to the established families Virgaviridae and Phasmaviridae, and the proposed family "Ambiguiviridae." All the characterized viruses, except a potential phasmavirid with a negative-sense RNA genome, had positive-sense RNA genomes. One virus belonged to a previously established species within the family Mitoviridae, whereas the other 11 viruses represented new species or even new genera. These results show that the fungal pathogen R. microsporus harbors diverse RNA viruses and extend our understanding of the diversity of RNA viruses in the fungal order Mucorales, division Mucoromycota. Identifying RNA viruses from clinical isolates of R. microsporus may expand the repertoire of natural therapeutic agents for mucormycosis in the future. en-copyright= kn-copyright= en-aut-name=Sa'diyahWasiatus en-aut-sei=Sa'diyah en-aut-mei=Wasiatus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhaoYan-Jie en-aut-sei=Zhao en-aut-mei=Yan-Jie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChibaYuto en-aut-sei=Chiba en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BanSayaka en-aut-sei=Ban en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YaguchiTakashi en-aut-sei=Yaguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UrayamaSyun-Ichi en-aut-sei=Urayama en-aut-mei=Syun-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HagiwaraDaisuke en-aut-sei=Hagiwara en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= affil-num=3 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Medical Mycology Research Center, Chiba University kn-affil= affil-num=7 en-affil=Medical Mycology Research Center, Chiba University kn-affil= affil-num=8 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= affil-num=9 en-affil=Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (Donated by IFO), University of Tsukuba kn-affil= en-keyword=Rhizopus microsporus kn-keyword=Rhizopus microsporus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=diversity kn-keyword=diversity en-keyword=new lineage kn-keyword=new lineage en-keyword=FLDS kn-keyword=FLDS END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=17025 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical and endocrine features of orthostatic intolerance detected in patients with long COVID en-subtitle= kn-subtitle= en-abstract= kn-abstract=Orthostatic intolerance (OI) is a key symptom of long COVID; however, the pathophysiology remains unknown. Among 688 long COVID patients who visited our clinic during the period from February 2021 to April 2023, 86 patients who were suspected of having OI and who underwent an active standing test (ST) were investigated to elucidate the clinical characteristics of OI in patients with long COVID. Of the 86 patients, 33 patients (38%) were ST-positive. Nausea and tachycardia in daily life were frequent complaints in the ST-positive group. The increase in heart rate (HR) during the ST was significantly greater during a 10-min period after standing in the ST-positive group (+ 30 bpm) than in the ST-negative group (+ 16 bpm). The initial increase in diastolic blood pressure (DBP) just after standing was significantly greater in the ST-positive group (+ 14 mmHg) than in the ST-negative group (+ 9 mmHg). Serum cortisol levels in the ST-positive patients aged over 20 years were higher and growth hormone levels in the patients under 20 years of age were lower than those in the ST-negative group. Autonomous nervous symptoms, transient DBP rise with increasing HR after standing, and endocrine dysfunctions are helpful for detecting OI related to long COVID. en-copyright= kn-copyright= en-aut-name=KatoAtsushi en-aut-sei=Kato en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TokumasuKazuki en-aut-sei=Tokumasu en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoKoichiro en-aut-sei=Yamamoto en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoYasuhiro en-aut-sei=Nakano en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HondaHiroyuki en-aut-sei=Honda en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SunadaNaruhiko en-aut-sei=Sunada en-aut-mei=Naruhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakuradaYasue en-aut-sei=Sakurada en-aut-mei=Yasue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsudaYui en-aut-sei=Matsuda en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HasegawaToru en-aut-sei=Hasegawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakaseRyosuke en-aut-sei=Takase en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UedaKeigo en-aut-sei=Ueda en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Active standing test kn-keyword=Active standing test en-keyword=Long COVID kn-keyword=Long COVID en-keyword=Orthostatic intolerance kn-keyword=Orthostatic intolerance en-keyword=Post COVID-19 condition kn-keyword=Post COVID-19 condition en-keyword=Postural orthostatic tachycardia syndrome (POTS) kn-keyword=Postural orthostatic tachycardia syndrome (POTS) END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=98175 end-page=98188 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Feasibility of Active Reactance Compensator for Autonomously Maximizing Repeater Coil Current of Wireless Power Transfer System Against Variations in Resonant Frequency and Magnetic Coupling Intensity en-subtitle= kn-subtitle= en-abstract= kn-abstract=In resonant inductive coupling wireless power transfer systems, a repeater resonator is crucial in expanding the charging area, enabling efficient power supply to receivers, such as small Internet of Things (IoT) devices sparsely distributed in a wide area. However, the repeater current is highly susceptible to deviations in resonance frequency due to manufacturing tolerance and aging, as well as to the magnetic coupling between the transmitter and repeater coils, potentially leading to insufficient amplitude. Consequently, the magnetic field generated by the repeater decreases and the receiver may be difficult to obtain sufficient power from the transmitter via the repeater. To address this problem, this paper proposes a wireless power transfer system with active reactance compensators incorporated in the repeater and the transmitter. The proposed system can equivalently adjust the resonant frequencies of the transmitter and repeater to stably maximize the repeater coil current regardless of the variations in the resonant frequency and the magnetic coupling intensity. Experiments successfully verify that the proposed system can provide a more stable and larger repeater current and output power than the conventional system against the variations in the magnetic field intensity and the resonant frequency of the repeater, validating the feasibility of the proposed system for practical utilization of the repeater in expanding the charging area. en-copyright= kn-copyright= en-aut-name=IshiharaMasataka en-aut-sei=Ishihara en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmetaniKazuhiro en-aut-sei=Umetani en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KonishiAkihiro en-aut-sei=Konishi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirakiEiji en-aut-sei=Hiraki en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Life, Environment, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Life, Environment, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Science and Engineering, Chiba University kn-affil= affil-num=4 en-affil=Faculty of Life, Environment, Natural Science and Technology, Okayama University kn-affil= en-keyword=Resonant inductive coupling kn-keyword=Resonant inductive coupling en-keyword=wireless power transfer kn-keyword=wireless power transfer en-keyword=repeater kn-keyword=repeater en-keyword=intermediate resonator kn-keyword=intermediate resonator en-keyword=frequency splitting phenomenon kn-keyword=frequency splitting phenomenon END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=14 article-no= start-page=2700 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Reference Paper Collection System Using Web Scraping en-subtitle= kn-subtitle= en-abstract= kn-abstract=Collecting reference papers from the Internet is one of the most important activities for progressing research and writing papers about their results. Unfortunately, the current process using Google Scholar may not be efficient, since a lot of paper files cannot be accessed directly by the user. Even if they are accessible, their effectiveness needs to be checked manually. In this paper, we propose a reference paper collection system using web scraping to automate paper collections from websites. This system can collect or monitor data from the Internet, which is considered as the environment, using Selenium, a popular web scraping software, as the sensor; this examines the similarity against the search target by comparing the keywords using the Bert model. The Bert model is a deep learning model for natural language processing (NLP) that can understand context by analyzing the relationships between words in a sentence bidirectionally. The Python Flask is adopted at the web application server, where Angular is used for data presentations. For the evaluation, we measured the performance, investigated the accuracy, and asked members of our laboratory to use the proposed method and provide their feedback. Their results confirm the method’s effectiveness. en-copyright= kn-copyright= en-aut-name=NaingInzali en-aut-sei=Naing en-aut-mei=Inzali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WaiKhaing Hsu en-aut-sei=Wai en-aut-mei=Khaing Hsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=web scraping kn-keyword=web scraping en-keyword=Google Scholar kn-keyword=Google Scholar en-keyword=data collection kn-keyword=data collection en-keyword=Bert kn-keyword=Bert en-keyword=Selenium kn-keyword=Selenium en-keyword=flask framework kn-keyword=flask framework en-keyword=Angular kn-keyword=Angular END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=5536 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Controlling 229Th isomeric state population in a VUV transparent crystal en-subtitle= kn-subtitle= en-abstract= kn-abstract=The radioisotope thorium-229 (Th-229) is renowned for its extraordinarily low-energy, long-lived nuclear first-excited state. This isomeric state can be excited by vacuum ultraviolet (VUV) lasers and Th-229 has been proposed as a reference transition for ultra-precise nuclear clocks. To assess the feasibility and performance of the nuclear clock concept, time-controlled excitation and depopulation of the Th-229 isomer are imperative. Here we report the population of the Th-229 isomeric state through resonant X-ray pumping and detection of the radiative decay in a VUV transparent Th-229-doped CaF2 crystal. The decay half-life is measured to 447(25) s, with a transition wavelength of 148.18(42) nm and a radiative decay fraction consistent with unity. Furthermore, we report a new "X-ray quenching" effect which allows to de-populate the isomer on demand and effectively reduce the half-life. Such controlled quenching can be used to significantly speed up the interrogation cycle in future nuclear clock schemes. en-copyright= kn-copyright= en-aut-name=HirakiTakahiro en-aut-sei=Hiraki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkaiKoichi en-aut-sei=Okai en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BartokosMichael en-aut-sei=Bartokos en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BeeksKjeld en-aut-sei=Beeks en-aut-mei=Kjeld kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujimotoHiroyuki en-aut-sei=Fujimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukunagaYuta en-aut-sei=Fukunaga en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HabaHiromitsu en-aut-sei=Haba en-aut-mei=Hiromitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KasamatsuYoshitaka en-aut-sei=Kasamatsu en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KitaoShinji en-aut-sei=Kitao en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LeitnerAdrian en-aut-sei=Leitner en-aut-mei=Adrian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasudaTakahiko en-aut-sei=Masuda en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=GuanMing en-aut-sei=Guan en-aut-mei=Ming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NagasawaNobumoto en-aut-sei=Nagasawa en-aut-mei=Nobumoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OgakeRyoichiro en-aut-sei=Ogake en-aut-mei=Ryoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=PimonMartin en-aut-sei=Pimon en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=PresslerMartin en-aut-sei=Pressler en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SasaoNoboru en-aut-sei=Sasao en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SchadenFabian en-aut-sei=Schaden en-aut-mei=Fabian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SchummThorsten en-aut-sei=Schumm en-aut-mei=Thorsten kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SetoMakoto en-aut-sei=Seto en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ShigekawaYudai en-aut-sei=Shigekawa en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimizuKotaro en-aut-sei=Shimizu en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SikorskyTomas en-aut-sei=Sikorsky en-aut-mei=Tomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TamasakuKenji en-aut-sei=Tamasaku en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=TakatoriSayuri en-aut-sei=Takatori en-aut-mei=Sayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=WatanabeTsukasa en-aut-sei=Watanabe en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=YamaguchiAtsushi en-aut-sei=Yamaguchi en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=YodaYoshitaka en-aut-sei=Yoda en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=YoshimiAkihiro en-aut-sei=Yoshimi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=YoshimuraKoji en-aut-sei=Yoshimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=4 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=5 en-affil=National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=RIKEN kn-affil= affil-num=8 en-affil=Graduate School of Science, Osaka University kn-affil= affil-num=9 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=10 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=13 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=15 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=16 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=17 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=18 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=19 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=20 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=21 en-affil=RIKEN kn-affil= affil-num=22 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=23 en-affil=Institute for Atomic and Subatomic Physics, TU Wien kn-affil= affil-num=24 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=25 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=26 en-affil=National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=27 en-affil=RIKEN kn-affil= affil-num=28 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=29 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=30 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=32 article-no= start-page=23177 end-page=23183 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lead-free iron-doped Cs3Bi2Br9 perovskite with tunable properties en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perovskite based on cesium bismuth bromide offers a compelling, non-toxic alternative to lead-containing counterparts in optoelectronic applications. However, its widespread usage is hindered by its wide bandgap. This study investigates a significant bandgap tunability achieved by introducing Fe doping into the inorganic, lead-free, non-toxic, and stable Cs3Bi2Br9 perovskite at varying concentrations. The materials were synthesized using a facile method, with the aim of tuning the optoelectronic properties of the perovskite materials. Characterization through techniques such as X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, energy dispersive spectroscopy (EDS), and UV-vis spectroscopy was conducted to elucidate the transformation mechanism of the doping materials. The substitution process results in a significant change in the bandgap energy, transforming from the pristine Cs3Bi2Br9 with a bandgap of 2.54 eV to 1.78 eV upon 70% Fe doping. The addition of 50% Fe in Cs3Bi2Br9 leads to the formation of the orthorhombic structure in Cs2(Bi,Fe)Br5 perovskite, while complete Fe alloying at 100% results in the phase formation of CsFeBr4 perovskite. Our findings on regulation of bandgap energy and crystal structure through B site substitution hold significant promise for applications in optoelectronics. en-copyright= kn-copyright= en-aut-name=HtunThiri en-aut-sei=Htun en-aut-mei=Thiri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ElattarAmr en-aut-sei=Elattar en-aut-mei=Amr kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ElbohyHytham en-aut-sei=Elbohy en-aut-mei=Hytham kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsutsumiKosei en-aut-sei=Tsutsumi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoriganeKazumasa en-aut-sei=Horigane en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoChiyu en-aut-sei=Nakano en-aut-mei=Chiyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GuXiaoyu en-aut-sei=Gu en-aut-mei=Xiaoyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzukiHiroo en-aut-sei=Suzuki en-aut-mei=Hiroo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishikawaTakeshi en-aut-sei=Nishikawa en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KyawAung Ko Ko en-aut-sei=Kyaw en-aut-mei=Aung Ko Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Ain Shams University kn-affil= affil-num=3 en-affil=Physics Department, Faculty of Science, Damietta University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=7 en-affil=Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting and Department of Electronic & Electrical Engineering, Southern University of Science and Technology kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting and Department of Electronic & Electrical Engineering, Southern University of Science and Technology kn-affil= affil-num=11 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=5 article-no= start-page=463 end-page=483 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Detailed Re-Examination of the Period Gene Rescue Experiments Shows That Four to Six Cryptochrome-Positive Posterior Dorsal Clock Neurons (DN1p) of Drosophila melanogaster Can Control Morning and Evening Activity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Animal circadian clocks play a crucial role in regulating behavioral adaptations to daily environmental changes. The fruit fly Drosophila melanogaster exhibits 2 prominent peaks of activity in the morning and evening, known as morning (M) and evening (E) peaks. These peaks are controlled by 2 distinct circadian oscillators located in separate groups of clock neurons in the brain. To investigate the clock neurons responsible for the M and E peaks, a cell-specific gene expression system, the GAL4-UAS system, has been commonly employed. In this study, we re-examined the two-oscillator model for the M and E peaks of Drosophila by utilizing more than 50 Gal4 lines in conjunction with the UAS-period16 line, which enables the restoration of the clock function in specific cells in the period (per) null mutant background. Previous studies have indicated that the group of small ventrolateral neurons (s-LNv) is responsible for controlling the M peak, while the other group, consisting of the 5th ventrolateral neuron (5th LNv) and the three cryptochrome (CRY)-positive dorsolateral neurons (LNd), is responsible for the E peak. Furthermore, the group of posterior dorsal neurons 1 (DN1p) is thought to also contain M and E oscillators. In this study, we found that Gal4 lines directed at the same clock neuron groups can lead to different results, underscoring the fact that activity patterns are influenced by many factors. Nevertheless, we were able to confirm previous findings that the entire network of circadian clock neurons controls M and E peaks, with the lateral neurons playing a dominant role. In addition, we demonstrate that 4 to 6 CRY-positive DN1p cells are sufficient to generate M and E peaks in light-dark cycles and complex free-running rhythms in constant darkness. Ultimately, our detailed screening could serve as a catalog to choose the best Gal4 lines that can be used to rescue per in specific clock neurons. en-copyright= kn-copyright= en-aut-name=SekiguchiManabu en-aut-sei=Sekiguchi en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ReinhardNils en-aut-sei=Reinhard en-aut-mei=Nils kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukudaAyumi en-aut-sei=Fukuda en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatohShun en-aut-sei=Katoh en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RiegerDirk en-aut-sei=Rieger en-aut-mei=Dirk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Helfrich-F?rsterCharlotte en-aut-sei=Helfrich-F?rster en-aut-mei=Charlotte kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of W?rzburg kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of W?rzburg kn-affil= affil-num=6 en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of W?rzburg kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=period kn-keyword=period en-keyword=GAL4-UAS kn-keyword=GAL4-UAS en-keyword=clock neuron kn-keyword=clock neuron en-keyword=activity rhythm kn-keyword=activity rhythm en-keyword=two-oscillator model kn-keyword=two-oscillator model END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=3 article-no= start-page=177 end-page=185 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240718 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reduced fitness in losers of leg-biting male combat compared to uncontested males in Zophobas atratus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sexual dimorphism and male combat are observed in many species. Often, the outcome of male combat affects the outcome of subsequent combats, mating success, number of sperm, and fitness of the male’s offspring. Also, the quantity and quality of sperm may be regulated by winning or losing, depending on species ecology and mating system. However, very few studies have experimentally examined the influence of fight outcomes on male offspring fitness. We studied male combat in the giant mealworm (Zophobas atratus) in which males bite each other’s hind legs. We hypothesized that subsequent fitness could differ between winners and losers in the escalated male combat of this species. We measured several fitness traits including the number of eggs laid by mated females, and the number of hatches sired by uncontested males, winners, and losers in escalated and non-escalated combat, and compared the fitness of each winner and loser to that of an uncontested male. We also measured mating duration. The numbers of eggs and the percentages of hatched eggs of losers in the escalated combat were significantly reduced compared to that of the uncontested males. This reduction may be due to injuries from escalated leg- biting fights and a result of the sperm amount of the uncontested males being greater than that of the loser males. en-copyright= kn-copyright= en-aut-name=MatsuuraTeruhisa en-aut-sei=Matsuura en-aut-mei=Teruhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Beetle kn-keyword=Beetle en-keyword=Offspring fitness kn-keyword=Offspring fitness en-keyword=Male combat kn-keyword=Male combat en-keyword=Hind leg kn-keyword=Hind leg en-keyword=Weapon kn-keyword=Weapon END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=8 article-no= start-page=1509 end-page=1519 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Intramolecular [π4s?+?π4s] photocycloaddition of carbon- and nitrogen-bridged [32](1,4)naphthalenophanes en-subtitle= kn-subtitle= en-abstract= kn-abstract=[32](1,4)Naphthalenophanes, bearing carbon-bridge chains (syn- and anti-NPs) and nitrogen-bridge chains (syn- and anti-ANPs), were synthesized, and their X-ray structures and photoreactions were investigated. The intramolecular separation distance between the naphthalene cores for ANPs was shorter than that for NPs, suggesting that intramolecular interactions between the naphthalene rings were more efficient for ANPs compared to NPs. Upon photoirradiation at 300 nm, anti-NP, syn-ANP and anti-ANP produced the corresponding intramolecular [π4s?+?π4s] cycloadducts, whereas syn-NP gave an unidentified complex product mixture. Quantum yields for the photo-consumption (ΦPC) of NPs and ANPs were evaluated to quantitatively compare their photoreactivity. The ΦPC values of ANPs were approximately two-fold higher than those of ANPs.Noteworthily, the ΦPC value of syn-ANP was estimated to be unity. Based on these results we discuss the effects of the alignments of the naphthalene cores (anti vs. syn) and the bridging elements (C-bridge vs. N-bridge) on the photoreaction efficiencies of [32](1,4)naphthalenophanes. en-copyright= kn-copyright= en-aut-name=OgumaYukiko en-aut-sei=Oguma en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoMasanori en-aut-sei=Yamamoto en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SunatsukiYukinari en-aut-sei=Sunatsuki en-aut-mei=Yukinari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OtaHiromi en-aut-sei=Ota en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamajiMinoru en-aut-sei=Yamaji en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkamotoHideki en-aut-sei=Okamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Instrumental Analysis, Advanced Science Research Center, Okayama University kn-affil= affil-num=5 en-affil=Division of Molecular Science, Graduate School of Science and Engineering, Gunma University kn-affil= affil-num=6 en-affil=Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Cyclophane kn-keyword=Cyclophane en-keyword=Azacyclophane kn-keyword=Azacyclophane en-keyword=Naphthalenophane kn-keyword=Naphthalenophane en-keyword=Photocycloaddition kn-keyword=Photocycloaddition en-keyword=[4 + 4] cycloaddition kn-keyword=[4 + 4] cycloaddition END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=29 article-no= start-page=5836 end-page=5847 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between π?A isotherms and single microgel/microgel array structures revealed via the direct visualization of microgels at the air/water interface en-subtitle= kn-subtitle= en-abstract= kn-abstract=The structures of single microgels and microgel arrays formed at the air/water interface were visualized directly, and their structures correlated with π?A isotherms in order to understand the compression behavior of soft and deformable microgels at this interface. Large microgels (ca. 4 μm) were synthesized so that these can be clearly visualized at the air/water interface, even under high compression, and a series of microgel compression experiments were directly evaluated using a Langmuir trough equipped with a fluorescence microscope. The experiments revealed that upon compressing the microgel arrays at the interface voids disappeared and colloidal crystallinity increased. However, the colloidal crystallinity decreased when the microgel arrays were strongly compressed. In addition, when the structures were observed at higher magnification, it became clear that the single microgel structures, when visualized from above, changed from circular to polygonal upon compressing the microgel array. The results of this study can be expected to improve the understanding of the compression behavior of microgel arrays adsorbed at the air/water interface and will thus be useful for the creation of new functional microgel stabilizers with potential applications in e.g., bubbles and emulsions. en-copyright= kn-copyright= en-aut-name=KawamotoTakahisa en-aut-sei=Kawamoto en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MinatoHaruka en-aut-sei=Minato en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=32 article-no= start-page=12686 end-page=12694 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Boosting charge separation in organic photovoltaics: unveiling dipole moment variations in excited non-fullerene acceptor layers en-subtitle= kn-subtitle= en-abstract= kn-abstract=The power conversion efficiency (PCE) of organic photovoltaics (OPVs) has reached more than 19% due to the rapid development of non-fullerene acceptors (NFAs). To compete with the PCEs (26%) of commercialized silicon-based inorganic photovoltaics, the drawback of OPVs should be minimized. This drawback is the intrinsic large loss of open-circuit voltage; however, a general approach to this issue remains elusive. Here, we report a discovery regarding highly efficient NFAs, specifically ITIC. We found that charge-transfer (CT) and charge dissociation (CD) can occur even in a neat ITIC film without the donor layer. This is surprising, as these processes were previously believed to take place exclusively at donor/acceptor heterojunctions. Femtosecond time-resolved visible to mid-infrared measurements revealed that in the neat ITIC layers, the intermolecular CT immediately proceeds after photoirradiation (<0.1 ps) to form weakly-bound excitons with a binding energy of 0.3 eV, which are further dissociated into free electrons and holes with a time-constant of 56 ps. Theoretical calculations indicate that stacking faults in ITIC (i.e., V-type molecular stacking) induce instantaneous intermolecular CT and CD in the neat ITIC layer. In contrast, J-type stacking does not support such CT and CD. This previously unknown pathway is triggered by the larger dipole moment change on the excited state generated at the lower symmetric V-type molecular stacking of ITIC. This is in sharp contrast with the need of sufficient energy offset for CT and CD at the donor-acceptor heterojunction, leading to the significant voltage loss in conventional OPVs. These results demonstrate that the rational molecular design of NFAs can increase the local dipole moment change on the excited state within the NFA layer. This finding paves the way for a groundbreaking route toward the commercialization of OPVs. en-copyright= kn-copyright= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoKosaku en-aut-sei=Kato en-aut-mei=Kosaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UrakamiTakumi en-aut-sei=Urakami en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsujimuraSota en-aut-sei=Tsujimura en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurayamaKasumi en-aut-sei=Murayama en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HigashiMasahiro en-aut-sei=Higashi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatoHirofumi en-aut-sei=Sato en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KoboriYasuhiro en-aut-sei=Kobori en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UmeyamaTomokazu en-aut-sei=Umeyama en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ImahoriHiroshi en-aut-sei=Imahori en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Molecular Engineering, Graduate School of Engineering, Kyoto University kn-affil= affil-num=4 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=6 en-affil=Department of Complex Systems Science, Graduate School of Informatics, Nagoya University kn-affil= affil-num=7 en-affil=Department of Molecular Engineering, Graduate School of Engineering, Kyoto University kn-affil= affil-num=8 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=9 en-affil=Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo kn-affil= affil-num=10 en-affil=Department of Molecular Engineering, Graduate School of Engineering, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=9 cd-vols= no-issue=43 article-no= start-page=eadi8446 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of a diatom photosystem II supercomplex containing a member of Lhcx family and dimeric FCPII en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diatoms rely on fucoxanthin chlorophyll a/c-binding proteins (FCPs) for their great success in oceans, which have a great diversity in their pigment, protein compositions, and subunit organizations. We report a unique structure of photosystem II (PSII)-FCPII supercomplex from Thalassiosira pseudonana at 2.68-angstrom resolution by cryo-electron microscopy. FCPIIs within this PSII-FCPII supercomplex exist in dimers and monomers, and a homodimer and a heterodimer were found to bind to a PSII core. The FCPII homodimer is formed by Lhcf7 and associates with PSII through an Lhcx family antenna Lhcx6_1, whereas the heterodimer is formed by Lhcf6 and Lhcf11 and connects to the core together with an Lhcf5 monomer through Lhca2 monomer. An extended pigment network consisting of diatoxanthins, diadinoxanthins, fucoxanthins, and chlorophylls a/c is revealed, which functions in efficient light harvesting, energy transfer, and dissipation. These results provide a structural basis for revealing the energy transfer and dissipation mechanisms and also for the structural diversity of FCP antennas in diatoms. en-copyright= kn-copyright= en-aut-name=FengYue en-aut-sei=Feng en-aut-mei=Yue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiZhenhua en-aut-sei=Li en-aut-mei=Zhenhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiXiaoyi en-aut-sei=Li en-aut-mei=Xiaoyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenLili en-aut-sei=Shen en-aut-mei=Lili kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiuXueyang en-aut-sei=Liu en-aut-mei=Xueyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ZhouCuicui en-aut-sei=Zhou en-aut-mei=Cuicui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangJinyang en-aut-sei=Zhang en-aut-mei=Jinyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SangMin en-aut-sei=Sang en-aut-mei=Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YangWenqiang en-aut-sei=Yang en-aut-mei=Wenqiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=China National Botanical Garden kn-affil= affil-num=9 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=10 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=12 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=13 en-affil=Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=13 article-no= start-page=4293 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimizing IoT Intrusion Detection Using Balanced Class Distribution, Feature Selection, and Ensemble Machine Learning Techniques en-subtitle= kn-subtitle= en-abstract= kn-abstract=Internet of Things (IoT) devices are leading to advancements in innovation, efficiency, and sustainability across various industries. However, as the number of connected IoT devices increases, the risk of intrusion becomes a major concern in IoT security. To prevent intrusions, it is crucial to implement intrusion detection systems (IDSs) that can detect and prevent such attacks. IDSs are a critical component of cybersecurity infrastructure. They are designed to detect and respond to malicious activities within a network or system. Traditional IDS methods rely on predefined signatures or rules to identify known threats, but these techniques may struggle to detect novel or sophisticated attacks. The implementation of IDSs with machine learning (ML) and deep learning (DL) techniques has been proposed to improve IDSs' ability to detect attacks. This will enhance overall cybersecurity posture and resilience. However, ML and DL techniques face several issues that may impact the models' performance and effectiveness, such as overfitting and the effects of unimportant features on finding meaningful patterns. To ensure better performance and reliability of machine learning models in IDSs when dealing with new and unseen threats, the models need to be optimized. This can be done by addressing overfitting and implementing feature selection. In this paper, we propose a scheme to optimize IoT intrusion detection by using class balancing and feature selection for preprocessing. We evaluated the experiment on the UNSW-NB15 dataset and the NSL-KD dataset by implementing two different ensemble models: one using a support vector machine (SVM) with bagging and another using long short-term memory (LSTM) with stacking. The results of the performance and the confusion matrix show that the LSTM stacking with analysis of variance (ANOVA) feature selection model is a superior model for classifying network attacks. It has remarkable accuracies of 96.92% and 99.77% and overfitting values of 0.33% and 0.04% on the two datasets, respectively. The model's ROC is also shaped with a sharp bend, with AUC values of 0.9665 and 0.9971 for the UNSW-NB15 dataset and the NSL-KD dataset, respectively. en-copyright= kn-copyright= en-aut-name=MusthafaMuhammad Bisri en-aut-sei=Musthafa en-aut-mei=Muhammad Bisri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HudaSamsul en-aut-sei=Huda en-aut-mei=Samsul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoderaYuta en-aut-sei=Kodera en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AliMd. Arshad en-aut-sei=Ali en-aut-mei=Md. Arshad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ArakiShunsuke en-aut-sei=Araki en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MwauraJedidah en-aut-sei=Mwaura en-aut-mei=Jedidah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NogamiYasuyuki en-aut-sei=Nogami en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Green Innovation Center, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of CSE, Hajee Mohammad Danesh Science and Technology University kn-affil= affil-num=5 en-affil=Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology kn-affil= affil-num=6 en-affil=Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=intrusion detection system kn-keyword=intrusion detection system en-keyword=feature selection kn-keyword=feature selection en-keyword=class balancing kn-keyword=class balancing en-keyword=ensemble technique kn-keyword=ensemble technique en-keyword=stacked long short-term memory kn-keyword=stacked long short-term memory END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue=2 article-no= start-page=023104 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240708 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced thermal conductivity of fluids by percolating high-concentration few-layer graphene en-subtitle= kn-subtitle= en-abstract= kn-abstract=High-performance and small-sized heat exchangers have been demanded due to the miniaturization and higher output of electronic devices, lasers, and energy harvesting/storage systems. Graphene nanosheet suspension has attracted attention as a next-generation nanofluid because of its high thermal conductivity and low pressure drop, while being dispersed stably without any additives. Graphene-based nanofluids have been mostly investigated using graphene oxide, and there are a few studies on pure graphene because of the limitation in mass production and stabilization at high concentrations of graphene. In this study, we prepared a 10?wt. % high-concentration few-layer graphene suspension by pulverizing graphite particles. Scanning electron microscopy, atomic force microscopy, and Raman spectra confirmed the few-layer graphene is formed in the suspension. The thermal conductivity of the suspension increased with concentration and suddenly jumped at a specific concentration. Furthermore, a significant improvement in thermal conductivity of >40% compared to base liquid was confirmed at 10?wt. % graphene content. A similar trend was observed for electrical resistance; 10?wt. % graphene suspension showed 62% lower resistance than that of 1?wt. %. These results suggest the percolation of graphene in a liquid, which has not been observed for graphene-based materials in previous research. en-copyright= kn-copyright= en-aut-name=IshiiKeiko en-aut-sei=Ishii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgiyamaTakahiro en-aut-sei=Ogiyama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FumotoKoji en-aut-sei=Fumoto en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=College of Science and Engineering, Chuo University kn-affil= affil-num=2 en-affil=College of Science and Engineering, Aoyama Gakuin University kn-affil= affil-num=3 en-affil=College of Science and Engineering, Aoyama Gakuin University kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=137 cd-vols= no-issue=11 article-no= start-page=jcs261977 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Toxicity of the model protein 3×GFP arises from degradation overload, not from aggregate formation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although protein aggregation can cause cytotoxicity, such aggregates can also form to mitigate cytotoxicity from misfolded proteins, although the nature of these contrasting aggregates remains unclear. We previously found that overproduction (op) of a three green fluorescent protein-linked protein (3×GFP) induces giant aggregates and is detrimental to growth. Here, we investigated the mechanism of growth inhibition by 3×GFP-op using non-aggregative 3×MOX-op as a control in Saccharomyces cerevisiae. The 3×GFP aggregates were induced by misfolding, and 3×GFP-op had higher cytotoxicity than 3×MOX-op because it perturbed the ubiquitin-proteasome system. Static aggregates formed by 3×GFP-op dynamically trapped Hsp70 family proteins (Ssa1 and Ssa2 in yeast), causing the heat-shock response. Systematic analysis of mutants deficient in the protein quality control suggested that 3×GFP-op did not cause a critical Hsp70 depletion and aggregation functioned in the direction of mitigating toxicity. Artificial trapping of essential cell cycle regulators into 3×GFP aggregates caused abnormalities in the cell cycle. In conclusion, the formation of the giant 3×GFP aggregates itself is not cytotoxic, as it does not entrap and deplete essential proteins. Rather, it is productive, inducing the heat-shock response while preventing an overload to the degradation system. en-copyright= kn-copyright= en-aut-name=NambaShotaro en-aut-sei=Namba en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriyaHisao en-aut-sei=Moriya en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Aggregation kn-keyword=Aggregation en-keyword=Fluorescent protein kn-keyword=Fluorescent protein en-keyword=Hsp70 kn-keyword=Hsp70 en-keyword=Overproduction kn-keyword=Overproduction en-keyword=Toxicity kn-keyword=Toxicity en-keyword=Yeast kn-keyword=Yeast END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=15139 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genetic background influences mineral accumulation in rice straw and grains under different soil pH conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mineral element accumulation in plants is influenced by soil conditions and varietal factors. We investigated the dynamic accumulation of 12 elements in straw at the flowering stage and in grains at the mature stage in eight rice varieties with different genetic backgrounds (Japonica, Indica, and admixture) and flowering times (early, middle, and late) grown in soil with various pH levels. In straw, Cd, As, Mn, Zn, Ca, Mg, and Cu accumulation was influenced by both soil pH and varietal factors, whereas P, Mo, and K accumulation was influenced by pH, and Fe and Ni accumulation was affected by varietal factors. In grains, Cd, As, Mn, Cu, Ni, Mo, Ca, and Mg accumulation was influenced by both pH and varietal factors, whereas Zn, Fe, and P accumulation was affected by varietal factors, and K accumulation was not altered. Only As, Mn, Ca and Mg showed similar trends in the straw and grains, whereas the pH responses of Zn, P, K, and Ni differed between them. pH and flowering time had synergistic effects on Cd, Zn, and Mn in straw and on Cd, Ni, Mo, and Mn in grains. Soil pH is a major factor influencing mineral uptake in rice straw and grains, and genetic factors, flowering stage factors, and their interaction with soil pH contribute in a combined manner. en-copyright= kn-copyright= en-aut-name=YamamotoToshio en-aut-sei=Yamamoto en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KashiharaKazunari en-aut-sei=Kashihara en-aut-mei=Kazunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FurutaTomoyuki en-aut-sei=Furuta en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangQian en-aut-sei=Zhang en-aut-mei=Qian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YuEn en-aut-sei=Yu en-aut-mei=En kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue= article-no= start-page=1560 end-page=1571 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240711 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines under mild conditions with a proton-exchange membrane reactor en-subtitle= kn-subtitle= en-abstract= kn-abstract=An electrocatalytic hydrogenation of cyanoarenes, nitroarenes, quinolines, and pyridines using a proton-exchange membrane (PEM) reactor was developed. Cyanoarenes were then reduced to the corresponding benzylamines at room temperature in the presence of ethyl phosphate. The reduction of nitroarenes proceeded at room temperature, and a variety of anilines were obtained. The quinoline reduction was efficiently promoted by adding a catalytic amount of p-toluenesulfonic acid (PTSA) or pyridinium p-toluenesulfonate (PPTS). Pyridine was also reduced to piperidine in the presence of PTSA. en-copyright= kn-copyright= en-aut-name=MitsudoKoichi en-aut-sei=Mitsudo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OsakiAtsushi en-aut-sei=Osaki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=InoueHaruka en-aut-sei=Inoue en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoEisuke en-aut-sei=Sato en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShidaNaoki en-aut-sei=Shida en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AtobeMahito en-aut-sei=Atobe en-aut-mei=Mahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Engineering Science and Advanced Chemical Energy Research Center, Yokohama National University kn-affil= affil-num=6 en-affil=Graduate School of Engineering Science and Advanced Chemical Energy Research Center, Yokohama National University kn-affil= affil-num=7 en-affil=Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=cyanoarene kn-keyword=cyanoarene en-keyword=nitroarene kn-keyword=nitroarene en-keyword=PEM reactor kn-keyword=PEM reactor en-keyword=pyridine kn-keyword=pyridine en-keyword=quinoline kn-keyword=quinoline END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=10 article-no= start-page=1138 end-page=1149 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=S100A11 is involved in the progression of colorectal cancer through the desmosome-catenin-TCF signaling?pathway en-subtitle= kn-subtitle= en-abstract= kn-abstract=Compiling evidence has indicated that S100A11 expression at high levels is closely associated with various cancer species. Consistent with the results reported elsewhere, we have also revealed that S100A11 is highly expressed in squamous cell carcinoma, mesothelioma, and pancreatic cancers and plays a crucial role in cancer progression when secreted into extracellular fluid. Those studies are all focused on the extracellular role of S100A11. However, most of S100A11 is still present within cancer cells, although the intracellular role of S100A11 in cancer cells has not been fully elucidated. Thus, we aimed to investigate S100A11 functions within cancer cells, primarily focusing on colorectal cancer cells, whose S100A11 is abundantly present in cells and still poorly studied cancer for the protein. Our efforts revealed that overexpression of S100A11 promotes proliferation and migration, and downregulation inversely dampens those cancer behaviors. To clarify how intracellular S100A11 aids cancer cell activation, we tried to identify S100A11 binding proteins, resulting in novel binding partners in the inner membrane, many of which are desmosome proteins. Our molecular approach defined that S100A11 regulates the expression level of DSG1, a component protein of desmosome, by which S100A11 activates the TCF pathway via promoting nuclear translocation of γ-catenin from the desmosome. The identified new pathway greatly helps to comprehend S100A11’s nature in colorectal cancers and others. en-copyright= kn-copyright= en-aut-name=ZhouJin en-aut-sei=Zhou en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizutaNaoko en-aut-sei=Mizuta en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamakawaAtsuko en-aut-sei=Yamakawa en-aut-mei=Atsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=S100A11 kn-keyword=S100A11 en-keyword=Desmosome kn-keyword=Desmosome en-keyword=TCF signaling kn-keyword=TCF signaling en-keyword=Colorectal cancer kn-keyword=Colorectal cancer END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=6 article-no= start-page=24-00129 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of artificial defect on tensile properties of thin titanium alloy wire en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the effects of artificial defects, introduced via focused ion beam (FIB) processing, on the tensile properties of thin titanium alloy wires (Ti-6Al-4V). Results indicated that the defective wires fractured when the net-section nominal stress reached the ultimate tensile strength of the smooth wires, probably because of localized stress concentrations relaxing due to plastic deformation around the defects. The effect of defects on tensile properties was classified into three regions based on the size of the defect area. In the case of small defects, wires fractured at the smooth area away from the defects where the cross-sectional strength was lower. In this case, the defects minimally affected the tensile properties. This is attributable to variations in the cross-sectional strength of the wire, which resulted in some sections with lower strength as compared with the defect area. In the case of medium-sized defects, the fracture strain decreased gradually as the defect area increased. Finally, in the case of large defects, the fracture strain was extremely small. The boundary between the medium-sized and large defects indicates the transition from plastic deformation to no plastic deformation in the smooth area. en-copyright= kn-copyright= en-aut-name=SAKAMOTOJunji en-aut-sei=SAKAMOTO en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TADANaoya en-aut-sei=TADA en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UEMORITakeshi en-aut-sei=UEMORI en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OISHIKoyo en-aut-sei=OISHI en-aut-mei=Koyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=Okayama University kn-affil= en-keyword=Ti-6Al-4V kn-keyword=Ti-6Al-4V en-keyword=Thin wire kn-keyword=Thin wire en-keyword=Tensile properties kn-keyword=Tensile properties en-keyword=Defect kn-keyword=Defect en-keyword=Focused ion beam kn-keyword=Focused ion beam en-keyword=Net-section nominal stress kn-keyword=Net-section nominal stress en-keyword=Fracture surface kn-keyword=Fracture surface en-keyword=Fracture strain kn-keyword=Fracture strain END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue= article-no= start-page=102405 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal plasticity analysis of fatigue crack initiation site considering crystallographic orientation in Ti-22V-4Al alloy en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, plane bending fatigue tests were conducted on Ti-22V-4Al alloy, a beta-type titanium alloy, to examine the fatigue crack initiation behavior in detail. In addition, the prediction of fatigue crack initiation points was investigated from the perspectives of the Schmidt factor (SF) and crystal plasticity finite element method (CP-FEM). The slip system contributing to fatigue crack initiation can be accurately predicted by assessing the magnitude relationship of SF. Also, this prediction is already indicated in a lot of paper by using out of component of slip activity. However, the location where the fatigue crack will occur can be not estimated by SF on polycrystalline. Therefore, prediction of grains where fatigue cracks will occur could be achieved with high accuracy by constructing a CP-FEM that considers the mechanical interaction of polycrystals and grain boundary. Utilizing advanced methodologies such as CP-FEM and numerical calculation techniques, it is strictly investigated that the factors influencing fatigue crack initiation in polycrystalline materials. Our research concluded the understanding of fatigue crack initiation on polycrystal grains by considering the mechanical interaction of polycrystals and grain boundary. en-copyright= kn-copyright= en-aut-name=ArakawaJinta en-aut-sei=Arakawa en-aut-mei=Jinta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirazumiKoki en-aut-sei=Hirazumi en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakemotoYoshito en-aut-sei=Takemoto en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=β-Ti kn-keyword=β-Ti en-keyword=Fatigue crack initiation kn-keyword=Fatigue crack initiation en-keyword=Schmidt factor kn-keyword=Schmidt factor en-keyword=Crystal plasticity FEM kn-keyword=Crystal plasticity FEM en-keyword=Polycrystalline kn-keyword=Polycrystalline END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=3 article-no= start-page=3934 end-page=3949 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Designing and Prototyping an Axial-Flux Machine Using Ferrite PM and Round Wire for Traction Applications: Comparison With a Radial-Flux Machine Using Nd-Fe-B PM and Rectangular Wire en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper proposes a novel axial-flux permanent magnet machine (AFPM) employing ferrite permanent magnets (PMs) and round copper wire. The proposed AFPM adopts a novel rotor structure and uses tooth-tips with a suitable trapezoidal shape. These structures compensate for the low magnetomotive force of the round copper wire and ferrite PMs, achieving high performance at low cost. Additionally, compared with an off-the-shelf radial-flux permanent magnet machine (RFPM) using Nd-sintered PMs and rectangular copper wire, the proposed AFPM achieves the same output power and higher efficiency, despite using ferrite PMs and the round copper wire. Finally, a prototype of the proposed AFPM was manufactured and evaluated experimentally. The prototype achieved a high efficiency of over 95% across a wide operating area while maintaining required maximum torque, suggesting its potential for traction applications. en-copyright= kn-copyright= en-aut-name=TsunataRen en-aut-sei=Tsunata en-aut-mei=Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IzumiyaKosuke en-aut-sei=Izumiya en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakemotoMasatsugu en-aut-sei=Takemoto en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImaiJun en-aut-sei=Imai en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaitoTatsuya en-aut-sei=Saito en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UenoTomoyuki en-aut-sei=Ueno en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Sumitomo Electric Industries Ltd. kn-affil= affil-num=6 en-affil=Sumitomo Electric Industries Ltd. kn-affil= en-keyword=Axial gap motor kn-keyword=Axial gap motor en-keyword=axial-flux machine kn-keyword=axial-flux machine en-keyword=carbon fiber rotor kn-keyword=carbon fiber rotor en-keyword=carbon fiber-reinforced plastic kn-keyword=carbon fiber-reinforced plastic en-keyword=city commuter kn-keyword=city commuter en-keyword=ferrite magnet kn-keyword=ferrite magnet en-keyword=flat copper wire kn-keyword=flat copper wire en-keyword=high circumferential speed kn-keyword=high circumferential speed en-keyword=radial-flux machine kn-keyword=radial-flux machine END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=2926 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography en-subtitle= kn-subtitle= en-abstract= kn-abstract=The capability of focus control has been central to optical technologies that require both high temporal and spatial resolutions. However, existing varifocal lens schemes are commonly limited to the response time on the microsecond timescale and share the fundamental trade-off between the response time and the tuning power. Here, we propose an ultrafast holographic focusing method enabled by translating the speed of a fast 1D beam scanner into the speed of the complex wavefront modulation of a relatively slow 2D spatial light modulator. Using a pair of a digital micromirror device and a resonant scanner, we demonstrate an unprecedented refresh rate of focus control of 31?MHz, which is more than 1,000 times faster than the switching rate of a digital micromirror device. We also show that multiple micrometer-sized focal spots can be independently addressed in a range of over 1?MHz within a large volume of 5?mm × 5?mm × 5.5?mm, validating the superior spatiotemporal characteristics of the proposed technique ? high temporal and spatial precision, high tuning power, and random accessibility in a three-dimensional space. The demonstrated scheme offers a new route towards three-dimensional light manipulation in the 100?MHz regime. en-copyright= kn-copyright= en-aut-name=ShibukawaAtsushi en-aut-sei=Shibukawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiguchiRyota en-aut-sei=Higuchi en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SongGookho en-aut-sei=Song en-aut-mei=Gookho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikamiHideharu en-aut-sei=Mikami en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JangMooseok en-aut-sei=Jang en-aut-mei=Mooseok kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Research Institute for Electronic Science, Hokkaido University kn-affil= affil-num=2 en-affil=Research Institute for Electronic Science, Hokkaido University kn-affil= affil-num=3 en-affil=Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology kn-affil= affil-num=4 en-affil=Research Institute for Electronic Science, Hokkaido University kn-affil= affil-num=5 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=5 article-no= start-page=253 end-page=266 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Freeze-thaw Resistance of Concrete using Ground Granulated Blast-furnace Slag and Blast-furnace Slag Sand in Salt Water en-subtitle= kn-subtitle= en-abstract= kn-abstract=The freeze-thaw resistance of concrete is significantly lower in salt water than in fresh water. Concrete deteriorates through repeated freezing and thawing, but in salt water, freezing alone leads to destruction. This paper investigated the effect of calcium hydroxide in concrete on the failure of concrete under such low temperatures. Calcium hydroxide precipitates at the transition zone between aggregate and cement paste due to the hydration of cement. The lower the temperature and the higher the concentration of salt water, the more calcium hydroxide dissolves. From concrete, more calcium hydroxide is eluted in salt water than in fresh water. This accelerates the deterioration of mortar and concrete due to freeze-thaw action. Mortar and concrete using ground granulated blast-furnace slag produces less calcium hydroxide. In mortar and concrete using blast-furnace slag sand, calcium hydroxide precipitated around the aggregate reacts with cement paste and blast-furnace slag sand to modify the transition zone. From these results, it was clarified that concrete using blast-furnace slag exhibits high freeze-thaw resistance even in salt water.
This paper is the English translation of the authors’ previous work [Ayano, T., Fujii, T. and Okazaki, K., (2023). “Freeze-thaw resistance of concrete using ground granulated blast-furnace and blast-furnace slag sand in salt water.” Japanese Journal of JSCE, 79(12), 23-00042. (in Japanese)]. en-copyright= kn-copyright= en-aut-name=AyanoToshiki en-aut-sei=Ayano en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiTakashi en-aut-sei=Fujii en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkazakiKanako en-aut-sei=Okazaki en-aut-mei=Kanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Social Engineering and Environmental Management, Graduate School of Environmental and Life Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=3 article-no= start-page=281 end-page=289 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Volume X-Ray Micro-Computed Tomography Analysis of the Early Cephalized Central Nervous System in a Marine Flatworm, Stylochoplana pusilla en-subtitle= kn-subtitle= en-abstract= kn-abstract=Platyhelminthes are a phylum of simple bilaterian invertebrates with prototypic body systems. Compared with non-bilaterians such as cnidarians, the bilaterians are likely to exhibit integrated free-moving behaviors, which require a concentrated nervous system “brain” rather than the distributed nervous system of radiatans. Marine flatworms have an early cephalized ‘central’ nervous system compared not only with non-bilaterians but also with parasitic flatworms or freshwater planarians. In this study, we used the marine flatworm Stylochoplana pusilla as an excellent model organism in Platyhelminthes because of the early cephalized central nervous system. Here, we investigated the three-dimensional structures of the flatworm central nervous system by the use of X-ray micro-computed tomography (micro-CT) in a synchrotron radiation facility. We found that the obtained tomographic images were sufficient to discriminate some characteristic structures of the nervous system, including nerve cords around the cephalic ganglion, mushroom body-like structures, and putative optic nerves forming an optic commissure-like structure. Through the micro-CT imaging, we could obtain undistorted serial section images, permitting us to visualize precise spatial relationships of neuronal subpopulations and nerve tracts. 3-D micro-CT is very effective in the volume analysis of the nervous system at the cellular level; the methodology is straightforward and could be applied to many other non-model organisms. en-copyright= kn-copyright= en-aut-name=IkenagaTakanori en-aut-sei=Ikenaga en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiAoshi en-aut-sei=Kobayashi en-aut-mei=Aoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeuchiAkihisa en-aut-sei=Takeuchi en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UesugiKentaro en-aut-sei=Uesugi en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaezawaTakanobu en-aut-sei=Maezawa en-aut-mei=Takanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibataNorito en-aut-sei=Shibata en-aut-mei=Norito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Science and Engineering, Kagoshima University kn-affil= affil-num=2 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Japan Synchrotron Radiation Research Institute/SPring-8 kn-affil= affil-num=4 en-affil=Japan Synchrotron Radiation Research Institute/SPring-8 kn-affil= affil-num=5 en-affil=Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College kn-affil= affil-num=6 en-affil=Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College kn-affil= affil-num=7 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=bilaterians kn-keyword=bilaterians en-keyword=micro-CT scan kn-keyword=micro-CT scan en-keyword=central nervous system kn-keyword=central nervous system en-keyword=Platyhelminthes kn-keyword=Platyhelminthes en-keyword=marine flatworms kn-keyword=marine flatworms END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=25 article-no= start-page=e2318150121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Replication of single viruses across the kingdoms, Fungi, Plantae, and Animalia en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungusRosellinia necatrix could replicate in protoplasts of the carrot (Daucus carota), Nicotiana benthamiana and Nicotiana tabacum, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution. en-copyright= kn-copyright= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HyodoKiwamu en-aut-sei=Hyodo en-aut-mei=Kiwamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IchikawaHiroaki en-aut-sei=Ichikawa en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuwataRyusei en-aut-sei=Kuwata en-aut-mei=Ryusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Agrobiological Sciences, National Agriculture and Food Research Organization kn-affil= affil-num=4 en-affil=Faculty of Veterinary Medicine, Okayama University of Science kn-affil= affil-num=5 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=cross- kingdom infection kn-keyword=cross- kingdom infection en-keyword=partitivirus kn-keyword=partitivirus en-keyword=fungal virus kn-keyword=fungal virus en-keyword=Plantae kn-keyword=Plantae en-keyword=Animalia kn-keyword=Animalia END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=5082 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Strain-induced long-range charge-density wave order in the optimally doped Bi2Sr2-x Lax CuO6 superconductor en-subtitle= kn-subtitle= en-abstract= kn-abstract=The mechanism of high-temperature superconductivity in copper oxides (cuprate) remains elusive, with the pseudogap phase considered a potential factor. Recent attention has focused on a long-range symmetry-broken charge-density wave (CDW) order in the underdoped regime, induced by strong magnetic fields. Here by Cu-63,Cu-65-nuclear magnetic resonance, we report the discovery of a long-range CDW order in the optimally doped Bi2Sr2-xLaxCuO6 superconductor, induced by in-plane strain exceeding divided by epsilon divided by = 0.15 %, which deliberately breaks the crystal symmetry of the CuO2 plane. We find that compressive/tensile strains reduce superconductivity but enhance CDW, leaving superconductivity to coexist with CDW. The findings show that a long-range CDW order is an underlying hidden order in the pseudogap state, not limited to the underdoped regime, becoming apparent under strain. Our result sheds light on the intertwining of various orders in the cuprates. en-copyright= kn-copyright= en-aut-name=KawasakiShinji en-aut-sei=Kawasaki en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsukudaNao en-aut-sei=Tsukuda en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LinChengtian en-aut-sei=Lin en-aut-mei=Chengtian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhengGuo-Qing en-aut-sei=Zheng en-aut-mei=Guo-Qing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Max-Planck-Institut fur Festkorperforschung kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=6 article-no= start-page=e11518 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240618 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heterospecific interaction in two beetle species: Males with weapons decrease the reproductive success of species with weaponless males en-subtitle= kn-subtitle= en-abstract= kn-abstract=Many species often show male-male combat for mating opportunities and resources within the species. Sexual selection through this radical combat leads to the evolution of males with exaggerated traits used as weapons, such as horns or mandibles, that often result in victory during combat. However, heterospecific interaction due to errors in species identification has often been observed, which results in decreased mating opportunities within the same species and fewer fertilized eggs. Males with exaggerated weapons may show dominance in resource acquisition over males without weapons and may decrease the reproductive success of the latter due to competition between the two. However, few studies have examined heterospecific interaction focusing on males with or without weapons. In this study, we investigated the effects of the male weapon on reproductive traits in heterospecific interaction in two species: the broad-horned flour beetle (Gnatocerus cornutus), in which males have exaggerated weapon traits; and the red flour beetle (Tribolium castaneum), in which males have no weapon traits. Both species are closely related and use the same food resources. G. cornutus males interfered with the resource acquisition and reproductive opportunities of T. castaneum by attacking T. castaneum. The reproductive success of T. castaneum decreased when they cohabited with G. cornutus males. These findings show that male weapon traits, which are important for sexual selection within the same species, can also greatly influence reproduction in other species. en-copyright= kn-copyright= en-aut-name=OnishiRui en-aut-sei=Onishi en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Natural Science, and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Natural Science, and Technology, Okayama University kn-affil= en-keyword=Gnatocerus cornutus kn-keyword=Gnatocerus cornutus en-keyword=heterospecific interaction kn-keyword=heterospecific interaction en-keyword=male-male competition kn-keyword=male-male competition en-keyword=sexual selection kn-keyword=sexual selection en-keyword=Tribolium castaneum kn-keyword=Tribolium castaneum END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=11 article-no= start-page=2632 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In Vitro Study of Tumor-Homing Peptide-Modified Magnetic Nanoparticles for Magnetic Hyperthermia en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer cells have higher heat sensitivity compared to normal cells; therefore, hyperthermia is a promising approach for cancer therapy because of its ability to selectively kill cancer cells by heating them. However, the specific and rapid heating of tumor tissues remains challenging. This study investigated the potential of magnetic nanoparticles (MNPs) modified with tumor-homing peptides (THPs), specifically PL1 and PL3, for tumor-specific magnetic hyperthermia therapy. The synthesis of THP-modified MNPs involved the attachment of PL1 and PL3 peptides to the surface of the MNPs, which facilitated enhanced tumor cell binding and internalization. Cell specificity studies revealed an increased uptake of PL1- and PL3-MNPs by tumor cells compared to unmodified MNPs, indicating their potential for targeted delivery. In vitro hyperthermia experiments demonstrated the efficacy of PL3-MNPs in inducing tumor cell death when exposed to an alternating magnetic field (AMF). Even without exposure to an AMF, an additional ferroptotic pathway was suggested to be mediated by the nanoparticles. Thus, this study suggests that THP-modified MNPs, particularly PL3-MNPs, hold promise as a targeted approach for tumor-specific magnetic hyperthermia therapy. en-copyright= kn-copyright= en-aut-name=ZhouShengli en-aut-sei=Zhou en-aut-mei=Shengli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsutsumiuchiKaname en-aut-sei=Tsutsumiuchi en-aut-mei=Kaname kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ImaiRitsuko en-aut-sei=Imai en-aut-mei=Ritsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiYukiko en-aut-sei=Miki en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoAnna en-aut-sei=Kondo en-aut-mei=Anna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagawaHiroshi en-aut-sei=Nakagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=3 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=4 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=5 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=6 en-affil=College of Bioscience and Biotechnology, Chubu University kn-affil= affil-num=7 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=8 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=tumor-homing peptide kn-keyword=tumor-homing peptide en-keyword=magnetic hyperthermia kn-keyword=magnetic hyperthermia en-keyword=magnetic nanoparticles kn-keyword=magnetic nanoparticles en-keyword=ferroptosis kn-keyword=ferroptosis en-keyword=tumor-specific delivery kn-keyword=tumor-specific delivery END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=11 article-no= start-page=5889 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anti-HMGB1 mAb Therapy Reduces Epidural Hematoma Injury en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epidural and subdural hematomas are commonly associated with traumatic brain injury. While surgical removal is the primary intervention for these hematomas, it is also critical to prevent and reduce complications such as post-traumatic epilepsy, which may result from inflammatory responses in the injured brain areas. In the present study, we observed that high mobility group box-1 (HMGB1) decreased in the injured brain area beneath the epidural hematoma (EDH) in rats, concurrent with elevated plasma levels of HMGB1. Anti-HMGB1 monoclonal antibody therapy strongly inhibited both HMGB1 release and the subsequent increase in plasma levels. Moreover, this treatment suppressed the up-regulation of inflammatory cytokines and related molecules such as interleukin-1-beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and inducible nitric oxide synthase (iNOS) in the injured areas. Our in vitro experiments using SH-SY5Y demonstrated that hematoma components?thrombin, heme, and ferrous ion? prompted HMGB1 translocation from the nuclei to the cytoplasm, a process inhibited by the addition of the anti-HMGB1 mAb. These findings suggest that anti-HMGB1 mAb treatment not only inhibits HMGB1 translocation but also curtails inflammation in injured areas, thereby protecting the neural tissue. Thus, anti-HMGB1 mAb therapy could serve as a complementary therapy for an EDH before/after surgery. en-copyright= kn-copyright= en-aut-name=GaoShangze en-aut-sei=Gao en-aut-mei=Shangze kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangDengli en-aut-sei=Wang en-aut-mei=Dengli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiuKeyue en-aut-sei=Liu en-aut-mei=Keyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TomonoYasuko en-aut-sei=Tomono en-aut-mei=Yasuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FuLi en-aut-sei=Fu en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GaoYuan en-aut-sei=Gao en-aut-mei=Yuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiYohei en-aut-sei=Takahashi en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YataMariko en-aut-sei=Yata en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Translational Research & Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=epidural hematoma kn-keyword=epidural hematoma en-keyword=HMGB1 kn-keyword=HMGB1 en-keyword=inflammatory response kn-keyword=inflammatory response END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=5938 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Palaeoproteomic investigation of an ancient human skeleton with abnormal deposition of dental calculus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Detailed investigation of extremely severe pathological conditions in ancient human skeletons is important as it could shed light on the breadth of potential interactions between humans and disease etiologies in the past. Here, we applied palaeoproteomics to investigate an ancient human skeletal individual with severe oral pathology, focusing our research on bacterial pathogenic factors and host defense response. This female skeleton, from the Okhotsk period (i.e., fifth to thirteenth century) of Northern Japan, poses relevant amounts of abnormal dental calculus deposition and exhibits oral dysfunction due to severe periodontal disease. A shotgun mass-spectrometry analysis identified 81 human proteins and 15 bacterial proteins from the calculus of the subject. We identified two pathogenic or bioinvasive proteins originating from two of the three "red complex" bacteria, the core species associated with severe periodontal disease in modern humans, as well as two additional bioinvasive proteins of periodontal-associated bacteria. Moreover, we discovered defense response system-associated human proteins, although their proportion was mostly similar to those reported in ancient and modern human individuals with lower calculus deposition. These results suggest that the bacterial etiology was similar and the host defense response was not necessarily more intense in ancient individuals with significant amounts of abnormal dental calculus deposition. en-copyright= kn-copyright= en-aut-name=Uchida-FukuharaYoko en-aut-sei=Uchida-Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimamuraShigeru en-aut-sei=Shimamura en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SawafujiRikai en-aut-sei=Sawafuji en-aut-mei=Rikai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiuchiTakumi en-aut-sei=Nishiuchi en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonedaMinoru en-aut-sei=Yoneda en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshidaHajime en-aut-sei=Ishida en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumuraHirofumi en-aut-sei=Matsumura en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsutayaTakumi en-aut-sei=Tsutaya en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=3 en-affil=Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=4 en-affil=Research Center for Experimental Modeling of Human Disease, Kanazawa University kn-affil= affil-num=5 en-affil=The University Museum, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus kn-affil= affil-num=7 en-affil=School of Health Sciences, Sapporo Medical University kn-affil= affil-num=8 en-affil=Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI) kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1371307 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dissection of the signal transduction machinery responsible for the lysyl oxidase-like 4-mediated increase in invasive motility in triple-negative breast cancer cells: mechanistic insight into the integrin-β1-NF-κB-MMP9 axis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-beta 1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-beta 1 hastens the invasive outgrowth of TNBC cells at the molecular level.
Methods LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively.
Results Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-kappa B (NF-kappa B). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-beta activated kinase 1 (TAK1) were required for the activation of NF-kappa B through I kappa beta kinase kinase (IKK alpha/beta) phosphorylation.
Conclusion Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-beta 1-TRAF4-TAK1-IKK alpha/beta-I kappa beta alpha-NF-kappa B-MMP9, is crucial for TNBC cell invasiveness. en-copyright= kn-copyright= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Kasano-CamonesCarlos Ichiro en-aut-sei=Kasano-Camones en-aut-mei=Carlos Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NinomiyaKazumi en-aut-sei=Ninomiya en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoKen-Ichi en-aut-sei=Yamamoto en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OchiToshiki en-aut-sei=Ochi en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=RumaI. Made Winarsa en-aut-sei=Ruma en-aut-mei=I. Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SumardikaI. Wayan en-aut-sei=Sumardika en-aut-mei=I. Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ZhouJin en-aut-sei=Zhou en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SakaguchiYoshihiko en-aut-sei=Sakaguchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KuribayashiFutoshi en-aut-sei=Kuribayashi en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=6 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=7 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=8 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=13 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=14 en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology kn-affil= affil-num=15 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=16 en-affil=Department of Microbiology, Tokushima Bunri University kn-affil= affil-num=17 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=18 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=19 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=20 en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University kn-affil= affil-num=21 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=22 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=23 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=invasion kn-keyword=invasion en-keyword=lysyl oxidase kn-keyword=lysyl oxidase en-keyword=NF-κB kn-keyword=NF-κB en-keyword=MMP9 kn-keyword=MMP9 END start-ver=1.4 cd-journal=joma no-vol=109 cd-vols= no-issue=20 article-no= start-page=L201103 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Realization of nodal-ring semimetal in pressurized black phosphorus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Topological semimetals are intriguing targets for exploring unconventional physical properties of massless fermions. Among them, nodal-line or nodal-ring semimetals have attracted attention for their unique one-dimensional band contact in momentum space and resulting nontrivial quantum phenomena. By field angular resolved magnetotransport measurements and theoretical calculations, we show that pressurized black phosphorus (BP) is an ideal nodal-ring semimetal with weak spin-orbit coupling, which has a sole and carrier density-tunable nodal ring isolated from other trivial bands. We also revealed that the large magnetoresistance effect and its field-angular dependence in semimetallic BP are due to highly anisotropic relaxation time. Our results establish pressurized BP as an elemental model material for exploring nontrivial quantum properties unique to the topological nodal ring. en-copyright= kn-copyright= en-aut-name=AkibaKazuto en-aut-sei=Akiba en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkahamaYuichi en-aut-sei=Akahama en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TokunagaMasashi en-aut-sei=Tokunaga en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Science, University of Hyogo kn-affil= affil-num=3 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=4610 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240530 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An NLR paralog Pit2 generated from tandem duplication of Pit1 fine-tunes Pit1 localization and function en-subtitle= kn-subtitle= en-abstract= kn-abstract=NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication. en-copyright= kn-copyright= en-aut-name=LiYuying en-aut-sei=Li en-aut-mei=Yuying kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangQiong en-aut-sei=Wang en-aut-mei=Qiong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JiaHuimin en-aut-sei=Jia en-aut-mei=Huimin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KosamiKen-Ichi en-aut-sei=Kosami en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UebaTakahiro en-aut-sei=Ueba en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsujimotoAtsumi en-aut-sei=Tsujimoto en-aut-mei=Atsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamanakaMiki en-aut-sei=Yamanaka en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YabumotoYasuyuki en-aut-sei=Yabumoto en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MikiDaisuke en-aut-sei=Miki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SasakiEriko en-aut-sei=Sasaki en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FukaoYoichiro en-aut-sei=Fukao en-aut-mei=Yoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraMasayuki en-aut-sei=Fujiwara en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=Kaneko-KawanoTakako en-aut-sei=Kaneko-Kawano en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TanLi en-aut-sei=Tan en-aut-mei=Li kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KojimaChojiro en-aut-sei=Kojima en-aut-mei=Chojiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WingRod A. en-aut-sei=Wing en-aut-mei=Rod A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SebastianAlfino en-aut-sei=Sebastian en-aut-mei=Alfino kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NishimuraHideki en-aut-sei=Nishimura en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FukadaFumi en-aut-sei=Fukada en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NiuQingfeng en-aut-sei=Niu en-aut-mei=Qingfeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimizuMotoki en-aut-sei=Shimizu en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YoshidaKentaro en-aut-sei=Yoshida en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TerauchiRyohei en-aut-sei=Terauchi en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=ShimamotoKo en-aut-sei=Shimamoto en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences kn-affil= affil-num=2 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=College of Agronomy, Jiangxi Agricultural University kn-affil= affil-num=4 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=7 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=8 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=9 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=10 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Faculty of Science, Kyushu University kn-affil= affil-num=12 en-affil=Department of Bioinformatics, Ritsumeikan University kn-affil= affil-num=13 en-affil=YANMAR HOLDINGS Co., Ltd. kn-affil= affil-num=14 en-affil=College of Pharmaceutical Sciences, Ritsumeikan University kn-affil= affil-num=15 en-affil=Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=16 en-affil=Graduate School of Engineering Science, Yokohama National University kn-affil= affil-num=17 en-affil=Arizona Genomics Institute, School of Plant Sciences, University of Arizona kn-affil= affil-num=18 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=19 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=20 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=21 en-affil=Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology kn-affil= affil-num=22 en-affil=Iwate Biotechnology Research Center kn-affil= affil-num=23 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=24 en-affil=Iwate Biotechnology Research Center kn-affil= affil-num=25 en-affil=Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology kn-affil= affil-num=26 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=9869 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240430 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Absolute lymphocyte count and neutrophil-to-lymphocyte ratio as predictors of CDK 4/6 inhibitor efficacy in advanced breast cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) are the standard agents for treating patients with estrogen receptor-positive and human epidermal growth factor receptor 2-negative advanced breast cancer (ER + HER2 - ABC). However, markers predicting the outcomes of CDK4/6i treatment have yet to be identified. This study was a single-center retrospective cohort study. We retrospectively evaluated 101 patients with ER + HER2 - ABC receiving CDK4/6i in combination with endocrine therapy at Fukuyama City Hospital between November 2017 and July 2021. We investigated the clinical outcomes and the safety of CDK4/6i treatment, and the absolute lymphocyte count (ALC) and neutrophil-to-lymphocyte ratio (NLR) as predictive markers for CDK4/6i. We defined the cut-off values as 1000/mu L for ALC and 3 for NLR, and divided into "low" and "high" groups, respectively. We evaluated 43 and 58 patients who received abemaciclib and palbociclib, respectively. Patients with high ALC and low NLR had significantly longer overall survival than those with low ALC and high NLR (high vs. low; ALC: HR 0.29; 95% CI 0.12-0.70; NLR: HR 2.94; 95% CI 1.21-7.13). There was no significant difference in efficacy between abemaciclib and palbociclib and both had good safety profiles. We demonstrated that ALC and NLR might predict the outcomes of CDK4/6i treatment in patients with ER + HER2 - ABC. en-copyright= kn-copyright= en-aut-name=NakamotoShogo en-aut-sei=Nakamoto en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwamotoTakayuki en-aut-sei=Iwamoto en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuboShinichiro en-aut-sei=Kubo en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoMari en-aut-sei=Yamamoto en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaTetsumasa en-aut-sei=Yamashita en-aut-mei=Tetsumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuwaharaChihiro en-aut-sei=Kuwahara en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IkedaMasahiko en-aut-sei=Ikeda en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital kn-affil= affil-num=5 en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital kn-affil= affil-num=6 en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital kn-affil= affil-num=7 en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital kn-affil= affil-num=8 en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=4600 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240530 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials en-subtitle= kn-subtitle= en-abstract= kn-abstract=Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications. en-copyright= kn-copyright= en-aut-name=SaidaYuri en-aut-sei=Saida en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GauthierThomas en-aut-sei=Gauthier en-aut-mei=Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiHiroo en-aut-sei=Suzuki en-aut-mei=Hiroo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhmuraSatoshi en-aut-sei=Ohmura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShikataRyo en-aut-sei=Shikata en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwasakiYui en-aut-sei=Iwasaki en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoyamaGodai en-aut-sei=Noyama en-aut-mei=Godai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KishibuchiMisaki en-aut-sei=Kishibuchi en-aut-mei=Misaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaYuichiro en-aut-sei=Tanaka en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YajimaWataru en-aut-sei=Yajima en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=GodinNicolas en-aut-sei=Godin en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=PrivaultGael en-aut-sei=Privault en-aut-mei=Gael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TokunagaTomoharu en-aut-sei=Tokunaga en-aut-mei=Tomoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OnoShota en-aut-sei=Ono en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KoshiharaShin-Ya en-aut-sei=Koshihara en-aut-mei=Shin-Ya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=BertoniRoman en-aut-sei=Bertoni en-aut-mei=Roman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HadaMasaki en-aut-sei=Hada en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=2 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Engineering, Hiroshima Institute of Technology kn-affil= affil-num=5 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=6 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=7 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=11 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=12 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=13 en-affil=Graduate School of Engineering, Nagoya University kn-affil= affil-num=14 en-affil=Institute for Materials Research, Tohoku University kn-affil= affil-num=15 en-affil=School of Science, Tokyo Institute of Technology kn-affil= affil-num=16 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=18 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=19 en-affil=Institute of Pure and Applied Science and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba kn-affil= END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=301 end-page=306 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Palliative Gamma Knife Radiosurgery for a Small Part of a Large Vestibular Schwannoma in an Elderly Patient en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a case of a large vestibular schwannoma in an 80-year-old female patient that shrank after palliative Gamma Knife radiosurgery (GKS). Neurological symptoms included hearing deterioration and facial palsy. The tumor volume was 21.9 mL. Craniotomy was considered high-risk, and conventional GKS was risky, owing to the risk of transient enlargement. Therefore, GKS was performed on only a portion of the tumor. The marginal dose (12 Gy) volume was 3.8 mL (17.4%). The tumor began to shrink after transient enlargement. Sixty months later, the tumor volume was only 3.1 mL, and the patient was able to maintain independent activities of daily living without salvage treatment. en-copyright= kn-copyright= en-aut-name=NakazakiKiyoshi en-aut-sei=Nakazaki en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiraiSatoshi en-aut-sei=Hirai en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HishikawaTomohito en-aut-sei=Hishikawa en-aut-mei=Tomohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Neurosurgery, Brain Attack Center Ota Memorial Hospital kn-affil= affil-num=2 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Kawasaki Medical School kn-affil= en-keyword=vestibular schwannoma kn-keyword=vestibular schwannoma en-keyword=Gamma Knife radiosurgery kn-keyword=Gamma Knife radiosurgery en-keyword=large volume kn-keyword=large volume en-keyword=palliative kn-keyword=palliative en-keyword=elderly patient kn-keyword=elderly patient END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=227 end-page=235 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Lipopolysaccharide on the Duration of Zolpidem-Induced Loss of Righting Reflex in Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Zolpidem, a non-benzodiazepine hypnotic, is primarily used to treat insomnia. In a previous study, pior treatment with non-benzodiazepine receptor agonists was associated with inflammation. The present study aimed to clarify the association between the effects of zolpidem and inflammation in mice treated with lipopolysaccharide (LPS), a known model of inflammation. We assessed the zolpidem-induced loss of righting reflex (LORR) duration 24 h after LPS treatment in mice. Additionally, the expressions of γ-aminobutyric acid (GABA)A receptor subunit and K+-Cl? cotransporter isoform 2 (KCC2) mRNA in the hippocampus and frontal cortex were examined in LPS-treated mice. Pretreatment with LPS was associated with significantly prolonged duration of zolpidem-induced LORR compared to control mice. This effect was significantly attenuated by administering bicuculline, a GABAA receptor antagonist, or flumazenil, a benzodiazepine receptor antagonist, in LPS-treated mice. Compared to controls, LPS-treated mice showed no significant change in the expression of GABAA receptor subunits in the hippocampus or frontal cortex. Bumetanide, an Na+-K+-2Cl? cotransporter isoform 1 blocker, attenuated the extended duration of zolpidem-induced LORR observed in LPS-treated mice. LPS significantly decreased Kcc2 mRNA expression in the hippocampus and the frontal cortex. These findings suggest that inflammation increases zolpidem-induced LORR, possibly through a reduction in KCC2 expression. en-copyright= kn-copyright= en-aut-name=WadaYudai en-aut-sei=Wada en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UshioSoichiro en-aut-sei=Ushio en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KitamuraYoshihisa en-aut-sei=Kitamura en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=lipopolysaccharide kn-keyword=lipopolysaccharide en-keyword=zolpidem kn-keyword=zolpidem en-keyword=GABAA receptor kn-keyword=GABAA receptor en-keyword=K+-Cl? cotransporters kn-keyword=K+-Cl? cotransporters END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=205 end-page=213 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Thoughts on and Proposal for the Education, Training, and Recruitment of Infectious Disease Specialists en-subtitle= kn-subtitle= en-abstract= kn-abstract=The global pandemic of COVID-19 has underscored the significance of establishing and sustaining a practical and efficient infection control system for the benefit and welfare of society. Infectious disease (ID) specialists are expected to take on leadership roles in enhancing organizational infrastructures for infection prevention and control (IPC) at the hospital, community, and national levels. However, due to an absolute shortage and an uneven distribution, many core hospitals currently lack the ID specialists. Given the escalating global risk of emerging and re-emerging infectious diseases as well as antimicrobial resistance pathogens, the education and training of ID specialists constitutes an imperative concern. As demonstrated by historical changes in the healthcare reimbursement system, the establishment and enhancement of IPC measures is pivotal to ensuring medical safety. The existing structure of academic society-driven certification and training initiatives for ID specialists, contingent upon the discretionary decisions of individual physicians, possesses both quantitative and qualitative shortcomings. In this article, I first address the present situations and challenges related to ID specialists and then introduce my idea of securing ID specialists based on the new concepts and platforms; (i) ID Specialists as National Credentials, (ii) Establishment of the Department of Infectious Diseases in Medical and Graduate Schools, (iii) Endowed ID Educative Courses Funded by Local Government and Pharmaceutical Companies, and (iv) Recruitment of Young Physicians Engaged in Healthcare Services in Remote Areas. As clarified by the COVID-19 pandemic, ID specialists play a crucial role in safeguarding public health. Hopefully, this article will advance the discussion and organizational reform for the education and training of ID specialists. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= en-keyword=antimicrobial resistance kn-keyword=antimicrobial resistance en-keyword=emerging infectious diseases kn-keyword=emerging infectious diseases en-keyword=infection prevention and control kn-keyword=infection prevention and control en-keyword=medical education kn-keyword=medical education en-keyword=silent pandemic kn-keyword=silent pandemic END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=28 article-no= start-page=5739 end-page=5747 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Total synthesis and structure?antifouling activity relationship of scabrolide F en-subtitle= kn-subtitle= en-abstract= kn-abstract=An efficient synthetic strategy for scabrolide F (7), a norcembranolide diterpene that was isolated from the Taiwanese soft coral Sinularia scabra, has only recently been reported by our group. Herein, we report details of the first total synthesis of 7. The tetrahydrofuran domain of 7 was stereoselectively constructed via the 5-endo-tet cyclization of a hydroxy vinyl epoxide. The reaction of alkyl iodide 30 with dithiane 38, followed by the introduction of an alkene moiety, afforded allylation precursor 41. The coupling of alkyl iodide 42 and allylic stannane 43 was examined as a model experiment of allylation. Because the desired allylated product 44 was not obtained, an alternative synthetic route toward 7 was investigated instead. In the second synthetic approach, fragment?coupling between alkyl iodide 56 and aldehyde 58, macrolactonization, and transannular ring-closing metathesis were used as the key steps to achieve the first total synthesis of 7. We hope that this synthetic strategy provides access to the total synthesis of other macrocyclic norcembranolides. We also evaluated the antifouling activity and toxicity of 7 and its synthetic intermediates toward the cypris larvae of the barnacle Amphibalanus amphitrite. This study is the first to report the antifouling activity of norcembranolides as well as the biological activity of 7. en-copyright= kn-copyright= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugitaniYuki en-aut-sei=Sugitani en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorishitaRyohei en-aut-sei=Morishita en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YorisueTakefumi en-aut-sei=Yorisue en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Institute of Natural and Environmental Sciences, University of Hyogo kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=4535 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and distinct supramolecular organization of a PSII-ACPII dimer from a cryptophyte alga Chroomonas placoidea en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cryptophyte algae are an evolutionarily distinct and ecologically important group of photosynthetic unicellular eukaryotes. Photosystem II (PSII) of cryptophyte algae associates with alloxanthin chlorophyll a/c-binding proteins (ACPs) to act as the peripheral light-harvesting system, whose supramolecular organization is unknown. Here, we purify the PSII-ACPII supercomplex from a cryptophyte alga Chroomonas placoidea (C. placoidea), and analyze its structure at a resolution of 2.47 & Aring; using cryo-electron microscopy. This structure reveals a dimeric organization of PSII-ACPII containing two PSII core monomers flanked by six symmetrically arranged ACPII subunits. The PSII core is conserved whereas the organization of ACPII subunits exhibits a distinct pattern, different from those observed so far in PSII of other algae and higher plants. Furthermore, we find a Chl a-binding antenna subunit, CCPII-S, which mediates interaction of ACPII with the PSII core. These results provide a structural basis for the assembly of antennas within the supercomplex and possible excitation energy transfer pathways in cryptophyte algal PSII, shedding light on the diversity of supramolecular organization of photosynthetic machinery. en-copyright= kn-copyright= en-aut-name=MaoZhiyuan en-aut-sei=Mao en-aut-mei=Zhiyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiXingyue en-aut-sei=Li en-aut-mei=Xingyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=LiZhenhua en-aut-sei=Li en-aut-mei=Zhenhua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShenLiangliang en-aut-sei=Shen en-aut-mei=Liangliang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiXiaoyi en-aut-sei=Li en-aut-mei=Xiaoyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YangYanyan en-aut-sei=Yang en-aut-mei=Yanyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WangWenda en-aut-sei=Wang en-aut-mei=Wenda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KuangTingyun en-aut-sei=Kuang en-aut-mei=Tingyun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HanGuangye en-aut-sei=Han en-aut-mei=Guangye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=2 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=3 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=4 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=5 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=7 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=8 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= affil-num=9 en-affil=Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences kn-affil= END