start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250620
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=International Consensus Histopathological Criteria for Subtyping Idiopathic Multicentric Castleman Disease Based on Machine Learning Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder classified into three recognized clinical subtypes?idiopathic plasmacytic lymphadenopathy (IPL), TAFRO, and NOS. Although clinical criteria are available for subtyping, diagnostically challenging cases with overlapping histopathological features highlight the need for an improved classification system integrating clinical and histopathological findings. We aimed to develop an objective histopathological subtyping system for iMCD that closely correlates with the clinical subtypes. Excisional lymph node specimens from 94 Japanese iMCD patients (54 IPL, 28 TAFRO, 12 NOS) were analyzed for five key histopathological parameters: germinal center (GC) status, plasmacytosis, vascularity, hemosiderin deposition, and “whirlpool” vessel formation in GC. Using hierarchical clustering, we visualized subgroups and developed a machine learning-based decision tree to differentiate the clinical subtypes and validated it in an external cohort of 12 patients with iMCD. Hierarchical cluster analysis separated the IPL and TAFRO cases into mutually exclusive clusters, whereas the NOS cases were interspersed between them. Decision tree modeling identified plasmacytosis, vascularity, and whirlpool vessel formation as key features distinguishing IPL from TAFRO, achieving 91% and 92% accuracy in the training and test sets, respectively. External validation correctly classified all IPL and TAFRO cases, confirming the reproducibility of the system. Our histopathological classification system closely aligns with the clinical subtypes, offering a more precise approach to iMCD subtyping. It may enhance diagnostic accuracy, guide clinical decision-making for predicting treatment response in challenging cases, and improve patient selection for future research. Further validation of its versatility and clinical utility is required.
en-copyright=
kn-copyright=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaratakeTomoka
en-aut-sei=Haratake
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishimuraYoshito
en-aut-sei=Nishimura
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SumiyoshiRemi
en-aut-sei=Sumiyoshi
en-aut-mei=Remi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UjiieHideki
en-aut-sei=Ujiie
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawaharaYuri
en-aut-sei=Kawahara
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KogaTomohiro
en-aut-sei=Koga
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UekiMasao
en-aut-sei=Ueki
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LaczkoDorottya
en-aut-sei=Laczko
en-aut-mei=Dorottya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OksenhendlerEric
en-aut-sei=Oksenhendler
en-aut-mei=Eric
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FajgenbaumDavid C.
en-aut-sei=Fajgenbaum
en-aut-mei=David C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=van RheeFrits
en-aut-sei=van Rhee
en-aut-mei=Frits
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KawakamiAtsushi
en-aut-sei=Kawakami
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group
kn-affil=
affil-num=6
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=8
en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group
kn-affil=
affil-num=9
en-affil=School of Information and Data Sciences, Nagasaki University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania
kn-affil=
affil-num=11
en-affil=Department of Clinical Immunology, H?pital Saint-Louis
kn-affil=
affil-num=12
en-affil=Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania
kn-affil=
affil-num=13
en-affil=Myeloma Center, University of Arkansas for Medical Sciences
kn-affil=
affil-num=14
en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group
kn-affil=
affil-num=15
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=clinical subtype
kn-keyword=clinical subtype
en-keyword=histopathological criteria
kn-keyword=histopathological criteria
en-keyword=idiopathic multicentric castleman disease
kn-keyword=idiopathic multicentric castleman disease
en-keyword=lymphoproliferative disease
kn-keyword=lymphoproliferative disease
en-keyword=machine-learning
kn-keyword=machine-learning
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=果実成熟応答経路の進化学的コンテクストと深層学習によるモデル化
kn-title=The evolutionary contextualization and deep neural network modeling on fruit ripening response
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KUWADAEriko
en-aut-sei=KUWADA
en-aut-mei=Eriko
kn-aut-name=纉c恵理子
kn-aut-sei=纉c
kn-aut-mei=恵理子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=代替モデルに基づいた豪雨による地盤災害のリスク評価
kn-title=Risk Assessment for Heavy Rainfall-Induced Geohazards using Surrogate Models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ZHENGSHIYING
en-aut-sei=ZHENG
en-aut-mei=SHIYING
kn-aut-name=鄭詩穎
kn-aut-sei=鄭
kn-aut-mei=詩穎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=イオンモデル開発を伴うアルコール及びPNIPAM水溶液の分子シミュレーション研究
kn-title=MOLECULAR SIMULATION STUDY ON AQUEOUS SOLUTIONS OF ALCOHOLS AND PNIPAM WITH DEVELOPMENT OF ION MODELS
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAIRAAoi
en-aut-sei=TAIRA
en-aut-mei=Aoi
kn-aut-name=平良碧生
kn-aut-sei=平良
kn-aut-mei=碧生
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肝切除術後のfailure to rescueを予測するリスクモデルの構築: 1371例を対象としたコホート研究
kn-title=Risk model for predicting failure to rescue after hepatectomy: Cohort study of 1371 consecutive patients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KIMURAJiro
en-aut-sei=KIMURA
en-aut-mei=Jiro
kn-aut-name=木村次郎
kn-aut-sei=木村
kn-aut-mei=次郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=細胞自己凝集化技術を用いた内皮層反転血管構造を有するユニークなin vitro血管モデルの開発
kn-title=Development of a unique tissue-engineered in vitro vascular model with endothelial layer-inverted vascular tissue structure using a cell self-aggregation technique
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HASHIMOTOShingo
en-aut-sei=HASHIMOTO
en-aut-mei=Shingo
kn-aut-name=橋本真悟
kn-aut-sei=橋本
kn-aut-mei=真悟
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=トラスツズマブオリジネーターとバイオシミラーのリアルワールドにおける比較分析:安全性、有効性、および費用対効果
kn-title=Real-World Comparative Analysis of Trastuzumab Originator and Biosimilars: Safety, Efficacy, and Cost Effectiveness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MAMORITomoka
en-aut-sei=MAMORI
en-aut-mei=Tomoka
kn-aut-name=間森智加
kn-aut-sei=間森
kn-aut-mei=智加
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マウス頭蓋骨モデルにおける垂直骨再生のためのE-rhBMP-2含浸フィブリンを用いたβ-TCPの最適化
kn-title=Optimizing β-TCP with E-rhBMP-2-Infused Fibrin for Vertical Bone Regeneration in a Mouse Calvarium Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ZHAOKUN
en-aut-sei=ZHAO
en-aut-mei=KUN
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=日本におけるDLBCLのdark zoneシグネチャーを有する分子サブタイプの分布と臨床的影響
kn-title=Distribution and clinical impact of molecular subtypes with dark zone signature of DLBCL in a Japanese real-world study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=URATATomohiro
en-aut-sei=URATA
en-aut-mei=Tomohiro
kn-aut-name=浦田知宏
kn-aut-sei=浦田
kn-aut-mei=知宏
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=集中定数モデルを用いたフォンタン循環におけるフェネストレーションの効果の検討
kn-title=Evaluation of the effects of fenestration in Fontan circulation using a lumped parameter model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HORIONaohiro
en-aut-sei=HORIO
en-aut-mei=Naohiro
kn-aut-name=堀尾直裕
kn-aut-sei=堀尾
kn-aut-mei=直裕
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ヒト臍帯血内皮前駆細胞はラット脳卒中モデルにおける動脈損傷の内膜過形成を緩和する
kn-title=Human Cord Blood?Endothelial Progenitor Cells Alleviate Intimal Hyperplasia of Arterial Damage in a Rat Stroke Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SUNHONGMING
en-aut-sei=SUN
en-aut-mei=HONGMING
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=脳卒中モデルマウスにおけるフラボノイド、スダチチンの神経保護効果
kn-title=Neuroprotective effect of, a flavonoid, sudachitin in mice stroke model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OTA ELLIOTT RICARDO SATOSHI
en-aut-sei=OTA ELLIOTT RICARDO SATOSHI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=頚部脊髄刺激療法はCCL2を介した経路を抑制することでてんかんモデルラットに対して抗てんかん作用を示す
kn-title=Cervical spinal cord stimulation exerts anti-epileptic effects in a rat model of epileptic seizure through the suppression of CCL2-mediated cascades
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OKAZAKIYosuke
en-aut-sei=OKAZAKI
en-aut-mei=Yosuke
kn-aut-name=岡ア洋介
kn-aut-sei=岡ア
kn-aut-mei=洋介
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=1
article-no=
start-page=745
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250521
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploring the relationship between posture-dependent airway assessment in orthodontics: insights from kinetic MRI, cephalometric data, and three-dimensional MRI analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Previous studies have assessed the upper airway using various examination methods, such as cephalometric imaging and magnetic resonance imaging (MRI). However, there is a significant gap in the research regarding the relationship between these different imaging modalities. This study compares airway assessments using kinetic MRI and cephalometric scans, examining their correlation with three dimensional (3D) MRI data.
Materials and methods Kinetic MRI, cephalometric scans, and 3D MRI of forty-seven participants were used in the present study. Airway areas and widths were measured at the retropalatal, retroglossal, and hypopharyngeal levels in both kinetic MRI and cephalometric scans. Airway volumes were calculated from 3D MRI data. Statistical analyses, including the Wilcoxon Signed Rank test, Spearman correlation, and multiple linear regression, were performed to evaluate the data and identify significant differences, correlations, and prediction models, respectively.
Results Significant differences were found between kinetic MRI and cephalometric scans. Cephalometric data showed larger airway areas and widths compared to kinetic MRI measurements. Although both cephalometric and kinetic MRI showed a correlation with 3D MRI, kinetic MRI demonstrated stronger correlations with 3D MRI airway volumes than cephalometric scans. According to our linear regression model equations, RPA-Max (maximum retropalatal airway area) and RPA (retropalatal airway area) can elucidate variations in RPV (retropalatal airway volume). RGA-Med (median retroglossal airway area) and RGA-Min (minimum retroglossal airway area) can explain variations in RGV (retroglossal airway volume). HPA (hypopharyngeal airway area) and ULHPAW-Max (maximum upper limit hypopharyngeal airway width) account for variations in HPV (hypopharyngeal airway volume). Additionally, TA-Max (maximum total airway area) can account for variations in TPV (total pharyngeal airway volume).ConclusionBoth cephalometric data and kinetic MRI data showed correlations with 3D MRI data. The shared posture of kinetic MRI and 3D MRI led to stronger correlations between these two modalities. Although cephalometric data had fewer correlations with 3D MRI and predictors for 3D airway volume, they were still significant. Our study highlights the complementary nature of kinetic MRI and cephalometric imaging, as both provide valuable information for airway assessment and exhibit significant correlations with 3D MRI data.
en-copyright=
kn-copyright=
en-aut-name=OkaNaoki
en-aut-sei=Oka
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HabumugishaJanvier
en-aut-sei=Habumugisha
en-aut-mei=Janvier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraMasahiro
en-aut-sei=Nakamura
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KataokaTomoki
en-aut-sei=Kataoka
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujisawaAtsuro
en-aut-sei=Fujisawa
en-aut-mei=Atsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawanabeNoriaki
en-aut-sei=Kawanabe
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IzawaTakashi
en-aut-sei=Izawa
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KamiokaHiroshi
en-aut-sei=Kamioka
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Oral and Maxillofacial Surgery, Tottori University
kn-affil=
affil-num=5
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Kinetic MRI
kn-keyword=Kinetic MRI
en-keyword=Posture
kn-keyword=Posture
en-keyword=Airway assessment
kn-keyword=Airway assessment
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=vdaf036
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating short-term survivors of glioblastoma: A proposal based on SEER registry data
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Glioblastomas (GBMs) are central nervous system tumors with a poor prognosis and limited treatment options. Although small subsets of GBM patients survive longer than 3 years, there is little evidence regarding the prognostic factors of GBM. Therefore, we conducted a thorough characterization of GBM in the United States.
Methods: We queried the Surveillance, Epidemiology, and End Results database between 2000 and 2021 to extract age-adjusted incidence rates (AAIRs), age-adjusted mortality rates (AAMRs), and survival data for GBM. We compared trends in AAIR, AAMR, and survival time across age groups 0?14, 15?39, 40?69, and 70+ years. Also, we employed the Fine?Gray competing risk model among short-term survivors (STSs), defined as those with a survival time of 6 months or less, and long-term survivors (LTSs), defined as those with a survival time of 3 years or more.
Results: This study included 60 615 incident GBM cases, 54 998 GBM-specific deaths, and 47 207 GBM patients with available survival time between 2000 and 2021. The mortality-to-incidence ratio was constant among STSs, whereas it increased with age among LTSs. Higher age and male sex were significantly associated with GBM-specific death among LTSs, whereas non-Hispanic White and less intensive treatments were associated with GBM-specific deaths among STSs. Interestingly, higher age was significantly associated with other causes of death among STSs.
Conclusions: STSs partially consist of populations who died from causes other than GBM. It is important to include only GBM-specific deaths in STS groups to conduct reproducible research comparing STSs and LTSs.
en-copyright=
kn-copyright=
en-aut-name=TomitaYusuke
en-aut-sei=Tomita
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OmaeRyo
en-aut-sei=Omae
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizutaRyo
en-aut-sei=Mizuta
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirotsuneNobuyuki
en-aut-sei=Hirotsune
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Medical School
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=glioblastoma
kn-keyword=glioblastoma
en-keyword=long-term survivor
kn-keyword=long-term survivor
en-keyword=SEER
kn-keyword=SEER
en-keyword=short-term survivor
kn-keyword=short-term survivor
en-keyword=United States
kn-keyword=United States
END
start-ver=1.4
cd-journal=joma
no-vol=295
cd-vols=
no-issue=
article-no=
start-page=128303
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Using a microfluidic paper-based analytical device and solid-phase extraction to determine phosphate concentration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Phosphate is an essential nutrient, but in high concentrations it contributes to water pollution. Traditional methods for phosphate measurement, such as absorption spectrophotometry and ion chromatography, require expensive equipment and skilled operators. This study introduces a microfluidic paper-based analytical device (μPAD) that is designed to accomplish field-based, low-concentration phosphate measurements. This μPAD utilizes colorimetric detection based on the molybdenum blue method. Herein, we describe how the conditions were optimized in terms of design and sensitivity by adjusting reagent concentrations, paper thickness, and the time frames for sample introduction, and reaction. The operation consists of simply dipping the μPAD into a sample, capturing images in a home-made photo studio box, and processing the images with ImageJ software to measure RGB intensity. An additional preconcentration step involves solid-phase extraction with an anion exchange resin that achieves a 10-fold enrichment, which enables detection that ranges from 0.05 to 1 mg L?1 with a detection limit of 0.089 mg L?1 and a quantification limit of 0.269 mg L?1. The replicated measurements showed good reproducibility both intraday and interday (five different days) as 4.7 % and 3.0 % of relative standard deviations, respectively. After storage in a refrigerator for as long as 26 days, this μPAD delivered stable and accurate results for real-world samples of natural water, soil, and toothpaste. The results produced using this system correlate well with those produced via spectrophotometry. This μPAD-based method is a cost-effective, portable, rapid, and simple approach that allows relatively unskilled operators to monitor phosphate concentrations in field applications.
en-copyright=
kn-copyright=
en-aut-name=DanchanaKaewta
en-aut-sei=Danchana
en-aut-mei=Kaewta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NambaHaruka
en-aut-sei=Namba
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Okayama University
kn-affil=
en-keyword=Phosphate
kn-keyword=Phosphate
en-keyword=Microfluidic paper-based analytical device
kn-keyword=Microfluidic paper-based analytical device
en-keyword=Solid-phase extraction
kn-keyword=Solid-phase extraction
en-keyword=Anion exchanger
kn-keyword=Anion exchanger
en-keyword=Molybdenum blue method
kn-keyword=Molybdenum blue method
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=5
article-no=
start-page=e0320426
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=LeFood-set: Baseline performance of predicting level of leftovers food dataset in a hospital using MT learning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Monitoring the remaining food in patients' trays is a routine activity in healthcare facilities as it provides valuable insights into the patients' dietary intake. However, estimating food leftovers through visual observation is time-consuming and biased. To tackle this issue, we have devised an efficient deep learning-based approach that promises to revolutionize how we estimate food leftovers. Our first step was creating the LeFoodSet dataset, a pioneering large-scale open dataset explicitly designed for estimating food leftovers. This dataset is unique in its ability to estimate leftover rates and types of food. To the best of our knowledge, this is the first comprehensive dataset for this type of analysis. The dataset comprises 524 image pairs representing 34 Indonesian food categories, each with images captured before and after consumption. Our prediction models employed a combined visual feature extraction and late fusion approach utilizing soft parameter sharing. Here, we used multi-task (MT) models that simultaneously predict leftovers and food types in training. In the experiments, we tested the single task (ST) model, the ST Model with Ground Truth (ST-GT), the MT model, and the MT model with Inter-task Connection (MT-IC). Our AI-based models, particularly the MT and MT-IC models, have shown promising results, outperforming human observation in predicting leftover food. These findings show the best with the ResNet101 model, where the Mean Average Error (MAE) of leftover task and food classification accuracy task is 0.0801 and 90.44% in the MT Model and 0.0817 and 92.56% in the MT-IC Model, respectively. It is proved that the proposed solution has a bright future for AI-based approaches in medical and nursing applications.
en-copyright=
kn-copyright=
en-aut-name=SariYuita Arum
en-aut-sei=Sari
en-aut-mei=Yuita Arum
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakazawaAtsushi
en-aut-sei=Nakazawa
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WaniYudi Arimba
en-aut-sei=Wani
en-aut-mei=Yudi Arimba
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Nutrition Department, Faculty of Health Sciences, Brawijaya University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=213
end-page=219
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Chromophobe Renal Cell Carcinoma Metastasizing to the Cervical Lymph Nodes after Long-term Follow-up
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Renal cell carcinoma (RCC) can metastasize hematogenously and recur after a long dormancy. Chromophobe RCC metastasized to the cervical lymph nodes 10 years after the primary resection in a woman who underwent nephrectomy for RCC (T1aN0M0 stage I). Metastatic RCC diagnosis was confirmed by aspiration. The lymph node mass was resected, and the tumor cells matched chromophobe RCC metastasis. No adjuvant therapy was administered due to the lack of evidence regarding adjuvant therapy for chromophobe RCC. Long-term surveillance is crucial in RCC because of the possibility of late metastasis. We reviewed the clinical aspects and literature on metastatic cervical RCC.
en-copyright=
kn-copyright=
en-aut-name=WatanabeMakoto
en-aut-sei=Watanabe
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OgawaTomoyuki
en-aut-sei=Ogawa
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiKanao
en-aut-sei=Kobayashi
en-aut-mei=Kanao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatsuyaNarutaka
en-aut-sei=Katsuya
en-aut-mei=Narutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshikawaAkira
en-aut-sei=Ishikawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HamamotoTakao
en-aut-sei=Hamamoto
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TaharaHiroaki
en-aut-sei=Tahara
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UedaTsutomu
en-aut-sei=Ueda
en-aut-mei=Tsutomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakenoSachio
en-aut-sei=Takeno
en-aut-mei=Sachio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Otolaryngology, Chugoku Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Otolaryngology, Chugoku Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Nephrology and Urological Surgery, Chugoku Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Molecular Pathology, Graduate School of Medical Sciences, Hiroshima University
kn-affil=
affil-num=5
en-affil=Department of Molecular Pathology, Graduate School of Medical Sciences, Hiroshima University
kn-affil=
affil-num=6
en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital
kn-affil=
affil-num=7
en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital
kn-affil=
affil-num=8
en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital
kn-affil=
affil-num=9
en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital
kn-affil=
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
en-keyword=cervical lymph node metastasis
kn-keyword=cervical lymph node metastasis
en-keyword=late recurrence
kn-keyword=late recurrence
en-keyword=head and neck
kn-keyword=head and neck
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=185
end-page=195
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Emotional Changes among Young Patients with Breast Cancer to Foster Relationship-Building with Their Partners: A Qualitative Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated the emotional changes that young patients with breast cancer need to undergo in order to foster relationship-building with their partners by conducting a qualitative descriptive study (March 1 to Nov. 26, 2021) and semi-structured interviews with eight postoperative patients (age 20-40 years) with breast cancer. The data were analyzed using the modified grounded theory approach (M-GTA), yielding five categories: (i) Awareness of being a breast cancer patient, (ii) Being at a loss, (iii) Support from significant others, (iv) The struggle to transition from being a patient with cancer to becoming “the person I want to be”, and (v) Reaching the “me” I want to be who can face building a relationship with a partner. These findings suggest that young breast cancer patients must feel that they can lead a normal life through activities such as work or acquiring qualifications before building relationships with their partners, and that getting closer to their desired selves is important. Nurses can provide information to young patients with breast cancer to assist them in building a solid relationship with their partners. We believe that this support may enhance the patients’ quality of life and help them achieve stronger relationships with their partners.
en-copyright=
kn-copyright=
en-aut-name=YoshikawaAyumi
en-aut-sei=Yoshikawa
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TairaNaruto
en-aut-sei=Taira
en-aut-mei=Naruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkanagaMayumi
en-aut-sei=Okanaga
en-aut-mei=Mayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitoShinya
en-aut-sei=Saito
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Faculty of Nursing, Osaka Dental University
kn-affil=
affil-num=2
en-affil=Kawasaki Medical School, Department of Breast and Thyroid Surgery
kn-affil=
affil-num=3
en-affil=Gifu College of Nursing, Nursing of Children and Child-Rearing Families
kn-affil=
affil-num=4
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=breast cancer patient
kn-keyword=breast cancer patient
en-keyword=young patient
kn-keyword=young patient
en-keyword=single
kn-keyword=single
en-keyword=partners
kn-keyword=partners
en-keyword=relationships
kn-keyword=relationships
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=167
end-page=176
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Promising Effectiveness of Combined Chemotherapy and Immunotherapy in Patients with Advanced Non-small Cell Lung Cancer: A Real-World Prospective Observational Study (CS-Lung-003)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This prospective observational study investigated the clinical status of patients with advanced non-small cell lung cancer (NSCLC) treated with cytotoxic chemotherapy+an immune checkpoint inhibitor (chemo + IO) as first-line treatment in a real-world setting. The cases of 98 patients treated with chemo + IO were prospectively collected and analyzed for effectiveness and safety. The response rate to chemo + IO was 46.9%, and the disease control rate was 76.5%. The median progression-free survival and overall survival (OS) in the total population were 5.2 and 22.3 months, respectively. The patients positive for PD-L1 (? 1%) showed significantly longer OS than the negative group (<1%) (median 26.7 vs. 18.7 months, p=0.04). Pre-existing interstitial lung disease (ILD) was associated with shorter OS than the absence of ILD (median 9.0 vs. 22.6 months, p<0.01). Immunerelated adverse events (irAEs) were observed in 28 patients (28.6%). The most frequent irAE was ILD (n=11); Grade 1 (n=1 patient), G2 (n=5), G3 (n=4), and only a single patient with a G5 irAE. In this CS-Lung-003 study, first-line chemo + IO in a real-world setting showed good effectiveness, comparable to that observed in international clinical trials. In real-world practice, chemo + IO is a promising and steadfast strategy.
en-copyright=
kn-copyright=
en-aut-name=KanajiNobuhiro
en-aut-sei=Kanaji
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiiKazuya
en-aut-sei=Nishii
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsubataYukari
en-aut-sei=Tsubata
en-aut-mei=Yukari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaoMika
en-aut-sei=Nakao
en-aut-mei=Mika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkunoTakae
en-aut-sei=Okuno
en-aut-mei=Takae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkawaSachi
en-aut-sei=Okawa
en-aut-mei=Sachi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakataKenji
en-aut-sei=Takata
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KodaniMasahiro
en-aut-sei=Kodani
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamasakiMasahiro
en-aut-sei=Yamasaki
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujitakaKazunori
en-aut-sei=Fujitaka
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KubotaTetsuya
en-aut-sei=Kubota
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WatanabeNaoki
en-aut-sei=Watanabe
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=CS-Lung-003 Investigator
en-aut-sei=CS-Lung-003 Investigator
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=2
en-affil=Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine
kn-affil=
affil-num=4
en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine
kn-affil=
affil-num=5
en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine
kn-affil=
affil-num=6
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Division of Medical Oncology and Molecular Respirology, Faculty of Medicine, Tottori University
kn-affil=
affil-num=9
en-affil=Department of Respiratory Disease, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital
kn-affil=
affil-num=10
en-affil=Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
kn-affil=
affil-num=11
en-affil=Department of Respiratory Medicine and Allergology, Kochi University
kn-affil=
affil-num=12
en-affil=Department of Chest Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=13
en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=14
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=
kn-affil=
en-keyword=non-small cell lung cancer
kn-keyword=non-small cell lung cancer
en-keyword=real-world
kn-keyword=real-world
en-keyword=first-line
kn-keyword=first-line
en-keyword=immune checkpoint inhibitor
kn-keyword=immune checkpoint inhibitor
en-keyword=combined immunotherapy
kn-keyword=combined immunotherapy
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=157
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Continuous Stimulation with Glycolaldehyde-derived Advanced Glycation End Product Reduces Aggrecan and COL2A1 Production via RAGE in Human OUMS-27 Chondrosarcoma Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Chondrocytes are responsible for the production of extracellular matrix (ECM) components such as collagen type II alpha-1 (COL2A1) and aggrecan, which are loosely distributed in articular cartilage. Chondrocyte dysfunction has been implicated in the pathogenesis of rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). With age, advanced glycation end products (AGEs) accumulate in all tissues and body fluids, including cartilage and synovial fluid, causing and accelerating pathological changes associated with chronic diseases such as OA. Glycolaldehyde-derived AGE (AGE3), which is toxic to a variety of cell types, have a stronger effect on cartilage compared with other AGEs. To understand the long-term effects of AGE3 on cartilage, we stimulated a human chondrosarcoma cell line (OUMS-27), which exhibits a chondrocytic phenotype, with 10 μg/ml AGE3 for 4 weeks. As a result, the expressions of COL2A1 and aggrecan were significantly downregulated in the OUMS-27 cells without inducing cell death, but the expressions of proteases that play an important role in cartilage destruction were not affected. Inhibition of the receptor for advanced glycation end products (RAGE) suppressed the AGE3-induced reduction in cartilage component production, suggesting the involvement of RAGE in the action of AGE3.
en-copyright=
kn-copyright=
en-aut-name=HatipogluOmer Faruk
en-aut-sei=Hatipoglu
en-aut-mei=Omer Faruk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishinakaTakashi
en-aut-sei=Nishinaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YaykasliKursat Oguz
en-aut-sei=Yaykasli
en-aut-mei=Kursat Oguz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriShuji
en-aut-sei=Mori
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WatanabeMasahiro
en-aut-sei=Watanabe
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyomuraTakao
en-aut-sei=Toyomura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiboriMasahiro
en-aut-sei=Nishibori
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HirohataSatoshi
en-aut-sei=Hirohata
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiHideo
en-aut-sei=Takahashi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WakeHidenori
en-aut-sei=Wake
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=2
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-N?rnberg (FAU) and Universit?tsklinikum Erlangen
kn-affil=
affil-num=4
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=6
en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University
kn-affil=
affil-num=7
en-affil=Department of Translational Research & Dug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
affil-num=10
en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University
kn-affil=
en-keyword=advanced glycation end product
kn-keyword=advanced glycation end product
en-keyword=aging
kn-keyword=aging
en-keyword=cartilage
kn-keyword=cartilage
en-keyword=collagen
kn-keyword=collagen
en-keyword=aggrecan
kn-keyword=aggrecan
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=3
article-no=
start-page=147
end-page=155
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immunometabolic Regulation of Innate Immunity in Systemic Lupus Erythematosus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pathogens or their components can induce long-lasting changes in the behavior of innate immune cells, a process analogous to “training” for future threats or environmental adaptation. However, such training can sometimes have unintended consequences, such as the development of autoimmunity. Systemic lupus erythematosus (SLE) is a chronic and heterogeneous autoimmune disease characterized by the production of autoantibodies and progressive organ damage. Innate immunity plays a central role in its pathogenesis, contributing through impaired clearance of apoptotic cells, excessive type I interferon production, and dysregulated formation of neutrophil extracellular traps. Recent studies have revealed that metabolites and nucleic acids derived from mitochondria, a crucial energy production site, directly regulate type I interferon and anti-inflammatory cytokine production. These insights have fueled interest in targeting metabolic pathways as a novel therapeutic approach for SLE, offering promise for improving long-term patient outcomes.
en-copyright=
kn-copyright=
en-aut-name=WatanabeHaruki
en-aut-sei=Watanabe
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=systemic lupus erythematosus
kn-keyword=systemic lupus erythematosus
en-keyword=interferon
kn-keyword=interferon
en-keyword=tricarboxylic acid cycle
kn-keyword=tricarboxylic acid cycle
en-keyword=innate immune memory
kn-keyword=innate immune memory
en-keyword=trained immunity
kn-keyword=trained immunity
END
start-ver=1.4
cd-journal=joma
no-vol=192
cd-vols=
no-issue=5
article-no=
start-page=58
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Intertwining Property for Laguerre Processes with a Fixed Parameter
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigate the intertwining of Laguerre processes of parameter α in different dimensions. We introduce a Feller kernel that depends on α and intertwines the α-Laguerre process in N + 1 dimensions and that in N dimensions. When α is a non-negative integer, the new kernel is interpreted in terms of the conditional distribution of the squared singular values: if the singular values of a unitarily invariant random matrix of order (N+α+1)×(N+1) are fixed, then the those of its (N+α) × N truncation matrix are given by the new kernel.
en-copyright=
kn-copyright=
en-aut-name=BufetovAlexander I.
en-aut-sei=Bufetov
en-aut-mei=Alexander I.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawamotoYosuke
en-aut-sei=Kawamoto
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Steklov Mathematical Institute of RAS
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Random matrices
kn-keyword=Random matrices
en-keyword=Intertwining relation
kn-keyword=Intertwining relation
en-keyword=Interacting Brownian motions
kn-keyword=Interacting Brownian motions
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comprehensive analysis of adverse event profile changes with pertuzumab addition to trastuzumab‐based breast cancer therapy: Disproportionality analysis using VigiBase
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims: Pertuzumab is used in combination with trastuzumab-based therapy for HER2-positive breast cancer. However, real-world safety information on pertuzumab remains limited. This study assessed the safety of adding pertuzumab to trastuzumab-based therapy for HER2-positive breast cancer using real-world data.
Methods: VigiBase, the World Health Organization's global database of adverse events (AEs), containing reports from November 1967 to December 2023, was used. Signals for pertuzumab-associated AEs in breast cancer cases were detected using the reporting odds ratio (ROR).
Results: Signals of trastuzumab plus pertuzumab relative to trastuzumab alone were detected in gastrointestinal disorders (ROR: 1.45, 95% confidence interval: 1.26?1.67), including diarrhoea (3.49, 2.83?4.30); infections and infestations (1.54, 1.24?1.91); and skin and subcutaneous tissue disorders (ROR: 1.63, 1.40?1.90), including pruritus (1.96, 1.51?2.55) and rash (1.63, 1.20?2.23). Further, signals of trastuzumab plus docetaxel plus pertuzumab relative to those of trastuzumab plus docetaxel were detected in gastrointestinal disorders (1.63, 1.38?1.93), including nausea (1.72, 1.24?2.39) and vomiting (1.48, 1.01?2.17), and in nervous system disorders (1.50, 1.20?1.87), including paraesthesia (2.60, 1.33?5.08) and peripheral sensory neuropathy (5.94, 1.79?19.71). The frequency of AEs causing or prolonging hospitalization was increased with trastuzumab plus pertuzumab compared to that with trastuzumab alone (1.18, 1.00?1.38).
Conclusions: AE profiles after the addition of pertuzumab to trastuzumab-based therapy were comprehensively identified. The findings in this study highlight the importance of considering these AEs when selecting pertuzumab combination therapy to ensure the safety of patients with breast cancer.
en-copyright=
kn-copyright=
en-aut-name=TakedaTatsuaki
en-aut-sei=Takeda
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoJun
en-aut-sei=Matsumoto
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakaiTomonori
en-aut-sei=Sakai
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IwataNaohiro
en-aut-sei=Iwata
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KoyamaToshihiro
en-aut-sei=Koyama
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AriyoshiNoritaka
en-aut-sei=Ariyoshi
en-aut-mei=Noritaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Education and Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Education and Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Education and Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
en-keyword=adverse event
kn-keyword=adverse event
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=pertuzumab
kn-keyword=pertuzumab
en-keyword=trastuzumab
kn-keyword=trastuzumab
en-keyword=VigiBase
kn-keyword=VigiBase
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Supplement-induced acute kidney injury reproduced in kidney organoids
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Acute kidney injury associated with the consumption of Beni-koji CholesteHelp supplements, which contain red yeast rice (Beni-Koji), has become a significant public health concern in Japan. While renal biopsy findings from several case reports have suggested tubular damage, no definitive causal relationship has been established, and the underlying mechanisms of kidney injury remain poorly understood. The complexity of identifying toxic substances in supplements containing various bioactive compounds makes conventional investigative approaches both time-consuming and challenging. This highlights an urgent need to establish a reliable platform for assessing organ-specific toxicity in such supplements. In this study, we utilized a kidney organoid model derived from adult rat kidney stem cells (KS cells) to assess the potential tubular toxicity of these supplements. Methods: KS cell clusters were cultured in three-dimensional system supplemented with growth factors to promote kidney organoids. The organoids were subsequently exposed to Beni-koji CholesteHelp supplements or cisplatin, followed by histological and molecular analyses to evaluate structural impacts. Results: Established organoids had the kidney-like structures including tubular-like structures and glomerulus-like structures at the tips of multiple tubules. Treatment with Beni-koji CholesteHelp supplements induced significant tubular damage in the organoids, characterized by epithelial cell thinning, structural disruption, and increase in cleaved-caspase 3-positive apoptotic tubular cells, similar to the organoids treated with cisplatin. Conclusion: These findings provide the first evidence suggesting that certain toxicants in specific batches of Beni-koji CholesteHelp supplements cause direct renal tubular injury. This KS cell-based organoid system represents a cost-effective, reproducible, and technically simple platform for nephrotoxicity screening.
en-copyright=
kn-copyright=
en-aut-name=NakanohHiroyuki
en-aut-sei=Nakanoh
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiKenji
en-aut-sei=Tsuji
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukushimaKazuhiko
en-aut-sei=Fukushima
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HaraguchiSoichiro
en-aut-sei=Haraguchi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitamuraShinji
en-aut-sei=Kitamura
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Acute kidney injury
kn-keyword=Acute kidney injury
en-keyword=Drug-induced nephrotoxicity
kn-keyword=Drug-induced nephrotoxicity
en-keyword=Kidney organoid
kn-keyword=Kidney organoid
en-keyword=Kidney stem cell
kn-keyword=Kidney stem cell
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Xenopus laevis as an infection model for human pathogenic bacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Animal infection models are essential for understanding bacterial pathogenicity and corresponding host immune responses. In this study, we investigated whether juvenile Xenopus laevis could be used as an infection model for human pathogenic bacteria. Xenopus frogs succumbed to intraperitoneal injection containing the human pathogenic bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes. In contrast, non-pathogenic bacteria Bacillus subtilis and Escherichia coli did not induce mortality in Xenopus frogs. The administration of appropriate antibiotics suppressed mortality caused by S. aureus and P. aeruginosa. Strains lacking the agr locus, cvfA (rny) gene, or hemolysin genes in S. aureus, LIPI-1-deleted mutant of L. monocytogenes, which attenuate virulence within mammals, exhibited reduced virulence in Xenopus frogs compared with their respective wild-type counterparts. Bacterial distribution analysis revealed that S. aureus persisted in the blood, liver, heart, and muscles of Xenopus frogs until death. These results suggested that intraperitoneal injection of human pathogenic bacteria induces sepsis-like symptoms in Xenopus frogs, supporting their use as a valuable animal model for evaluating antimicrobial efficacy and identifying virulence genes in various human pathogenic bacteria.
en-copyright=
kn-copyright=
en-aut-name=KuriuAyano
en-aut-sei=Kuriu
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchiyaKohsuke
en-aut-sei=Tsuchiya
en-aut-mei=Kohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University
kn-affil=
affil-num=4
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=animal infection model
kn-keyword=animal infection model
en-keyword=Staphylococcus aureus
kn-keyword=Staphylococcus aureus
en-keyword=Listeria monocytogenes
kn-keyword=Listeria monocytogenes
en-keyword=Pseudomonas aeruginosa
kn-keyword=Pseudomonas aeruginosa
en-keyword=antibiotics efficacy
kn-keyword=antibiotics efficacy
en-keyword=virulence genes
kn-keyword=virulence genes
en-keyword=hemolysin
kn-keyword=hemolysin
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=2
article-no=
start-page=94
end-page=100
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of different management approaches on unmet water demand in coffee-producing areas during wet and dry years: a case study of the Srepok River Watershed, Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The primary cause of conflicts over water allocation is growing demand and limited supply, which has become an increasingly serious issue in many watersheds. To alleviate water disputes, effective management strategies can be employed, particularly in the context of intensifying agricultural production and unpredictable changes in weather. In this study, two models, SWAT and WEAP, and the modified surface water supply index (MSWSI) were utilized to evaluate water allocation in the Srepok River Watershed (SRW), considering the prioritization of demand and various irrigation methods, during both wet and dry years. The crop irrigation was chosen to be the main focus in relation to the unmet water demand (UWD). The results indicated that coffee was the primary cause of UWD in the middle of the watershed during the second half of the dry season, and annual crops (AC) were the secondary cause. This research further elucidated that while prioritizing demand had an insignificant impact, transitioning from hose irrigation to sprinkler irrigation could be remarkably effective in mitigating the issues of UWD in coffee crops during both wet and dry years.
en-copyright=
kn-copyright=
en-aut-name=SamTruong Thao
en-aut-sei=Sam
en-aut-mei=Truong Thao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoroizumiToshitsugu
en-aut-sei=Moroizumi
en-aut-mei=Toshitsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=hydrological model
kn-keyword=hydrological model
en-keyword=drought
kn-keyword=drought
en-keyword=coffee irrigation
kn-keyword=coffee irrigation
en-keyword=water-saving technique
kn-keyword=water-saving technique
en-keyword=water allocation
kn-keyword=water allocation
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=7
article-no=
start-page=193
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Osteosarcoma cell-derived CCL2 facilitates lung metastasis via accumulation of tumor-associated macrophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteosarcoma (OS) is the most common malignant tumor of bone in children and adolescents. Although lung metastasis is a major obstacle to improving the prognosis of OS patients, the underlying mechanism of lung metastasis of OS is poorly understood. Tumor-associated macrophages (TAMs) with M2-like characteristics are reportedly associated with lung metastasis and poor prognosis in OS patients. In this study, we investigated the metastasis-associated tumor microenvironment (TME) in orthotopic OS tumor models with non-metastatic and metastatic OS cells. Non-metastatic and metastatic tumor cells derived from mouse OS (Dunn and LM8) and human OS (HOS and 143B) were used to analyze the TME associated with lung metastasis in orthotopic OS tumor models. OS cell-derived secretion factors were identified by cytokine array and enzyme-linked immunosorbent assay (ELISA). Orthotopic tumor models with metastatic LM8 and 143B cells were analyzed to evaluate the therapeutic potential of a neutralizing antibody in the development of primary and metastatic tumors. Metastatic OS cells developed metastatic tumors with infiltration of M2-like TAMs in the lungs. Cytokine array and ELISA demonstrated that metastatic mouse and human OS cells commonly secreted CCL2, which was partially encapsulated in extracellular vesicles. In vivo experiments demonstrated that while primary tumor growth was unaffected, administration of CCL2-neutralizing antibody led to a significant suppression of lung metastasis and infiltration of M2-like TAMs in the lung tissue. Our results suggest that CCL2 plays a crucial role in promoting the lung metastasis of OS cells via accumulation of M2-like TAMs.
en-copyright=
kn-copyright=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KureMiho
en-aut-sei=Kure
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DemiyaKoji
en-aut-sei=Demiya
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HataToshiaki
en-aut-sei=Hata
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshiokaYusuke
en-aut-sei=Yoshioka
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Molecular and Cellular Medicine, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Osteosarcoma
kn-keyword=Osteosarcoma
en-keyword=Lung metastasis
kn-keyword=Lung metastasis
en-keyword=Tumor-associated macrophage
kn-keyword=Tumor-associated macrophage
en-keyword=CCL2
kn-keyword=CCL2
en-keyword=Extracellular vesicle
kn-keyword=Extracellular vesicle
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=9
article-no=
start-page=1559
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impacts of Dental Follicle Cells and Periodontal Ligament Cells on the Bone Invasion of Well-Differentiated Oral Squamous Cell Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Oral squamous cell carcinoma (OSCC) frequently invades the jawbone, leading to diagnostic and therapeutic challenges. While tumor-bone interactions have been studied, the specific roles of dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) in OSCC-associated bone resorption remain unclear. This study aimed to compare the effects of DFCs and PDLCs on OSCC-induced bone invasion and elucidate the underlying mechanisms. Methods: Primary human DFCs and PDLCs were isolated from extracted third molars and characterized by Giemsa and immunofluorescence staining. An in vitro co-culture system and an in vivo xenograft mouse model were established using the HSC-2 OSCC cell line. Tumor invasion and osteoclast activation were assessed by hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase (TRAP) staining. Immunohistochemical analysis was performed to evaluate the expression of receptor activator of NF-kappa B ligand (RANKL) and parathyroid hormone-related peptide (PTHrP). Results: DFCs significantly enhanced OSCC-induced bone resorption by promoting osteoclastogenesis and upregulating RANKL and PTHrP expression. In contrast, PDLCs suppressed RANKL expression and partially modulated PTHrP levels, thereby reducing osteoclast activity. Conclusions: DFCs and PDLCs exert opposite regulatory effects on OSCC-associated bone destruction. These findings underscore the importance of stromal heterogeneity and highlight the therapeutic potential of targeting specific stromal-tumor interactions to mitigate bone-invasive OSCC.
en-copyright=
kn-copyright=
en-aut-name=ChangAnqi
en-aut-sei=Chang
en-aut-mei=Anqi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakabatakeKiyofumi
en-aut-sei=Takabatake
en-aut-mei=Kiyofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PiaoTianyan
en-aut-sei=Piao
en-aut-mei=Tianyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArashimaTakuma
en-aut-sei=Arashima
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EainHtoo Shwe
en-aut-sei=Eain
en-aut-mei=Htoo Shwe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SoeYamin
en-aut-sei=Soe
en-aut-mei=Yamin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MinZin Zin
en-aut-sei=Min
en-aut-mei=Zin Zin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Pathology and Medicine, Okayama University
kn-affil=
en-keyword=oral squamous cell carcinoma
kn-keyword=oral squamous cell carcinoma
en-keyword=dental follicle cells
kn-keyword=dental follicle cells
en-keyword=periodontal ligament cells
kn-keyword=periodontal ligament cells
en-keyword=bone invasion
kn-keyword=bone invasion
en-keyword=receptor activator of NF-kappa B ligand
kn-keyword=receptor activator of NF-kappa B ligand
en-keyword=parathyroid hormone-related peptide
kn-keyword=parathyroid hormone-related peptide
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=5
article-no=
start-page=101685
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prognostic Value of Pericoronary Fat Attenuation Index on Computed Tomography for Hospitalization for Heart Failure
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=BACKGROUND Pericoronary fat attenuation index (FAI) assessed on computed tomography is associated with the inflammation of the pericoronary artery.
OBJECTIVES This study aimed to investigate whether pericoronary FAI predicts hospitalization for heart failure with preserved ejection fraction (HFpEF).
METHODS This retrospective single-center study included 1,196 consecutive patients who underwent clinically indicated coronary computed tomography angiography (CCTA) and transthoracic echocardiography. We assessed the FAI of proximal 40-mm segments for each major epicardial coronary vessel. The primary outcome was the incidence of hospitalization for HFpEF. Patients were divided into groups based on the optimal cutoff value for predicting hospitalization for HFpEF by receiver operating characteristic curve analysis.
RESULTS During a median follow-up of 4.3 years, 29 hospitalizations for HFpEF occurred. Multivariable Cox regression analysis revealed that a left anterior descending artery (LAD)-FAI >=-63.4 HU and a left circumflex artery-FAI >=-61.6 HU were significantly associated with hospitalization for HF after adjustment for age and sex (HR: 4.8; 95% CI: 2.1-10.8 and HR: 4.5; 95% CI: 2.1-9.4, respectively). The addition of LAD-FAI >-63.4 HU to a model incorporating other risk factors, including hypertension, estimated glomerular filtration rate <60 mL/min/1.73 m2, and significant stenosis on CCTA, increased the C-statistic for predicting hospitalization for HFpEF from 0.646 to 0.750 (P = 0.010).
CONCLUSIONS LAD-and left circumflex artery-FAI can predict hospitalization for HFpEF in patients undergoing clinically indicated CCTA. Pericoronary inflammation may be useful for identifying patients at high risk of developing HFpEF.
en-copyright=
kn-copyright=
en-aut-name=NakashimaMitsutaka
en-aut-sei=Nakashima
en-aut-mei=Mitsutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiharaTakahiro
en-aut-sei=Nishihara
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MikiTakashi
en-aut-sei=Miki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EjiriKentaro
en-aut-sei=Ejiri
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HaraShohei
en-aut-sei=Hara
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakayaYoichi
en-aut-sei=Takaya
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakayamaRie
en-aut-sei=Nakayama
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IchikawaKeishi
en-aut-sei=Ichikawa
en-aut-mei=Keishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OsawaKazuhiro
en-aut-sei=Osawa
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre
kn-affil=
affil-num=11
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=coronary computed tomography angiography
kn-keyword=coronary computed tomography angiography
en-keyword=fat attenuation index
kn-keyword=fat attenuation index
en-keyword=heart failure
kn-keyword=heart failure
en-keyword=inflammation
kn-keyword=inflammation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High-Resolution HPLC for Separating Peptide-Oligonucleotide Conjugates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Peptide-oligonucleotide conjugates (POCs) are chimeric molecules that combine the specificity of oligonucleotides with the functionality of peptides, improving the delivery and therapeutic potential of nucleic acid-based drugs. However, the analysis of POCs, particularly those containing arginine-rich sequences, poses major challenges because of aggregation caused by electrostatic interactions. In this study, we developed an optimized high-performance liquid chromatography (HPLC) method for analyzing POCs. Using a conjugate of DNA and nona-arginine as a model compound, we systematically investigated the effects of various analytical parameters, including column type, column temperature, mobile-phase composition, and pH. A column packed with C18 resin with wide pores combined with butylammonium acetate as the ion-pairing reagent and an optimal column temperature of 80 degrees C provided superior peak resolution and sensitivity. The optimized conditions gave clear separation of POCs from unlinked oligonucleotides and enabled the detection of nucleic acid fragments lacking an alkyne moiety as a linkage part, which is critical for quality control. Our HPLC method is robust and reproducible and substantially reduces the complexity, time, and cost associated with the POC analysis. The method may improve the efficiency of quality control in the production of POCs, thereby supporting their development as promising therapeutic agents for clinical applications.
en-copyright=
kn-copyright=
en-aut-name=NaganumaMiyako
en-aut-sei=Naganuma
en-aut-mei=Miyako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujiGenichiro
en-aut-sei=Tsuji
en-aut-mei=Genichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AmiyaMisato
en-aut-sei=Amiya
en-aut-mei=Misato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiraiReira
en-aut-sei=Hirai
en-aut-mei=Reira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HiguchiYuki
en-aut-sei=Higuchi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HataNaoko
en-aut-sei=Hata
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NozawaSaoko
en-aut-sei=Nozawa
en-aut-mei=Saoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeDaishi
en-aut-sei=Watanabe
en-aut-mei=Daishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakajimaTaeko
en-aut-sei=Nakajima
en-aut-mei=Taeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=DemizuYosuke
en-aut-sei=Demizu
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Division of Organic Chemistry, National Institute of Health Sciences
kn-affil=
affil-num=2
en-affil=Division of Organic Chemistry, National Institute of Health Sciences
kn-affil=
affil-num=3
en-affil=YMC CO., LTD.
kn-affil=
affil-num=4
en-affil=YMC CO., LTD.
kn-affil=
affil-num=5
en-affil=YMC CO., LTD.
kn-affil=
affil-num=6
en-affil=YMC CO., LTD.
kn-affil=
affil-num=7
en-affil=YMC CO., LTD.
kn-affil=
affil-num=8
en-affil=Division of Organic Chemistry, National Institute of Health Sciences
kn-affil=
affil-num=9
en-affil=YMC CO., LTD.
kn-affil=
affil-num=10
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=1
article-no=
start-page=7
end-page=9
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2023 Incentive Award of the Okayama Medical Association in Cancer Research (2023 Hayashibara Prize and Yamada Prize)
kn-title=令和5年度岡山医学会賞 がん研究奨励賞(林原賞・山田賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=UrataTomohiro
en-aut-sei=Urata
en-aut-mei=Tomohiro
kn-aut-name=浦田知宏
kn-aut-sei=浦田
kn-aut-mei=知宏
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 血液・腫瘍・呼吸器内科学
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=15
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250331
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Improved sedimentary layer model including the accretionary prism in the fore-arc region of the Ryukyu arc, Japan
kn-title=南西諸島の前弧域における付加体を含む堆積層のモデル化
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= We combine the recent seismic reflection profiles to construct a new seismic velocity model of the sedimentary layer incorporating the accretionary prism along the Ryukyu trench. In constructing the new model, we refer to the zoning (ZONE1 to ZONE4) identified by Okamura et al. (2017, Tectonophys.). The construction process consists of the following steps: First, we digitize either unconformities or VP=4 to 5 km/s lines as the seismic basement, whichever is more clearly identifiable. Second, the digitized thickness data of the sedimentary layer from the reflection profiles are geometrically modeled and interpolated to make the three-dimensional structure model. Finally, we supplement the external region of the constructed 3-D sedimentary model using the J-SHIS model provided by the NIED to complete the velocity structure model in the entire Ryukyu arc. The main features of our model are as follows: In ZONE1, off Ishigaki-jima island, the thick sedimentary layer extends about 50 km wide from the Ryukyu trench. In ZONE2, off Miyako-jima island, the thinner layer compared to the other zones is found near the trench, with a thin sedimentary terrace covering the area behind it. In ZONE3, off Okinawa-jima island, the sedimentary layer deepens as it approaches the trench. In ZONE4, off Tokara islands, the deepest layer among all zones is identified. We then conduct 3-D finite-difference simulations of seismic wave propagation using the new and the previous models to confirm the improvement of the new model. In the simulations, the effects of the accretionary prism along the Ryukyu trench on the seismic wave propagation are clearly identified.
en-copyright=
kn-copyright=
en-aut-name=KOMATSUMasanao
en-aut-sei=KOMATSU
en-aut-mei=Masanao
kn-aut-name=小松正直
kn-aut-sei=小松
kn-aut-mei=正直
aut-affil-num=1
ORCID=
en-aut-name=URAKAMISohei
en-aut-sei=URAKAMI
en-aut-mei=Sohei
kn-aut-name=浦上想平
kn-aut-sei=浦上
kn-aut-mei=想平
aut-affil-num=2
ORCID=
en-aut-name=OKAMOTOTaro
en-aut-sei=OKAMOTO
en-aut-mei=Taro
kn-aut-name=岡元太郎
kn-aut-sei=岡元
kn-aut-mei=太郎
aut-affil-num=3
ORCID=
en-aut-name=TAKENAKAHiroshi
en-aut-sei=TAKENAKA
en-aut-mei=Hiroshi
kn-aut-name=竹中博士
kn-aut-sei=竹中
kn-aut-mei=博士
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama Gakuin University
kn-affil=岡山学院大学
affil-num=2
en-affil=Formerly Department of Earth Sciences, Okayama University
kn-affil=元・岡山大学大学院自然科学研究科
affil-num=3
en-affil=Department of Earth and Planetary Sciences, School of Science, Institute of Science Tokyo
kn-affil=東京科学大学理学院地球惑星科学系
affil-num=4
en-affil=Department of Earth Sciences, Okayama University
kn-affil=岡山大学学術研究院環境生命自然科学学域
en-keyword=Sedimentary layer model
kn-keyword=Sedimentary layer model
en-keyword=Accretionary prism
kn-keyword=Accretionary prism
en-keyword=Ryukyu arc
kn-keyword=Ryukyu arc
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=14323
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250424
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lymphatic flow dynamics under exercise load assessed with thoracic duct ultrasonography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The thoracic duct (TD) is the largest lymphatic vessel proximal to the venous system. It undergoes morphological changes in response to lymph flow from the periphery, with automatic contraction controlling the dynamics to propel lymph toward the venous system. Recent advancements in ultrasonography have facilitated non-invasive observations of the TD’s terminal, including its valve and wall motions. Observations of TD movements allow predictions of lymphatic flow dynamics. However, no studies have yet documented the changes in the TD under exercise-induced lymph flow enhancement in humans. Here, using 18-MHz high-frequency ultrasonography, we demonstrate for the first time that the TD diameter significantly expands under exercise load. This study analyzed 20 participants; the maximum TD diameters at rest and post-exercise were 2.69?±?1.06 mm and 3.41?±?1.32 mm, respectively (p?=?0.00000056). While various methods exist for observing the TD, our approach?dynamically monitoring the TD diameter using sonography in real time and correlating it with lymphatic flow dynamics?offers a novel contribution.
en-copyright=
kn-copyright=
en-aut-name=ShinaokaAkira
en-aut-sei=Shinaoka
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimataYoshihiro
en-aut-sei=Kimata
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Lymphatics and Edematology, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Plastic and Reconstructive surgery, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Lymphedema
kn-keyword=Lymphedema
en-keyword=Lymphatic function
kn-keyword=Lymphatic function
en-keyword=Lymph flow
kn-keyword=Lymph flow
en-keyword=Chylothorax
kn-keyword=Chylothorax
en-keyword=Chylous ascites,lymph velocity
kn-keyword=Chylous ascites,lymph velocity
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=4
article-no=
start-page=139
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Implementation of Creep Test Assisting System with Dial Gauge Needle Reading and Smart Lighting Function for Laboratory Automation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For decades, analog dial gauges have been essential for measuring and monitoring data at various industrial instruments including production machines and laboratory equipment. Among them, we focus on the instrument for creep test in a mechanical engineering laboratory, which evaluates material strength under sustained stress. Manual reading of gauges imposes significant labor demands, especially in long-duration tests. This burden further increases under low-lighting environments, where poor visibility can lead to misreading data points, potentially compromising the accuracy of test results. In this paper, to address the challenges, we implement a creep test assisting system that possesses the following features: (1) to save the installation cost, a web camera and Raspberry Pi are employed to capture images of the dial gauge and automate the needle reading by image processing in real time, (2) to ensure reliability under low-lighting environments, a smart lighting mechanism is integrated to turn on a supplementary light when the dial gauge is not clearly visible, and (3) to allow a user to stay in a distant place from the instrument during a creep test, material break is detected and the corresponding message is notified to a laboratory staff using LINE automatically. For evaluations, we install the implemented system into a material strength measuring instrument at Okayama University, Japan, and confirm the effectiveness and accuracy through conducting experiments under various lighting conditions.
en-copyright=
kn-copyright=
en-aut-name=KongDezheng
en-aut-sei=Kong
en-aut-mei=Dezheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FangShihao
en-aut-sei=Fang
en-aut-mei=Shihao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NopriantoMitsuhiro
en-aut-sei=Noprianto
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OkayasuMitsuhiro
en-aut-sei=Okayasu
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PuspitaningayuPradini
en-aut-sei=Puspitaningayu
en-aut-mei=Pradini
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Electrical Engineering, Universitas Negeri Surabaya
kn-affil=
en-keyword=creep test
kn-keyword=creep test
en-keyword=Raspberry Pi
kn-keyword=Raspberry Pi
en-keyword=dial gauge
kn-keyword=dial gauge
en-keyword=needle reading
kn-keyword=needle reading
en-keyword=smart lighting
kn-keyword=smart lighting
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=116
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250416
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ADAR1-high tumor-associated macrophages induce drug resistance and are therapeutic targets in colorectal cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Colorectal cancer (CRC) is considered the third most common type of cancer worldwide. Tumor-associated macrophages (TAMs) have been shown to promote drug resistance. Adenosine-to-inosine RNA-editing, as regulated by adenosine deaminase acting on RNA (ADAR), is a process that induces the posttranscriptional modification of critical oncogenes. The aim of this study is to determine whether the signals from cancer cells would induce RNA-editing in macrophages.
Methods The effects of RNA-editing on phenotypes in macrophages were analyzed using clinical samples and in vitro and in vivo models.
Results The intensity of the RNA-editing enzyme ADAR1 (Adenosine deaminase acting on RNA 1) in cancer and mononuclear cells indicated a strong positive correlation between the nucleus and cytoplasm. The ADAR1-positive mononuclear cells were positive for CD68 and CD163, a marker for M2 macrophages. Cancer cells transport pro-inflammatory cytokines or ADAR1 protein directly to macrophages via the exosomes, promoting RNA-editing in AZIN1 (Antizyme Inhibitor 1) and GLI1 (Glioma-Associated Oncogene Homolog 1) and resulting in M2 macrophage polarization. GLI1 RNA-editing in the macrophages induced by cancer cells promotes the secretion of SPP1, which is supplied to the cancer cells. This activates the NF kappa B pathway in cancer cells, promoting oxaliplatin resistance. When the JAK inhibitors were administered, oncogenic RNA-editing in the macrophages was suppressed. This altered the macrophage polarization from M2 to M1 and decreased oxaliplatin resistance in cancer cells.
Conclusions This study revealed that ADAR1-high TAMs are crucial in regulating drug resistance in CRC and that targeting ADAR1 in TAMs could be a promising treatment approach for overcoming drug resistance in CRC.
en-copyright=
kn-copyright=
en-aut-name=UmedaHibiki
en-aut-sei=Umeda
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiToshiaki
en-aut-sei=Takahashi
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriwakeKazuya
en-aut-sei=Moriwake
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KondoYoshitaka
en-aut-sei=Kondo
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshidaKazuhiro
en-aut-sei=Yoshida
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakedaSho
en-aut-sei=Takeda
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YanoShuya
en-aut-sei=Yano
en-aut-mei=Shuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumiYuki
en-aut-sei=Matsumi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KishimotoHiroyuki
en-aut-sei=Kishimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiTomokazu
en-aut-sei=Fuji
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TakagiKosei
en-aut-sei=Takagi
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KayanoMasashi
en-aut-sei=Kayano
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MoriYoshiko
en-aut-sei=Mori
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=UmedaYuzo
en-aut-sei=Umeda
en-aut-mei=Yuzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=GoelAjay
en-aut-sei=Goel
en-aut-mei=Ajay
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Obstetrics and Gynecology, Okayama University Gradu?ate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center
kn-affil=
affil-num=24
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=RNA-editing
kn-keyword=RNA-editing
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Chemoresistance
kn-keyword=Chemoresistance
en-keyword=Biomarker
kn-keyword=Biomarker
en-keyword=Colorectal cancer
kn-keyword=Colorectal cancer
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=101
end-page=107
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effectiveness of Postoperative Irradiation in Patients with cN0 Early Breast Cancer Treated with Sentinel Lymph Node Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To evaluate the effectiveness of postoperative irradiation (POI) for patients with cN0 early breast cancer, we retrospectively analyzed the cases of 650 consecutive breast cancer patients who underwent sentinel lymph node (SLN)-guided surgery (2005-2022) at our hospital. In this cohort, 53% (278/521) of the patients who underwent breast conservative surgery (BCS) and 96% (124/129) of those treated with mastectomy did not receive POI. The patients who underwent BCS were treated with POI using opposing tangential field irradiation. A false negative (FN) SLN was retrospectively defined as a negative metastasis in SLN plus positive recurrence in the axillary lymph nodes. Recurrence was detected in 83 patients. A logistic regression analysis revealed that the nuclear grade (odds ratio [OR] 1.69), POI (OR 0.41), and postoperative hormone therapy (OR 0.40) were each significantly related to recurrence. The 26.1% (12/46) FN rate of the non-POI patients decreased to 5.8% (1/17) compared to those treated with POI. The rate of axillary recurrence was significantly lower in the POI group (0.4%) versus the non-POI group (2.7%) (p=0.0355). The rate of locoregional recurrence was also significantly lower in the POI group (2.0%) versus the non-POI group (13.4%) (p<0.0001). No significant difference was observed in the rate of distant recurrence between the POI (4.0%) and non-POI (3.3%) (p=0.831) groups. These results indicated that the postoperative opposing tangential field irradiation of conserved breast tissue inhibited recurrence in the axillary lymph nodes.
en-copyright=
kn-copyright=
en-aut-name=IsozakiHiroshi
en-aut-sei=Isozaki
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumotoSasau
en-aut-sei=Matsumoto
en-aut-mei=Sasau
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakamaTakehiro
en-aut-sei=Takama
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IsozakiYuka
en-aut-sei=Isozaki
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=2
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=3
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
affil-num=4
en-affil=Department of Surgery, Oomoto Hospital
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=postoperative irradiation
kn-keyword=postoperative irradiation
en-keyword=radiation therapy
kn-keyword=radiation therapy
en-keyword=sentinel lymph nodes
kn-keyword=sentinel lymph nodes
en-keyword=recurrence
kn-keyword=recurrence
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=81
end-page=92
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical Outcomes of Neoadjuvant Paclitaxel/Cisplatin/Gemcitabine Compared with Gemcitabine/Cisplatin for Muscle-Invasive Bladder Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We retrospectively evaluated the oncologic outcomes of paclitaxel, cisplatin, and gemcitabine (PCG) with those of gemcitabine and cisplatin (GC) as neoadjuvant chemotherapy in muscle-invasive bladder cancer (MIBC) patients. The primary outcome was efficacy: pathological complete response (pCR), ypT0N0; and pathological objective response (pOR), ypT0N0, ? ypT1N0, or ypT0N1. Secondary outcomes included overall survival (OS), recurrence-free survival (RFS), predictive factors for pOR, OS, and RFS, and hematologic adverse events (AEs). Among 113 patients treated (PCG, n=28; GC, n=85), similar pOR and pCR rates were achieved by the groups (pOR: PCG, 57.1% vs. GC, 49. 4%; p=0.52; pCR: PCG, 39.3% vs. GC, 29.4%; p=0.36). No significant differences were observed in OS (p=1.0) or RFS (p=0.20). Multivariate logistic regression analysis showed that hydronephrosis (odds ratio [OR] 0.32, 95%CI: 0.11-0.92) and clinical node-positive status (cN+) (OR 0.22, 95%CI: 0.050-0.99) were significantly associated with a decreased probability of pOR. On multivariate Cox regression analyses, pOR achievement was associated with improved OS (hazard ratio [HR] 0.23, 95%CI: 0.10-0.56) and RFS (HR 0.30, 95%CI: 0.13-0.67). There were no significant between-group differences in the incidence of grade ? 3 hematologic AEs or dose-reduction required, but the PCG group had a higher incidence of grade 4 neutropenia.
en-copyright=
kn-copyright=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsugawaTakuji
en-aut-sei=Tsugawa
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsuboiKazuma
en-aut-sei=Tsuboi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=EbaraShin
en-aut-sei=Ebara
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=urothelial carcinoma
kn-keyword=urothelial carcinoma
en-keyword=paclitaxel
kn-keyword=paclitaxel
en-keyword=cisplatin
kn-keyword=cisplatin
en-keyword=gemcitabine
kn-keyword=gemcitabine
en-keyword=neoadjuvant
kn-keyword=neoadjuvant
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=2
article-no=
start-page=65
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between the Pretreatment Body Mass Index and Anamorelin’s Efficacy in Patients with Cancer Cachexia: A Retrospective Cohort Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Anamorelin (ANAM) is used to treat cancer-associated cachexia, a syndrome involving muscle loss and anorexia. The timing of the initiation of ANAM treatment is crucial to its efficacy. Although the body mass index (BMI) is a diagnostic criterion for cancer cachexia, no studies have explored its association with ANAM efficacy. We conducted a single-center, retrospective cohort study to investigate the association between the pre-treatment BMI and ANAM efficacy in patients with cancer-associated cachexia (n=47). The ANAM treatment was considered effective if the patient’s appetite improved within 30 days of treatment initiation. We calculated a BMI cutoff value (19.5 kg/m2) and used it to divide the patients into high- and low-BMI groups. Their background, clinical laboratory values, cancer types, and treatment lines were investigated. Twenty (42.6%) had a high BMI (? 19.5 kg/m2) and 27 (57.4%) had a low BMI (< 19.5 kg/m2). High BMI was significantly associated with ANAM effectiveness (odds ratio 7.86, 95% confidence interval 1.99-31.00, p=0.003). Together these results indicate that it is beneficial to initiate ANAM treatment before a patient’s BMI drops below 19.5 kg/m2. Our findings will help advance cancer cachexia treatment and serve as a reference for clinicians to predict ANAM’s efficacy.
en-copyright=
kn-copyright=
en-aut-name=MakiMasatoshi
en-aut-sei=Maki
en-aut-mei=Masatoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakadaRyo
en-aut-sei=Takada
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshigoTomoyuki
en-aut-sei=Ishigo
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiwaraMiki
en-aut-sei=Fujiwara
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakahashiYoko
en-aut-sei=Takahashi
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtsukaShinya
en-aut-sei=Otsuka
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TamuraKoji
en-aut-sei=Tamura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HamaokaTerutaka
en-aut-sei=Hamaoka
en-aut-mei=Terutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=2
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=3
en-affil=Department of Pharmacy, Sapporo Medical University Hospital
kn-affil=
affil-num=4
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=5
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Surgery, NHO Fukuyama Medical Center
kn-affil=
affil-num=7
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
affil-num=8
en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center
kn-affil=
en-keyword=anamorelin
kn-keyword=anamorelin
en-keyword=cancer-associated cachexia
kn-keyword=cancer-associated cachexia
en-keyword=body mass index
kn-keyword=body mass index
en-keyword=albumin
kn-keyword=albumin
en-keyword=efficacy rate
kn-keyword=efficacy rate
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=2
article-no=
start-page=156
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical-level screening of sleep apnea syndrome with single-lead ECG alone is achievable using machine learning with appropriate time windows
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose To establish a simple and noninvasive screening test for sleep apnea (SA) that imposes less burden on potential patients. The specific objective of this study was to verify the effectiveness of past and future single-lead electrocardiogram (ECG) data from SA occurrence sites in improving the estimation accuracy of SA and sleep apnea syndrome (SAS) using machine learning.
Methods The Apnea-ECG dataset comprising 70 ECG recordings was used to construct various machine-learning models. The time window size was adjusted based on the accuracy of SA detection, and the performance of SA detection and SAS diagnosis (apnea?hypopnea index???5 was considered SAS) was compared.
Results Using ECG data from a few minutes before and after the occurrence of SAs improved the estimation accuracy of SA and SAS in all machine learning models. The optimal range of the time window and achieved accuracy for SAS varied by model; however, the sensitivity ranged from 95.7 to 100%, and the specificity ranged from 91.7 to 100%.
Conclusions ECG data from a few minutes before and after SA occurrence were effective in SA detection and SAS diagnosis, confirming that SA is a continuous phenomenon and that SA affects heart function over a few minutes before and after SA occurrence. Screening tests for SAS, using data obtained from single-lead ECGs with appropriate past and future time windows, should be performed with clinical-level accuracy.
en-copyright=
kn-copyright=
en-aut-name=YamaneTakahiro
en-aut-sei=Yamane
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiMasanori
en-aut-sei=Fujii
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoritaMizuki
en-aut-sei=Morita
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Geriatric Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Disease screening
kn-keyword=Disease screening
en-keyword=Sleep apnea syndrome (SAS)
kn-keyword=Sleep apnea syndrome (SAS)
en-keyword=Single-lead ECG
kn-keyword=Single-lead ECG
en-keyword=Artificial intelligence
kn-keyword=Artificial intelligence
en-keyword=Machine learning
kn-keyword=Machine learning
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=7
article-no=
start-page=2221
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250401
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Length Estimation of Pneumatic Artificial Muscle with Optical Fiber Sensor Using Machine Learning
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A McKibben artificial muscle is a soft actuator driven by air pressure, characterized by its flexibility, lightweight design, and high power-to-weight ratio. We have developed a smart artificial muscle that is capable of sensing its motion. To enable this sensing function, an optical fiber was integrated into the sleeve consisting of multiple fibers and serving as a component of the McKibben artificial muscle. By measuring the macrobending loss of the optical fiber, the length of the smart artificial muscle is expected to be estimated. However, experimental results indicated that the sensor's characteristics depend not only on the length but also on the load and the applied air pressure. This dependency arises because the stress applied to the optical fiber increases, causing microbending loss. In this study, we employed a machine learning model, primarily composed of Long Short-Term Memory (LSTM) neural networks, to estimate the length of the smart artificial muscle. The experimental results demonstrate that the length estimation obtained through machine learning exhibits a smaller error. This suggests that machine learning is a feasible approach to enhancing the length measurement accuracy of the smart artificial muscle.
en-copyright=
kn-copyright=
en-aut-name=NiYilei
en-aut-sei=Ni
en-aut-mei=Yilei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=WakimotoShuichi
en-aut-sei=Wakimoto
en-aut-mei=Shuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TianWeihang
en-aut-sei=Tian
en-aut-mei=Weihang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TodaYuichiro
en-aut-sei=Toda
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KandaTakefumi
en-aut-sei=Kanda
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaguchiDaisuke
en-aut-sei=Yamaguchi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=McKibben artificial muscle
kn-keyword=McKibben artificial muscle
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=optical fiber
kn-keyword=optical fiber
en-keyword=motion estimation
kn-keyword=motion estimation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250403
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The association between objectively measured physical activity and home blood pressure: a population-based real-world data analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Few studies have examined the association of objectively measured habitual physical activity (PA) and sedentary behavior with out-of-office blood pressure (BP). We investigated the associations of objectively measured PA intensity time, sedentary time, and step count with at-home BP. Using accelerometer-recorded PA indices and self-measured BP in 368 participants (mean age, 53.8 years; 58.7% women), we analyzed 115,575 records of each parameter between May 2019 and April 2024. PA intensities were categorized as light (2.0?2.9 metabolic equivalents [METs]); moderate (3.0?5.9 METs); vigorous (?6.0 METs), or sedentary (<2.0 METs): the median [interquartile ranges] for these variables was 188 [146?232], 83 [59?114], 1 [0?2], 501 [428?579] minutes, respectively, and for step count, was 6040 [4164?8457]. Means [standard deviations] for systolic and diastolic BP were 116.4 [14.2] and 75.2 [9.3] mmHg, respectively. A mixed-effect model adjusted for possible confounders showed that 1-h longer in vigorous PA was associated with lower systolic and diastolic BP (?1.69 and ?1.09?mmHg, respectively). A 1000-step increase in step count was associated with lower systolic and diastolic BP (?0.05 and ?0.02?mmHg, respectively). Associations were more pronounced among men and participants aged <60 years. Sedentary time was positively associated with BP in men and participants aged <60 years, but inversely associated with BP in women and participants aged ?60 years. Our findings suggest that more PA and less sedentary behavior were associated with BP reduction, particularly among men and participants aged <60 years. However, the clinical relevance of this effect remains uncertain because of its modest magnitude.
en-copyright=
kn-copyright=
en-aut-name=KinutaMinako
en-aut-sei=Kinuta
en-aut-mei=Minako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TaniguchiKaori
en-aut-sei=Taniguchi
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukudaMari
en-aut-sei=Fukuda
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakahataNoriko
en-aut-sei=Nakahata
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KandaHideyuki
en-aut-sei=Kanda
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Environmental Medicine and Public Health, Izumo, Shimane University Faculty of Medicine
kn-affil=
affil-num=4
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Health and Nutrition, The University of Shimane Faculty of Nursing and Nutrition
kn-affil=
affil-num=6
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=213
cd-vols=
no-issue=
article-no=
start-page=128
end-page=137
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202504
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The potential mechanism maintaining transactive response DNA binding protein 43?kDa in the mouse stroke model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The disruption of transactive response DNA binding protein 43?kDa (TDP-43) shuttling leads to the depletion of nuclear localization and the cytoplasmic accumulation of TDP-43. We aimed to evaluate the mechanism underlying the behavior of TDP-43 in ischemic stroke. Adult male C57BL/6?J mice were subjected to 30 or 60?min of transient middle cerebral artery occlusion (tMCAO), and examined at 1, 6, and 24?h post reperfusion. Immunostaining was used to evaluate the expression of TDP-43, G3BP1, HDAC6, and RAD23B. The total and cytoplasmic number of TDP-43?positive cells increased compared with sham operation group and peaked at 6?h post reperfusion after tMCAO. The elevated expression of G3BP1 protein peaked at 6?h after reperfusion and decreased at 24?h after reperfusion in ischemic mice brains. We also observed an increase of expression level of HDAC6 and the number of RAD23B-positive cells increased after tMCAO. RAD23B was colocalized with TDP-43 24?h after tMCAO. We proposed that the formation of stress granules might be involved in the mislocalization of TDP-43, based on an evaluation of G3BP1 and HDAC6. Subsequently, RAD23B, may also contribute to the downstream degradation of mislocalized TDP-43 in mice tMCAO model.
en-copyright=
kn-copyright=
en-aut-name=BianYuting
en-aut-sei=Bian
en-aut-mei=Yuting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BianZhihong
en-aut-sei=Bian
en-aut-mei=Zhihong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhaiYun
en-aut-sei=Zhai
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuHaibo
en-aut-sei=Yu
en-aut-mei=Haibo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HuXiao
en-aut-sei=Hu
en-aut-mei=Xiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AnHangping
en-aut-sei=An
en-aut-mei=Hangping
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=LiuHongzhi
en-aut-sei=Liu
en-aut-mei=Hongzhi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=TDP-43
kn-keyword=TDP-43
en-keyword=ALS
kn-keyword=ALS
en-keyword=RNA-binding protein
kn-keyword=RNA-binding protein
en-keyword=Mislocalization
kn-keyword=Mislocalization
en-keyword=G3BP1
kn-keyword=G3BP1
en-keyword=HDAC6
kn-keyword=HDAC6
en-keyword=RAD23B
kn-keyword=RAD23B
en-keyword=tMCAO
kn-keyword=tMCAO
END
start-ver=1.4
cd-journal=joma
no-vol=2024
cd-vols=
no-issue=12
article-no=
start-page=135
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241217
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Elliptic virtual structure constants and generalizations of BCOV-Zinger formula to projective Fano hypersurfaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this paper, we propose a method for computing genus 1 Gromov-Witten invariants of Calabi-Yau and Fano projective hypersurfaces using the B-model. Our formalism is applicable to both Calabi-Yau and Fano cases. In the Calabi-Yau case, significant cancellation of terms within our formalism occurs, resulting in an alternative representation of the BCOV-Zinger formula for projective Calabi-Yau hypersurfaces.
en-copyright=
kn-copyright=
en-aut-name=JinzenjiMasao
en-aut-sei=Jinzenji
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuwataKen
en-aut-sei=Kuwata
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Mathematics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of General Education, National Institute of Technology, Kagawa College
kn-affil=
en-keyword=Nonperturbative Effects
kn-keyword=Nonperturbative Effects
en-keyword=String Duality
kn-keyword=String Duality
en-keyword=Topological Field Theories
kn-keyword=Topological Field Theories
en-keyword=Topological Strings
kn-keyword=Topological Strings
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=133
end-page=147
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tsetlin library on p-colored permutations and q-analogue
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=K. Brown [1] studied the random to top shuffle (the Tsetlin libary) by semigroup method. In this paper, (i) we extend his results to the colored permutation groups, and (ii) we consider a q-analogue of Tsetlin library which is different from what is studied in [1]. In (i), the results also extends those results for the top to random shuffle [4],[5], [6] to arbitrary distribution of choosing cards, but we still have derangement numbers in the multiplicity of each eigenvalues. In (ii), a version of q-analogue of derangement numbers by Chen-Rota [3] appears in the multiplicity of eigenvalues.
en-copyright=
kn-copyright=
en-aut-name=NakagawaYuto
en-aut-sei=Nakagawa
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakanoFumihiko
en-aut-sei=Nakano
en-aut-mei=Fumihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Mathematical Institute, Tohoku University
kn-affil=
affil-num=2
en-affil=Mathematical Institute, Tohoku University
kn-affil=
en-keyword=Tsetlin library
kn-keyword=Tsetlin library
en-keyword=Left Regular Band
kn-keyword=Left Regular Band
en-keyword=colored permutation group
kn-keyword=colored permutation group
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=101
end-page=131
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The characterizations of an alternating sign matrices using a triplet
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An alternating sign matrix (ASM for short) is a square matrix which consists of 0, 1 and ?1. In this paper, we characterize an ASM by showing a bijection between alternating sign matrix and six vertex model, and a bijection between six vertex model and height function.
In order to show these bijections, we define a triplet (ai,j , ci,j , ri,j) for each entry of an ASM. We also define a track for each index of height function, and state more properties of height function.
en-copyright=
kn-copyright=
en-aut-name=OhmotoToyokazu
en-aut-sei=Ohmoto
en-aut-mei=Toyokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Mathematics, Faculty of Science, Okayama University
kn-affil=
en-keyword=Alternating sign matrix
kn-keyword=Alternating sign matrix
en-keyword=six vertex model
kn-keyword=six vertex model
en-keyword=height function
kn-keyword=height function
END
start-ver=1.4
cd-journal=joma
no-vol=67
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=51
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Quillen model structure on the category of diffeological spaces
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We construct on the category of diffeological spaces a Quillen model structure having smooth weak homotopy equivalences as the class of weak equivalences.
en-copyright=
kn-copyright=
en-aut-name=HaraguchiTadayuki
en-aut-sei=Haraguchi
en-aut-mei=Tadayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimakawaKazuhisa
en-aut-sei=Shimakawa
en-aut-mei=Kazuhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Education for Human Growth, Nara Gakuen University
kn-affil=
affil-num=2
en-affil=Okayama University
kn-affil=
en-keyword=Diffeological space
kn-keyword=Diffeological space
en-keyword=Homotopy theory
kn-keyword=Homotopy theory
en-keyword=Model category
kn-keyword=Model category
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=6
article-no=
start-page=668
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250310
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Robustness of Machine Learning Predictions for Determining Whether Deep Inspiration Breath-Hold Is Required in Breast Cancer Radiation Therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Deep inspiration breath-hold (DIBH) is a commonly used technique to reduce the mean heart dose (MHD), which is critical for minimizing late cardiac side effects in breast cancer patients undergoing radiation therapy (RT). Although previous studies have explored the potential of machine learning (ML) to predict which patients might benefit from DIBH, none have rigorously assessed ML model performance across various MHD thresholds and parameter settings. This study aims to evaluate the robustness of ML models in predicting the need for DIBH across different clinical scenarios. Methods: Using data from 207 breast cancer patients treated with RT, we developed and tested ML models at three MHD cut-off values (240, 270, and 300 cGy), considering variations in the number of independent variables (three vs. six) and folds in the cross-validation (three, four, and five). Robustness was defined as achieving high F2 scores and low instability in predictive performance. Results: Our findings indicate that the decision tree (DT) model demonstrated consistently high robustness at 240 and 270 cGy, while the random forest model performed optimally at 300 cGy. At 240 cGy, a threshold critical to minimize late cardiac risks, the DT model exhibited stable predictive power, reducing the risk of overestimating DIBH necessity. Conclusions: These results suggest that the DT model, particularly at lower MHD thresholds, may be the most reliable for clinical applications. By providing a tool for targeted DIBH implementation, this model has the potential to enhance patient-specific treatment planning and improve clinical outcomes in RT.
en-copyright=
kn-copyright=
en-aut-name=Al-HammadWlla E.
en-aut-sei=Al-Hammad
en-aut-mei=Wlla E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaMasahiro
en-aut-sei=Kuroda
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Al JamalJamal, Ghaida
en-aut-sei=Al Jamal
en-aut-mei=Jamal, Ghaida
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujikuraMamiko
en-aut-sei=Fujikura
en-aut-mei=Mamiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KamizakiRyo
en-aut-sei=Kamizaki
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KurodaKazuhiro
en-aut-sei=Kuroda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshidaSuzuka
en-aut-sei=Yoshida
en-aut-mei=Suzuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakamuraYoshihide
en-aut-sei=Nakamura
en-aut-mei=Yoshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SugimotoKohei
en-aut-sei=Sugimoto
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SugiantoIrfan
en-aut-sei=Sugianto
en-aut-mei=Irfan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=BarhamMajd
en-aut-sei=Barham
en-aut-mei=Majd
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TekikiNouha
en-aut-sei=Tekiki
en-aut-mei=Nouha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HisatomiMiki
en-aut-sei=Hisatomi
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=AsaumiJunichi
en-aut-sei=Asaumi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=10
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University
kn-affil=
affil-num=13
en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University
kn-affil=
affil-num=14
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=radiation therapy
kn-keyword=radiation therapy
en-keyword=heart dose
kn-keyword=heart dose
en-keyword=cut-off value
kn-keyword=cut-off value
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=robustness
kn-keyword=robustness
en-keyword=instability
kn-keyword=instability
en-keyword=F2 score
kn-keyword=F2 score
en-keyword=deep inspiration breath-hold technique
kn-keyword=deep inspiration breath-hold technique
en-keyword=computed tomography
kn-keyword=computed tomography
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=6
article-no=
start-page=790
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250320
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Improving Diagnostic Performance for Head and Neck Tumors with Simple Diffusion Kurtosis Imaging and Machine Learning Bi-Parameter Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Mean kurtosis (MK) values in simple diffusion kurtosis imaging (SDI)-a type of diffusion kurtosis imaging (DKI)-have been reported to be useful in the diagnosis of head and neck malignancies, for which pre-processing with smoothing filters has been reported to improve the diagnostic accuracy. Multi-parameter analysis using DKI in combination with other image types has recently been reported to improve the diagnostic performance. The purpose of this study was to evaluate the usefulness of machine learning (ML)-based multi-parameter analysis using the MK and apparent diffusion coefficient (ADC) values-which can be acquired simultaneously through SDI-for the differential diagnosis of benign and malignant head and neck tumors, which is important for determining the treatment strategy, as well as examining the usefulness of filter pre-processing. Methods: A total of 32 pathologically diagnosed head and neck tumors were included in the study, and a Gaussian filter was used for image pre-processing. MK and ADC values were extracted from pixels within the tumor area and used as explanatory variables. Five ML algorithms were used to create models for the prediction of tumor status (benign or malignant), which were evaluated through ROC analysis. Results: Bi-parameter analysis with gradient boosting achieved the best diagnostic performance, with an AUC of 0.81. Conclusions: The usefulness of bi-parameter analysis with ML methods for the differential diagnosis of benign and malignant head and neck tumors using SDI data were demonstrated.
en-copyright=
kn-copyright=
en-aut-name=YoshidaSuzuka
en-aut-sei=Yoshida
en-aut-mei=Suzuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaMasahiro
en-aut-sei=Kuroda
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraYoshihide
en-aut-sei=Nakamura
en-aut-mei=Yoshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukumuraYuka
en-aut-sei=Fukumura
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakamitsuYuki
en-aut-sei=Nakamitsu
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Al-HammadWlla E.
en-aut-sei=Al-Hammad
en-aut-mei=Wlla E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KurodaKazuhiro
en-aut-sei=Kuroda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimizuYudai
en-aut-sei=Shimizu
en-aut-mei=Yudai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OitaMasataka
en-aut-sei=Oita
en-aut-mei=Masataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SugiantoIrfan
en-aut-sei=Sugianto
en-aut-mei=Irfan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BarhamMajd
en-aut-sei=Barham
en-aut-mei=Majd
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TekikiNouha
en-aut-sei=Tekiki
en-aut-mei=Nouha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KamaruddinNurul N.
en-aut-sei=Kamaruddin
en-aut-mei=Nurul N.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HisatomiMiki
en-aut-sei=Hisatomi
en-aut-mei=Miki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=YanagiYoshinobu
en-aut-sei=Yanagi
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=AsaumiJunichi
en-aut-sei=Asaumi
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University
kn-affil=
affil-num=12
en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University
kn-affil=
affil-num=13
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=head and neck tumors
kn-keyword=head and neck tumors
en-keyword=mean kurtosis
kn-keyword=mean kurtosis
en-keyword=simple diffusion kurtosis imaging
kn-keyword=simple diffusion kurtosis imaging
en-keyword=magnetic resonance imaging
kn-keyword=magnetic resonance imaging
en-keyword=apparent diffusion coefficient value
kn-keyword=apparent diffusion coefficient value
en-keyword=diffusion kurtosis imaging
kn-keyword=diffusion kurtosis imaging
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=bi-parameter analysis
kn-keyword=bi-parameter analysis
en-keyword=gradient boosting
kn-keyword=gradient boosting
en-keyword=differential diagnosis of benign and malignant
kn-keyword=differential diagnosis of benign and malignant
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=6
article-no=
start-page=619
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250313
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Trehalose on Halitosis: A Randomized Cross-Over Clinical Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Halitosis is a condition characterized by an unpleasant malodor. Intra-oral halitosis is caused by volatile sulfur compounds (VSCs) and can be associated with oral dryness. Trehalose is one of the materials used to relieve oral dryness. The aim of the present study was to investigate the effect of trehalose on halitosis. Methods: This prospective, double-blinded, placebo-controlled, cross-over study enrolled volunteers from Okayama University Hospital. The participants were randomly divided into two groups, with one group receiving trehalose (a 10% trehalose solution) and the other receiving a placebo (distilled water) in a 1:1 allocation. The primary study outcome was the subjective organoleptic test. The secondary outcomes were the concentrations of the VSCs, which were measured using a portable gas chromatography device, and the oral moisture status, which was measured using an oral moisture meter. The planned sample size was 10 participants based on the previous study. Results: The final intention-to-treat analysis was performed using the data from 9 participants. After applying 10% trehalose as an oral spray, the organoleptic score decreased in a time-dependent manner. However, no significant differences were seen between the trehalose and placebo groups. In terms of secondary outcomes, the oral moisture levels increased immediately after the trehalose spray application, and significant differences in the amount of change from the baseline were seen between the trehalose and placebo groups (p = 0.047). No significant differences were seen in any of the other variables (p > 0.05). Conclusions: We could not identify any positive effects on halitosis from a one-time 10% trehalose application as an oral spray in this prospective, double-blinded, placebo-controlled, cross-over study. However, the trehalose application immediately improved the oral moisture levels and was useful for treating oral dryness.
en-copyright=
kn-copyright=
en-aut-name=MiyaiHisataka
en-aut-sei=Miyai
en-aut-mei=Hisataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TomofujiTakaaki
en-aut-sei=Tomofuji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MizunoHirofumi
en-aut-sei=Mizuno
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoritaManabu
en-aut-sei=Morita
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakaharaMomoko
en-aut-sei=Nakahara
en-aut-mei=Momoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KataokaKota
en-aut-sei=Kataoka
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SumitaIchiro
en-aut-sei=Sumita
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UchidaYurika
en-aut-sei=Uchida
en-aut-mei=Yurika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyamaNaoki
en-aut-sei=Toyama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YokoiAya
en-aut-sei=Yokoi
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=Yamanaka-KohnoReiko
en-aut-sei=Yamanaka-Kohno
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakeuchiNoriko
en-aut-sei=Takeuchi
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Community Oral Health, School of Dentistry, Asahi University
kn-affil=
affil-num=3
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care
kn-affil=
affil-num=5
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=halitosis
kn-keyword=halitosis
en-keyword=trehalose
kn-keyword=trehalose
en-keyword=oral dryness
kn-keyword=oral dryness
en-keyword=cross-over study
kn-keyword=cross-over study
en-keyword=randomized trial
kn-keyword=randomized trial
END
start-ver=1.4
cd-journal=joma
no-vol=85
cd-vols=
no-issue=6
article-no=
start-page=1082
end-page=1096
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250314
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Myeloid Cells Induce Infiltration and Activation of B Cells and CD4+ T Follicular Helper Cells to Sensitize Brain Metastases to Combination Immunotherapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Brain metastasis is a poor prognostic factor in patients with cancer. Despite showing efficacy in many extracranial tumors, immunotherapy with anti?PD-1 mAb or anti?CTLA4 mAb seems to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti?PD-1 and anti?CTLA4 mAbs has a potent antitumor effect on brain metastasis, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies. In this study, we analyzed the tumor-infiltrating lymphocytes in murine models of brain metastasis that responded to anti?CTLA4 and anti?PD-1 mAbs. Activated CD4+ T follicular helper (TFH) cells with high CTLA4 expression characteristically infiltrated the intracranial TME, which were activated by combination anti?CTLA4 and anti?PD-1 treatment. The loss of TFH cells suppressed the additive effect of CTLA4 blockade on anti?PD-1 mAb. B-cell?activating factor belonging to the TNF family (BAFF) and a proliferation-inducing ligand (APRIL) produced by abundant myeloid cells, particularly CD80hiCD206lo proinflammatory M1-like macrophages, in the intracranial TME induced B-cell and TFH-cell infiltration and activation. Furthermore, the intracranial TME of patients with non?small cell lung cancer featured TFH- and B-cell infiltration as tertiary lymphoid structures. Together, these findings provide insights into the immune cell cross-talk in the intracranial TME that facilitates an additive antitumor effect of CTLA4 blockade with anti?PD-1 treatment, supporting the potential of a combination immunotherapeutic strategy for brain metastases.
Significance: B-cell and CD4+ T follicular helper cell activation via BAFF/APRIL from abundant myeloid cells in the intracranial tumor microenvironment enables a combinatorial effect of CTLA4 and PD-1 blockade in brain metastases.
en-copyright=
kn-copyright=
en-aut-name=NinomiyaToshifumi
en-aut-sei=Ninomiya
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KemmotsuNaoya
en-aut-sei=Kemmotsu
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MukoharaFumiaki
en-aut-sei=Mukohara
en-aut-mei=Fumiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MagariMasaki
en-aut-sei=Magari
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyamotoAi
en-aut-sei=Miyamoto
en-aut-mei=Ai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TachibanaKota
en-aut-sei=Tachibana
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=OkamotoIsamu
en-aut-sei=Okamoto
en-aut-mei=Isamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Medical Protein Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=18
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=1757
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Keratinocyte-driven dermal collagen formation in the axolotl skin
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Type I collagen is a major component of the dermis and is formed by dermal fibroblasts. The development of dermal collagen structures has not been fully elucidated despite the major presence and importance of the dermis. This lack of understanding is due in part to the opacity of mammalian skin and it has been an obstacle to cosmetic and medical developments. We reveal the process of dermal collagen formation using the highly transparent skin of the axolotl and fluorescent collagen probes. We clarify that epidermal cells, not dermal fibroblasts, contribute to dermal collagen formation. Mesenchymal cells (fibroblasts) play a role in modifying the collagen fibers already built by keratinocytes. We confirm that collagen production by keratinocytes is a widely conserved mechanism in other model organisms. Our findings warrant a change in the current consensus about dermal collagen formation and could lead to innovations in cosmetology and skin medication.
en-copyright=
kn-copyright=
en-aut-name=OhashiAyaka
en-aut-sei=Ohashi
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KurodaJunpei
en-aut-sei=Kuroda
en-aut-mei=Junpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KondoYohei
en-aut-sei=Kondo
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KameiYasuhiro
en-aut-sei=Kamei
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NonakaShigenori
en-aut-sei=Nonaka
en-aut-mei=Shigenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FurukawaSaya
en-aut-sei=Furukawa
en-aut-mei=Saya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoSakiya
en-aut-sei=Yamamoto
en-aut-mei=Sakiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatohAkira
en-aut-sei=Satoh
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Frontier Biosciences, Osaka University
kn-affil=
affil-num=4
en-affil=Center for One Medicine Innovative Translational Research (COMIT), Nagoya University
kn-affil=
affil-num=5
en-affil=Laboratory for Biothermology, National Institute for Basic Biology
kn-affil=
affil-num=6
en-affil=The Graduate University for Advanced Studies (SOKENDAI)
kn-affil=
affil-num=7
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=5
article-no=
start-page=577
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Efficacy of Oral Intake of Hydrogen-Rich Jelly Intake on Gingival Inflammation: A Double-Blind, Placebo-Controlled and Exploratory Randomized Clinical Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Initiation and progression of periodontal disease include oxidative stress. Systemic application of antioxidants may provide clinical benefits against periodontal disease including gingivitis. Recently, a jelly containing a high concentration of hydrogen (40 ppm) was developed. We hypothesized that oral intake of this hydrogen-rich jelly may be safe and effective on gingivitis. This clinical trial was designed to investigate the safety and efficacy of oral intake of hydrogen-rich jelly against gingival inflammation. Methods: Participants with gingivitis were instructed to orally ingest 30 g of hydrogen-rich jelly (experimental group) or placebo jelly (control group) three times a day for 14 consecutive days. The primary outcome of this trial was the percentage of bleeding on probing (BOP) sites. Secondary outcomes were oral parameters, serum reactive oxygen metabolites, antioxidant capacity, oxidative index, concentrations of cytokine (interleukin [IL]-1β, IL-6, IL-10, IL-17, and tumor necrosis factor-alpha) in gingival crevicular fluid, and adverse events. For all parameters, Mann?Whitney U test was used for comparison between experimental and control groups. Analysis of covariance, controlling for baseline periodontal inflamed surface area, was performed to evaluate the association between the effect of the hydrogen-rich jelly and gingival inflammation. Results: In the experiment and control groups, the percentage of sites with BOP and PISA significantly decreased at the end of the experiment compared to the baseline. However, no significant differences were found between groups (p > 0.05). Conclusions: Administration of hydrogen-rich jelly for 14 days decreased gingival inflammation. However, no significant differences were identified compared to the control group.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakayamaEiji
en-aut-sei=Takayama
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TokunoShinichi
en-aut-sei=Tokuno
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoritaManabu
en-aut-sei=Morita
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Biochemistry, Asahi University School of Dentistry
kn-affil=
affil-num=3
en-affil=Graduate School of Health Innovation, Kanagawa University of Human Services
kn-affil=
affil-num=4
en-affil=Department of Oral Health, Takarazuka University of Medical and Health Care
kn-affil=
affil-num=5
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=periodontal disease
kn-keyword=periodontal disease
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=hydrogen
kn-keyword=hydrogen
en-keyword=randomized controlled trial
kn-keyword=randomized controlled trial
END
start-ver=1.4
cd-journal=joma
no-vol=195
cd-vols=
no-issue=
article-no=
start-page=123743
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Utility of Surgical Simulation for Tubular Retractor Surgery Using Three-Dimensional Printed Intraventricular Tumor Models: Case Series
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: The utility of the tubular retractor for deep-seated tumors, including intraventricular tumors, has recently been reported. However, the surgical field’s depth and narrowness can lead to blind spots, and it is crucial to prevent damage to the cortex and white matter fibers in eloquent areas. Therefore, preoperative simulation is critical for tubular retractor surgery. In this study, we investigated the benefits of threedimensional (3D)-printed intraventricular tumor models for tubular retractor surgery.
Methods: Nine patients with intraventricular central neurocytoma who underwent tubular retractor surgery at our institution between March 2013 and August 2023 were retrospectively reviewed. Fusion images and 3D-printed intraventricular tumor models were developed from preoperative computed tomography (CT) and magnetic resonance imaging (MRI). The puncture points of the tubular retractor were simulated using fusion images and 3D-printed intraventricular tumor models by 11 neurosurgeons (3 experts in brain tumors, 2 experts in areas other than brain tumors, and 6 residents). The dispersion of puncture points among 8 neurosurgeons (excluding brain tumor experts) was compared in each simulation model.
Results: These cases were categorized into two groups based on the dispersion of puncture points simulated by fusion images. Puncture point dispersion was markedly smaller in all cases when using 3D-printed intraventricular tumor models compared to simulations solely based on fusion images.
Conclusions: In intraventricular tumor surgery using a tubular retractor, 3D-printed intraventricular tumor models proved more beneficial in preoperative simulation compared to fusion images.
en-copyright=
kn-copyright=
en-aut-name=OmaeRyo
en-aut-sei=Omae
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraRyu
en-aut-sei=Kimura
en-aut-mei=Ryu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HarumaJun
en-aut-sei=Haruma
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SaijoTomoya
en-aut-sei=Saijo
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujitaJuntaro
en-aut-sei=Fujita
en-aut-mei=Juntaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishigakiShohei
en-aut-sei=Nishigaki
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IkemachiRyosuke
en-aut-sei=Ikemachi
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiranoShuichiro
en-aut-sei=Hirano
en-aut-mei=Shuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiiKentaro
en-aut-sei=Fujii
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=3D-printed model
kn-keyword=3D-printed model
en-keyword=Case series
kn-keyword=Case series
en-keyword=Intraventricular tumors
kn-keyword=Intraventricular tumors
en-keyword=Preoperative surgical simulation
kn-keyword=Preoperative surgical simulation
en-keyword=Tubular retractor
kn-keyword=Tubular retractor
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=5
article-no=
start-page=2421
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Deep Reinforcement Learning for Dynamic Pricing and Ordering Policies in Perishable Inventory Management
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Perishable goods have a limited shelf life, and inventory should be discarded once it exceeds its shelf life. Finding optimal inventory management policies is essential since inefficient policies can lead to increased waste and higher costs. While many previous studies assume the perishable inventory is processed following the First In, First Out rule, it does not reflect customer purchasing behavior. In practice, customers' preferences are influenced by the shelf life and price of products. This study optimizes inventory and pricing policies for a perishable inventory management problem considering age-dependent probabilistic demand. However, introducing dynamic pricing significantly increases the complexity of the problem. To tackle this challenge, we propose eliminating irrational actions in dynamic programming without sacrificing optimality. To solve this problem more efficiently, we also implement a deep reinforcement learning algorithm, proximal policy optimization, to solve this problem. The results show that dynamic programming with action reduction achieved an average of 63.1% reduction in computation time compared to vanilla dynamic programming. In most cases, proximal policy optimization achieved an optimality gap of less than 10%. Sensitivity analysis of the demand model revealed a negative correlation between customer sensitivity to shelf lives or prices and total profits.
en-copyright=
kn-copyright=
en-aut-name=NomuraYusuke
en-aut-sei=Nomura
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuZiang
en-aut-sei=Liu
en-aut-mei=Ziang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiTatsushi
en-aut-sei=Nishi
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=reinforcement learning
kn-keyword=reinforcement learning
en-keyword=supply chain
kn-keyword=supply chain
en-keyword=inventory management
kn-keyword=inventory management
en-keyword=perishable inventory
kn-keyword=perishable inventory
en-keyword=dynamic pricing
kn-keyword=dynamic pricing
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=
article-no=
start-page=1543543
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Empowering pediatric, adolescent, and young adult patients with cancer utilizing generative AI chatbots to reduce psychological burden and enhance treatment engagement: a pilot study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Pediatric and adolescent/young adult (AYA) cancer patients face profound psychological challenges, exacerbated by limited access to continuous mental health support. While conventional therapeutic interventions often follow structured protocols, the potential of generative artificial intelligence (AI) chatbots to provide continuous conversational support remains unexplored. This study evaluates the feasibility and impact of AI chatbots in alleviating psychological distress and enhancing treatment engagement in this vulnerable population.
Methods: Two age-appropriate AI chatbots, leveraging GPT-4, were developed to provide natural, empathetic conversations without structured therapeutic protocols. Five pediatric and AYA cancer patients participated in a two-week intervention, engaging with the chatbots via a messaging platform. Pre- and post-intervention anxiety and stress levels were self-reported, and usage patterns were analyzed to assess the chatbots' effectiveness.
Results: Four out of five participants reported significant reductions in anxiety and stress levels post-intervention. Participants engaged with the chatbot every 2-3 days, with sessions lasting approximately 10 min. All participants noted improved treatment motivation, with 80% disclosing personal concerns to the chatbot they had not shared with healthcare providers. The 24/7 availability particularly benefited patients experiencing nighttime anxiety.
Conclusions: This pilot study demonstrates the potential of generative AI chatbots to complement traditional mental health services by addressing unmet psychological needs in pediatric and AYA cancer patients. The findings suggest these tools can serve as accessible, continuous support systems. Further large-scale studies are warranted to validate these promising results.
en-copyright=
kn-copyright=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HanzawaMana
en-aut-sei=Hanzawa
en-aut-mei=Mana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NaganoAkihito
en-aut-sei=Nagano
en-aut-mei=Akihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaNaoko
en-aut-sei=Maeda
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaShinichirou
en-aut-sei=Yoshida
en-aut-mei=Shinichirou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EndoMakoto
en-aut-sei=Endo
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YokoyamaNobuhiko
en-aut-sei=Yokoyama
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OchiMotoharu
en-aut-sei=Ochi
en-aut-mei=Motoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshidaHisashi
en-aut-sei=Ishida
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KatayamaHideki
en-aut-sei=Katayama
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Gifu University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, NHO National Hospital Organization Nagoya Medical Center
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=8
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Palliative and Supportive Care, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=generative AI chatbot
kn-keyword=generative AI chatbot
en-keyword=large language model
kn-keyword=large language model
en-keyword=pediatric cancer
kn-keyword=pediatric cancer
en-keyword=adolescent and young adult (AYA)
kn-keyword=adolescent and young adult (AYA)
en-keyword=psychological support
kn-keyword=psychological support
END
start-ver=1.4
cd-journal=joma
no-vol=188
cd-vols=
no-issue=
article-no=
start-page=35
end-page=45
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250228
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=This Study on “Modeling Self-Transformation” and “Gestaltkreis” in the “Craftical Formation” of Individual Creators: Understanding Creative Processes Toward the Realization of “Individually Optimized Learning”
kn-title=個々の制作者の「工芸的造形」における「造形的自己変革」と「ゲシュタルトクライス」の文献研究 ―「 個別最適な学び」の実現に向けた制作者の制作過程を捉える視点の検討 ―
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= 本研究では,造形行為の過程で制作者が経験する学びを分析し考察する視点について,特に,工芸制作に関連した文献の調査により検討することを目的とした。そのため,制作者自身の見方,感じ方,考え方と造形物を共に形成していく工芸の制作過程としての金子賢治の「工芸的造形」と,制作者が自身の変化と素材の変化を一体とした造形行為を連鎖させていく学びの過程としての橋本真之の「造形的自己変革」と,人間の「自己」が生み出されていく過程としてのヴァイツゼッカーの「ゲシュタルトクライス」について文献調査した。これにより,制作者自身の見方,感じ方,考え方と造形物を共に形成していきながら,制作者自身の変化と素材の変化が一体となって生じる造形行為の過程において,自らの「自己」を生み出し続けていく制作者の学びを分析し考察する視点をまとめた。今後は,本研究の成果を検証するため,本研究で示した視点に立つ事例研究の実施を課題とする。
en-copyright=
kn-copyright=
en-aut-name=OHIRAShuya
en-aut-sei=OHIRA
en-aut-mei=Shuya
kn-aut-name=大平修也
kn-aut-sei=大平
kn-aut-mei=修也
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Faculty of Education, Okayama University
kn-affil=岡山大学学術研究院教育学域
en-keyword=工芸的造形
kn-keyword=工芸的造形
en-keyword=造形的自己変革
kn-keyword=造形的自己変革
en-keyword=ゲシュタルトクライス
kn-keyword=ゲシュタルトクライス
en-keyword=令和の日本型学校教育
kn-keyword=令和の日本型学校教育
en-keyword=個別最適な学び
kn-keyword=個別最適な学び
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A randomized controlled trial of conventional GVHD prophylaxis with or without teprenone for the prevention of severe acute GVHD
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Therapies that effectively suppress graft-versus-host disease (GVHD) without compromising graft-versus-leukemia/lymphoma (GVL) effects is important in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematopoietic malignancies. Geranylgeranylacetone (GGA) is a main component of teprenone, a gastric mucosal protectant commonly used in clinical practice. In preclinical models, GGA suppresses proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), which are associated with GVHD as well as induces thioredoxin-1 (Trx-1), which suppresses GVHD while maintaining GVL effects. Here, we investigated whether the addition of teprenone to standard GVHD prophylaxis could reduce the cumulative incidence of severe acute GVHD (aGVHD) without attenuating GVL effects. This open-label, randomized clinical trial enrolled 40 patients (21 control and 19 teprenone group) who received allo-HSCT between May 2022 and February 2023 in our institution. Patients in the teprenone group received 50 mg of teprenone orally thrice daily for 21 days from the initiation of the conditioning regimen. The cumulative incidence of severe aGVHD by day 100 after allo-HSCT was not significantly different in the two groups (27.9 vs. 16.1%, p?=?0.25). The exploratory studies revealed no obvious changes in Trx-1 levels, but the alternations from baseline in IL-1β and TNF-α levels at day 28 after allo-HSCT tended to be lower in the teprenone group. In conclusion, we could not demonstrate that teprenone significantly prevented the development of severe aGVHD. Discrepancy with preclinical model suggests that appropriate dose of teprenone may be necessary to induce the expression of antioxidant enzymes that suppress severe aGVHD. Clinical Trial Registration number:jRCTs 061210072.
en-copyright=
kn-copyright=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsugeMitsuru
en-aut-sei=Tsuge
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoAkira
en-aut-sei=Yamamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KondoTakumi
en-aut-sei=Kondo
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pediatric Acute Diseases, Okayama University Academic Field of Medicine Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=Allogeneic hematopoietic stem cell transplantation
kn-keyword=Allogeneic hematopoietic stem cell transplantation
en-keyword=Graft-versus-host disease
kn-keyword=Graft-versus-host disease
en-keyword=Teprenone
kn-keyword=Teprenone
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Interleukin-33
kn-keyword=Interleukin-33
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=2
article-no=
start-page=267
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Abnormal Expression of Tubular SGLT2 and GULT2 in Diabetes Model Mice with Malocclusion-Induced Hyperglycemia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: A relationship between malocclusion and the promotion of diabetes has been suggested. In hyperglycemia, the expression of sodium-glucose cotransporter 2 (SGLT2) and the facilitative glucose transporter 2 (GLUT2) is upregulated in proximal tubular cells, leading to an increase in renal glucose reabsorption. The present study aimed to investigate whether malocclusion contributes to diabetic exacerbation. Methods: Streptozotocin (STZ)-induced diabetic mice with malocclusion due to cutting molars were investigated based on increased blood glucose levels. PCR and immunohistochemical analyses were performed on diabetic mice kidneys to investigate the expression of SGLT2 and GLUT2. Results: Animal experiments were performed using 32 mice for 21 days. The time to reach a diabetic condition in STZ-administered mice was shorter with malocclusion than without malocclusion. The increase and mean blood glucose levels in STZ-administered mice were steeper and higher with malocclusion than without malocclusion. Urea albumin, BUN, and CRE levels were higher in diabetic mice with malocclusion than in diabetic mice without. Immunoreaction with anti-SGLT2 and anti-GLUT2 in the renal tissue of STZ-administered mice was stronger with malocclusion than without malocclusion. The amounts of SGLT2 and GLUT2 mRNA in the renal tissue in STZ-administered mice were higher with malocclusion than without malocclusion. The amounts of TNF-a and IL-6 mRNA in the large intestinal tissue in STZ-administered mice were higher with malocclusion than without malocclusion. Conclusions: Our results indicate that malocclusion accelerates the tubular expression of SGLT2 and GLUT2 under hyperglycemia. Malocclusion may be a diabetes-exacerbating factor with increased poor glycemic control due to shortened occlusion time resulting from swallowing food without chewing.
en-copyright=
kn-copyright=
en-aut-name=KajiwaraKoichiro
en-aut-sei=Kajiwara
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TamaokiSachio
en-aut-sei=Tamaoki
en-aut-mei=Sachio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SawaYoshihiko
en-aut-sei=Sawa
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Oral Growth & Development, Fukuoka Dental College
kn-affil=
affil-num=2
en-affil=Department of Oral Growth & Development, Fukuoka Dental College
kn-affil=
affil-num=3
en-affil=Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=malocclusion
kn-keyword=malocclusion
en-keyword= hyperglycemia
kn-keyword= hyperglycemia
en-keyword= SGLT2
kn-keyword= SGLT2
en-keyword= GLUT2
kn-keyword= GLUT2
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=2
article-no=
start-page=217
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Interchangeability of Cross-Platform Orthophotographic and LiDAR Data in DeepLabV3+-Based Land Cover Classification Method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Riverine environmental information includes important data to collect, and the data collection still requires personnel's field surveys. These on-site tasks still face significant limitations (i.e., hard or danger to entry). In recent years, as one of the efficient approaches for data collection, air-vehicle-based Light Detection and Ranging technologies have already been applied in global environmental research, i.e., land cover classification (LCC) or environmental monitoring. For this study, the authors specifically focused on seven types of LCC (i.e., bamboo, tree, grass, bare ground, water, road, and clutter) that can be parameterized for flood simulation. A validated airborne LiDAR bathymetry system (ALB) and a UAV-borne green LiDAR System (GLS) were applied in this study for cross-platform analysis of LCC. Furthermore, LiDAR data were visualized using high-contrast color scales to improve the accuracy of land cover classification methods through image fusion techniques. If high-resolution aerial imagery is available, then it must be downscaled to match the resolution of low-resolution point clouds. Cross-platform data interchangeability was assessed by comparing the interchangeability, which measures the absolute difference in overall accuracy (OA) or macro-F1 by comparing the cross-platform interchangeability. It is noteworthy that relying solely on aerial photographs is inadequate for achieving precise labeling, particularly under limited sunlight conditions that can lead to misclassification. In such cases, LiDAR plays a crucial role in facilitating target recognition. All the approaches (i.e., low-resolution digital imagery, LiDAR-derived imagery and image fusion) present results of over 0.65 OA and of around 0.6 macro-F1. The authors found that the vegetation (bamboo, tree, grass) and road species have comparatively better performance compared with clutter and bare ground species. Given the stated conditions, differences in the species derived from different years (ALB from year 2017 and GLS from year 2020) are the main reason. Because the identification of clutter species includes all the items except for the relative species in this research, RGB-based features of the clutter species cannot be substituted easily because of the 3-year gap compared with other species. Derived from on-site reconstruction, the bare ground species also has a further color change between ALB and GLS that leads to decreased interchangeability. In the case of individual species, without considering seasons and platforms, image fusion can classify bamboo and trees with higher F1 scores compared to low-resolution digital imagery and LiDAR-derived imagery, which has especially proved the cross-platform interchangeability in the high vegetation types. In recent years, high-resolution photography (UAV), high-precision LiDAR measurement (ALB, GLS), and satellite imagery have been used. LiDAR measurement equipment is expensive, and measurement opportunities are limited. Based on this, it would be desirable if ALB and GLS could be continuously classified by Artificial Intelligence, and in this study, the authors investigated such data interchangeability. A unique and crucial aspect of this study is exploring the interchangeability of land cover classification models across different LiDAR platforms.
en-copyright=
kn-copyright=
en-aut-name=PanShijun
en-aut-sei=Pan
en-aut-mei=Shijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaKeisuke
en-aut-sei=Yoshida
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiyamaSatoshi
en-aut-sei=Nishiyama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KojimaTakashi
en-aut-sei=Kojima
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HashimotoYutaro
en-aut-sei=Hashimoto
en-aut-mei=Yutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=TOKEN C. E. E. Consultants Co., Ltd.
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=airborne LiDAR bathymetry
kn-keyword=airborne LiDAR bathymetry
en-keyword=cross-platform
kn-keyword=cross-platform
en-keyword=deep learning
kn-keyword=deep learning
en-keyword=green LiDAR system
kn-keyword=green LiDAR system
en-keyword=riverine land cover classification
kn-keyword=riverine land cover classification
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=2
article-no=
start-page=108
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250205
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Implementation of Sensor Input Setup Assistance Service Using Generative AI for SEMAR IoT Application Server Platform
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=For rapid deployments of various IoT application systems, we have developed Smart Environmental Monitoring and Analytical in Real-Time (SEMAR) as an integrated server platform. It is equipped with rich functions for collecting, analyzing, and visualizing various data. Unfortunately, the proper configuration of SEMAR with a variety of IoT devices can be complex and challenging for novice users, since it often requires technical expertise. The assistance of Generative AI can be helpful to solve this drawback. In this paper, we present an implementation of a sensor input setup assistance service for SEMAR using prompt engineering techniques and Generative AI. A user needs to define the requirement specifications and environments of the IoT application system for sensor inputs, and give them to the service. Then, the service provides step-by-step guidance on sensor connections, communicating board configurations, network connections, and communication protocols to the user, which can help the user easily set up the configuration to connect the relevant devices to SEMAR. For evaluations, we applied the proposal to the input sensor setup processes of three practical IoT application systems with SEMAR, namely, a smart light, water heater, and room temperature monitoring system. In addition, we applied it to the setup process of an IoT application system for a course for undergraduate students at the Insitut Bisnis dan Teknologi (INSTIKI), Indonesia. The results demonstrate the effectiveness of the proposed service for SEMAR.
en-copyright=
kn-copyright=
en-aut-name=KotamaI. Nyoman Darma
en-aut-sei=Kotama
en-aut-mei=I. Nyoman Darma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PandumanYohanes Yohanie Fridelin
en-aut-sei=Panduman
en-aut-mei=Yohanes Yohanie Fridelin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BrataKomang Candra
en-aut-sei=Brata
en-aut-mei=Komang Candra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PradhanaAnak Agung Surya
en-aut-sei=Pradhana
en-aut-mei=Anak Agung Surya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Noprianto
en-aut-sei=Noprianto
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DesnanjayaI. Gusti Made Ngurah
en-aut-sei=Desnanjaya
en-aut-mei=I. Gusti Made Ngurah
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Computer System Engineering, Institute of Business and Technology Indonesia
kn-affil=
en-keyword=Internet of Things
kn-keyword=Internet of Things
en-keyword= generative AI
kn-keyword= generative AI
en-keyword= review
kn-keyword= review
en-keyword= application server platform
kn-keyword= application server platform
en-keyword= SEMAR
kn-keyword= SEMAR
en-keyword= sensor input
kn-keyword= sensor input
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=2
article-no=
start-page=91
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250124
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Application of SEMAR IoT Application Server Platform to Drone-Based Wall Inspection System Using AI Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Recently, artificial intelligence (AI) has been adopted in a number of Internet of Things (IoT) application systems to enhance intelligence. We have developed a ready-made server with rich built-in functions to collect, process, display, analyze, and store data from various IoT devices, the SEMAR (Smart Environmental Monitoring and Analytics in Real-Time) IoT application server platform, in which various AI techniques have been implemented to enhance its capabilities. In this paper, we present an application of SEMAR to a drone-based wall inspection system using an object detection AI model called You Only Look Once (YOLO). This system aims to detect wall cracks at high places using images taken via a camera on a flying drone. An edge computing device is installed to control the drone, sending the taken images through the Kafka system, storing them with the drone flight data, and sending the data to SEMAR. The images are analyzed via YOLO through SEMAR. For evaluations, we implemented the system using Ryze Tello for the drone and Raspberry Pi for the edge, and we evaluated the detection accuracy. The preliminary experiment results confirmed the effectiveness of the proposal.
en-copyright=
kn-copyright=
en-aut-name=PandumanYohanes Yohanie Fridelin
en-aut-sei=Panduman
en-aut-mei=Yohanes Yohanie Fridelin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HusnaRadhiatul
en-aut-sei=Husna
en-aut-mei=Radhiatul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NopriantoNobuo
en-aut-sei=Noprianto
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamakiShunya
en-aut-sei=Sakamaki
en-aut-mei=Shunya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SukaridhotoSritrusta
en-aut-sei=Sukaridhoto
en-aut-mei=Sritrusta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SyaifudinYan Watequlis
en-aut-sei=Syaifudin
en-aut-mei=Yan Watequlis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RahmadaniAlfiandi Aulia
en-aut-sei=Rahmadani
en-aut-mei=Alfiandi Aulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Informatics and Computer, Politeknik Elektronika Negeri Surabaya
kn-affil=
affil-num=7
en-affil=Department of Information Technology, State Polytechnic of Malang
kn-affil=
affil-num=8
en-affil=Department of Electrical Engineering, State Polytechnic of Malang
kn-affil=
en-keyword=Internet of Things
kn-keyword=Internet of Things
en-keyword= AI
kn-keyword= AI
en-keyword= SEMAR
kn-keyword= SEMAR
en-keyword= crack detection
kn-keyword= crack detection
en-keyword= drone
kn-keyword= drone
en-keyword= Kafka
kn-keyword= Kafka
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=2
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhancing Campus Environment: Real-Time Air Quality Monitoring Through IoT and Web Technologies
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nowadays, enhancing campus environments through mitigations of air pollutions is an essential endeavor to support academic achievements, health, and safety of students and staffs in higher educational institutes. In laboratories, pollutants from welding, auto repairs, or chemical experiments can drastically degrade the air quality in the campus, endangering the respiratory and cognitive health of students and staffs. Besides, in universities in Indonesia, automobile emissions of harmful substances such as carbon monoxide (CO), nitrogen dioxide (NO2), and hydrocarbon (HC) have been a serious problem for a long time. Almost everybody is using a motorbike or a car every day in daily life, while the number of students is continuously increasing. However, people in many campuses including managements do not be aware these problems, since air quality is not monitored. In this paper, we present a real-time air quality monitoring system utilizing Internet of Things (IoT) integrated sensors capable of detecting pollutants and measuring environmental conditions to visualize them. By transmitting data to the SEMAR IoT application server platform via an ESP32 microcontroller, this system provides instant alerts through a web application and Telegram notifications when pollutant levels exceed safe thresholds. For evaluations of the proposed system, we adopted three sensors to measure the levels of CO, NO2, and HC and conducted experiments in three sites, namely, Mechatronics Laboratory, Power and Emission Laboratory, and Parking Lot, at the State Polytechnic of Malang, Indonesia. Then, the results reveal Good, Unhealthy, and Dangerous for them, respectively, among the five categories defined by the Indonesian government. The system highlighted its ability to monitor air quality fluctuations, trigger warnings of hazardous conditions, and inform the campus community. The correlation of the sensor levels can identify the relationship of each pollutant, which provides insight into the characteristics of pollutants in a particular scenario.
en-copyright=
kn-copyright=
en-aut-name=RahmadaniAlfiandi Aulia
en-aut-sei=Rahmadani
en-aut-mei=Alfiandi Aulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SyaifudinYan Watequlis
en-aut-sei=Syaifudin
en-aut-mei=Yan Watequlis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SetiawanBudhy
en-aut-sei=Setiawan
en-aut-mei=Budhy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PandumanYohanes Yohanie Fridelin
en-aut-sei=Panduman
en-aut-mei=Yohanes Yohanie Fridelin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Electrical Engineering, State Polytechnic of Malang
kn-affil=
affil-num=2
en-affil=Department of Information Technology, State Polytechnic of Malang
kn-affil=
affil-num=3
en-affil=Department of Electrical Engineering, State Polytechnic of Malang
kn-affil=
affil-num=4
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
en-keyword=Internet of Things
kn-keyword=Internet of Things
en-keyword= campus air quality
kn-keyword= campus air quality
en-keyword= pollutant detection
kn-keyword= pollutant detection
en-keyword= SEMAR
kn-keyword= SEMAR
en-keyword= sensor technology
kn-keyword= sensor technology
en-keyword= web application
kn-keyword= web application
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spatiotemporal expression pattern of dyslexia susceptibility 1 candidate 1 (DYX1C1) during rat cerebral cortex development
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Developmental dyslexia (DD) is a common learning disorder with significant consequences for affected individuals. Although several candidate genes, including dyslexia susceptibility 1 candidate 1 (DYX1C1), have been implicated in dyslexia, their role in brain development remains unclear. We aimed to elucidate the spatiotemporal expression patterns of DYX1C1 during cerebral cortex development in rats.
Methods We investigated DYX1C1 expression during cerebral cortex development using rat embryos at various gestational stages (E13.5, 15.5, 17.5 and 20.5) by immunohistochemistry (n?=?7 embryos/stage), quantitative real-time PCR (n?=?6), and in situ hybridization (n?=?11?15).
Results The DYX1C1-positive cells were predominantly located in the outermost layers of the cortical plate, particularly at E15.5. DYX1C1 mRNA expression peaked at E15.5 and subsequently declined. DYX1C1-positive cells did not co-localize with reelin-positive Cajal-Retzius cells, but co-localized with neuronal markers expressed during development, and had shorter primary cilia than DYX1C1-negative cells.
Conclusions Our findings highlight the dynamic expression of DYX1C1 in the developing cerebral cortex of rats, implicating its involvement in neurodevelopmental processes. Further investigation of the functional interactions of DYX1C1, particularly its relationship with reelin and its role in cerebrocortical and hippocampal development, may provide insights into the pathophysiology of dyslexia and neurodevelopmental disorders.
en-copyright=
kn-copyright=
en-aut-name=ZenshoKazumasa
en-aut-sei=Zensho
en-aut-mei=Kazumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IsseAika
en-aut-sei=Isse
en-aut-mei=Aika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MisawaIchika
en-aut-sei=Misawa
en-aut-mei=Ichika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasaiKaori
en-aut-sei=Masai
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OkaMakio
en-aut-sei=Oka
en-aut-mei=Makio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TsukaharaHirokazu
en-aut-sei=Tsukahara
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Psychosocial Medicine, National Center for Child Health and Development
kn-affil=
affil-num=7
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=
article-no=
start-page=103026
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The antimalarial activity of transdermal N-89 mediated by inhibiting ERC gene expression in P. Berghei-infected mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Through studies of new antimalarial drugs, we identified 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) as a potential drug candidate. Here, we analyzed the antimalarial action of a transdermal formulation (td) of N-89, designed for easy use by children, using Plasmodium berghei-infected mice as a model for malaria patients. The td N-89 or artemisinin (ART) formulation was transdermally administered to P. berghei-infected mice with 0.2?0.4 % parasitemia, twice daily for four days, at an effective dose of 90 % for malaria. Parasitemia was decreased in td N-89 and td ART groups during the drug treatment; then, three of the eight mice in td N-89 group were completely cured without relapse. Additionally, abnormal trophozoites in td N-89 group were observed 8 h after administration and increased up to 24 h. To study the change in endoplasmic reticulum-resident calcium-binding protein (ERC) gene expression with td N-89, we investigated the gene expression of P. berghei ERC (PbERC) after td N-89 treatment. PbERC gene expression was increased time-dependently in control group, and was statistically decreased at 4 and 8 h and then increased similar to that of control group at 12 h in td ART group. In contrast, the expression in td N-89 group was almost steady starting from 0 h. We also studied parasite egress-related genes expression after td N-89 treatment, plasmepsin X, subtilisin-like protease 1 and merozoite surface protein 1, were suppressed at 12 h compared to control group. These results suggest that N-89 affects function of endoplasmic reticulum via regulating gene suppression and subsequently parasite growth is inhibited.
en-copyright=
kn-copyright=
en-aut-name=MatsumoriHiroaki
en-aut-sei=Matsumori
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DinhThi Quyen
en-aut-sei=Dinh
en-aut-mei=Thi Quyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyoshiShin-ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoritaMasayuki
en-aut-sei=Morita
en-aut-mei=Masayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimHye-Sook
en-aut-sei=Kim
en-aut-mei=Hye-Sook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Research Center for Intestinal Health Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Anatomy, Kawasaki Medical School
kn-affil=
affil-num=5
en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Synthetic antimalarial endoperoxide
kn-keyword=Synthetic antimalarial endoperoxide
en-keyword=Transdermal N-89
kn-keyword=Transdermal N-89
en-keyword=Artemisinin
kn-keyword=Artemisinin
en-keyword=In vivo
kn-keyword=In vivo
en-keyword=Abnormal trophozoite
kn-keyword=Abnormal trophozoite
en-keyword=Endoplasmic reticulum-resident calcium-binding protein (ERC)
kn-keyword=Endoplasmic reticulum-resident calcium-binding protein (ERC)
en-keyword=Parasite egress-related gene
kn-keyword=Parasite egress-related gene
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=51
end-page=58
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Photoinitiators Induce Histamine Production in Human Mast Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Photoinitiators are used in the manufacture of many daily products, and may produce harmful effects due to their cytotoxicity. They have also been detected in human serum. Here, we investigated the histamine-producing effects in HMC-1 cells and the inflammatory cytokine release effects in RAW264 cells for four photoinitiators: 1-hydroxycyclohexyl phenyl ketone; 2-isopropylthioxanthone; methyl 2-benzoylbenzoate; and 2-methyl-4´-(methylthio)-2-morpholinopropiophenone. All four promoted histamine production in HMC-1 cells; however, they did not significantly affect the release of inflammatory cytokines in RAW264 cells. These findings suggest that these four photoinitiators induce inflammatory cytokine-independent histamine production, potentially contributing to histamine-mediated chronic inflammation in vitro.
en-copyright=
kn-copyright=
en-aut-name=MiuraTaro
en-aut-sei=Miura
en-aut-mei=Taro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawasakiYoichi
en-aut-sei=Kawasaki
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SendoToshiaki
en-aut-sei=Sendo
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Laboratory of Clinical Pharmacology and Therapeutics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University
kn-affil=
affil-num=3
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=photoinitiator
kn-keyword=photoinitiator
en-keyword=ink
kn-keyword=ink
en-keyword=injection
kn-keyword=injection
en-keyword=histamine
kn-keyword=histamine
en-keyword=inflammation
kn-keyword=inflammation
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=47
end-page=50
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immediate Effects of a Single Home-based Rehabilitation Treatment on Balance Performance and Toe-Grip Strength in Elderly Subjects Continuing the Same Rehabilitation Program
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We assessed the immediate effects of a home-based rehabilitation (HBR) program on the balance performance and toe-grip strength of 29 older adults (mean±SD age of 75.1±9.9; 16 males, 13 females) who were participating in HBR services provided by Japan’s nursing care insurance system. Their toe-grip strength and balance performance were measured before and after the HBR program. The subjects’ toe-grip strength was significantly improved after the treatment. The subjects who had had a stroke showed a significant improvement after HBR. Contrarily, no significant difference was observed in the subjects’ functional reach results or their one-leg standing time. These results indicate that the exercise regimen provided in the HBR program led to increased excitability of motor units and immediately enhanced the subjects’ toe-grip strength.
en-copyright=
kn-copyright=
en-aut-name=KojimaKazunori
en-aut-sei=Kojima
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UjikawaTakuya
en-aut-sei=Ujikawa
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OnoToshiro
en-aut-sei=Ono
en-aut-mei=Toshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University
kn-affil=
affil-num=2
en-affil=Department of Physical Therapy, Faculty of Rehabilitation, Kawasaki University of Medical Welfare
kn-affil=
affil-num=3
en-affil=Department of Occupational Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University
kn-affil=
en-keyword=home-based rehabilitation
kn-keyword=home-based rehabilitation
en-keyword=toe-grip strength
kn-keyword=toe-grip strength
en-keyword=balance performance
kn-keyword=balance performance
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=1
article-no=
start-page=12
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250208
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Voice analysis and deep learning for detecting mental disorders in pregnant women: a cross-sectional study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction Perinatal mental disorders are prevalent, affecting 10-20% of pregnant women, and can negatively impact both maternal and neonatal outcomes. Traditional screening tools, such as the Edinburgh Postnatal Depression Scale (EPDS), present limitations due to subjectivity and time constraints in clinical settings. Recent advances in voice analysis and machine learning have shown potential for providing more objective screening methods. This study aimed to develop a deep learning model that analyzes the voices of pregnant women to screen for mental disorders, thereby offering an alternative to the traditional tools.
Methods A cross-sectional study was conducted among 204 pregnant women, from whom voice samples were collected during their one-month postpartum checkup. The audio data were preprocessed into 5000 ms intervals, converted into mel-spectrograms, and augmented using TrivialAugment and context-rich minority oversampling. The EfficientFormer V2-L model, pretrained on ImageNet, was employed with transfer learning for classification. The hyperparameters were optimized using Optuna, and an ensemble learning approach was used for the final predictions. The model's performance was compared to that of the EPDS in terms of sensitivity, specificity, and other diagnostic metrics.
Results Of the 172 participants analyzed (149 without mental disorders and 23 with mental disorders), the voice-based model demonstrated a sensitivity of 1.00 and a recall of 0.82, outperforming the EPDS in these areas. However, the EPDS exhibited higher specificity (0.97) and precision (0.84). No significant difference was observed in the area under the receiver operating characteristic curve between the two methods (p = 0.759).
Discussion The voice-based model showed higher sensitivity and recall, suggesting that it may be more effective in identifying at-risk individuals than the EPDS. Machine learning and voice analysis are promising objective screening methods for mental disorders during pregnancy, potentially improving early detection.
Conclusion We developed a lightweight machine learning model to analyze pregnant women's voices for screening various mental disorders, achieving high sensitivity and demonstrating the potential of voice analysis as an effective and objective tool in perinatal mental health care.
en-copyright=
kn-copyright=
en-aut-name=OobaHikaru
en-aut-sei=Ooba
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Perinatal mental disorders
kn-keyword=Perinatal mental disorders
en-keyword=Voice analysis
kn-keyword=Voice analysis
en-keyword=Machine learning
kn-keyword=Machine learning
en-keyword=Screening
kn-keyword=Screening
en-keyword=Pregnant women
kn-keyword=Pregnant women
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=21
end-page=30
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prediction of Prostate Cancer Grades Using Radiomic Features
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] ? 8) from intermediate or low-grade (GS < 8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients.
en-copyright=
kn-copyright=
en-aut-name=YamamotoYasuhiro
en-aut-sei=Yamamoto
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaraguchiTakafumi
en-aut-sei=Haraguchi
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsudaKaori
en-aut-sei=Matsuda
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkazakiYoshio
en-aut-sei=Okazaki
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KimotoShin
en-aut-sei=Kimoto
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanjiNozomu
en-aut-sei=Tanji
en-aut-mei=Nozomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoAtsushi
en-aut-sei=Matsumoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiYasuyuki
en-aut-sei=Kobayashi
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MimuraHidefumi
en-aut-sei=Mimura
en-aut-mei=Hidefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HirakiTakao
en-aut-sei=Hiraki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiology, Houshasen Daiichi Hospital
kn-affil=
affil-num=2
en-affil=Department of Advanced Biomedical Imaging and Informatics, St. Marianna University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Radiology, Houshasen Daiichi Hospital
kn-affil=
affil-num=4
en-affil=Department of Radiology, Houshasen Daiichi Hospital
kn-affil=
affil-num=5
en-affil=Department of Radiology, Houshasen Daiichi Hospital
kn-affil=
affil-num=6
en-affil=Department of Urology, Houshasen Daiichi Hospital
kn-affil=
affil-num=7
en-affil=Department of Urology, Houshasen Daiichi Hospital
kn-affil=
affil-num=8
en-affil=Department of Medical Information and Communication Technology Research, St. Marianna University School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Radiology, St. Marianna University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=prostate cancer
kn-keyword=prostate cancer
en-keyword=machine learning
kn-keyword=machine learning
en-keyword=prostate Imaging-Reporting and Data System
kn-keyword=prostate Imaging-Reporting and Data System
en-keyword=radiomics
kn-keyword=radiomics
en-keyword=Gleason score
kn-keyword=Gleason score
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=1
article-no=
start-page=9
end-page=19
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202502
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Gastrectomy Causes an Imbalance in the Trunk Muscles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Muscle loss negatively affects gastrectomy prognosis. However, muscle loss is recognized as a systemic change, and individual muscle function is often overlooked. We investigated changes in the muscle volume of individual muscles after gastrectomy to identify clues for prognostic factors and optimal rehabilitation programs. Patients who underwent R0 gastrectomy for Stage I gastric cancer at our hospital from 2015 to 2021 were retrospectively selected to minimize the effects of malignancy and chemotherapy. Trunk muscle volume was measured by computed tomography to analyze body composition changes. Statistical analysis was performed to identify risk factors related to body composition changes. We compared the preoperative and 6-month postoperative conditions of 59 patients after gastrectomy. There was no difference in the psoas major muscle, a conventional surrogate marker of sarcopenia. There were significant decreases in the erector spinae (p=0.01) and lateral abdominal (p=0.01) muscles, and a significant increase in the rectus abdominis muscle (p=0.02). No significant correlation was found between these muscle changes and nutritional status. Body composition imbalance may serve as a new indicator of the general condition of patients after gastrectomy. Rehabilitation to correct this imbalance may improve prognosis after gastrectomy.
en-copyright=
kn-copyright=
en-aut-name=IkeyaNanami
en-aut-sei=Ikeya
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkitaAtsushi
en-aut-sei=Okita
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HashidaShinsuke
en-aut-sei=Hashida
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoSumiharu
en-aut-sei=Yamamoto
en-aut-mei=Sumiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkedaHirokuni
en-aut-sei=Ikeda
en-aut-mei=Hirokuni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TsukudaKazunori
en-aut-sei=Tsukuda
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Surgery, Okayama City Hospital
kn-affil=
affil-num=3
en-affil=Department of Surgery, Okayama City Hospital
kn-affil=
affil-num=4
en-affil=Department of Surgery, Okayama City Hospital
kn-affil=
affil-num=5
en-affil=Department of Surgery, Okayama City Hospital
kn-affil=
affil-num=6
en-affil=Department of Surgery, Okayama City Hospital
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=sarcopenia
kn-keyword=sarcopenia
en-keyword=skeletal muscle
kn-keyword=skeletal muscle
en-keyword=gastric cancer
kn-keyword=gastric cancer
en-keyword=gastrectomy
kn-keyword=gastrectomy
en-keyword=erector spinae muscle
kn-keyword=erector spinae muscle
END
start-ver=1.4
cd-journal=joma
no-vol=170
cd-vols=
no-issue=
article-no=
start-page=109242
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250315
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of small fatigue crack deflection behavior on copper using electron backscatter diffraction and crystal plasticity finite element analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, it was conducted to observe the propagation behavior of small fatigue cracks generated on the surface of α-brass and pure copper, using an electrodynamic plane bending fatigue testing machine. The EBSD method was also used to analyze the crystal orientation near the bottom of the notch on the surface of the test piece. For each slip system of the grain, we calculated the slip factor, defined as the ratio of resolved shear stresses that considers the singular stress field at the crack tip, and investigated the relationship between the propagation behavior of small cracks and the slip factor. Furthermore, we performed a crystal plasticity finite element analysis (CP-FEM) using a crystal plasticity FEM model created from the grains obtained by the EBSD method to predict the deflection behavior of small fatigue cracks when propagating through the grain boundaries. The results indicated that when a crack propagates across a grain boundary, it is difficult to predict the deflection behavior using slip factors, however, the deflection behavior of a crack can be predicted from the resolved shear stress calculated using CP-FEM, which considers the mechanical interactions between crystal grains.
en-copyright=
kn-copyright=
en-aut-name=ArakawaJinta
en-aut-sei=Arakawa
en-aut-mei=Jinta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YabukiRyo
en-aut-sei=Yabuki
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemoriTakeshi
en-aut-sei=Uemori
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItoMasato
en-aut-sei=Ito
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YaguchiKenichi
en-aut-sei=Yaguchi
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Innovation Center, Mitsubishi Materials Corporation
kn-affil=
affil-num=5
en-affil=Innovation Center, Mitsubishi Materials Corporation
kn-affil=
en-keyword=Small fatigue crack
kn-keyword=Small fatigue crack
en-keyword=Crystal orientation
kn-keyword=Crystal orientation
en-keyword=CP-FEM
kn-keyword=CP-FEM
en-keyword=EBSD
kn-keyword=EBSD
END
start-ver=1.4
cd-journal=joma
no-vol=114
cd-vols=
no-issue=
article-no=
start-page=11
end-page=20
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Uncovering the role of arcuate kisspeptin neurons as a source of the gonadotropin-releasing hormone pulse generator using gene-modified rats
kn-title=遺伝子改変ラットを用いた弓状核キスペプチンニューロンの性腺刺激ホルモン放出ホルモンパルスジェネレーターとしての役割解明
en-subtitle=
kn-subtitle=
en-abstract= 世界において,乳牛の受胎率(妊娠率)が低下しており,家畜の繁殖成績向上のための効果的な治療法が必要とされている.家畜を含む哺乳類において,生殖機能は視床下部−下垂体−性腺軸から分泌されるホルモンによって制御されている.これらのホルモンのうち,性腺刺激ホルモン放出ホルモン(GnRH)のパルス状分泌(GnRH パルス)は,性腺刺激ホルモン分泌と性腺機能に本質的に重要である.したがって,GnRH パルスを制御するメカニズム(GnRH パルスジェネレーター)を解明することは,家畜の生殖技術を向上させるために不可欠である.本総説では,著者らの遺伝子改変ラットモデルを用いた弓状核キスペプチンニューロン(ΚNDy ニューロンとしても知られる)がGnRH パルスジェネレーターの本体であることの直接的な証拠を示した研究を中心として,過去20年間の研究を概説した.また,ΚNDy ニューロンが分泌するニューロキニンB,グルタミン酸,ダイノルフィンA がΚNDy ニューロンの神経活動を同期させ,GnRH パルスを発生させるメカニズムについて論じた.遺伝子改変ラットモデルから得られた知識は,GnRH/ 性腺刺激ホルモンパルスを刺激して,家畜の繁殖能力を向上させる新規繁殖促進剤開発に寄与すると期待できる.
kn-abstract= Strategies for increasing reproductive performance are needed for domestic animals because for example the conception (pregnancy) rate has decreased in dairy cows around the world. Reproductive function is controlled by hormones released by the hypothalamus-pituitary-gonadal axis in mammals, including domestic animals. Of those hormones, tonic (pulsatile) gonadotropin-releasing hormone (GnRH) release is fundamentally important for gonadotropin release and gonadal activity. Therefore, uncovering the mechanism controlling GnRH pulses, that is GnRH pulse generator, is essential to improve reproductive technologies for domestic animals. The present review is focused on the indispensable role of arcuate nucleus (ARC) kisspeptin neurons (also known as KNDy neurons) as the GnRH pulse generator in mammals. First, we give a brief overview of studies on hypothalamic kisspeptin neurons throughout the past two decades. Second, we review studies that have provided direct evidence that ARC kisspeptin neurons serve as the GnRH pulse generator, with a special focus on our gene-modified rat models. Finally, we discuss the mechanism underlying GnRH pulse generation. The knowledge obtained from gene-modified rat models should be clinically important and could be adapted to new tools to improve reproductive performance in livestock by stimulating GnRH/gonadotropin pulses.
en-copyright=
kn-copyright=
en-aut-name=NagaeMayuko
en-aut-sei=Nagae
en-aut-mei=Mayuko
kn-aut-name=長江麻佑子
kn-aut-sei=長江
kn-aut-mei=麻佑子
aut-affil-num=1
ORCID=
en-aut-name=UenoyamaYoshihisa
en-aut-sei=Uenoyama
en-aut-mei=Yoshihisa
kn-aut-name=上野山賀久
kn-aut-sei=上野山
kn-aut-mei=賀久
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
affil-num=2
en-affil=Graduate School of Bioagricultural Sciences, Nagoya University
kn-affil=名古屋大学大学院生命農学研究科
en-keyword=gene-modified rats
kn-keyword=gene-modified rats
en-keyword=GnRH
kn-keyword=GnRH
en-keyword=kisspeptin
kn-keyword=kisspeptin
en-keyword=LH
kn-keyword=LH
en-keyword=pulse generator
kn-keyword=pulse generator
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=1
article-no=
start-page=38
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250124
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exacerbation of diabetes due to F. Nucleatum LPS-induced SGLT2 overexpression in the renal proximal tubular epithelial cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Diabetes treatments by the control of sodium-glucose cotransporter 2 (SGLT2) is commonly conducted while there are still uncertainties about the mechanisms for the SGLT2 overexpression in kidneys with diabetes. Previously, we have reported that glomeruli and proximal tubules with diabetic nephropathy express toll-like receptor TLR2/4, and that the TLR ligand lipopolysaccharide (LPS) of periodontal pathogens have caused nephropathy in diabetic model mice. Recently, many researchers suggested that the periodontal pathogenic bacteria Fusobacterium (F.) nucleatum has the TLR4-associated strong activator of the colorectal inflammation and cancer. The present study aimed to investigate the possibility of F. nucleatum as an exacerbation factor of diabetes through the renal SGLT2 induction.
Methods The induction of the SGLT2 by F. nucleatum LPS (Fn-LPS) were investigated in the streptozotocin-induced diabetic mouse renal tissue and cultured renal proximal epithelial cells. The changes of blood glucose levels and survival curves in diabetic mice with Fn-LPS were analyzed. The Fn-LPS-induced SGLT2 production in the diabetic mouse renal tissue and in the cultured proximal epithelial cells was examined by ELISA, quantitative RT-PCR, and immunohistochemical analysis.
Results The SGLT2 expression in the cultured mouse tubular epithelial cells was significantly increased by TNF- or co-culture with Fn-LPS-supplemented J774.1 cells. The period to reach diabetic condition was significantly shorter in Fn-LPS-administered diabetic mice than in diabetic mice. All Fn-LPS-administered-diabetic mice reached humane endpoints during the healthy period of all of the mice administered Fn-LPS only. The promotion of the SGLT2 expression at the inner lumen of proximal tubules were stronger in the Fn-LPS-administered-diabetic mice than in diabetic mice. The renal tissue SGLT2 mRNA amounts and the number of renal proximal tubules with overexpressed SGLT2 in the lumen were more in the Fn-LPS-administered-diabetic mice than in diabetic mice.
Conclusions This study suggests that F. nucleatum causes the promotion of diabetes through the overexpression of SGLT2 in proximal tubules under the diabetic condition. Periodontitis with F. nucleatum may be a diabetic exacerbating factor.
en-copyright=
kn-copyright=
en-aut-name=SekiAiko
en-aut-sei=Seki
en-aut-mei=Aiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KajiwaraKoichiro
en-aut-sei=Kajiwara
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TeramachiJumpei
en-aut-sei=Teramachi
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=EgusaMasahiko
en-aut-sei=Egusa
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SawaYoshihiko
en-aut-sei=Sawa
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Oral Growth & Development, Fukuoka Dental College
kn-affil=
affil-num=3
en-affil=Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Dental Anesthesiology & Special Care Dentistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Dental Anesthesiology & Special Care Dentistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=F. Nucleatum
kn-keyword=F. Nucleatum
en-keyword=Diabetic exacerbation
kn-keyword=Diabetic exacerbation
en-keyword=Diabetic nephropathy
kn-keyword=Diabetic nephropathy
en-keyword=SGLT2
kn-keyword=SGLT2
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=3267
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250125
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel treatment strategy targeting interleukin-6 induced by cancer associated fibroblasts for peritoneal metastasis of gastric cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and alpha-smooth muscle (alpha-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro. Anti-tumor effects of anti-IL-6R Ab on PM of GC were investigated in an orthotopic murine PM model. IL-6 expression was significantly correlated with alpha-SMA expression in clinical samples of GC, and higher IL-6 expression in the primary tumor was associated with poor prognosis of GC. Higher IL-6 and alpha-SMA expressions were also observed in PM of GC. In vitro, differentiation of fibroblasts into CAFs and chemoresistance were observed in GC cells cocultured with fibroblasts. Anti-IL-6R Ab inhibited the progression of PM in GC cells cocultured with fibroblasts in the orthotopic mouse model but could not inhibit the progression of PM consisting of GC cells alone. IL-6 expression in the TME was associated with poor prognosis of GC, and CAFs were associated with establishment and progression of PM via IL-6. Anti-IL-6R Ab could inhibit PM of GC by the blockade of IL-6 secreted by CAFs, which suggests its therapeutic potential for PM of GC.
en-copyright=
kn-copyright=
en-aut-name=MitsuiEma
en-aut-sei=Mitsui
en-aut-mei=Ema
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkuraTomohiro
en-aut-sei=Okura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UneYuta
en-aut-sei=Une
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishiwakiNoriyuki
en-aut-sei=Nishiwaki
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhtsukaJunko
en-aut-sei=Ohtsuka
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OhkiRieko
en-aut-sei=Ohki
en-aut-mei=Rieko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Laboratory of Fundamental Oncology, National Cancer Center Research Institute
kn-affil=
affil-num=12
en-affil=Laboratory of Fundamental Oncology, National Cancer Center Research Institute
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Peritoneal metastasis
kn-keyword=Peritoneal metastasis
en-keyword=Gastric cancer
kn-keyword=Gastric cancer
en-keyword=Interleukin-6
kn-keyword=Interleukin-6
en-keyword=Cancer-associated fibroblasts
kn-keyword=Cancer-associated fibroblasts
en-keyword=Interleukin-6 receptor antibody
kn-keyword=Interleukin-6 receptor antibody
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=2486
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250120
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nomogram models for predicting outcomes in thyroid cancer patients with distant metastasis receiving 131iodine therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study aimed to establish and validate prognostic nomogram models for patients who underwent I-131 therapy for thyroid cancer with distant metastases. The cohort was divided into training (70%) and validation (30%) sets for nomogram development. Univariate and multivariate Cox regression analyses were used to identify independent predictors for overall survival (OS) and progression-free survival (PFS). Nomograms were developed based on these predictors, and Kaplan-Meier curves were constructed for validation. Among 451 patients who were screened, 412 met the inclusion criteria and were followed-up for a median duration of 65.2 months. The training and validation sets included 288 and 124 patients, respectively. Pathological type, first I-131 administrated activity, and lesion I-131 uptake in lesions were independent predictors for PFS. For OS, predictors included gender, age, metastasis site, first I-131 administrated activity, I-131 uptake, pulmonary lesion size, and stimulated thyroglobulin levels. These predictors were used to construct nomograms for predicting PFS and OS. Low-risk patients had significantly longer PFS and OS compared to high-risk patients, with 10-year PFS rates of 81.1% vs. 51.9% and 10-year OS rates of 86.2% vs. 37.4%. These may aid individualized prognostic assessment and clinical decision-making, especially in determining the prescribed activity for the first I-131 treatment.
en-copyright=
kn-copyright=
en-aut-name=JinShui
en-aut-sei=Jin
en-aut-mei=Shui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YeXuemei
en-aut-sei=Ye
en-aut-mei=Xuemei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YeTing
en-aut-sei=Ye
en-aut-mei=Ting
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ChenXinyu
en-aut-sei=Chen
en-aut-mei=Xinyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=JiJianfeng
en-aut-sei=Ji
en-aut-mei=Jianfeng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WangJinyu
en-aut-sei=Wang
en-aut-mei=Jinyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ZhuXin
en-aut-sei=Zhu
en-aut-mei=Xin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaoXiaochun
en-aut-sei=Mao
en-aut-mei=Xiaochun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YiHeqing
en-aut-sei=Yi
en-aut-mei=Heqing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital
kn-affil=
affil-num=2
en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital
kn-affil=
affil-num=3
en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital
kn-affil=
affil-num=4
en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg
kn-affil=
affil-num=5
en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital
kn-affil=
affil-num=6
en-affil=Medical records and statistics office, Zhejiang Cancer Hospital
kn-affil=
affil-num=7
en-affil=Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital
kn-affil=
affil-num=8
en-affil=Department of Thyroid Surgery, Zhejiang Cancer Hospital
kn-affil=
affil-num=9
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital
kn-affil=
en-keyword=131iodine
kn-keyword=131iodine
en-keyword=Activity
kn-keyword=Activity
en-keyword=Distant metastasis
kn-keyword=Distant metastasis
en-keyword=Iodine radioisotopes
kn-keyword=Iodine radioisotopes
en-keyword=Thyroid cancer
kn-keyword=Thyroid cancer
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=46
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250113
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mapping Surface Potential in DNA Aptamer-Neurochemical and Membrane-Ion Interactions on the SOS Substrate Using Terahertz Microscopy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, we utilized a terahertz chemical microscope (TCM) to map surface potential changes induced by molecular interactions on silicon-on-sapphire (SOS) substrates. By functionalizing the SOS substrate with DNA aptamers and an ion-selective membrane, we successfully detected and visualized aptamer-neurochemical complexes through the terahertz amplitude. Additionally, comparative studies of DNA aptamers in PBS buffer and artificial cerebrospinal fluid (aCSF) were performed by computational structure modeling and terahertz measurements. Beyond neurochemicals, we also investigated calcium ions, measuring their concentrations in PDMS-fabricated micro-wells using minimal sample volumes. Our results highlight the capability of TCM as a powerful, label-free, and sensitive platform for the probing and mapping of surface potential arising from molecular interactions, with broad implications for biomedical diagnostics and research.
en-copyright=
kn-copyright=
en-aut-name=MoritaKosei
en-aut-sei=Morita
en-aut-mei=Kosei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsudaYuta
en-aut-sei=Mitsuda
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaSota
en-aut-sei=Yoshida
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KiwaToshihiko
en-aut-sei=Kiwa
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WangJin
en-aut-sei=Wang
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=terahertz chemical microscope
kn-keyword=terahertz chemical microscope
en-keyword=surface potential
kn-keyword=surface potential
en-keyword=DNA aptamer-neurochemical complexes
kn-keyword=DNA aptamer-neurochemical complexes
en-keyword=membrane-ion interactions
kn-keyword=membrane-ion interactions
en-keyword=SOS substrate
kn-keyword=SOS substrate
en-keyword=artificial cerebrospinal fluid
kn-keyword=artificial cerebrospinal fluid
END
start-ver=1.4
cd-journal=joma
no-vol=2025
cd-vols=
no-issue=1
article-no=
start-page=013C01
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241226
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Modification on Thermal Motion in Geant4 for Neutron Capture Simulation in Gadolinium Loaded Water
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Neutron tagging is a fundamental technique for electron anti-neutrino detection via the inverse beta decay channel. A reported discrepancy in neutron detection efficiency between observational data and simulation predictions prompted an investigation into neutron capture modeling in Geant4. The study revealed that an overestimation of the thermal motion of hydrogen atoms in Geant4 impacts the fraction of captured nuclei. By manually modifying the Geant4 implementation, the simulation results align with calculations based on evaluated nuclear data and show good agreement with observables derived from the SK-Gd data.
en-copyright=
kn-copyright=
en-aut-name=HinoY.
en-aut-sei=Hino
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AbeK.
en-aut-sei=Abe
en-aut-mei=K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AsakaR.
en-aut-sei=Asaka
en-aut-mei=R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HanS.
en-aut-sei=Han
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaradaM.
en-aut-sei=Harada
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshitsukaM.
en-aut-sei=Ishitsuka
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ItoH.
en-aut-sei=Ito
en-aut-mei=H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IzumiyamaS.
en-aut-sei=Izumiyama
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KanemuraY.
en-aut-sei=Kanemura
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KoshioY.
en-aut-sei=Koshio
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanishiF.
en-aut-sei=Nakanishi
en-aut-mei=F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SekiyaH.
en-aut-sei=Sekiya
en-aut-mei=H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YanoT.
en-aut-sei=Yano
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=2
en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo
kn-affil=
affil-num=3
en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo
kn-affil=
affil-num=5
en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science
kn-affil=
affil-num=7
en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science
kn-affil=
affil-num=8
en-affil=Department of Physics, Tokyo Institute of Technology
kn-affil=
affil-num=9
en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo
kn-affil=
affil-num=10
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=12
en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo
kn-affil=
affil-num=13
en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250115
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Investigation of Hand Gestures for Controlling Video Games in a Rehabilitation Exergame System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Musculoskeletal disorders (MSDs) can significantly impact individuals' quality of life (QoL), often requiring effective rehabilitation strategies to promote recovery. However, traditional rehabilitation methods can be expensive and may lack engagement, leading to poor adherence to therapy exercise routines. An exergame system can be a solution to this problem. In this paper, we investigate appropriate hand gestures for controlling video games in a rehabilitation exergame system. The Mediapipe Python library is adopted for the real-time recognition of gestures. We choose 10 easy gestures among 32 possible simple gestures. Then, we specify and compare the best and the second-best groups used to control the game. Comprehensive experiments are conducted with 16 students at Andalas University, Indonesia, to find appropriate gestures and evaluate user experiences of the system using the System Usability Scale (SUS) and User Experience Questionnaire (UEQ). The results show that the hand gestures in the best group are more accessible than in the second-best group. The results suggest appropriate hand gestures for game controls and confirm the proposal's validity. In future work, we plan to enhance the exergame system by integrating a diverse set of video games, while expanding its application to a broader and more diverse sample. We will also study other practical applications of the hand gesture control function.
en-copyright=
kn-copyright=
en-aut-name=HusnaRadhiatul
en-aut-sei=Husna
en-aut-mei=Radhiatul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BrataKomang Candra
en-aut-sei=Brata
en-aut-mei=Komang Candra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AnggrainiIrin Tri
en-aut-sei=Anggraini
en-aut-mei=Irin Tri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RahmadaniAlfiandi Aulia
en-aut-sei=Rahmadani
en-aut-mei=Alfiandi Aulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FanChih-Peng
en-aut-sei=Fan
en-aut-mei=Chih-Peng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Electrical Engineering, State Polytechnic of Malang
kn-affil=
affil-num=6
en-affil=Department of Electrical Engineering, National Chung Hsing University
kn-affil=
en-keyword=hand gesture
kn-keyword=hand gesture
en-keyword=application control
kn-keyword=application control
en-keyword=exergame
kn-keyword=exergame
en-keyword=SUS
kn-keyword=SUS
en-keyword=UEQ
kn-keyword=UEQ
en-keyword=python
kn-keyword=python
en-keyword=mediapipe
kn-keyword=mediapipe
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=2
article-no=
start-page=342
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250117
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Proposal of In Situ Authoring Tool with Visual-Inertial Sensor Fusion for Outdoor Location-Based Augmented Reality
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In location-based augmented reality (LAR) applications, a simple and effective authoring tool is essential to create immersive AR experiences in real-world contexts. Unfortunately, most of the current tools are primarily desktop-based, requiring manual location acquisitions, the use of software development kits (SDKs), and high programming skills, which poses significant challenges for novice developers and a lack of precise LAR content alignment. In this paper, we propose an intuitive in situ authoring tool with visual-inertial sensor fusions to simplify the LAR content creation and storing process directly using a smartphone at the point of interest (POI) location. The tool localizes the user’s position using smartphone sensors and maps it with the captured smartphone movement and the surrounding environment data in real-time. Thus, the AR developer can place a virtual object on-site intuitively without complex programming. By leveraging the combined capabilities of Visual Simultaneous Localization and Mapping(VSLAM) and Google Street View (GSV), it enhances localization and mapping accuracy during AR object creation. For evaluations, we conducted extensive user testing with 15 participants, assessing the task success rate and completion time of the tool in practical pedestrian navigation scenarios. The Handheld Augmented Reality Usability Scale (HARUS) was used to evaluate overall user satisfaction. The results showed that all the participants successfully completed the tasks, taking 16.76 s on average to create one AR object in a 50 m radius area, while common desktop-based methods in the literature need 1?8 min on average, depending on the user’s expertise. Usability scores reached 89.44 for manipulability and 85.14 for comprehensibility, demonstrating the high effectiveness in simplifying the outdoor LAR content creation process.
en-copyright=
kn-copyright=
en-aut-name=BrataKomang Candra
en-aut-sei=Brata
en-aut-mei=Komang Candra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PandumanYohanes Yohanie Fridelin
en-aut-sei=Panduman
en-aut-mei=Yohanes Yohanie Fridelin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MentariMustika
en-aut-sei=Mentari
en-aut-mei=Mustika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SyaifudinYan Watequlis
en-aut-sei=Syaifudin
en-aut-mei=Yan Watequlis
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=RahmadaniAlfiandi Aulia
en-aut-sei=Rahmadani
en-aut-mei=Alfiandi Aulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil= Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=2
en-affil= Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=3
en-affil= Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=4
en-affil= Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=5
en-affil= Department of Information Technology, Politeknik Negeri Malang
kn-affil=
affil-num=6
en-affil= Department of Information Technology, Politeknik Negeri Malang
kn-affil=
en-keyword=location-based augmented reality (LAR)
kn-keyword=location-based augmented reality (LAR)
en-keyword=authoring tool
kn-keyword=authoring tool
en-keyword=outdoor
kn-keyword=outdoor
en-keyword=VSLAM
kn-keyword=VSLAM
en-keyword=Google Street View (GSV)
kn-keyword=Google Street View (GSV)
en-keyword=handheld augmented reality usability scale (HARUS)
kn-keyword=handheld augmented reality usability scale (HARUS)
END
start-ver=1.4
cd-journal=joma
no-vol=53
cd-vols=
no-issue=1
article-no=
start-page=65
end-page=69
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effectiveness of sensing gloves?applied virtual reality education system on hand hygiene practice: A randomized controlled trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: We developed a virtual reality (VR) education system and evaluated its clinical utility for promoting hand hygiene practices.
Methods: This prospective, 2-week, randomized controlled study conducted at Okayama University Hospital, Japan, from November 2023 to January 2024, involved 22 participants (18 medical students and 4 residents). A fully immersive 360° VR system (VIVE Pro Eye) using a head-mounted display and sensing gloves was used to develop 3 health care tasks in a virtual patient room?Environmental Cleaning, Gauze Exchange, and Urine Collection. After monitoring all participants' baseline usage data of portable hand-rubbing alcohol in the first week, we randomly assigned them into 1:1 groups (VR training and video lecture groups). The primary outcome was differences in hand-rubbed alcohol use before and after intervention.
Results: Before the intervention, alcohol use did not significantly differ between both groups. After the intervention, a significant increase in alcohol use was observed in the VR training group (median: 8.2 g vs 16.2 g; P = .019) but not in the video lecture group.
Conclusions: Our immersive 360° VR education system enhanced hand hygiene practices. Infection prevention and control practitioners and digital technology experts must collaborate to advance the development of superior educational devices and content.
en-copyright=
kn-copyright=
en-aut-name=IzumiMahiro
en-aut-sei=Izumi
en-aut-mei=Mahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsukaYuki
en-aut-sei=Otsuka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SoejimaYoshiaki
en-aut-sei=Soejima
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukushimaShinnosuke
en-aut-sei=Fukushima
en-aut-mei=Shinnosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibataMitsunobu
en-aut-sei=Shibata
en-aut-mei=Mitsunobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HirotaSatoshi
en-aut-sei=Hirota
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KoyamaToshihiro
en-aut-sei=Koyama
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GofukuAkio
en-aut-sei=Gofuku
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Quality Assurance Center, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Quality Assurance Center, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=7
en-affil=Quality Assurance Center, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Health Data Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Quality Assurance Center, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Infection prevention and control
kn-keyword=Infection prevention and control
en-keyword=Medical-engineering collaboration
kn-keyword=Medical-engineering collaboration
END
start-ver=1.4
cd-journal=joma
no-vol=58
cd-vols=
no-issue=
article-no=
start-page=71
end-page=89
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploring the Link Between Modern Household Amenities and Health in Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= The correlation between the impact of the external and internal environment of a household on its occupants’ health has been well documented by various research studies. Yet a limitation of the literature is the prevalence of modern household basic amenities and occupant health, especially in Vietnam. This paper examines the impact of modern household basic amenities on occupant health by applying the Vietnam Household Standard Survey 2018. By applying the Tobit method, it is revealed that household amenities displayed a significant association with health outcomes. For instance, individuals residing in concrete houses or employing waste collection systems exhibited decreased illness likelihood. Handwashing with soap correlated with a diminished illness probability. Tobit analysis highlights internet accessibility as significant in reducing days of work incapacity (approximately 6 days less). Gender, residential location, and total income also impact workdays. Age and education exhibit inverse relationships with workdays missed. In essence, these findings contribute to the broader discourse on public health and underscore the importance of considering diverse factors, ranging from basic amenities to socio-economic indicators, in formulating comprehensive health policies and interventions.
en-copyright=
kn-copyright=
en-aut-name=Do Thi Hoai Giang
en-aut-sei=Do Thi Hoai Giang
en-aut-mei=
kn-aut-name=ド ティ ホアイ ジャン
kn-aut-sei=ド ティ ホアイ ジャン
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学大学院社会文化科学研究科
en-keyword=Modern household amenity
kn-keyword=Modern household amenity
en-keyword=occupant health
kn-keyword=occupant health
en-keyword=Vietnam
kn-keyword=Vietnam
en-keyword=Tobit regression
kn-keyword=Tobit regression
en-keyword=Logit model
kn-keyword=Logit model
END
start-ver=1.4
cd-journal=joma
no-vol=361
cd-vols=
no-issue=
article-no=
start-page=114657
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation. RT-qPCR and immunohistochemistry analyses revealed that PRLRs are predominantly localized in the pulp rather than in the epidermal layer of the feather follicle. Treatment of primary cultured feather pulp cells with PRL increased the expression of mRNAs for insulin-like growth factors (IGFs; IGF-1 and IGF-2) and type 2 deiodinase (DIO2). Furthermore, treatments with IGF-1 and triiodothyronine (T3) reciprocally enhanced the expression of mRNAs for DIO2 and IGFs. Additionally, BrdU staining in neonatal chicks showed that T3 promoted cell proliferation in both the epidermal layer and pulp cells, while this effect was suppressed by an IGF-1 receptor (IGF1R) inhibitor. These findings suggest a novel model in which PRL upregulates IGFs and DIO2 in feather pulp cells, creating a positive feedback loop between IGFs and T3, ultimately leading to the promotion of cell proliferation in both the epidermal layer and the pulp cells by IGFs. This is the first report proposing crosstalk between PRL, thyroid hormone (TH), and IGFs in feather follicles.
en-copyright=
kn-copyright=
en-aut-name=NozawaYuri
en-aut-sei=Nozawa
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkamuraAyako
en-aut-sei=Okamura
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukuchiHibiki
en-aut-sei=Fukuchi
en-aut-mei=Hibiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShinoharaMasamichi
en-aut-sei=Shinohara
en-aut-mei=Masamichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AizawaSayaka
en-aut-sei=Aizawa
en-aut-mei=Sayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakeuchiSakae
en-aut-sei=Takeuchi
en-aut-mei=Sakae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Prolactin
kn-keyword=Prolactin
en-keyword=Thyroid hormone
kn-keyword=Thyroid hormone
en-keyword=IGF
kn-keyword=IGF
en-keyword=Iodothyronine deiodinase
kn-keyword=Iodothyronine deiodinase
en-keyword=Feather growth
kn-keyword=Feather growth
END
start-ver=1.4
cd-journal=joma
no-vol=326
cd-vols=
no-issue=6
article-no=
start-page=F1054
end-page=F1065
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240530
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Preventive effects of vasohibin-2-targeting peptide vaccine for diabetic nephropathy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Diabetic nephropathy remains the leading cause of end-stage kidney disease in many countries, and additional therapeutic targets are needed to prevent its development and progression. Some angiogenic factors are involved in the pathogenesis of diabetic nephropathy. Vasohibin-2 (VASH2) is a novel proangiogenic factor, and our previous study showed that glomerular damage is inhibited in diabetic Vash2 homozygous knockout mice. Therefore, we established a VASH2-targeting peptide vaccine as a tool for anti-VASH2 therapy in diabetic nephropathy. In this study, the preventive effects of the VASH2-targeting peptide vaccine against glomerular injury were examined in a streptozotocin (STZ)-induced diabetic mouse model. The mice were subcutaneously injected with the vaccine at two doses 2 wk apart and then intraperitoneally injected with 50 mg/kg STZ for 5 consecutive days. Glomerular injury was evaluated 20 wk after the first vaccination. Treatment with the VASH2-targeting peptide vaccine successfully induced circulating anti-VASH2 antibody without inflammation in major organs. Although the vaccination did not affect blood glucose levels, it significantly prevented hyperglycemia-induced increases in urinary albumin excretion and glomerular volume. The vaccination did not affect increased VASH2 expression but significantly inhibited renal angiopoietin-2 (Angpt2) expression in the diabetic mice. Furthermore, it significantly prevented glomerular macrophage infiltration. The preventive effects of vaccination on glomerular injury were also confirmed in db/db mice. Taken together, the results of this study suggest that the VASH2-targeting peptide vaccine may prevent diabetic glomerular injury in mice by inhibiting Angpt2-mediated microinflammation.
en-copyright=
kn-copyright=
en-aut-name=NakashimaYuri
en-aut-sei=Nakashima
en-aut-mei=Yuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanabeKatsuyuki
en-aut-sei=Tanabe
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MifuneTomoyo
en-aut-sei=Mifune
en-aut-mei=Tomoyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakadoiTakato
en-aut-sei=Nakadoi
en-aut-mei=Takato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HayashiHiroki
en-aut-sei=Hayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakagamiHironori
en-aut-sei=Nakagami
en-aut-mei=Hironori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SatoYasufumi
en-aut-sei=Sato
en-aut-mei=Yasufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Health Development and Medicine, Osaka University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Health Development and Medicine, Osaka University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=New Industry Creation Hatchery Center, Tohoku University
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=albuminuria
kn-keyword=albuminuria
en-keyword=diabetic nephropathy
kn-keyword=diabetic nephropathy
en-keyword=macrophages
kn-keyword=macrophages
en-keyword=peptide vaccine
kn-keyword=peptide vaccine
en-keyword=vasohibin-2
kn-keyword=vasohibin-2
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241225
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Three-Class Annotation Method Improves the AI Detection of Early-Stage Osteosarcoma on Plain Radiographs: A Novel Approach for Rare Cancer Diagnosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Objectives: Developing high-performance artificial intelligence (AI) models for rare diseases is challenging owing to limited data availability. This study aimed to evaluate whether a novel three-class annotation method for preparing training data could enhance AI model performance in detecting osteosarcoma on plain radiographs compared to conventional single-class annotation. Methods: We developed two annotation methods for the same dataset of 468 osteosarcoma X-rays and 378 normal radiographs: a conventional single-class annotation (1C model) and a novel three-class annotation method (3C model) that separately labeled intramedullary, cortical, and extramedullary tumor components. Both models used identical U-Net-based architectures, differing only in their annotation approaches. Performance was evaluated using an independent validation dataset. Results: Although both models achieved high diagnostic accuracy (AUC: 0.99 vs. 0.98), the 3C model demonstrated superior operational characteristics. At a standardized cutoff value of 0.2, the 3C model maintained balanced performance (sensitivity: 93.28%, specificity: 92.21%), whereas the 1C model showed compromised specificity (83.58%) despite high sensitivity (98.88%). Notably, at the 25th percentile threshold, both models showed identical false-negative rates despite significantly different cutoff values (3C: 0.661 vs. 1C: 0.985), indicating the ability of the 3C model to maintain diagnostic accuracy at substantially lower thresholds. Conclusions: This study demonstrated that anatomically informed three-class annotation can enhance AI model performance for rare disease detection without requiring additional training data. The improved stability at lower thresholds suggests that thoughtful annotation strategies can optimize the AI model training, particularly in contexts where training data are limited.
en-copyright=
kn-copyright=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsukaYujiro
en-aut-sei=Otsuka
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakamuraYusuke
en-aut-sei=Nakamura
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkutaKunihiro
en-aut-sei=Ikuta
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OsakiShuhei
en-aut-sei=Osaki
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HironariTamiya
en-aut-sei=Hironari
en-aut-mei=Tamiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiwaShinji
en-aut-sei=Miwa
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhshikaShusa
en-aut-sei=Ohshika
en-aut-mei=Shusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NishimuraShunji
en-aut-sei=Nishimura
en-aut-mei=Shunji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KaharaNaoaki
en-aut-sei=Kahara
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Medical Information and Assistive Technology Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiology, Juntendo University School of Medicine
kn-affil=
affil-num=4
en-affil=Plusman LCC
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University
kn-affil=
affil-num=6
en-affil=Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital
kn-affil=
affil-num=7
en-affil=Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Orthopaedic Surgery, Kindai University Hospital
kn-affil=
affil-num=11
en-affil=Department of Orthopedic Surgery, Mizushima Central Hospital
kn-affil=
affil-num=12
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=osteosarcoma
kn-keyword=osteosarcoma
en-keyword=medical image annotation
kn-keyword=medical image annotation
en-keyword=anatomical annotation method
kn-keyword=anatomical annotation method
en-keyword=rare cancer
kn-keyword=rare cancer
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=12
article-no=
start-page=1184
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241126
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Contributions of the Primary Sensorimotor Cortex and Posterior Parietal Cortex to Motor Learning and Transfer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Transferring learned manipulations to new manipulation tasks has enabled humans to realize thousands of dexterous object manipulations in daily life. Two-digit grasp and three-digit grasp manipulations require different fingertip forces, and our brain can switch grasp types to ensure good performance according to motor memory. We hypothesized that several brain areas contribute to the execution of the new type of motor according to the motor memory. However, the motor memory mechanisms during this transfer period are still unclear. In the present functional magnetic resonance imaging (fMRI) study, we aimed to investigate the cortical mechanisms involved in motor memory during the transfer phase of learned manipulation tasks. Methods: Using a custom-built T-shaped object with an adjustable weight distribution, the participants performed grasp and lift manipulation tasks under different conditions to simulate the learning and transfer phases. The learning phase consisted of four grasp-and-lift repetitions with one motor type, followed by a transfer phase with four repetitions involving different motors (adding or removing a digit). Results: By comparing brain activity in the learning and transfer phases, we identified three regions (the superior frontal gyrus, supramarginal gyrus, and postcentral gyrus) associated with motor memory during the transfer of learned manipulations. Conclusions: Our findings improve the understanding of the role of the posterior parietal cortex in motor memory, highlighting how sensory information from memory and real-time input is integrated to generate novel motor control signals that guide the precise reapplication of control strategies. Furthermore, we believe that these areas contribute to motor learning from motor memory and may serve as key regions of interest for investigating neurodegenerative diseases.
en-copyright=
kn-copyright=
en-aut-name=WangChenyu
en-aut-sei=Wang
en-aut-mei=Chenyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YuYinghua
en-aut-sei=Yu
en-aut-mei=Yinghua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YangJiajia
en-aut-sei=Yang
en-aut-mei=Jiajia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=fMRI
kn-keyword=fMRI
en-keyword=motor learning and transfer
kn-keyword=motor learning and transfer
en-keyword=primary sensorimotor cortex
kn-keyword=primary sensorimotor cortex
en-keyword=posterior parietal cortex
kn-keyword=posterior parietal cortex
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=1
article-no=
start-page=58
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241221
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of the effects of fenestration in Fontan circulation using a lumped parameter model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fenestration has been reported to enhance Fontan hemodynamics in several cases of Fontan circulation. However, the indication criteria for fenestration remain under discussion. To assess the effectiveness of fenestration in Fontan circulation, we conducted a theoretical analysis using a computational model of the fenestrated Fontan circulation. The cardiac chambers and vascular systems were modeled using the time-varying elastance model and the modified Windkessel model, respectively. When the pulmonary vascular resistance index was 4.01 Wood units m2, fenestration significantly reduced central venous pressure from 18.0 to 16.1 mmHg and decreased stressed blood volume from 610 to 555 ml. However, in the models with reduced ventricular end-systolic elastance, increased ventricular stiffness constant, or heightened systemic vascular resistance, the advantages of fenestration were diminished. Thus, fenestration may effectively improve the hemodynamics of Fontan circulation in patients with elevated pulmonary vascular resistance.
en-copyright=
kn-copyright=
en-aut-name=HorioNaohiro
en-aut-sei=Horio
en-aut-mei=Naohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuShuji
en-aut-sei=Shimizu
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KotaniYasuhiro
en-aut-sei=Kotani
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyaharaYoshinori
en-aut-sei=Miyahara
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Pediatric Heart Disease and Adult Congenital Heart Disease Center, Showa University Hospital
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Single ventricle
kn-keyword=Single ventricle
en-keyword=Fontan circulation
kn-keyword=Fontan circulation
en-keyword=Fenestration
kn-keyword=Fenestration
en-keyword=Hemodynamic simulation
kn-keyword=Hemodynamic simulation
en-keyword=Lumped parameter model
kn-keyword=Lumped parameter model
END
start-ver=1.4
cd-journal=joma
no-vol=103
cd-vols=
no-issue=50
article-no=
start-page=e40849
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241213
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relevance of oxidative stress for small intestinal injuries induced by nonsteroidal anti-inflammatory drugs: A multicenter prospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Several reports revealed that oxidative stress was involved in the mouse model of nonsteroidal anti-inflammatory drug (NSAIDs)-induced small intestinal mucosal injuries. Thus, we aimed to investigate in the prospective clinical study, that the relevance of oxidative stress balance in small intestinal mucosal injury in NSAIDs users. We prospectively included 60 patients who had been taking NSAIDs continuously for more than 3 months and exhibited obscure gastrointestinal bleeding (number UMIN 000011775). Small intestinal mucosal injuries were assessed by capsule endoscopy (CE), and reactive oxygen metabolites (d-ROMs) levels and oxidant capacity (OXY) adsorbent test were performed to investigate the relevance of oxidative stress balance. More than half of the patients (N = 32, 53%) had small intestinal mucosal injuries by CE, and 14 patients (24%) had ulcers. The incidence of ulcers was relatively higher in nonaspirin users. Serum OXY levels were significantly lower in the mucosal injury group (P = .02), and d-ROM levels were significantly higher in the ulcer group (P < .01). In aspirin users, d-ROM and OXY levels did not differ significantly with respect to mucosal injuries or ulcers. However, in nonaspirin users, OXY level was significantly lower in the mucosal injury group (P = .04), and d-ROM levels were significantly higher in the ulcer group (P = .02). Nonaspirin NSAIDs-induced intestinal mucosal injury is associated with antioxidant systems, resulting in increased oxidative stress.
en-copyright=
kn-copyright=
en-aut-name=BabaYuki
en-aut-sei=Baba
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HoriiJoichiro
en-aut-sei=Horii
en-aut-mei=Joichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiSakuma
en-aut-sei=Takahashi
en-aut-mei=Sakuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawaiDaisuke
en-aut-sei=Kawai
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiSayo
en-aut-sei=Kobayashi
en-aut-mei=Sayo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Internal Medicine, Japanese Red Cross Himeji Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=7
en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital
kn-affil=
affil-num=8
en-affil=Department of Internal Medicine, Fukuyama City Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=capsule endoscopy
kn-keyword=capsule endoscopy
en-keyword=NSAIDs
kn-keyword=NSAIDs
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=small intestinal mucosal injury
kn-keyword=small intestinal mucosal injury
END
start-ver=1.4
cd-journal=joma
no-vol=169
cd-vols=
no-issue=1
article-no=
start-page=e16291
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241222
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Therefore, in this study, we aimed to explore the expression and function of Ccn3 in mouse taste bud cells. Using reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry (IHC), we confirmed that Ccn3 was predominantly expressed in Type III taste cells. Through IHC, quantitative real-time RT-PCR, gustatory nerve recordings, and short-term lick tests, we observed that Ccn3 knockout (Ccn3-KO) mice did not exhibit any significant differences in the expression of taste cell markers and taste responses compared to wild-type controls. To explore the function of Ccn3 in taste cells, bioinformatics analyses were conducted and predicted possible roles of Ccn3 in tissue regeneration, perception of pain, protein secretion, and immune response. Among them, an immune function is the most plausible based on our experimental results. In summary, our study indicates that although Ccn3 is strongly expressed in Type III taste cells, its knockout did not influence the basic taste response, but bioinformatics provided valuable insights into the possible role of Ccn3 in taste buds and shed light on future research directions.
en-copyright=
kn-copyright=
en-aut-name=WangKuanyu
en-aut-sei=Wang
en-aut-mei=Kuanyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitohYoshihiro
en-aut-sei=Mitoh
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HorieKengo
en-aut-sei=Horie
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaRyusuke
en-aut-sei=Yoshida
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=bioinformatics
kn-keyword=bioinformatics
en-keyword=Ccn3
kn-keyword=Ccn3
en-keyword=Type III taste cell
kn-keyword=Type III taste cell
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=1
article-no=
start-page=JAMDSM0001
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of tool life prediction system for square end-mills based on database of servo motor current value
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Accurate prediction of tool life is crucial for reducing production costs and enhancing quality in the machining process. However, such predictions often rely on empirical knowledge, which may limit inexperienced engineers to reliably obtain accurate predictions. This study explores a method to predict the tool life of a cutting machine using servo motor current data collected during the initial stages of tool wear, which is a cost-effective approach. The LightGBM model was identified as suitable for predicting tool life from current data, given the challenges associated with predicting from the average variation of current values. By identifying and utilizing the top 50 features from the current data for prediction, the accuracy of tool life prediction in the early wear stage improved. As this prediction method was developed based on current data obtained during the very early wear stage in experiments with square end-mills, it was tested on extrapolated data using different end-mill diameters. The findings revealed average accuracy rates of 71.2% and 69.4% when using maximum machining time and maximum removal volume as thresholds, respectively.
en-copyright=
kn-copyright=
en-aut-name=KODAMAHiroyuki
en-aut-sei=KODAMA
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SUZUKIMakoto
en-aut-sei=SUZUKI
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OHASHIKazuhito
en-aut-sei=OHASHI
en-aut-mei=Kazuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Milling
kn-keyword=Milling
en-keyword=LightGBM
kn-keyword=LightGBM
en-keyword=Tool life prediction
kn-keyword=Tool life prediction
en-keyword=Square end-mill
kn-keyword=Square end-mill
en-keyword=Servo motor current
kn-keyword=Servo motor current
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e202404400
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250107
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Graphene Oxide as a Self‐Carbocatalyst to Facilitate the Ring‐Opening Polymerization of Glycidol for Efficient Polyglycerol Grafting
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Grafting carbon-based nanomaterials (CNMs) with polyglycerol (PG) improves their application potentials in biomedicine and electronics. Although “grafting from” method offers advantages over “grafting to” one in terms of operability and versatility, little is known about the reaction process of glycidol with the surface groups onto CNMs. By using graphene oxide (GO) as a multi-functional model material, we examined the reactivity of the surface groups on GO toward glycidol molecules via a set of model reactions. We reveal that carboxyl groups spontaneously react with the epoxide ring with no need of catalyst, while GO catalyzes the reactions of hydroxyl groups with the epoxide of glycidol. In addition, the hydroxyl group of glycidol can open the epoxide in the basal plane of GO. The subsequent polymerization of PG is supposed to propagate at the primary and/or the secondary hydroxyl groups, generating a ramified PG macromolecule with random branch-on-branch topology. In addition, ketones, benzyl esters and aromatic ethers are found not to react with glycidol even in the presence of GO, while the aldehydes are easily oxidized into carboxyl groups under ambient condition, behaving then as the carboxyl groups. Our findings pose the foundation for understanding the polymerization mechanism of PG on CNMs.
en-copyright=
kn-copyright=
en-aut-name=ZouYajuan
en-aut-sei=Zou
en-aut-mei=Yajuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OhkuraKentaro
en-aut-sei=Ohkura
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Ortiz‐AnayaIsrael
en-aut-sei=Ortiz‐Anaya
en-aut-mei=Israel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KimuraRyota
en-aut-sei=Kimura
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
en-keyword=Carbon nanomaterials
kn-keyword=Carbon nanomaterials
en-keyword=Epoxide ring-opening
kn-keyword=Epoxide ring-opening
en-keyword=Catalysis
kn-keyword=Catalysis
en-keyword=Polyglycerol functionalization
kn-keyword=Polyglycerol functionalization
END
start-ver=1.4
cd-journal=joma
no-vol=145
cd-vols=
no-issue=8
article-no=
start-page=881
end-page=896
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250220
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oral Inflammation and Microbiome Dysbiosis Exacerbate Chronic Graft-versus-host Disease
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The oral microbiota, second in abundance to the gut, is implicated in chronic systemic diseases, but its specific role in graft-versus-host disease (GVHD) pathogenesis has been unclear. Our study finds that mucositis-induced oral dysbiosis in patients after hematopoietic cell transplantation (HCT) associated with increased chronic GVHD (cGVHD), even in patients receiving posttransplant cyclophosphamide. In murine HCT models, oral dysbiosis caused by bilateral molar ligatures exacerbated cGVHD and increased bacterial load in the oral cavity and gut, with Enterococcaceae significantly increasing in both organs. In this model, the migration of Enterococcaceae to cervical lymph nodes both before and after transplantation activated antigen-presenting cells, thereby promoting the expansion of donor-derived inflammatory T cells. Based on these results, we hypothesize that pathogenic bacteria increase in the oral cavity might not only exacerbate local inflammation but also enhance systemic inflammation throughout the HCT course. Additionally, these bacteria translocated to the gut and formed ectopic colonies, further amplifying systemic inflammation. Furthermore, interventions targeting the oral microbiome mitigated murine cGVHD. Collectively, our findings highlight the importance of oral dysbiosis in cGVHD and suggest that modulation of the oral microbiome during transplantation may be an effective approach for preventing or treating cGVHD.
en-copyright=
kn-copyright=
en-aut-name=KambaraYui
en-aut-sei=Kambara
en-aut-mei=Yui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamotoAkira
en-aut-sei=Yamamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=GotohKazuyoshi
en-aut-sei=Gotoh
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsujiShuma
en-aut-sei=Tsuji
en-aut-mei=Shuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KunihiroMari
en-aut-sei=Kunihiro
en-aut-mei=Mari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OyamaTadashi
en-aut-sei=Oyama
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TeraoToshiki
en-aut-sei=Terao
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SatoAyame
en-aut-sei=Sato
en-aut-mei=Ayame
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=PeltierDaniel
en-aut-sei=Peltier
en-aut-mei=Daniel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NishimoriHisakazu
en-aut-sei=Nishimori
en-aut-mei=Hisakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SogaYoshihiko
en-aut-sei=Soga
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ReddyPavan
en-aut-sei=Reddy
en-aut-mei=Pavan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=YoshinobuMaeda
en-aut-sei=Yoshinobu
en-aut-mei=Maeda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Medical School
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Microbiology and Genetics, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=6
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Division of Hospital Dentistry, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Herman B Wells Center for Pediatric Research, Simon Cancer Center, Indiana University School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=16
en-affil=Department of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=17
en-affil=Division of Blood Transfusion, Okayama University Hospital
kn-affil=
affil-num=18
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=19
en-affil=Division of Hospital Dentistry, Okayama University Hospital
kn-affil=
affil-num=20
en-affil=Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine
kn-affil=
affil-num=21
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=391
cd-vols=
no-issue=
article-no=
start-page=158
end-page=176
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250215
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Magnesium isotope composition of volcanic rocks from cold and warm subduction zones: Implications for the recycling of subducted serpentinites and carbonates
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Magnesium (Mg) isotopes are regarded as a sensitive tracer to the contribution from subducted serpentinites and carbonates. However, the source, distribution, and controlling factors of the Mg isotope composition of arc magmas remain unclear. In this study, we investigated the intra-arc and inter-arc variations in Mg isotope compositions of volcanic rocks from two typical cold subduction zones [NE Japan (NEJ) and Izu arcs] and a typical hot subduction zone [SW Japan (SWJ) arc] to address the question. The volcanic rocks from the frontal-arc regions of NEJ and Izu have isotopically heavy Mg (δ26Mg = ?0.20 to ?0.08 ‰) compared to the mantle-like δ26Mg values of most of volcanic rocks from SWJ and the rear regions of NEJ and Izu arcs (?0.28 to ?0.17 ‰). It is also worth noting that NEJ arc includes samples with δ26Mg values (?0.61 to ?0.39 ‰) significantly lower than the mantle, but similar to the < 110 Ma intra-continental basalts from eastern China, which is the first observation in modern arc rocks. No obvious effects of post-eruptive alteration, fractional crystallization, partial melting, or the addition of silicate-rich sediment and oceanic crust components could be identified in the Mg isotope compositions of these volcanic rocks. By contrast, the correlations between the δ26Mg values and the proxy for serpentinite component (i.e., 11B/10B and Nb/B ratios) indicate that the component exerts a strong control on the Mg-isotopic signature of these arc rocks. Considering metamorphic reactions in subduction lithologies under P-T conditions postulated for these arcs, the variations in δ26Mg values of these arc magmas are unlikely to have been controlled by dehydration of serpentinites in subducted oceanic lithosphere (slab serpentinite). Instead, the high-δ26Mg values of frontal-arc rocks are delivered by the fluids from serpentinite formed in the lowermost part of the sub-arc mantle (mantle wedge serpentinite) in channelized flow. Comparatively, such a high-δ26Mg signature is invisible in volcanic rocks from rear-arc regions of NEJ and Izu, and the entire SWJ, suggesting that the major Mg carriers in subducted serpentinites (e.g., talc, chlorite, and serpentine) were broken down completely before subducted slabs reached the depth beneath these volcanoes. Moreover, the volcanic rocks with low δ26Mg values from the rear arc of NEJ are characterized by high La/Yb and U/Nb ratios as well as low Ti/Eu, Ti/Ti*, and Hf/Hf* ratios, suggesting the involvements of carbonates in their magma sources. The quantitative modeling suggests that < 20 % of sedimentary carbonate (dolomite) was recycled into their mantle source, revealing that Mg-rich carbonate could be incorporated into a deep mantle wedge at rear-arc depths of 150?400 km in subduction zones.
en-copyright=
kn-copyright=
en-aut-name=ZhangWei
en-aut-sei=Zhang
en-aut-mei=Wei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KitagawaHiroshi
en-aut-sei=Kitagawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuangFang
en-aut-sei=Huang
en-aut-mei=Fang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=2
en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University
kn-affil=
affil-num=3
en-affil=CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China
kn-affil=
en-keyword=Magnesium isotopes
kn-keyword=Magnesium isotopes
en-keyword=Arc magmas
kn-keyword=Arc magmas
en-keyword=Mantle wedge serpentinite
kn-keyword=Mantle wedge serpentinite
en-keyword=Slab serpentinite
kn-keyword=Slab serpentinite
en-keyword=Carbonate recycle
kn-keyword=Carbonate recycle
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=2
article-no=
start-page=249
end-page=260
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241005
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Loss of Nr4a1 ameliorates endothelial cell injury and vascular leakage in lung transplantation from circulatory-death donor
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Ischemia-reperfusion injury (IRI) stands as a major trigger for primary graft dysfunction (PGD) in lung transplantation (LTx). Especially in LTx from donation after cardiac death (DCD), effective control of IRI following warm ischemia (WIRI) is crucial to prevent PGD. This study aimed to identify the key factors affecting WIRI in LTx from DCD.
Methods: Previously reported RNA-sequencing dataset of lung WIRI was reanalyzed to identify nuclear receptor subfamily 4 group A member 1 (NR4A1) as the immediate early gene for WIRI. Dynamics of NR4A1 expression were verified using a mouse hilar clamp model. To investigate the role of NR4A1 in WIRI, a mouse model of LTx from DCD was established using Nr4a1 knockout (Nr4a1?/?) mice.
Results: NR4A1 was located around vascular cells, and its protein levels in the lungs increased rapidly and transiently during WIRI. LTx from Nr4a1?/? donors significantly improved pulmonary graft function compared to wild-type donors. Histological analysis showed decreased microvascular endothelial cell death, neutrophil infiltration, and albumin leakage. Evans blue permeability assay demonstrated maintained pulmonary microvascular barrier integrity in grafts from Nr4a1?/? donors, correlating with diminished pulmonary edema. However, NR4A1 did not significantly affect the inflammatory response during WIRI, and IRI was not suppressed when a wild-type donor lung was transplanted into the Nr4a1?/? recipient.
Conclusions: Donor NR4A1 plays a specialized role in the positive regulation of endothelial cell injury and microvascular hyperpermeability. These findings demonstrate the potential of targeting NR4A1 interventions to alleviate PGD and improve outcomes in LTx from DCD.
en-copyright=
kn-copyright=
en-aut-name=KawanaShinichi
en-aut-sei=Kawana
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakaueTomohisa
en-aut-sei=Sakaue
en-aut-mei=Tomohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HashimotoKohei
en-aut-sei=Hashimoto
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataKentaro
en-aut-sei=Nakata
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChoshiHaruki
en-aut-sei=Choshi
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OhtaniShinji
en-aut-sei=Ohtani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University
kn-affil=
affil-num=10
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=ischemia-reperfusion injury
kn-keyword=ischemia-reperfusion injury
en-keyword=donation after circulatory death
kn-keyword=donation after circulatory death
en-keyword=nuclear receptor subfamily 4 group A member 1
kn-keyword=nuclear receptor subfamily 4 group A member 1
en-keyword=endothelial cell
kn-keyword=endothelial cell
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=
article-no=
start-page=64
end-page=79
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=On the “Chronology of Earthquakes” in the Rika nenpy? (Chronological Scientific Tables): Until the 10th century
kn-title=『理科年表』の「地震年代表」をめぐって− 10 世紀まで−
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This paper is based on the oral report I gave on July 22, 2023, at the 21st “Disaster Culture and the History of Community Formation” workshop hosted by the Okayama University Research Institute for the Dynamics of Civilizations. I discuss the changes in the “Chronology of Earthquakes” contained within the Rika nenpy? (Chronological Scientific Tables) and some of the problems with them, citing historical earthquake materials. It is necessary to clearly distinguish between real and false earthquakes, such as the Tamba earthquake (701), the Kinai earthquake (734), the Min? earthquake (745), the Ecch?-Echigo earthquake (863), and the Kant? earthquake (878). The author hopes that the “Chronology of Earthquakes” will be published in a better form in the future and calls for efforts in the field of history to verify and introduce historical earthquake materials.
en-copyright=
kn-copyright=
en-aut-name=ARAIHideki
en-aut-sei=ARAI
en-aut-mei=Hideki
kn-aut-name=荒井秀規
kn-aut-sei=荒井
kn-aut-mei=秀規
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Historian
kn-affil=
en-keyword=Ancient Japan
kn-keyword=Ancient Japan
en-keyword=earthquakes
kn-keyword=earthquakes
en-keyword=false earthquakes
kn-keyword=false earthquakes
en-keyword=Chronological Scientific Tables
kn-keyword=Chronological Scientific Tables
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=1
end-page=8
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=2023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Transepidermal Water Loss Estimation Model for Evaluating Skin Barrier Function
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Deterioration of skin barrier function causes symptoms such as allergies because it allows various chemical substances to enter the human body. Quantitative evaluation of the thickness and water content of the stratum corneum is useful as a measure of skin barrier function in fields such as dermatology, nursing science, and cosmetics development. The stratum corneum is responsible for most of the skin barrier function, and this function has conventionally been evaluated using transepidermal water loss (TEWL). In this paper, we propose a new model for estimation of TEWL from measurements of the thickness of the stratum corneum and water content of the surface of the stratum corneum, and discuss the results of the measurements. By measuring the thickness and water content of the stratum corneum using confocal laser microscopy and confocal Raman spectroscopy, respectively, and examining the relationship of these variables with TEWL, we established a new potential model for estimating TEWL from these two variables. The correlation coefficient of the validation data was 0.886 and the root mean squared error was 8.18 points. These findings indicate the feasibility of qualitative evaluation of TEWL by measuring the thickness and water content of the stratum corneum.
en-copyright=
kn-copyright=
en-aut-name=UeharaOsamu
en-aut-sei=Uehara
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KusuharaToshimasa
en-aut-sei=Kusuhara
en-aut-mei=Toshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraTakao
en-aut-sei=Nakamura
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Medical Engineering Laboratory, ALCARE Co., Ltd.
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=TEWL
kn-keyword=TEWL
en-keyword=stratum corneum thickness
kn-keyword=stratum corneum thickness
en-keyword=water content of stratum corneum
kn-keyword=water content of stratum corneum
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=6
article-no=
start-page=475
end-page=483
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=C-arm Free Unilateral Biportal Endoscopic Discectomy: A Technical Note
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This report presents a new unilateral biportal endoscopic (UBE) technique for lumbar disc herniation without C-arm guidance. Lumbar disc herniation requires surgical intervention when conservative methods fail. Shifts towards minimally invasive percutaneous endoscopic lumbar discectomy, including uniportal and biportal approaches, have been hindered by challenges such as steep learning curves and reliance on radiation-intensive C-arm guidance. We here describe the use of standard intraoperative navigation in UBE to reduce radiation exposure and increase surgical accuracy. A 24-year-old man with low back and bilateral leg pain with gait disturbance was referred to our hospital. He had had conservative treatment for 12 months in another hospital before admission, but this proved unsuccessful. On admission he had low back pain (VAS 4/10) and bilateral leg pain (VAS 8/10), muscle weakness of the bilateral legs (manual muscle testing (MMT) grade of the extensor hallucis longus: 4/4), and numbness of the bilateral lower legs. Preoperative lumbar MRI showed L4/5 large central disc herniation. He underwent C-arm free UBE discectomy under the guidance of O-arm navigation. The surgery was successful, with postoperative lumbar MRI showing good decompression of the dural sac and bilateral L5 nerve roots. The MMT grade and sensory function of both legs had recovered fully on final follow-up at one year. The new UBE technique under navigation guidance was shown to be useful for lumbar disc herniation. This innovative technique was safe and accurate for the treatment of lumbar intervertebral disc herniation, and minimized radiation exposure to surgeons.
en-copyright=
kn-copyright=
en-aut-name=XiangHongfei
en-aut-sei=Xiang
en-aut-mei=Hongfei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LatkaKajetan
en-aut-sei=Latka
en-aut-mei=Kajetan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MastePraful
en-aut-sei=Maste
en-aut-mei=Praful
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaMasato
en-aut-sei=Tanaka
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KumawatChetan
en-aut-sei=Kumawat
en-aut-mei=Chetan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AratakiShinya
en-aut-sei=Arataki
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujiwaraYoshihiro
en-aut-sei=Fujiwara
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TaokaTakuya
en-aut-sei=Taoka
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MiyamotoAkiyoshi
en-aut-sei=Miyamoto
en-aut-mei=Akiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=7
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital
kn-affil=
en-keyword=lumbar disc herniation
kn-keyword=lumbar disc herniation
en-keyword=unilateral biportal endoscopic technique
kn-keyword=unilateral biportal endoscopic technique
en-keyword=navigation
kn-keyword=navigation
en-keyword=O-arm
kn-keyword=O-arm
en-keyword=minimally invasive spine surgery (MISS)
kn-keyword=minimally invasive spine surgery (MISS)
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=6
article-no=
start-page=469
end-page=474
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Treatment of Tenosynovial Giant Cell Tumor of the Cervical Spine with Postoperative Anti-RANKL Antibody (Denosumab) Administration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tenosynovial giant cell tumor (TGCT) is a fibrous histiocytic tumor originating in the synovial membrane. While cervical TGCT may not be considered a common diagnosis preoperatively because it is relatively rare, it has a high recurrence rate and should be considered. Total resection is preferable, but it can be challenging due to the risk of damaging the vertebral artery. Denosumab has shown effectiveness as a postoperative treatment for osteolytic bone lesion. Denosumab administration coupled with close follow-up might offer an effective postoperative treatment option for unresectable TGCT with bone invasion.
en-copyright=
kn-copyright=
en-aut-name=HirataYuichi
en-aut-sei=Hirata
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NagaseTakayuki
en-aut-sei=Nagase
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SasadaSusumu
en-aut-sei=Sasada
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AyadaYoshiyuki
en-aut-sei=Ayada
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeHayato
en-aut-sei=Miyake
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SugaharaChiaki
en-aut-sei=Sugahara
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoHidetaka
en-aut-sei=Yamamoto
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OdaYoshinao
en-aut-sei=Oda
en-aut-mei=Yoshinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=tenosynovial giant cell tumor
kn-keyword=tenosynovial giant cell tumor
en-keyword=bone tumor
kn-keyword=bone tumor
en-keyword=spine
kn-keyword=spine
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=11
article-no=
start-page=e70476
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Genomic Introgression in the Hybrid zones at the Margins of the Species' Range Between Ecologically Distinct Rubus Species
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Populations in extreme environments at the margins of a species' range are often the most vulnerable to climate change, but they may also experience novel evolutionary processes, such as secondary contact and hybridization with their relatives. The range overlap resulting from secondary contact with related species that have adapted to different climatic zones may act as corridors for adaptive introgression. To test this hypothesis, we examined the hybrid zones along the altitude of two closely related Rubus species, one temperate and the other subtropical species, at their southern and northern limits on Yakushima Island, Japan. Genomic cline analysis revealed non-neutral introgression throughout the genome in both directions in the two species. Some of these genomic regions involve gene ontology terms related to the regulation of several biological processes. Our niche modeling suggests that, assuming niche conservatism, the temperate species are likely to lose their suitable habitat, and the backcrossed hybrids with the subtropical species are already expanding upslope on the island. Adaptive introgression through the hybrid zone may contribute to the persistence and expansion of the species in the southernmost and northernmost populations.
en-copyright=
kn-copyright=
en-aut-name=MimuraMakiko
en-aut-sei=Mimura
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TangZhenxing
en-aut-sei=Tang
en-aut-mei=Zhenxing
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShigenobuShuji
en-aut-sei=Shigenobu
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamaguchiKatsushi
en-aut-sei=Yamaguchi
en-aut-mei=Katsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YaharaTetsukazu
en-aut-sei=Yahara
en-aut-mei=Tetsukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Biology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Biology, Okayama University
kn-affil=
affil-num=3
en-affil=Trans-Omics Facility, National Institute of Basic Biology
kn-affil=
affil-num=4
en-affil=Trans-Omics Facility, National Institute of Basic Biology
kn-affil=
affil-num=5
en-affil=Kyushu Open University
kn-affil=
en-keyword=adaptive introgression
kn-keyword=adaptive introgression
en-keyword=climate change
kn-keyword=climate change
en-keyword=hybrid zone
kn-keyword=hybrid zone
en-keyword=secondary contact
kn-keyword=secondary contact
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=20
article-no=
start-page=e70288
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=New Anti-Angiogenic Therapy for Glioblastoma With the Anti-Depressant Sertraline
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Aims: Anti-angiogenic therapies prolong patient survival in some malignancies but not glioblastoma. We focused on the relationship between the differentiation of glioma stem like cells (GSCs) into tumor derived endothelial cells (TDECs) and, anti-angiogenic therapy resistance. Especially we aimed to elucidate the mechanisms of drug resistance of TDECs to anti-angiogenic inhibitors and identify novel anti-angiogenic drugs with clinical applications.
Results: The mouse GSCs, 005, were differentiated into TDECs under hypoxic conditions, and TDECs had endothelial cell characteristics independent of the vascular endothelial growth factor (VEGF) pathway. In vivo, inhibition of the VEGF pathway had no anti-tumor effect and increased the percentage of TDECs in the 005 mouse model. Novel anti-angiogenic drugs for glioblastoma were evaluated using a tube formation assay and a drug repositioning strategy with existing blood-brain barrier permeable drugs. Drug screening revealed that the antidepressant sertraline inhibited tube formation of TDECs. Sertraline was administered to differentiated TDECs in vitro and 005 mouse models in vivo to evaluate genetic changes by RNA-Seq and tumor regression effects by immunohistochemistry and MRI. Sertraline reduced Lama4 and Ang2 expressions of TDEC, which play an important role in non-VEGF-mediated angiogenesis in tumors. The combination of a VEGF receptor inhibitor axitinib, and sertraline improved survival and reduced tumor growth in the 005 mouse model.
Conclusion: Collectively, our findings showed the diversity of tumor vascular endothelial cells across VEGF and non-VEGF pathways led to anti-angiogenic resistance. The combination of axitinib and sertraline can represent an effective anti-angiogenic therapy for glioblastoma with safe, low cost, and fast availability.
en-copyright=
kn-copyright=
en-aut-name=TsuboiNobushige
en-aut-sei=Tsuboi
en-aut-mei=Nobushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UnedaAtsuhito
en-aut-sei=Uneda
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SurugaYasuki
en-aut-sei=Suruga
en-aut-mei=Yasuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsumotoYuji
en-aut-sei=Matsumoto
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiiKentaro
en-aut-sei=Fujii
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsuiHideki
en-aut-sei=Matsui
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KurozumiKazuhiko
en-aut-sei=Kurozumi
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=DateIsao
en-aut-sei=Date
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Neurosurgery, Hamamatsu University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
en-keyword=anti-angiogenic therapy
kn-keyword=anti-angiogenic therapy
en-keyword=antidepressant sertraline
kn-keyword=antidepressant sertraline
en-keyword=drug repositioning
kn-keyword=drug repositioning
en-keyword=glioblastoma
kn-keyword=glioblastoma
en-keyword=tumor derived endothelial cells
kn-keyword=tumor derived endothelial cells
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=線維化を伴う膵がん微小環境の立体培養法による新規in vitroモデルの構築と解析
kn-title=Establishment and Analysis of Novel In Vitro 3D Cell Culture Models of the Fibrotic Tumor Microenvironment in Pancreatic Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TANAKAHiroyoshi
en-aut-sei=TANAKA
en-aut-mei=Hiroyoshi
kn-aut-name=田中啓祥
kn-aut-sei=田中
kn-aut-mei=啓祥
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=岡山大学大学院
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ラットモデルにおけるくも膜下出血発症後急性期における脳波抑制は早期脳損傷の重要なマーカーである
kn-title=Power suppression in EEG after the onset of SAH is a significant marker of early brain injury in rat models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAKASUGIYuji
en-aut-sei=TAKASUGI
en-aut-mei=Yuji
kn-aut-name=杉祐二
kn-aut-sei=杉
kn-aut-mei=祐二
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=水文流出モデルを用いた西日本の急峻な森林流域における地下水涵養量の時空間的・長期的評価
kn-title=Spatiotemporal and Long-term Evaluation of Groundwater Recharge in a Steep Forested Catchment Western Japan by Hydrological Modeling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HALAKE GUYO RENDILICHA
en-aut-sei=HALAKE GUYO RENDILICHA
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=E-rhBMP-2/β-TCPの局所投与は,MRONJ様モデルマウスの抜歯後の歯槽骨の骨細胞ネットワークを回復し,微細構造損傷を軽減させる
kn-title=Local E-rhBMP-2/β-TCP Application Rescues Osteocyte Dendritic Integrity and Reduces Microstructural Damage in Alveolar Bone Post-Extraction in MRONJ-like Mouse Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=DANG Tuan Anh
en-aut-sei=DANG Tuan Anh
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=酸化ストレスと炎症反応に関するマウス脳卒中モデルにおけるカルノシンの神経保護効果
kn-title=Neuroprotective effects of carnosine in a mice stroke model concerning oxidative stress and inflammatory response
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HUXINRAN
en-aut-sei=HU
en-aut-mei=XINRAN
kn-aut-name=胡欣冉
kn-aut-sei=胡
kn-aut-mei=欣冉
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=1445364
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241031
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Degree of twist in the Achilles tendon interacts with its length and thickness in affecting local strain magnitude: a finite element analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: The relationship between the twisting of the three subtendons of the Achilles tendon (AT) and local strain has received attention in recent years. The present study aimed to elucidate how the degree of twist in the AT affects strain using finite element (FE) analysis, while also considering other geometries (e.g., length, thickness, and width) and their combinations.
Methods: A total of 59 FE models with different degrees of twist and geometries were created. A lengthening force (z-axis) of 1,000 N was applied to each subtendon (total: 3,000 N). The average value of the first principal Lagrange strain was calculated for the middle third of the total length of the model.
Results: Statistical (stepwise) analysis revealed the effects of the degree of twist, other geometries, and their combinations on AT strain. The main findings were as follows: (1) a greater degree of twist resulted in higher average strains (t = 9.28, p < 0.0001) and (2) the effect of the degree of twist on the strain depended on dimensions of thickness of the most distal part of the AT (t = -4.49, p < 0.0001) and the length of the AT (t = -3.82, p = 0.0005). Specifically, when the thickness of the most distal part and length were large, the degree of twist had a small effect on the first principal Lagrange strain; however, when the thickness of the most distal part and length were small, a greater degree of twist results in higher first principal Lagrange strain.
Conclusion: These results indicate that the relationship between the degree of twist and local strain is complex and may not be accurately assessed by FE simulation using a single geometry.
en-copyright=
kn-copyright=
en-aut-name=EnomotoShota
en-aut-sei=Enomoto
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FuruuchiShunya
en-aut-sei=Furuuchi
en-aut-mei=Shunya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshibashiTatsuki
en-aut-sei=Ishibashi
en-aut-mei=Tatsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamadaShu
en-aut-sei=Yamada
en-aut-mei=Shu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OdaToshiaki
en-aut-sei=Oda
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute for Promotion of Education and Campus Life, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Science and Technology, Keio University
kn-affil=
affil-num=3
en-affil=Graduate School of Science and Technology, Keio University
kn-affil=
affil-num=4
en-affil=Faculty of Science and Technology, Keio University
kn-affil=
affil-num=5
en-affil=Graduate School of Education, Hyogo University of Teacher Education
kn-affil=
en-keyword=achilles tendon
kn-keyword=achilles tendon
en-keyword=computational model
kn-keyword=computational model
en-keyword=small composite design
kn-keyword=small composite design
en-keyword=subtendon
kn-keyword=subtendon
en-keyword=tendinopathy
kn-keyword=tendinopathy
END
start-ver=1.4
cd-journal=joma
no-vol=61
cd-vols=
no-issue=1
article-no=
start-page=33
end-page=41
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230222
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Antimalarial effect of synthetic endoperoxide on synchronized Plasmodium chabaudi infected mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The discovery of new antimalarial drugs can be developed using asynchronized Plasmodium berghei malaria parasites in vivo in mice. Studies on a particular stage are also required to assess the effectiveness and mode of action of drugs. In this report, we used endoperoxide 6-(1,2,6,7-tetraoxaspiro [7.11] nonadec-4-yl) hexan-1-ol (N-251) as a model antimalarial compound on P. chabaudi parasites. We examined the antimalarial effect of N-251 against ring-stage- and trophozoite-stage-rich P. chabaudi parasites and asynchronized P. berghei parasites using the 4-day suppressive test. The ED50 values were 27, 22, and 22 mg/kg, respectively, and the antimalarial activity of N-251 was verified in both rodent malaria parasites. To assess the stage-specific effect of N-251 in vivo, we evaluated the change of parasitemia and distribution of parasite stages using ring-stage- and trophozoite-stage-rich P. chabaudi parasites with one-day drug administration for one life cycle. We discovered that the parasitemias decreased after 13 and 9 hours post-treatment in the ring-stage- and trophozoite-stage-rich groups, respectively. Additionally, in the ring-stage-rich N-251 treated group, the ring-stage parasites hindered trophozoite parasite development. For the trophozoite-stage-rich N-251 treated group, the distribution of the trophozoite stage was maintained without a change in parasitemia until 9 hours. Because of these findings, it can be concluded that N-251 suppressed the trophozoite stage but not the ring stage. We report for the first time that N-251 specifically suppresses the trophozoite stage using P. chabaudi in mice. The results show that P. chabaudi is a reliable model for the characterization of stage-specific antimalarial effects.
en-copyright=
kn-copyright=
en-aut-name=AlyNagwa S. M.
en-aut-sei=Aly
en-aut-mei=Nagwa S. M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsumoriHiroaki
en-aut-sei=Matsumori
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=DinhThi Quyen
en-aut-sei=Dinh
en-aut-mei=Thi Quyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoAkira
en-aut-sei=Sato
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiShin-Ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ChangKyung-Soo
en-aut-sei=Chang
en-aut-mei=Kyung-Soo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YuHak Sun
en-aut-sei=Yu
en-aut-mei=Hak Sun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KobayashiFumie
en-aut-sei=Kobayashi
en-aut-mei=Fumie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KimHye-Sook
en-aut-sei=Kim
en-aut-mei=Hye-Sook
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Division of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Division of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Sanitary Microbiology, Faculty of Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan
kn-affil=
affil-num=7
en-affil=Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University
kn-affil=
affil-num=8
en-affil=Department of Environmental Science, School of Life Environmental Science, Azabu University
kn-affil=
affil-num=9
en-affil=Division of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Plasmodium chabaudi
kn-keyword=Plasmodium chabaudi
en-keyword=synchronization
kn-keyword=synchronization
en-keyword=stage-specific activity
kn-keyword=stage-specific activity
en-keyword=antimalarial N-251
kn-keyword=antimalarial N-251
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=2
article-no=
start-page=35
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Development of the Follow-Up Human 3D Oral Cancer Model in Cancer Treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=As function preservation cancer therapy, targeted radiation therapies have been developed for the quality of life of cancer patients. However, preclinical animal studies evaluating the safety and efficacy of targeted radiation therapy is challenging from the viewpoints of animal welfare and animal protection, as well as the management of animal in radiation-controlled areas under the regulations. We fabricated the human 3D oral cancer model that considers the time axis of the follow up in cancer treatment. Therefore, in this study, the 3D model with human oral cancer cells and normal oral fibroblasts was treated based on clinical protocol. After cancer treatment, the histological findings of the 3D oral cancer model indicated the clinical correlation between tumor response and surrounding normal tissue. This 3D model has potential as a tool for preclinical studies alternative to animal studies.
en-copyright=
kn-copyright=
en-aut-name=IgawaKazuyo
en-aut-sei=Igawa
en-aut-mei=Kazuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IzumiKenji
en-aut-sei=Izumi
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakuraiYoshinori
en-aut-sei=Sakurai
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
affil-num=3
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
en-keyword=3D cancer model
kn-keyword=3D cancer model
en-keyword=preclinical study
kn-keyword=preclinical study
en-keyword=cancer treatment
kn-keyword=cancer treatment
en-keyword=quality of life
kn-keyword=quality of life
en-keyword=multidisciplinary treatment
kn-keyword=multidisciplinary treatment
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=12
article-no=
start-page=809
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241120
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relationship among cancer treatment, quality of life, and oral function in head and neck cancer survivors: A cross-sectional study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Purpose Treatment for head and neck cancer (HNC), such as surgery and chemoradiotherapy, can reduce oral function and affect quality of life (QoL). However, whether HNC treatment affects QoL via the decline of oral function remains unclear. This study aimed to investigate the relationship among cancer treatment, QoL, and actual oral function in HNC survivors.
Methods A total of 100 HNC survivors who had completed definitive treatment for HNC at least 6 months prior to enrollment were enrolled in this cross-sectional study. QoL was evaluated using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 summary score. Oral diadochokinesis (ODK), tongue pressure, moisture level on the mucosal surface, and mouth opening were measured. Information on age, sex, tumor site, tumor stage, history of HNC treatment, height, body weight, and lifestyle were collected from medical records. Structural equation modeling (SEM) was conducted to analyze the indirect/direct associations among HNC treatment, QoL, and oral function.
Results In total, 100 HNC survivors (58 males and 42 females; age range, 30?81 years, median, 67 years) were analyzed. Overall, 63 patients (63.0%) were diagnosed as oral cancer, 66 (66.0%) developed advanced cancer (stage 3/4), and 58 (58.0%) underwent reconstruction surgery in 100 HNC survivors. The SEM results supported the hypothesized structural model (root mean square error of approximation?=?0.044, comparative fit index?=?0.990, Tucker-Lewis index?=?0.986). Surgery with neck dissection and reconstruction for advanced cancer had indirect effects on lower QoL via ODK and mouth opening.
Conclusion HNC treatment is indirectly associated with QoL via oral function in HNC survivors.
en-copyright=
kn-copyright=
en-aut-name=YokoiAya
en-aut-sei=Yokoi
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamanakaReiko
en-aut-sei=Yamanaka
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakeuchiNoriko
en-aut-sei=Takeuchi
en-aut-mei=Noriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoritaManabu
en-aut-sei=Morita
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Oral Health Sciences, Takarazuka University of Medical and Health Care
kn-affil=
affil-num=6
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Quality of life
kn-keyword=Quality of life
en-keyword=Oral function
kn-keyword=Oral function
en-keyword=Head and neck cancer
kn-keyword=Head and neck cancer
en-keyword=ODK
kn-keyword=ODK
en-keyword=Tongue pressure
kn-keyword=Tongue pressure
END
start-ver=1.4
cd-journal=joma
no-vol=36
cd-vols=
no-issue=10
article-no=
start-page=4585
end-page=4606
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241029
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mobile Augmented Reality Interface for Instruction-based Disaster Preparedness Guidelines
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Disaster preparedness guidelines help citizens protect themselves against disasters. Nonetheless, the general public has been found not to read them. Augmented reality (AR) interfaces are known to improve knowledge transfer in studies of education, industry, and elderly assistance. However, this is achieved this by creating specific interfaces for users, not the general public. To test the performance of these interfaces for general public guidance, we designed and implemented a novel AR-assisted disaster prevention guideline that leverages object detection models to identify targets of disaster preparedness advice. We then had a diverse-age audience compare our design against a real traditional paper-based preparedness guide in a room arranged as a common remote work bedroom. By testing their usability, task load, and capacity to make users aware of their environmental hazards, we gained important insights into the performance of different age groups following media developed for the general public. Regardless of different age groups achieving similar usability scores, we found minors improving their performance scores with our novel interface and adults from 20 to 49 years old seemingly performing better than other age groups. In this study, we highlight the importance of guidance alternatives for the young and the less-technology-aware population, contributing to the under-explored area of AR interfaces for the general public.
en-copyright=
kn-copyright=
en-aut-name=AguilarSergio De Le?n
en-aut-sei=Aguilar
en-aut-mei=Sergio De Le?n
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsudaYuki
en-aut-sei=Matsuda
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YasumotoKeiichi
en-aut-sei=Yasumoto
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Information Science, Nara Institute of Science and Technology
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Information Science, Nara Institute of Science and Technology
kn-affil=
en-keyword=guidelines
kn-keyword=guidelines
en-keyword=augmented reality
kn-keyword=augmented reality
en-keyword=disaster preparedness
kn-keyword=disaster preparedness
en-keyword=object recognition
kn-keyword=object recognition
en-keyword=user interface
kn-keyword=user interface
en-keyword=knowledge transfer
kn-keyword=knowledge transfer
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=10
article-no=
start-page=e0309622
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The protective effect of carbamazepine on acute lung injury induced by hemorrhagic shock and resuscitation in rats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hemorrhagic shock and resuscitation (HSR) enhances the risk of acute lung injury (ALI). This study investigated the protective effect of carbamazepine (CBZ) on HSR-induced ALI in rats. Male Sprague-Dawley rats were allocated into five distinct groups through randomization: control (SHAM), saline + HSR (HSR), CBZ + HSR (CBZ/HSR), dimethyl sulfoxide (DMSO) + HSR (DMSO/HSR), and CBZ + chloroquine (CQ) + HSR (CBZ/CQ/HSR). Subsequently, HSR models were established. To detect tissue damage, we measured lung histological changes, lung injury scores, and wet/dry weight ratios. We measured neutrophil counts as well as assessed the expression of inflammatory factors using RT-PCR to determine the inflammatory response. We detected autophagy-related proteins LC3II/LC3I, P62, Beclin-1, and Atg12-Atg5 using western blotting. Pretreatment with CBZ improved histopathological changes in the lungs and reduced lung injury scores. The CBZ pretreatment group exhibited significantly reduced lung wet/dry weight ratio, neutrophil aggregation and number, and inflammation factor (TNF-alpha and iNOS) expression. CBZ changed the expression levels of autophagy-related proteins (LC3II/LC3I, beclin-1, Atg12-Atg5, and P62), suggesting autophagy activation. However, after injecting CQ, an autophagy inhibitor, the beneficial effects of CBZ were reversed. Taken together, CBZ pretreatment improved HSR-induced ALI by suppressing inflammation, at least in part, through activating autophagy. Thus, our study offers a novel perspective for treating HSR-induced ALI.
en-copyright=
kn-copyright=
en-aut-name=LiYaqiang
en-aut-sei=Li
en-aut-mei=Yaqiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimizuHiroko
en-aut-sei=Shimizu
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraRyu
en-aut-sei=Nakamura
en-aut-mei=Ryu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LuYifu
en-aut-sei=Lu
en-aut-mei=Yifu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakamotoRisa
en-aut-sei=Sakamoto
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriEmiko
en-aut-sei=Omori
en-aut-mei=Emiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakahashiToru
en-aut-sei=Takahashi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Medical School
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Okayama Saidaiji Hospital
kn-affil=
affil-num=8
en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=1
article-no=
start-page=195
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association between discontinuity of care and patient trust in the usual rheumatologist among patients with systemic lupus erythematosus: a cross-sectional study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Patient trust plays a central role in the patient-physician relationship. This study aimed to determine whether the number of outpatient visits with a covering rheumatologist is associated with patient trust in their usual rheumatologist.
Methods Japanese adults with systemic lupus erythematosus (SLE) who met the 1997 revised classification criteria of the American College of Rheumatology and had outpatient visits with a covering rheumatologist in the past year were included.
We used the 11-item Japanese version of the modified Trust in Physician Scale (range 0?100) to assess patient trust. A general linear model with cluster-robust variance estimation was used to evaluate the association between the number of outpatient visits with covering rheumatologists and the patient’s trust in their usual rheumatologist.
Results Of the 515 enrolled participants, 421 patients with SLE were included in our analyses. Patients were divided into groups according to the number of outpatient visits with a covering rheumatologist in the past year as follows: no visits (59.9%; reference group), one to three visits (24.2%; low-frequency group), and four or more visits (15.9%; high-frequency group). The median Trust in Physician Scale score was 81.8 (interquartile range: 72.7?93.2). Both the low-frequency group (mean difference: -3.03; 95% confidence interval [CI] -5.93 to -0.80) and high-frequency group (mean difference: -4.17; 95% CI -7.77 to -0.58) exhibited lower trust in their usual rheumatologist.
Conclusion This study revealed that the number of outpatient visits with a covering rheumatologist was associated with lower trust in a patient’s usual rheumatologist.
en-copyright=
kn-copyright=
en-aut-name=KatayamaYu
en-aut-sei=Katayama
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyawakiYoshia
en-aut-sei=Miyawaki
en-aut-mei=Yoshia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShidaharaKenta
en-aut-sei=Shidahara
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NawachiShoichi
en-aut-sei=Nawachi
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AsanoYosuke
en-aut-sei=Asano
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatsuyamaEri
en-aut-sei=Katsuyama
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatsuyamaTakayuki
en-aut-sei=Katsuyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=Takano-NarazakiMariko
en-aut-sei=Takano-Narazaki
en-aut-mei=Mariko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsumotoYoshinori
en-aut-sei=Matsumoto
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OguroNao
en-aut-sei=Oguro
en-aut-mei=Nao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YajimaNobuyuki
en-aut-sei=Yajima
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IshikawaYuichi
en-aut-sei=Ishikawa
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SakuraiNatsuki
en-aut-sei=Sakurai
en-aut-mei=Natsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HidekawaChiharu
en-aut-sei=Hidekawa
en-aut-mei=Chiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YoshimiRyusuke
en-aut-sei=Yoshimi
en-aut-mei=Ryusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OhnoShigeru
en-aut-sei=Ohno
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IchikawaTakanori
en-aut-sei=Ichikawa
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KishidaDai
en-aut-sei=Kishida
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=ShimojimaYasuhiro
en-aut-sei=Shimojima
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SadaKen-Ei
en-aut-sei=Sada
en-aut-mei=Ken-Ei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ThomDavid H.
en-aut-sei=Thom
en-aut-mei=David H.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KuritaNoriaki
en-aut-sei=Kurita
en-aut-mei=Noriaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=11
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
affil-num=12
en-affil=The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health
kn-affil=
affil-num=13
en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=14
en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=15
en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Centre for Rheumatic Disease, Yokohama City University Medical Centre
kn-affil=
affil-num=17
en-affil=Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University
kn-affil=
affil-num=18
en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine
kn-affil=
affil-num=19
en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine
kn-affil=
affil-num=20
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=21
en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=22
en-affil=Department of Medicine, Stanford University School of Medicine
kn-affil=
affil-num=23
en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine
kn-affil=
en-keyword=Systemic lupus erythematosus
kn-keyword=Systemic lupus erythematosus
en-keyword=Patient-physician relationship
kn-keyword=Patient-physician relationship
en-keyword=Outpatient visits
kn-keyword=Outpatient visits
en-keyword=Patient trust
kn-keyword=Patient trust
en-keyword=Discontinuity of care
kn-keyword=Discontinuity of care
END
start-ver=1.4
cd-journal=joma
no-vol=2024
cd-vols=
no-issue=11
article-no=
start-page=113D01
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241026
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Measurement of γ-Rays Generated by Neutron Interaction with 16O at 30 MeV and 250 MeV
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Deep understanding of γ-ray production from the fast neutron reaction in water is crucial for various physics studies at large-scale water Cherenkov detectors. We performed test experiments using quasi-mono energetic neutron beams (?En = 30 and 250 MeV) at Osaka University’s Research Center for Nuclear Physics to measure γ-rays originating from the neutron?oxygen reaction with a high-purity germanium detector. Multiple γ-ray peaks which are expected to be from excited nuclei after the neutron?oxygen reaction were successfully observed. We measured the neutron beam flux using an organic liquid scintillator for the cross section measurement. With a spectral fitting analysis based on the tailored γ-ray signal and background templates, we measured cross sections for each observed γ-ray component. The results will be useful to validate neutron models employed in ongoing and future water Cherenkov experiments.
en-copyright=
kn-copyright=
en-aut-name=TanoT.
en-aut-sei=Tano
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HoraiT.
en-aut-sei=Horai
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AshidaY.
en-aut-sei=Ashida
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HinoY.
en-aut-sei=Hino
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IacobF.
en-aut-sei=Iacob
en-aut-mei=F.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaurelA.
en-aut-sei=Maurel
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MoriM.
en-aut-sei=Mori
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=CollazuolG.
en-aut-sei=Collazuol
en-aut-mei=G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KonakaA.
en-aut-sei=Konaka
en-aut-mei=A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KoshioY.
en-aut-sei=Koshio
en-aut-mei=Y.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakayaT.
en-aut-sei=Nakaya
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ShimaT.
en-aut-sei=Shima
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WendellR.
en-aut-sei=Wendell
en-aut-mei=R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Physics and Astronomy, University of Utah
kn-affil=
affil-num=4
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Physics and Astronomy, University of Padova
kn-affil=
affil-num=6
en-affil=Ecole Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet
kn-affil=
affil-num=7
en-affil=National Astronomical Observatory of Japan
kn-affil=
affil-num=8
en-affil=Department of Physics and Astronomy, University of Padova
kn-affil=
affil-num=9
en-affil=TRIUMF
kn-affil=
affil-num=10
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Physics, Kyoto University
kn-affil=
affil-num=12
en-affil=Research Center for Nuclear Physics (RCNP)
kn-affil=
affil-num=13
en-affil=Department of Physics, Kyoto University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=1
article-no=
start-page=12
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241105
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dendritic cell maturation is induced by p53-armed oncolytic adenovirus via tumor-derived exosomes enhancing systemic antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells (DCs) are crucial in cancer immunity, because they activate cytotoxic T cells by presenting tumor antigens. Recently, oncolytic virus therapy has been recognized as a systemic immune stimulator. We previously developed a telomerase-specific oncolytic adenovirus (OBP-301) and a p53-armed OBP-301 (OBP-702), demonstrating that these viruses strongly activate systemic antitumor immunity. However, their effects on DCs remained unclear. In the present study, the aim was to elucidate the mechanisms of DC activation by OBP-702, focusing particularly on tumor-derived exosomes. Exosomes (Exo53, Exo301, or Exo702) were isolated from conditioned media of human or murine pancreatic cancer cell lines (Panc-1, MiaPaCa-2, and PAN02) after treatment with Ad-p53, OBP-301, or OBP-702. Exo702 derived from Panc-1 and MiaPaCa-2 cells significantly upregulated CD86, CD80, CD83 (markers of DC maturation), and IFN-γ in DCs in vitro. Similarly, Exo702 derived from PAN02 cells upregulated CD86 and IFN-γ in bone marrow-derived DCs in a bilateral PAN02 subcutaneous tumor model. This DC maturation was inhibited by GW4869, an inhibitor of exosome release, and anti-CD63, an antibody targeting the exosome marker. Intratumoral injection of OBP-702 into PAN02 subcutaneous tumors significantly increased the presence of mature DCs and CD8-positive T cells in draining lymph nodes, leading to long-lasting antitumor effects through the durable activation of systemic antitumor immunity. In conclusion, tumor-derived exosomes play a significant role in DC maturation following OBP-702 treatment and are critical for the systemic activation of antitumor immunity, leading to the abscopal effect.
en-copyright=
kn-copyright=
en-aut-name=OhtaniTomoko
en-aut-sei=Ohtani
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KumonKento
en-aut-sei=Kumon
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HashimotoMasashi
en-aut-sei=Hashimoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YagiChiaki
en-aut-sei=Yagi
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugimotoRyoma
en-aut-sei=Sugimoto
en-aut-mei=Ryoma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Oncolys BioPharma, Inc
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Oncolytic adenovirus
kn-keyword=Oncolytic adenovirus
en-keyword=p53
kn-keyword=p53
en-keyword=Dendritic cells
kn-keyword=Dendritic cells
en-keyword=Anti-tumor immunity
kn-keyword=Anti-tumor immunity
en-keyword=Exosome
kn-keyword=Exosome
END
start-ver=1.4
cd-journal=joma
no-vol=106
cd-vols=
no-issue=5
article-no=
start-page=972
end-page=984
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A randomized, open-label, clinical trial examined the effects of canagliflozin on albuminuria and eGFR decline using an individual pre-intervention eGFR slope
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Demonstrating drug efficacy in slowing kidney disease progression requires large clinical trials when targeting participants with an early stage of chronic kidney disease (CKD). In this randomized, parallel-group, open-labeled trial (CANPIONE study), we assessed the effect of the sodium-glucose cotransporter 2 (SGLT2) inhibitor canagliflozin using the individual’s change in estimated glomerular filtration rate (eGFR) slope before (pre-intervention slope) and during treatment (chronic slope). We randomly assigned (1:1) participants with type 2 diabetes, urinary albumin-to-creatinine ratio (UACR) of 50 to under 300 mg/g, and an eGFR of at least 45 ml/min/1.73m2 to receive canagliflozin or guideline-recommended treatment except for SGLT2 inhibitors (control). The first and second primary outcomes were the geometric mean percentage change from baseline in UACR and the change in eGFR slope, respectively. Of 98 randomized participants, 96 received at least one study treatment. The least-squares mean change from baseline in log-transformed geometric mean UACR was significantly greater in the canagliflozin group than the control group (between group-difference, ?30.8% (95% confidence interval ?42.6 to ?16.8). The between-group difference (canagliflozin group ? control group) of change in eGFR slope (chronic ? pre-intervention) was 4.4 (1.6 to 7.3) ml/min/1.73 m2 per year, which was more pronounced in participants with faster eGFR decline. In summary, canagliflozin reduced albuminuria and the participant-specific natural course of eGFR decline in participants with type 2 diabetes and microalbuminuria. Thus, the CANPIONE study suggests that the within-individual change in eGFR slope may be a novel approach to determine the kidney protective potential of new therapies in early stages of CKD.
en-copyright=
kn-copyright=
en-aut-name=MiyamotoSatoshi
en-aut-sei=Miyamoto
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HeerspinkHiddo J.L.
en-aut-sei=Heerspink
en-aut-mei=Hiddo J.L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=de ZeeuwDick
en-aut-sei=de Zeeuw
en-aut-mei=Dick
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakamotoKota
en-aut-sei=Sakamoto
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaMichihiro
en-aut-sei=Yoshida
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ToyodaMasao
en-aut-sei=Toyoda
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HatanakaTakashi
en-aut-sei=Hatanaka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakamuraTohru
en-aut-sei=Nakamura
en-aut-mei=Tohru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KameiShinji
en-aut-sei=Kamei
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MuraoSatoshi
en-aut-sei=Murao
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HidaKazuyuki
en-aut-sei=Hida
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=AndoShinichiro
en-aut-sei=Ando
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=AkaiHiroaki
en-aut-sei=Akai
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TakahashiYasushi
en-aut-sei=Takahashi
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=KitadaMunehiro
en-aut-sei=Kitada
en-aut-mei=Munehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SuganoHisashi
en-aut-sei=Sugano
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NunoueTomokazu
en-aut-sei=Nunoue
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NakamuraAkihiko
en-aut-sei=Nakamura
en-aut-mei=Akihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SasakiMotofumi
en-aut-sei=Sasaki
en-aut-mei=Motofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NakatouTatsuaki
en-aut-sei=Nakatou
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=FujimotoKei
en-aut-sei=Fujimoto
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=KawanamiDaiji
en-aut-sei=Kawanami
en-aut-mei=Daiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=WadaTakashi
en-aut-sei=Wada
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=MiyatakeNobuyuki
en-aut-sei=Miyatake
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=KuramotoHiromi
en-aut-sei=Kuramoto
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=ShikataKenichi
en-aut-sei=Shikata
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen
kn-affil=
affil-num=3
en-affil=Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen
kn-affil=
affil-num=4
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine
kn-affil=
affil-num=7
en-affil=Suzuki Diadetes Clinic
kn-affil=
affil-num=8
en-affil=Department of Diabetes and Endocrinology, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=9
en-affil=Diabetes Internal Medicine, Sumitomo Besshi Hospital
kn-affil=
affil-num=10
en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital
kn-affil=
affil-num=11
en-affil=Department of Diabetes and Endocrinology, Takamatsu Hospital
kn-affil=
affil-num=12
en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center
kn-affil=
affil-num=13
en-affil=Department of Internal Medicine Diabetic Center, Okayama City Hospital
kn-affil=
affil-num=14
en-affil=Division of Diabetes and Metabolism, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
kn-affil=
affil-num=15
en-affil=Department of Diabetes, Ochiai General Hospital
kn-affil=
affil-num=16
en-affil=Department of Diabetology and Endocrinology, Kanazawa Medical University
kn-affil=
affil-num=17
en-affil=Department of Diabetes and Endocrinology, Kochi Health Sciences Center
kn-affil=
affil-num=18
en-affil=Nunoue Clinic
kn-affil=
affil-num=19
en-affil=Internal Medicine, Osafune Clinic
kn-affil=
affil-num=20
en-affil=Department of Diabetes and Endocrinology, Matsue City Hospital
kn-affil=
affil-num=21
en-affil=Diabetes Center, Okayama Saiseikai General Hospital
kn-affil=
affil-num=22
en-affil=Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University Kashiwa Hospital
kn-affil=
affil-num=23
en-affil=Department of Endocrinology and Diabetes, Fukuoka University School of Medicine
kn-affil=
affil-num=24
en-affil=Department of Nephrology and Laboratory Medicine, Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=25
en-affil=Department of Hygiene, Faculty of Medicine, Kagawa University
kn-affil=
affil-num=26
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=27
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
en-keyword=canagliflozin
kn-keyword=canagliflozin
en-keyword=CANPIONE study
kn-keyword=CANPIONE study
en-keyword=chronic kidney disease microalbuminuria
kn-keyword=chronic kidney disease microalbuminuria
en-keyword=preintervention eGFR slope
kn-keyword=preintervention eGFR slope
en-keyword=sodium-glucose cotransporter 2 inhibitor
kn-keyword=sodium-glucose cotransporter 2 inhibitor
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=318
end-page=326
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of Region-Specific Material Properties of Patellar Tendon on the Magnitude and Distribution of Local Stress and Strain
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The effects of the region-specific material properties of the patellar tendon (PT) on the magnitude and distribution of local stress and strain are poorly understood. Hence, this study investigated this issue using finite element analysis. A three-dimensional PT model was developed based on parameters obtained from previous studies, and was bisected in the frontal plane. Two models were created: one that considered region-specific material properties (two-material model) and one that did not (one-material model). An 8% strain was applied to the proximal surface, and the mean and peak first principal stress and strain were calculated. In the two-material model, the mean first principal stress observed in the anterior region was 28.5% higher than that in the posterior region. However, in the one-material model, the mean first principal stress in the anterior region was 19.5% lower than that in the posterior region. Focusing on the differences between the models, the mean and peak first principal stresses in the posterior region of the one-material model were 61.1% and 41.2% higher, respectively, compared with those in the two-material model. Furthermore, the mean and peak first principal stresses in the proximal and distal regions of the posterior region in the one-material model were 41.8-75.8% higher than those in the two-material model. These results suggest that the region-specific material properties of PT influence the stress distribution and underscore the importance of modeling that incorporates region-specific material properties in PT finite element models.
en-copyright=
kn-copyright=
en-aut-name=EnomotoShota
en-aut-sei=Enomoto
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OdaToshiaki
en-aut-sei=Oda
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Institute for Promotion of Education and Campus Life, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Education, Hyogo University of Teacher Education
kn-affil=
en-keyword=computational model
kn-keyword=computational model
en-keyword=Mooney-Rivlin model
kn-keyword=Mooney-Rivlin model
en-keyword=soft tissue.
kn-keyword=soft tissue.
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=2
article-no=
start-page=41
end-page=71
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241125
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Reproducing Self-organizing Agglomeration using Agent-based Model: ICT Establishments in Tokyo’s Special Wards
kn-title=エージェントベースモデルによる自己組織化的集積の再現:特別区におけるICT 事業所
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= As a preliminary step to conducting a self-organizing simulation of the agglomeration and dispersion of the information and communications industry, we quantify the spatial agglomeration of the information and communications industry in Japan’s major cities. Using the town and district data from the Economic Census for Economic Activity, we attempted a spatial analysis of the information and communications industry in the Tokyo Special Wards as well as in Sapporo, Sendai, Hiroshima, and Fukuoka, which have regional central functions. As a result of detecting spatial autocorrelation in small areas within each city, hotspots indicating the agglomeration of information and communications industry offi ces were found in the city center of each city. At the same time, we were able to confi rm the impact of agglomeration economies, which are the premise of the self-organizing model, and confi rmed that the information and communications industry is an industry suitable for simulation of the self-organizing model.
Krugman(1996)was the fi rst to model the self-organizing model in cities and clarifi ed the emergence principle of peripheral cities, but this was limited to numerical simulations. Later, Kumar et al.(2007)used actual data to show that Krugman’s self-organizing model could be applied to predict corporate agglomeration and dispersion. In this paper, we use an agent-based model to examine whether a self-organizing model is also effective in reproducing and predicting the concentration and dispersion of the information and communications industry in Japanese cities.
en-copyright=
kn-copyright=
en-aut-name=NakamuraRyohei
en-aut-sei=Nakamura
en-aut-mei=Ryohei
kn-aut-name=中村良平
kn-aut-sei=中村
kn-aut-mei=良平
aut-affil-num=1
ORCID=
en-aut-name=NagamuneTakeshi
en-aut-sei=Nagamune
en-aut-mei=Takeshi
kn-aut-name=長宗武司
kn-aut-sei=長宗
kn-aut-mei=武司
aut-affil-num=2
ORCID=
en-aut-name=HayashiSyusei
en-aut-sei=Hayashi
en-aut-mei=Syusei
kn-aut-name=林秀星
kn-aut-sei=林
kn-aut-mei=秀星
aut-affil-num=3
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学
affil-num=2
en-affil=
kn-affil=新見公立大学
affil-num=3
en-affil=
kn-affil=東北大学大学院
END
start-ver=1.4
cd-journal=joma
no-vol=56
cd-vols=
no-issue=2
article-no=
start-page=1
end-page=16
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241125
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Why Is Intermediate Organization Necessary?
kn-title=なぜ中間組織が必要なのか
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract= This paper challenges a fundamental question, ‘Why is an intermediate organization necessary?’ Due to transaction costs and market failures on the one hand and the limitations of organizational control mechanisms on the other hand, many‘ intermediate organizations’ are observed in the real world. How can we tackle to explain the governance mechanism considered to be‘ intermediate?’
If we are to discuss such socioeconomic orders, this paper assumes that we should not be able to link micro-level explanations and macro-level ones concerning the third mode of governance mechanisms all at once. We need to stick to the meso-level at fi rst. The theoretical elaboration since Ouchi’s(1980) discussion of clan-type governance and cumulative empirical research on industrial agglomerations have allowed us to construct a more sophisticated theory called community capital.
In effective communities, members are ‘embedded as insiders’ who serve the purpose of the community, share experiences of failures and successes, and find and deepen their common identity. This limited membership is bound by‘ mutual trust to rely on each other’ for‘ distribution of short-term risks.’ In contrast to social norms that need to be abstract enough to be widely shared, the communal norms that are concrete enough to allow the members to understand without hesitation how they should behave in localized contexts are cumulatively cultivated along socializing process. Among the norms, sense of mutual obligation to incur intermittent costs for the whole community is a crucial norm for the sustainable development of the community. However, as a practical matter, membership control, mutual trust and short-term risk allocation may serve the communities in the short run, but they do not guarantee long-term accumulation of shared capital. As a result, the limits of community capital may need to be discussed once again, especially today when market liquidity is increasing, and its failures tend to become more apparent in a variety of areas.
en-copyright=
kn-copyright=
en-aut-name=FujiiDaiji
en-aut-sei=Fujii
en-aut-mei=Daiji
kn-aut-name=藤井大児
kn-aut-sei=藤井
kn-aut-mei=大児
aut-affil-num=1
ORCID=
en-aut-name=OshimaTamako
en-aut-sei=Oshima
en-aut-mei=Tamako
kn-aut-name=大島珠子
kn-aut-sei=大島
kn-aut-mei=珠子
aut-affil-num=2
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学学術研究院ヘルスシステム統合科学学域
affil-num=2
en-affil=
kn-affil=国際医療福祉大学小田原保健医療学部看護学科
en-keyword=中間組織
kn-keyword=中間組織
en-keyword=内部組織の経済学
kn-keyword=内部組織の経済学
en-keyword=産業集積
kn-keyword=産業集積
en-keyword=コミュニティ・キャピタル
kn-keyword=コミュニティ・キャピタル
END
start-ver=1.4
cd-journal=joma
no-vol=300
cd-vols=
no-issue=3
article-no=
start-page=105679
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202403
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Methyl vinyl ketone and its analogs covalently modify PI3K and alter physiological functions by inhibiting PI3K signaling
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K- Akt signaling by MVK reversed epidermal growth factor- induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.
en-copyright=
kn-copyright=
en-aut-name=MorimotoAtsushi
en-aut-sei=Morimoto
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=PanYuexuan
en-aut-sei=Pan
en-aut-mei=Yuexuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AbikoYumi
en-aut-sei=Abiko
en-aut-mei=Yumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=UchidaKoji
en-aut-sei=Uchida
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KumagaiYoshito
en-aut-sei=Kumagai
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Graduate School of Biomedical Science, Nagasaki University
kn-affil=
affil-num=7
en-affil=Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
kn-affil=
affil-num=8
en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=phosphatidylinositol 3-kinase (PI 3-kinase)
kn-keyword=phosphatidylinositol 3-kinase (PI 3-kinase)
en-keyword=cell signaling
kn-keyword=cell signaling
en-keyword=chemical modification
kn-keyword=chemical modification
en-keyword=autophagy
kn-keyword=autophagy
en-keyword=glucose uptake
kn-keyword=glucose uptake
END
start-ver=1.4
cd-journal=joma
no-vol=40
cd-vols=
no-issue=43
article-no=
start-page=22614
end-page=22626
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241017
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nanoscale Structures of Tough Microparticle-Based Films Investigated by Synchrotron X-Ray Scattering and All-Atom Molecular-Dynamics Simulation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, the nanoscale structures of microparticle-based films are revealed by synchrotron small-angle X-ray scattering (SAXS) and all-atom molecular-dynamics (AA-MD) simulations. The microparticle-based films consisting of the simplest acrylate polymer microparticles are applied as a model because the films are formed without additives and organic solvents and exhibit high toughness properties. The characteristic interfacial thickness (tinter) obtained from the SAXS analysis reflects the mixing degree of polymer chains on the microparticle surface in the film. The cross-linking density of inner microparticles is found to be strongly correlated to not only several properties of individual microparticles, such as swelling ratio and radius of gyration, but also the tinter and toughness of the corresponding films. Therefore, the tinter and toughness values follow a linear relationship because the cross-linking restricts the mixing of polymer chains between their surfaces in the film, which is a unique feature of microparticle-based films. This characteristic also affects their deformation behavior observed by in situ SAXS during tensile testing and their density profiles calculated by AA-MD simulations. This work provides a general strategy for material design to control the physical properties and structures of their films for advanced applications, including volatile organic compound-free sustainable coatings and adhesives.
en-copyright=
kn-copyright=
en-aut-name=NambaKeita
en-aut-sei=Namba
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SasakiYuma
en-aut-sei=Sasaki
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KawamuraYuto
en-aut-sei=Kawamura
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaShotaro
en-aut-sei=Yoshida
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HiedaYoshiki
en-aut-sei=Hieda
en-aut-mei=Yoshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoKazushi
en-aut-sei=Fujimoto
en-aut-mei=Kazushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeNatsuki
en-aut-sei=Watanabe
en-aut-mei=Natsuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishizawaYuichiro
en-aut-sei=Nishizawa
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UchihashiTakayuki
en-aut-sei=Uchihashi
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KurehaTakuma
en-aut-sei=Kureha
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Textile Science &Technology, Shinshu University
kn-affil=
affil-num=4
en-affil=Department of Materials Chemistry, Nagoya University
kn-affil=
affil-num=5
en-affil=Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University
kn-affil=
affil-num=6
en-affil=Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University
kn-affil=
affil-num=7
en-affil=Department of Physics, Nagoya University
kn-affil=
affil-num=8
en-affil=Department of Physics, Nagoya University
kn-affil=
affil-num=9
en-affil=Department of Physics, Nagoya University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=1
article-no=
start-page=53
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241102
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of systemic ventricular assist in failing Fontan patients: a theoretical analysis using a computational model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mechanical circulatory support is a potential treatment for failing Fontan patients. In this study, we performed a theoretical analysis using a computational model to clarify the effects of systemic ventricular assist device (VAD) in failing Fontan patients. Cardiac chambers and vascular systems were described using the time-varying elastance model and modified Windkessel model, respectively. A VAD was simulated as a nonlinear function. In systolic and diastolic ventricular dysfunction and atrioventricular valve regurgitation models, systemic VAD increased the cardiac index and decreased the central venous pressure (CVP). However, in the high pulmonary vascular resistance model, CVP became extremely high above 15 mmHg to maintain the cardiac index when the pulmonary vascular resistance index (PVRI) was above 5 Wood units m2. In Fontan patients with ventricular dysfunction or atrioventricular valve regurgitation, systemic VAD efficiently improves the hemodynamics. In Fontan patients with PVRI of?>?5 Wood units m2, systemic VAD seems ineffective.
en-copyright=
kn-copyright=
en-aut-name=KisamoriEiri
en-aut-sei=Kisamori
en-aut-mei=Eiri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KotaniYasuhiro
en-aut-sei=Kotani
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShishidoToshiaki
en-aut-sei=Shishido
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KasaharaShingo
en-aut-sei=Kasahara
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimizuShuji
en-aut-sei=Shimizu
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Research Promotion and Management, National Cerebral and Cardiovascular Center
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital
kn-affil=
en-keyword=Ventricular assist device
kn-keyword=Ventricular assist device
en-keyword=Failing Fontan
kn-keyword=Failing Fontan
en-keyword=Hemodynamic simulation
kn-keyword=Hemodynamic simulation
en-keyword=Lumped parameter model
kn-keyword=Lumped parameter model
END
start-ver=1.4
cd-journal=joma
no-vol=30
cd-vols=
no-issue=12
article-no=
start-page=1324
end-page=1326
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Detailed regimens for the prolonged β-lactam infusion therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A recent systematic review and meta-analysis of randomized controlled trials (RCTs) evaluated the efficacy and safety of prolonged versus intermittent β-lactam infusion in adult sepsis patients. The findings revealed a significant decrease in all-cause mortality and marked clinical success in the prolonged infusion group. Unfortunately, however, the manuscript lacked data and discussion for the specific regimens of prolonged β-lactam infusion defined in the included 15 RCT studies, which are herein additionally provided. Excluding one RCT, all protocols adopted a continuous infusion for the prolonged treatment. Except for three RCTs, dosages and timings of bolus injection were clearly defined. The total daily antibiotic dose for the continuous therapy was equivalent to those recommended for intermittent therapy. We believe this supplementary data aids clinicians in providing prolonged β-lactam infusions, contributing to enhanced treatment outcomes for patients suffering from severe sepsis or septic shock.
en-copyright=
kn-copyright=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
en-keyword=Sepsis
kn-keyword=Sepsis
en-keyword=Continuous infusion
kn-keyword=Continuous infusion
en-keyword=Prolonged infusion
kn-keyword=Prolonged infusion
en-keyword=Pharmacokinetics
kn-keyword=Pharmacokinetics
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=1
article-no=
start-page=131
end-page=142
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241016
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Real-World Comparative Analysis of Trastuzumab Originator and Biosimilars: Safety, Efficacy, and Cost Effectiveness
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Despite the global use of trastuzumab biosimilars, concerns remain regarding their efficacy and safety. In particular, when used concurrently with pertuzumab, trastuzumab biosimilars lack extensive real-world data and safety information. Additionally, as cancer drug expenditures continue to rise worldwide, cost savings from biosimilars have become increasingly important.
Objective This study aims to assess the safety, efficacy, and cost effectiveness of trastuzumab originators and their biosimilars in real-world clinical settings, focusing on a large patient population.
Methods The analysis included 31,661 patients with HER2-positive breast cancer from the Medical Data Vision Co., Ltd. database in Japan. Additionally, adverse event reports for the trastuzumab originator and its biosimilars were obtained for 58,799 patients from the World Health Organization’s VigiBase, the global adverse event reporting database.
Results No significant differences were observed in heart failure hospitalizations, liver dysfunction, or infusion reaction rates in both the Medical Data Vision Co., Ltd. database and the World Health Organization’s VigiBase. In the Medical Data Vision Co., Ltd. database, the addition of pertuzumab did not significantly influence the incidence of adverse events, and the use of biosimilars significantly reduced medical costs, with no significant difference in breast cancer recurrence rates.
Conclusions By analyzing two large and diverse datasets from multiple perspectives, we obtained reliable results that the trastuzumab originator and its biosimilars have similar safety profiles. The concurrent use of pertuzumab was also found to be safe. The use of biosimilars can lead to cost savings. These findings provide crucial insights for the evaluation and adoption of biosimilars in clinical practice.
en-copyright=
kn-copyright=
en-aut-name=MamoriTomoka
en-aut-sei=Mamori
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TaniokaMaki
en-aut-sei=Tanioka
en-aut-mei=Maki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakadaKenji
en-aut-sei=Takada
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsukiokiTakahiro
en-aut-sei=Tsukioki
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiYuko
en-aut-sei=Takahashi
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IwataniTsuguo
en-aut-sei=Iwatani
en-aut-mei=Tsuguo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Medical AI Project, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Machine-learning-assisted prediction of the size of microgels prepared by aqueous precipitation polymerization
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The size of soft colloids (microgels) is essential; however, control over their size has typically been established empirically. Herein, we report a linear-regression model that can predict microgel size using a machine learning method, sparse modeling for small data, which enables the determination of the synthesis conditions for target-sized microgels.
en-copyright=
kn-copyright=
en-aut-name=SuzukiDaisuke
en-aut-sei=Suzuki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MinatoHaruka
en-aut-sei=Minato
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatoYuji
en-aut-sei=Sato
en-aut-mei=Yuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NamiokaRyuji
en-aut-sei=Namioka
en-aut-mei=Ryuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IgarashiYasuhiko
en-aut-sei=Igarashi
en-aut-mei=Yasuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibataRisako
en-aut-sei=Shibata
en-aut-mei=Risako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OakiYuya
en-aut-sei=Oaki
en-aut-mei=Yuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Textile Science & Technology, Shinshu University
kn-affil=
affil-num=5
en-affil=Faculty of Engineering, Information and Systems, University of Tsukuba
kn-affil=
affil-num=6
en-affil=Department of Applied Chemistry, Faculty of Science and Technology, Keio University
kn-affil=
affil-num=7
en-affil=Department of Applied Chemistry, Faculty of Science and Technology, Keio University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=3
article-no=
start-page=77
end-page=83
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=2021
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of drought features in the Dakbla watershed, Central Highlands of Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The drought impacts in the Dakbla watershed were assessed based on a combination of hydrological modeling and drought indices. Three drought indices, the Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI), and Streamflow Drought Index (SDI) were utilized to evaluate the drought features of meteo-hydrology and agriculture. The results indicated that these indices are well adapted to the local conditions, especially the 12-month time scale. Evaluations of drought features on the watershed scale could provide more specific information regarding drought risk than regional-scale/district-level assessments, because a watershed is a hydrologically fundamental unit to consider water resources management. Additionally, evaluations of drought impacts using the SSI showed longer and higher trends than those using the SPI and SDI in terms of drought duration and frequency. Considering the spatial distribution of drought frequency, the areas predominated by agricultural land in the target watershed had higher drought risk. Thus, assessment of agricultural droughts along with meteo-hydrological droughts is extremely important to support realistic local drought management strategies by considering water availability, water balance, and soil characteristics, especially in specific agricultural areas.
en-copyright=
kn-copyright=
en-aut-name=Ngoc Quynh TramVo
en-aut-sei=Ngoc Quynh Tram
en-aut-mei=Vo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoroizumiToshitsugu
en-aut-sei=Moroizumi
en-aut-mei=Toshitsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=hydrological modeling
kn-keyword=hydrological modeling
en-keyword=drought indices
kn-keyword=drought indices
en-keyword=drought features
kn-keyword=drought features
en-keyword=watershed scale assessment
kn-keyword=watershed scale assessment
en-keyword=agricultural activities
kn-keyword=agricultural activities
en-keyword=mountainous region
kn-keyword=mountainous region
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=4
article-no=
start-page=87
end-page=94
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation and selection of a set of CMIP6 GCMs for water resource modeling in the poorly gauged complex terrain of the Tana River basin in Kenya
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The Tana River basin is among the least monitored in terms of meteorological data in Kenya. The Kenya Meteorological Department (KMD) provided data on a ten-day timescale, which is not adequate for water resource evaluation. To bridge this data gap, there is a growing need to leverage General Circulation Models (GCMs) and global datasets to assess current and future water resources in this basin. This study focused on evaluating the performance of 19 CMIP6 GCMs concerning precipitation (pr), maximum temperature (tasmax), and minimum temperature (tasmin) for the complex terrain of the Tana River basin. This involved a rigorous process of disaggregating the data provided by the KMD into a daily timescale for downscaling. The GCMs’ historical output was prepared using the Climate Data Operator (CDO) in Cygwin. The Kling Gupta Efficiency (KGE) was computed for each variable at three stations: Nyeri (upstream), Kitui (midstream), and Bura (downstream). The KGE results were validated using Taylor statistics. Five GCMs, CMCC-ESM2, MPI-ESM1-2-HR, ACCESS-CM2, NorESM2-MM, and GFDL-ESM4, performed best with a multivariable Multi-station KGE statistic of 0.455?0.511. The outputs from these selected GCMs were subsequently downscaled for later use in assessing the water resources and crop water demand in the basin.
en-copyright=
kn-copyright=
en-aut-name=Mwendwa WambuaDaniel
en-aut-sei=Mwendwa Wambua
en-aut-mei=Daniel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoroizumiToshitsugu
en-aut-sei=Moroizumi
en-aut-mei=Toshitsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=climate change
kn-keyword=climate change
en-keyword=adaptation
kn-keyword=adaptation
en-keyword=scenarios
kn-keyword=scenarios
en-keyword=downscaling
kn-keyword=downscaling
en-keyword=disaggregation
kn-keyword=disaggregation
en-keyword=temporal
kn-keyword=temporal
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=4
article-no=
start-page=557
end-page=564
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241019
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinical Significance of Prior Ramucirumab Use on the Effectiveness of Nivolumab as the Third-Line Regimen in Gastric Cancer: A Multicenter Retrospective Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Objective Because vascular endothelial growth factor inhibition has been suggested to improve immune cell function in the cancer microenvironment, we examined whether using ramucirumab (RAM) before nivolumab usage is more effective in advanced gastric cancer.
Methods This was a multicenter retrospective observational study. We analyzed patients who received nivolumab monotherapy as the third-line regimen for unresectable advanced or recurrent gastric cancer between October 2017 and December 2022. They were divided into the RAM (RAM-treated) group and the non-RAM (non-treated) group according to the RAM usage in the second-line regimen. The primary outcome was to compare the overall survival after nivolumab administration in the third-line regimen between the RAM and non-RAM groups.
Results Fifty-two patients were included in the present study: 42 patients in the RAM group and ten patients in the non-RAM group. The median overall survival was significantly longer in the RAM group than in the non-RAM group (8.5 months vs 6.9 months, p < 0.05). In the RAM group, patients without peritoneal metastasis had significantly better median overall survival than those with peritoneal metastasis (23.8 months vs 7.7 months, p = 0.0033). Multivariate Cox-proportional hazards analyses showed that the presence of peritoneal metastasis (hazard ratio, 2.4; 95% confidence interval 1.0-5.7) alone was significantly associated with overall survival in the RAM group.
Conclusions The use of RAM prior to nivolumab monotherapy may contribute to prolonged survival in patients with gastric cancer, especially those without peritoneal metastasis.
en-copyright=
kn-copyright=
en-aut-name=ObayashiYuka
en-aut-sei=Obayashi
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AbeMakoto
en-aut-sei=Abe
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyaharaKoji
en-aut-sei=Miyahara
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakagawaMasahiro
en-aut-sei=Nakagawa
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshidaMichihiro
en-aut-sei=Ishida
en-aut-mei=Michihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ChodaYasuhiro
en-aut-sei=Choda
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KawanoSeiji
en-aut-sei=Kawano
en-aut-mei=Seiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KawaharaYoshiro
en-aut-sei=Kawahara
en-aut-mei=Yoshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=5
en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=6
en-affil=Department of Endoscopy, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=8
en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=9
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=20756
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Basic characteristics of tongue pressure and electromyography generated by articulation of a syllable using the posterior part of the tongue
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The basic function of the tongue in pronouncing diadochokinesis and other syllables is not fully understood. This study investigates the influence of sound pressure levels and syllables on tongue pressure and muscle activity in 19 healthy adults (mean age: 28.2 years; range: 22-33 years). Tongue pressure and activity of the posterior tongue were measured using electromyography (EMG) when the velar stops /ka/, /ko/, /ga/, and /go/ were pronounced at 70, 60, 50, and 40 dB. Spearman's rank correlation revealed a significant, yet weak, positive association between tongue pressure and EMG activity (rho = 0.14, p < 0.05). Mixed-effects model analysis showed that tongue pressure and EMG activity significantly increased at 70 dB compared to other sound pressure levels. While syllables did not significantly affect tongue pressure, the syllable /ko/ significantly increased EMG activity (coefficient = 0.048, p = 0.013). Although no significant differences in tongue pressure were observed for the velar stops /ka/, /ko/, /ga/, and /go/, it is suggested that articulation is achieved by altering the activity of both extrinsic and intrinsic tongue muscles. These findings highlight the importance of considering both tongue pressure and muscle activity when examining the physiological factors contributing to sound pressure levels during speech.
en-copyright=
kn-copyright=
en-aut-name=MandaYousuke
en-aut-sei=Manda
en-aut-mei=Yousuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KodamaNaoki
en-aut-sei=Kodama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriKeitaro
en-aut-sei=Mori
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AdachiReimi
en-aut-sei=Adachi
en-aut-mei=Reimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsugishiMakoto
en-aut-sei=Matsugishi
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MinagiShogo
en-aut-sei=Minagi
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=
article-no=
start-page=e58753
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240923
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhancing Medical Interview Skills Through AI-Simulated PatientInteractions:Nonrandomized Controlled Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Medical interviewing is a critical skill in clinical practice, yet opportunities for practical training are limited in Japanese medical schools, necessitating urgent measures. Given advancements in artificial intelligence (AI) technology, its application in the medical field is expanding. However, reports on its application in medical interviews in medical education are scarce.
Objective: This study aimed to investigate whether medical students' interview skills could be improved by engaging with Al-simulated patients using large language models, including the provision of feedback.
Methods: This nonrandomized controlled trial was conducted with fourth-year medical students in Japan. A simulation program using large language models was provided to 35 students in the intervention group in 2023, while 110 students from 2022 who did not participate in the intervention were selected as the control group. The primary outcome was the score on the Pre-Clinical Clerkship Objective Structured Clinical Examination (pre-CC OSCE), a national standardized clinical skills examination, in medical interviewing. Secondary outcomes included surveys such as the Simulation-Based Training Quality Assurance Tool (SBT-QA10), administered at the start and end of the study.
Results: The Al intervention group showed significantly higher scores on medical interviews than the control group (Al group vs control group: mean 28.1, SD 1.6 vs 27.1, SD 2.2; P=.01). There was a trend of inverse correlation between the SBT-QA10 and pre-CC OSCE scores (regression coefficient-2.0 to-2.1). No significant safety concerns were observed.
Conclusions: Education through medical interviews using Al-simulated patients has demonstrated safety and a certain level of educational effectiveness. However, at present, the educational effects of this platform on nonverbal communication skills are limited, suggesting that it should be used as a supplementary tool to traditional simulation education.
en-copyright=
kn-copyright=
en-aut-name=YamamotoAkira
en-aut-sei=Yamamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KodaMasahide
en-aut-sei=Koda
en-aut-mei=Masahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OgawaHiroko
en-aut-sei=Ogawa
en-aut-mei=Hiroko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyoshiTomoko
en-aut-sei=Miyoshi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=InoHideo
en-aut-sei=Ino
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Co-learning Community Healthcare Re-innovation Office, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Primary Care and Medical Education, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Center for Education in Medicine and Health Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=medical interview
kn-keyword=medical interview
en-keyword=generative pretrained transformer
kn-keyword=generative pretrained transformer
en-keyword=large language model
kn-keyword=large language model
en-keyword=simulation-based learning
kn-keyword=simulation-based learning
en-keyword=OSCE
kn-keyword=OSCE
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=medical education
kn-keyword=medical education
en-keyword=simulated patients
kn-keyword=simulated patients
en-keyword=nonrandomized controlled trial
kn-keyword=nonrandomized controlled trial
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=5
article-no=
start-page=387
end-page=399
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Radon Inhalation on Murine Brain Proteins: Investigation Using Proteomic and Multivariate Analyses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Radon is a known risk factor for lung cancer; however, it can be used beneficially, such as in radon therapy. We have previously reported the enhancement of antioxidant effects associated with trace amounts of oxidative stress as one of the positive biological effects of radon inhalation. However, the biological effects of radon inhalation are incompletely understood, and more detailed and comprehensive studies are required. Although several studies have used proteomics to investigate the effects of radon inhalation on body proteins, none has focused on brain proteins. In this study, we evaluated the expression status of proteins in murine brains using proteomic and multivariate analyses to identify those whose expressions changed following two days of radon inhalation at a concentration of 1,500 Bq/m3. We found associations of radon inhalation with the expressions of seven proteins related to neurotransmission and heat shock. These proteins may be proposed as biomarkers indicative of radon inhalation. Although further studies are required to obtain the detailed biological significance of these protein alterations, this study contributes to the elucidation of the biological effects of radon
inhalation as a low-dose radiation.
en-copyright=
kn-copyright=
en-aut-name=NaoeShota
en-aut-sei=Naoe
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaAyumi
en-aut-sei=Tanaka
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanzakiNorie
en-aut-sei=Kanzaki
en-aut-mei=Norie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakenakaReiju
en-aut-sei=Takenaka
en-aut-mei=Reiju
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakodaAkihiro
en-aut-sei=Sakoda
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyajiTakaaki
en-aut-sei=Miyaji
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamaokaKiyonori
en-aut-sei=Yamaoka
en-aut-mei=Kiyonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KataokaTakahiro
en-aut-sei=Kataoka
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency
kn-affil=
affil-num=4
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency
kn-affil=
affil-num=6
en-affil=Advanced Science Research Center, Okayama University
kn-affil=
affil-num=7
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=radon inhalation
kn-keyword=radon inhalation
en-keyword=proteomics
kn-keyword=proteomics
en-keyword=multivariate analysis
kn-keyword=multivariate analysis
en-keyword=brain
kn-keyword=brain
en-keyword=oxidative stress
kn-keyword=oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=5
article-no=
start-page=377
end-page=386
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prognostic Efficacy of the Albumin Grade in Patients with Hepatocellular Carcinoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously found that “albumin grade”, formerly called the “ALBS grade,” demonstrated significant capability for prognostic stratification in hepatocellular carcinoma (HCC) patients treated with lenvatinib. The purpose of the present study was to compare the performance of the albumin grade with that of the modified albumin-bilirubin (mALBI) grade in predicting overall survival of HCC patients with different BCLC stages and treatment types. We enrolled 7,645 Japanese patients newly diagnosed with HCC using the Akaike information criteria (AIC), likelihood ratio, and C-index in different Barcelona Clinic Liver Cancer (BCLC) stages and treatments. The albumin grade showed similar and slightly better performance than the mALBI grade for BCLC stage 0 and A and especially for patients who underwent curative surgery and ablation. In patients treated with transcatheter arterial chemoembolization, molecular targeted agents, and the best supportive care, the mALBI grade had better performance than the albumin grade. However, the differences of the indices were very small in all scenarios. Overall, the albumin grade was comparable in efficacy to the mALBI grade, showing particular benefit for patients with early-stage HCC.
en-copyright=
kn-copyright=
en-aut-name=HiranoYuichi
en-aut-sei=Hirano
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NousoKazuhiro
en-aut-sei=Nouso
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KariyamaKazuya
en-aut-sei=Kariyama
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiraokaAtsushi
en-aut-sei=Hiraoka
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShiotaShohei
en-aut-sei=Shiota
en-aut-mei=Shohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WakutaAkiko
en-aut-sei=Wakuta
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YasudaSatoshi
en-aut-sei=Yasuda
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ToyodaHidenori
en-aut-sei=Toyoda
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsujiKunihiko
en-aut-sei=Tsuji
en-aut-mei=Kunihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HatanakaTakeshi
en-aut-sei=Hatanaka
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KakizakiSatoru
en-aut-sei=Kakizaki
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NaganumaAtsushi
en-aut-sei=Naganuma
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=TadaToshifumi
en-aut-sei=Tada
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ItobayashiEi
en-aut-sei=Itobayashi
en-aut-mei=Ei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=IshikawaToru
en-aut-sei=Ishikawa
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShimadaNoritomo
en-aut-sei=Shimada
en-aut-mei=Noritomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakaguchiKoichi
en-aut-sei=Takaguchi
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TsutsuiAkemi
en-aut-sei=Tsutsui
en-aut-mei=Akemi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=NaganoTakuya
en-aut-sei=Nagano
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ImaiMichitaka
en-aut-sei=Imai
en-aut-mei=Michitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=NakamuraShinichiro
en-aut-sei=Nakamura
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KumadaTakashi
en-aut-sei=Kumada
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=Real-Life Practice Experts for HCC (RELPEC) Study Group in Japan
en-aut-sei=Real-Life Practice Experts for HCC (RELPEC) Study Group in Japan
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Gastroenterology, Okayama City Hospital
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology, Okayama City Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology, Okayama City Hospital
kn-affil=
affil-num=4
en-affil=Gastroenterology Center, Ehime Prefectural Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology, Okayama City Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Okayama City Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital
kn-affil=
affil-num=9
en-affil=Center of Gastroenterology, Teine Keijinkai Hospital
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology, Saiseikai Maebashi Hospital
kn-affil=
affil-num=11
en-affil=Department of Clinical Research, NHO Takasaki General Medical Center
kn-affil=
affil-num=12
en-affil=Department of Gastroenterology, NHO Takasaki General Medical Center
kn-affil=
affil-num=13
en-affil=Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=14
en-affil=Department of Gastroenterology, Asahi General Hospital
kn-affil=
affil-num=15
en-affil=Department of Gastroenterology, Saiseikai Niigata Hospital
kn-affil=
affil-num=16
en-affil=Division of Gastroenterology and Hepatology, Otakanomori Hospital
kn-affil=
affil-num=17
en-affil=Department of Hepatology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=18
en-affil=Department of Hepatology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=19
en-affil=Department of Hepatology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=20
en-affil=Department of Gastroenterology, Niigata Cancer Center Hospital
kn-affil=
affil-num=21
en-affil=Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=22
en-affil=Department of Nursing, Gifu Kyoritsu University
kn-affil=
affil-num=23
en-affil=
kn-affil=
en-keyword=albumin grade
kn-keyword=albumin grade
en-keyword=hepatocellular carcinoma
kn-keyword=hepatocellular carcinoma
en-keyword=modified albumin-bilirubin grade
kn-keyword=modified albumin-bilirubin grade
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=5
article-no=
start-page=6736
end-page=6751
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202409
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Superior Efficiency Under PWM Harmonic Current in an Axial-Flux PM Machine for HEV/EV Traction: Comparison With a Radial-Flux PM Machine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This paper evaluates the harmonic current caused by a pulse width modulation (PWM) inverter and how it affects the efficiency of a novel axial-flux permanent-magnet machine using a ferrite permanent magnet (AF-FePM) in traction applications. First, differences between the finite element analysis (FEA) and experimental results are discussed using a prototype of the proposed AF-FePM. Second, the AF-FePM is compared with a commercially available radial-flux permanent-magnet machine using a Nd-sintered magnet (RF-NdPM). For both machines, the efficiency and loss are calculated using FEA when applying the sinusoidal and harmonic currents. Additionally, we present the superior efficiency of the AF-FePM under the PWM harmonic current during a WLTC driving cycle because the designed model employs the ferrite magnet and a round copper wire, unlike the RF-NdPM. Finally, motor and inverter losses at different switching frequencies are also evaluated. This paper eventually shows that the proposed AF-FePM would be one of the suitable candidates to enhance high efficiency under PWM harmonic current condition based on comprehensive discussion.
en-copyright=
kn-copyright=
en-aut-name=TsunataRen
en-aut-sei=Tsunata
en-aut-mei=Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakemotoMasatsugu
en-aut-sei=Takemoto
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ImaiJun
en-aut-sei=Imai
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SaitoTatsuya
en-aut-sei=Saito
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UenoTomoyuki
en-aut-sei=Ueno
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Sumitomo Electric Industries Ltd.
kn-affil=
affil-num=5
en-affil=Sumitomo Electric Industries Ltd.
kn-affil=
en-keyword=Axial gap motor
kn-keyword=Axial gap motor
en-keyword=axial-flux machine
kn-keyword=axial-flux machine
en-keyword=carbon-fiber-reinforced plastic
kn-keyword=carbon-fiber-reinforced plastic
en-keyword=ferrite magnet
kn-keyword=ferrite magnet
en-keyword=iron loss
kn-keyword=iron loss
en-keyword=PWM drive
kn-keyword=PWM drive
en-keyword=PWM harmonic current
kn-keyword=PWM harmonic current
en-keyword=radial-flux machine
kn-keyword=radial-flux machine
en-keyword=soft magnetic composite
kn-keyword=soft magnetic composite
en-keyword=switching frequency
kn-keyword=switching frequency
en-keyword=WLTC drive
kn-keyword=WLTC drive
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=e087657
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241008
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Decline in and recovery of fertility rates after COVID-19-related state of emergency in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction The COVID-19 pandemic led to a decline in fertility rates worldwide. Although many regions have experienced a temporary drop in fertility rates with the spread of the infection, subsequent recovery has varied across countries. This study aimed to evaluate the impact of COVID-19 infection rates and regional sociodemographic factors on the recovery of fertility rates in Japan following the state of emergency.
Methods This study examined prefectural fertility data from before the COVID-19 pandemic to forecast fertility rates up to 2022 using a seasonal autoregressive integrated moving average model. A regression analysis was conducted on fertility rates during the first state of emergency and the subsequent recovery rate with respect to the number of new COVID-19 cases and sociodemographic factors specific to each prefecture.
Results During the first state of emergency, the monthly fertility rate decreased by an average of -13.8% (SD: 6.26, min: -28.78, max: 0.15) compared with the previous year. Over the following 22 months, the average fertility recovery rate was +2.31% (SD: 3.57; min: -8.55, max: 19.54). Multivariate analysis of the impact of the pandemic on fertility changes during the first emergency indicated a negative correlation between new COVID-19 cases per capita and the proportion of nuclear households. No significant correlation was found between fertility recovery rate and new COVID-19 cases or emergency duration. When classifying fertility rate fluctuation patterns before and after the emergency into four clusters, variations were noted in the proportion of the elderly population, marriage divorce rate and the number of internet searches related to pregnancy intentions across the clusters.
Conclusions No association was found between pregnancy intentions related to the spread of infection, such as the number of new cases and the fertility recovery rate following the first state of emergency. Differences in the patterns of decline and recovery during the pandemic were observed based on population composition and internet searches for infection and pregnancy across different prefectures.
en-copyright=
kn-copyright=
en-aut-name=MitomaTomohiro
en-aut-sei=Mitoma
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OobaHikaru
en-aut-sei=Ooba
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Obstetric and Gynecology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetric and Gynecology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Obstetric and Gynecology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Obstetric and Gynecology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=5
article-no=
start-page=357
end-page=362
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Factors Affecting Dynamic Postural Control Ability in Adolescent Idiopathic Scoliosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Research on postural control in patients with adolescent idiopathic scoliosis (AIS) has focused on static postural control, with few studies assessing dynamic postural control. We aimed to identify factors affecting index of postural stability (IPS), a dynamic postural control parameter, in patients with AIS. The participants comprised 50 female patients with AIS. We measured the IPS using stabilometry to evaluate dynamic postural control ability. We investigated age of the participants, major curve position (thoracic or thoracolumbar/lumbar), Cobb angle, and coronal balance. We then assessed the relationships between stabilometry parameters and other variables. IPS was analyzed with a linear regression model. Coronal balance, major curve position, and age each correlated with dynamic postural control ability. The Cobb angle showed no correlation with any of the parameters. Our results offer new insights into the assessment of postural control in patients with AIS.
en-copyright=
kn-copyright=
en-aut-name=YamawakiRyoko
en-aut-sei=Yamawaki
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamaneShuhei
en-aut-sei=Yamane
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MisawaHaruo
en-aut-sei=Misawa
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatayamaYoshimi
en-aut-sei=Katayama
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Orthopaedic Surgery, Okayama University
kn-affil=
affil-num=5
en-affil=Ryusoh Orthopaedic Hospital
kn-affil=
affil-num=6
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University
kn-affil=
affil-num=7
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University
kn-affil=
en-keyword=adolescent idiopathic scoliosis
kn-keyword=adolescent idiopathic scoliosis
en-keyword=postural control
kn-keyword=postural control
en-keyword=coronal balance
kn-keyword=coronal balance
en-keyword=index of postural stability
kn-keyword=index of postural stability
en-keyword=stabilometry
kn-keyword=stabilometry
END
start-ver=1.4
cd-journal=joma
no-vol=416
cd-vols=
no-issue=28
article-no=
start-page=6679
end-page=6686
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024107
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparison of protein immobilization methods with covalent bonding on paper for paper-based enzyme-linked immunosorbent assay
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, two methods were examined to optimize the immobilization of antibodies on paper when conducting a paper-based enzyme-linked immunosorbent assay (P-ELISA). Human IgG, as a test-capture protein, was immobilized on paper via the formation of Schiff bases. Aldehyde groups were introduced onto the surface of the paper via two methods: NaIO4 and 3-aminopropyltriethoxysilane (APTS) with glutaraldehyde (APTS-glutaraldehyde). In the assay, horseradish peroxidase-conjugated anti-human IgG (HRP-anti-IgG) binds to the immobilized human IgG, and the colorimetric reaction of 3,3′,5,5′-tetramethylbenzyzine (TMB) produces a blue color in the presence of H2O2 and HRP-anti-IgG as a model analyte. The immobilization of human IgG, the enzymatic reaction conditions, and the reduction of the chemical bond between the paper surface and immobilized human IgG all were optimized in order to improve both the analytical performance and the stability. In addition, the thickness of the paper was examined to stabilize the analytical signal. Consequently, the APTS-glutaraldehyde method was superior to the NaIO4 method in terms of sensitivity and reproducibility. Conversely, the reduction of imine to amine with NaBH4 proved to exert only minimal influence on sensitivity and stability, although it tended to degrade reproducibility. We also found that thick paper was preferential when using P-ELISA because a rigid paper substrate prevents distortion of the paper surface that is often caused by repeated washing processes.
en-copyright=
kn-copyright=
en-aut-name=ChenYang
en-aut-sei=Chen
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DanchanaKaewta
en-aut-sei=Danchana
en-aut-mei=Kaewta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Okayama University
kn-affil=
en-keyword=Paper-based enzyme-linked immunosorbent assay
kn-keyword=Paper-based enzyme-linked immunosorbent assay
en-keyword=ELISA
kn-keyword=ELISA
en-keyword=Immobilization
kn-keyword=Immobilization
en-keyword=Covalent bonding
kn-keyword=Covalent bonding
en-keyword=Protein
kn-keyword=Protein
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=9
article-no=
start-page=471
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240909
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Generating 3D Models for UAV-Based Detection of Riparian PET Plastic Bottle Waste: Integrating Local Social Media and InstantMesh
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, waste pollution has become a severe threat to riparian environments worldwide. Along with the advancement of deep learning (DL) algorithms (i.e., object detection models), related techniques have become useful for practical applications. This work attempts to develop a data generation approach to generate datasets for small target recognition, especially for recognition in remote sensing images. A relevant point is that similarity between data used for model training and data used for testing is crucially important for object detection model performance. Therefore, obtaining training data with high similarity to the monitored objects is a key objective of this study. Currently, Artificial Intelligence Generated Content (AIGC), such as single target objects generated by Luma AI, is a promising data source for DL-based object detection models. However, most of the training data supporting the generated results are not from Japan. Consequently, the generated data are less similar to monitored objects in Japan, having, for example, different label colors, shapes, and designs. For this study, the authors developed a data generation approach by combining social media (Clean-Up Okayama) and single-image-based 3D model generation algorithms (e.g., InstantMesh) to provide a reliable reference for future generations of localized data. The trained YOLOv8 model in this research, obtained from the S2PS (Similar to Practical Situation) AIGC dataset, produced encouraging results (high F1 scores, approximately 0.9) in scenario-controlled UAV-based riparian PET bottle waste identification tasks. The results of this study show the potential of AIGC to supplement or replace real-world data collection and reduce the on-site work load.
en-copyright=
kn-copyright=
en-aut-name=PanShijun
en-aut-sei=Pan
en-aut-mei=Shijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshidaKeisuke
en-aut-sei=Yoshida
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShimoeDaichi
en-aut-sei=Shimoe
en-aut-mei=Daichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KojimaTakashi
en-aut-sei=Kojima
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiyamaSatoshi
en-aut-sei=Nishiyama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=TOKEN C.E.E. Consultants Co., Ltd.
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=generative artificial intelligence
kn-keyword=generative artificial intelligence
en-keyword=InstantMesh
kn-keyword=InstantMesh
en-keyword=riparian waste
kn-keyword=riparian waste
en-keyword=SNS
kn-keyword=SNS
en-keyword=3D model
kn-keyword=3D model
END
start-ver=1.4
cd-journal=joma
no-vol=21
cd-vols=
no-issue=5
article-no=
start-page=464
end-page=473
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240827
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Terrein Exhibits Anti-tumor Activity by Suppressing Angiogenin Expression in Malignant Melanoma Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Malignant melanoma is a tumor with a poor prognosis that can metastasize distally at an early stage. Terrein, a metabolite produced by Aspergillus terreus, suppresses the expression of angiogenin, an angiogenic factor. However, the pharmacological effects of natural terrein have not been elucidated, because only a small amount of terrein can be extracted from large fungal cultures. In this study, we investigated the antineoplastic effects of terrein on human malignant melanoma cells and its underlying mechanisms. Materials and methods: Human malignant melanoma cell lines were cultured in the presence of terrein and analyzed. Angiogenin production was evaluated using ELISA. Ribosome biosynthesis was evaluated using silver staining of the nucleolar organizer region. Intracellular signaling pathways were analyzed using western blotting. Malignant melanoma cells were transplanted subcutaneously into the backs of nude mice. The tumors were removed at 5 weeks and analyzed histopathologically. Results: Terrein inhibited angiogenin expression, proliferation, migration, invasion, and ribosome biosynthesis in malignant melanoma cells. Terrein was shown to inhibit tumor growth and angiogenesis in animal models. Conclusion: This study demonstrated that terrein has anti-tumor effects against malignant melanoma. Furthermore, chemically synthesized non-natural terrein can be mass-produced and serve as a novel potential anti-tumor drug candidate.
en-copyright=
kn-copyright=
en-aut-name=HIROSETAIRA
en-aut-sei=HIROSE
en-aut-mei=TAIRA
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KUNISADAYUKI
en-aut-sei=KUNISADA
en-aut-mei=YUKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KADOYAKOICHI
en-aut-sei=KADOYA
en-aut-mei=KOICHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MANDAIHIROKI
en-aut-sei=MANDAI
en-aut-mei=HIROKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SAKAMOTOYUMI
en-aut-sei=SAKAMOTO
en-aut-mei=YUMI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OBATAKYOICHI
en-aut-sei=OBATA
en-aut-mei=KYOICHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ONOKISHO
en-aut-sei=ONO
en-aut-mei=KISHO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TAKAKURAHIROAKI
en-aut-sei=TAKAKURA
en-aut-mei=HIROAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OMORIKAZUHIRO
en-aut-sei=OMORI
en-aut-mei=KAZUHIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TAKASHIBASHOGO
en-aut-sei=TAKASHIBA
en-aut-mei=SHOGO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=SUGASEIJI
en-aut-sei=SUGA
en-aut-mei=SEIJI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IBARAGISOICHIRO
en-aut-sei=IBARAGI
en-aut-mei=SOICHIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science
kn-affil=
affil-num=5
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Head and neck cancer
kn-keyword=Head and neck cancer
en-keyword=oral cancer
kn-keyword=oral cancer
en-keyword=malignant melanoma
kn-keyword=malignant melanoma
en-keyword=angiogenin
kn-keyword=angiogenin
en-keyword=terrein
kn-keyword=terrein
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Job strain and adverse pregnancy outcomes: A scoping review and meta‐analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Previous studies have shown that job strain is associated with low birthweight (LBW), preterm birth (PTB), and small for gestational age (SGA). We conducted a scoping review and meta-analysis to assess the association between job strain and adverse pregnancy outcomes.
Methods: A literature search was performed on PubMed. We included English-language studies that examined the association between job strain (based on the Karasek demand-control model) and pregnancy outcomes. We excluded letters, posters, reviews, and qualitative studies. Random effects meta-analysis was performed. Heterogeneity was assessed using τ2 and I2 statistics. Potential bias was assessed using standard funnel plots. Asymmetry was evaluated by Egger's test. Leave-one-out analysis was performed for sensitivity analyses.
Results: Three eligible studies were found for LBW, seven for PTB, and four for SGA. The number of subjects ranged from 135 to 4889, and the prevalence of high job strain ranged from 6.64% to 33.9%. The pooled odds ratio and 95% confidence interval (CI) for LBW, PTB, and SGA were 1.23 (95% CI: 0.97, 1.56), 1.10 (95% CI: 1.00, 1.22), and 1.16 (95% CI: 0.97, 1.39) respectively, indicating modest associations. Heterogeneity for LBW and PTB may not be important but may be moderate for SGA. No publication bias was detected for LBW and PTB, but possible publication bias exists for SGA.
Conclusion: We found a modest association between job strain and PTB. Since job strain is only one of the many aspects of an unhealthy work environment, interventions that improve working conditions more broadly are needed.
en-copyright=
kn-copyright=
en-aut-name=NakayamaKota
en-aut-sei=Nakayama
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SlopenNatalie
en-aut-sei=Slopen
en-aut-mei=Natalie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawachiIchiro
en-aut-sei=Kawachi
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Okayama University Medical School
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health
kn-affil=
affil-num=4
en-affil=Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health
kn-affil=
en-keyword=birthweight
kn-keyword=birthweight
en-keyword=gestational age
kn-keyword=gestational age
en-keyword=meta‐analysis
kn-keyword=meta‐analysis
en-keyword=occupational stress
kn-keyword=occupational stress
en-keyword=preterm birth
kn-keyword=preterm birth
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=20521
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240903
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Suppression of PTBP1 in hippocampal astrocytes promotes neurogenesis and ameliorates recognition memory in mice with cerebral ischemia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The therapeutic potential of suppressing polypyrimidine tract-binding protein 1 (Ptbp1) messenger RNA by viral transduction in a post-stroke dementia mouse model has not yet been examined. In this study, 3 days after cerebral ischemia, we injected a viral vector cocktail containing adeno-associated virus (AAV)-pGFAP-mCherry and AAV-pGFAP-CasRx (control vector) or a cocktail of AAV-pGFAP-mCherry and AAV-pGFAP-CasRx-SgRNA-(Ptbp1) (1:5, 1.0 x 1011 viral genomes) into post-stroke mice via the tail vein. We observed new mCherry/NeuN double-positive neuron-like cells in the hippocampus 56 days after cerebral ischemia. A portion of mCherry/GFAP double-positive astrocyte-like glia could have been converted into new mCherry/NeuN double-positive neuron-like cells with morphological changes. The new neuronal cells integrated into the dentate gyrus and recognition memory was significantly ameliorated. These results demonstrated that the in vivo conversion of hippocampal astrocyte-like glia into functional new neurons by the suppression of Ptbp1 might be a therapeutic strategy for post-stroke dementia.
en-copyright=
kn-copyright=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HuXinran
en-aut-sei=Hu
en-aut-mei=Xinran
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YunokiTaijun
en-aut-sei=Yunoki
en-aut-mei=Taijun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakemotoMami
en-aut-sei=Takemoto
en-aut-mei=Mami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AbeKoji
en-aut-sei=Abe
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=CasRx
kn-keyword=CasRx
en-keyword=Hippocampal neurogenesis
kn-keyword=Hippocampal neurogenesis
en-keyword=In vivo direct reprogramming
kn-keyword=In vivo direct reprogramming
en-keyword=Ischemic stroke
kn-keyword=Ischemic stroke
en-keyword=PHP.eB
kn-keyword=PHP.eB
en-keyword=Ptbp1
kn-keyword=Ptbp1
en-keyword=Recognition memory
kn-keyword=Recognition memory
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=8
article-no=
start-page=1835
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Surface Pre-Reacted Glass-Ionomer Eluate Suppresses Osteoclastogenesis through Downregulation of the MAPK Signaling Pathway
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Surface pre-reacted glass-ionomer (S-PRG) is a new bioactive filler utilized for the restoration of decayed teeth by its ability to release six bioactive ions that prevent the adhesion of dental plaque to the tooth surface. Since ionic liquids are reported to facilitate transepithelial penetration, we reasoned that S-PRG applied to root caries could impact the osteoclasts (OCs) in the proximal alveolar bone. Therefore, this study aimed to investigate the effect of S-PRG eluate solution on RANKL-induced OC-genesis and mineral dissolution in vitro. Using RAW264.7 cells as OC precursor cells (OPCs), TRAP staining and pit formation assays were conducted to monitor OC-genesis and mineral dissolution, respectively, while OC-genesis-associated gene expression was measured using quantitative real-time PCR (qPCR). Expression of NFATc1, a master regulator of OC differentiation, and the phosphorylation of MAPK signaling molecules were measured using Western blotting. S-PRG eluate dilutions at 1/200 and 1/400 showed no cytotoxicity to RAW264.7 cells but did significantly suppress both OC-genesis and mineral dissolution. The same concentrations of S-PRG eluate downregulated the RANKL-mediated induction of OCSTAMP and CATK mRNAs, as well as the expression of NFATc1 protein and the phosphorylation of ERK, JNK, and p38. These results demonstrate that S-PRG eluate can downregulate RANKL-induced OC-genesis and mineral dissolution, suggesting that its application to root caries might prevent alveolar bone resorption.
en-copyright=
kn-copyright=
en-aut-name=ChandraJanaki
en-aut-sei=Chandra
en-aut-mei=Janaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraShin
en-aut-sei=Nakamura
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShindoSatoru
en-aut-sei=Shindo
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=LeonElizabeth
en-aut-sei=Leon
en-aut-mei=Elizabeth
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=CastellonMaria
en-aut-sei=Castellon
en-aut-mei=Maria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=PastoreMaria Rita
en-aut-sei=Pastore
en-aut-mei=Maria Rita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HeidariAlireza
en-aut-sei=Heidari
en-aut-mei=Alireza
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WitekLukasz
en-aut-sei=Witek
en-aut-mei=Lukasz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=CoelhoPaulo G.
en-aut-sei=Coelho
en-aut-mei=Paulo G.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakatsukaToshiyuki
en-aut-sei=Nakatsuka
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KawaiToshihisa
en-aut-sei=Kawai
en-aut-mei=Toshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University
kn-affil=
affil-num=4
en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University
kn-affil=
affil-num=5
en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University
kn-affil=
affil-num=6
en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University
kn-affil=
affil-num=7
en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University
kn-affil=
affil-num=8
en-affil=Biomaterials Division, NYU Dentistry
kn-affil=
affil-num=9
en-affil=Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami
kn-affil=
affil-num=10
en-affil=R&D Department, Shofu Inc.
kn-affil=
affil-num=11
en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University
kn-affil=
en-keyword=S-PRG
kn-keyword=S-PRG
en-keyword=osteoclast
kn-keyword=osteoclast
en-keyword=hydroxyapatite
kn-keyword=hydroxyapatite
en-keyword=TRAP staining
kn-keyword=TRAP staining
en-keyword=bioactive filler
kn-keyword=bioactive filler
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=1
article-no=
start-page=2398895
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Surrogate-Assisted Multi-Objective Optimization for Simultaneous Three-Dimensional Packing and Motion Planning Problems Using the Sequence-Triple Representation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Packing problems are classical optimization problems with wide-ranging applications. With the advancement of robotic manipulation, there are growing demands for the automation of packing tasks. However, the simultaneous optimization of packing and the robot's motion planning is challenging because these two decisions are interconnected, and no previous study has addressed this optimization problem. This paper presents a framework to simultaneously determine the robot's motion planning and packing decision to minimize the robot's processing time and the container's volume. This framework comprises three key components: solution encoding, surrogate modeling, and evolutionary computation. The sequence-triple representation encodes complex packing solutions by a sequence of integers. A surrogate model is trained to predict the processing time for a given packing solution to reduce the computational burden. Training data is generated by solving the motion planning problem for a set of packing solutions using the rapidly exploring random tree algorithm. The Non-Dominated Sorting Genetic Algorithm II searches for the Pareto solutions. Experimental evaluations are conducted using a 6-DOF robot manipulator. The experimental results suggest that implementing the surrogate model can reduce the computational time by 91.1%. The proposed surrogate-assisted optimization method can obtain significantly better solutions than the joint angular velocity-based estimation method.
en-copyright=
kn-copyright=
en-aut-name=LiuZiang
en-aut-sei=Liu
en-aut-mei=Ziang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawabeTomoya
en-aut-sei=Kawabe
en-aut-mei=Tomoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiTatsushi
en-aut-sei=Nishi
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItoShun
en-aut-sei=Ito
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiwaraTomofumi
en-aut-sei=Fujiwara
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Packing problem
kn-keyword=Packing problem
en-keyword=sequence-triple
kn-keyword=sequence-triple
en-keyword=motion planning
kn-keyword=motion planning
en-keyword=surrogate model
kn-keyword=surrogate model
en-keyword=multi-objective optimization
kn-keyword=multi-objective optimization
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=8
article-no=
start-page=464
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240803
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Image-Based User Interface Testing Method for Flutter Programming Learning Assistant System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Flutter has become popular for providing a uniform development environment for user interfaces (UIs) on smart phones, web browsers, and desktop applications. We have developed the Flutter programming learning assistant system (FPLAS) to assist its novice students' self-study. We implemented the Docker-based Flutter environment with Visual Studio Code and three introductory exercise projects. However, the correctness of students' answers is manually checked, although automatic checking is necessary to reduce teachers' workload and provide quick responses to students. This paper presents an image-based user interface (UI) testing method to automate UI testing by the answer code using the Flask framework. This method produces the UI image by running the answer code and compares it with the image made by the model code for the assignment using ORB and SIFT algorithms in the OpenCV library. One notable aspect is the necessity to capture multiple UI screenshots through page transitions by user input actions for the accurate detection of changes in UI elements. For evaluations, we assigned five Flutter exercise projects to fourth-year bachelor and first-year master engineering students at Okayama University, Japan, and applied the proposed method to their answers. The results confirm the effectiveness of the proposal.
en-copyright=
kn-copyright=
en-aut-name=AungSoe Thandar
en-aut-sei=Aung
en-aut-mei=Soe Thandar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AungLynn Htet
en-aut-sei=Aung
en-aut-mei=Lynn Htet
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KinariSafira Adine
en-aut-sei=Kinari
en-aut-mei=Safira Adine
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WaiKhaing Hsu
en-aut-sei=Wai
en-aut-mei=Khaing Hsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MentariMustika
en-aut-sei=Mentari
en-aut-mei=Mustika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
en-keyword=Flutter
kn-keyword=Flutter
en-keyword=FPLAS
kn-keyword=FPLAS
en-keyword=testing
kn-keyword=testing
en-keyword=image
kn-keyword=image
en-keyword=Flask
kn-keyword=Flask
en-keyword=OpenCV
kn-keyword=OpenCV
en-keyword=user interface
kn-keyword=user interface
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=16
article-no=
start-page=9038
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Quercetin Attenuates Acetaldehyde-Induced Cytotoxicity via the Heme Oxygenase-1-Dependent Antioxidant Mechanism in Hepatocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection.
en-copyright=
kn-copyright=
en-aut-name=LiKexin
en-aut-sei=Li
en-aut-mei=Kexin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KidawaraMinori
en-aut-sei=Kidawara
en-aut-mei=Minori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ChenQiguang
en-aut-sei=Chen
en-aut-mei=Qiguang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MunemasaShintaro
en-aut-sei=Munemasa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraToshiyuki
en-aut-sei=Nakamura
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=quercetin
kn-keyword=quercetin
en-keyword=acetaldehyde
kn-keyword=acetaldehyde
en-keyword=glutathione
kn-keyword=glutathione
en-keyword=aldehyde dehydrogenase
kn-keyword=aldehyde dehydrogenase
en-keyword=heme oxygenase-1
kn-keyword=heme oxygenase-1
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=14543
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cervical spinal cord stimulation exerts anti-epileptic effects in a rat model of epileptic seizure through the suppression of CCL2-mediated cascades
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Epidural spinal cord stimulation (SCS) is indicated for the treatment of intractable pain and is widely used in clinical practice. In previous basic research, the therapeutic effects of SCS have been demonstrated for epileptic seizure. However, the mechanism has not yet been elucidated. In this study, we investigated the therapeutic effect of SCS and the influence of epileptic seizure. First, SCS in the cervical spine was performed. The rats were divided into four groups: control group and treatment groups with SCS conducted at 2, 50, and 300 Hz frequency. Two days later, convulsions were induced by the intraperitoneal administration of kainic acid, followed by video monitoring to assess seizures. We also evaluated glial cells in the hippocampus by fluorescent immunostaining, electroencephalogram measurements, and inflammatory cytokines such as C-C motif chemokine ligand 2 (CCL2) by quantitative real-time polymerase chain reaction. Seizure frequency and the number of glial cells were significantly lower in the 300 Hz group than in the control group. SCS at 300 Hz decreased gene expression level of CCL2, which induces monocyte migration. SCS has anti-seizure effects by inhibiting CCL2-mediated cascades. The suppression of CCL2 and glial cells may be associated with the suppression of epileptic seizure.
en-copyright=
kn-copyright=
en-aut-name=OkazakiYosuke
en-aut-sei=Okazaki
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SasakiTatsuya
en-aut-sei=Sasaki
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HosomotoKakeru
en-aut-sei=Hosomoto
en-aut-mei=Kakeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanimotoShun
en-aut-sei=Tanimoto
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KawaiKoji
en-aut-sei=Kawai
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagaseTakayuki
en-aut-sei=Nagase
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SugaharaChiaki
en-aut-sei=Sugahara
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YabunoSatoru
en-aut-sei=Yabuno
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KinKyohei
en-aut-sei=Kin
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SasadaSusumu
en-aut-sei=Sasada
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=DateIsao
en-aut-sei=Date
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurosurgery, Kure Kyosai Hospital
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Neurosurgery, Okayama Rosai Hospital
kn-affil=
en-keyword=Epileptic seizure
kn-keyword=Epileptic seizure
en-keyword=Glial cells
kn-keyword=Glial cells
en-keyword=Spinal cord stimulation
kn-keyword=Spinal cord stimulation
en-keyword=C-C motif chemokine ligand 2
kn-keyword=C-C motif chemokine ligand 2
END
start-ver=1.4
cd-journal=joma
no-vol=115
cd-vols=
no-issue=11
article-no=
start-page=3695
end-page=3704
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240902
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High-quality expert annotations enhance artificial intelligence model accuracy for osteosarcoma X-ray diagnosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Primary malignant bone tumors, such as osteosarcoma, significantly affect the pediatric and young adult populations, necessitating early diagnosis for effective treatment. This study developed a high-performance artificial intelligence (AI) model to detect osteosarcoma from X-ray images using highly accurate annotated data to improve diagnostic accuracy at initial consultations. Traditional models trained on unannotated data have shown limited success, with sensitivities of approximately 60%?70%. In contrast, our model used a data-centric approach with annotations from an experienced oncologist, achieving a sensitivity of 95.52%, specificity of 96.21%, and an area under the curve of 0.989. The model was trained using 468 X-ray images from 31 osteosarcoma cases and 378 normal knee images with a strategy to maximize diversity in the training and validation sets. It was evaluated using an independent dataset of 268 osteosarcoma and 554 normal knee images to ensure generalizability. By applying the U-net architecture and advanced image processing techniques such as renormalization and affine transformations, our AI model outperforms existing models, reducing missed diagnoses and enhancing patient outcomes by facilitating earlier treatment. This study highlights the importance of high-quality training data and advocates a shift towards data-centric AI development in medical imaging. These insights can be extended to other rare cancers and diseases, underscoring the potential of AI in transforming diagnostic processes in oncology. The integration of this AI model into clinical workflows could support physicians in early osteosarcoma detection, thereby improving diagnostic accuracy and patient care.
en-copyright=
kn-copyright=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OtsukaYujiro
en-aut-sei=Otsuka
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakamuraYusuke
en-aut-sei=Nakamura
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HironariTamiya
en-aut-sei=Hironari
en-aut-mei=Tamiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KaharaNaoaki
en-aut-sei=Kahara
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MiwaShinji
en-aut-sei=Miwa
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhshikaShusa
en-aut-sei=Ohshika
en-aut-mei=Shusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NishimuraShunji
en-aut-sei=Nishimura
en-aut-mei=Shunji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IkutaKunihiro
en-aut-sei=Ikuta
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OsakiShuhei
en-aut-sei=Osaki
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Radiology, Juntendo University School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Radiology, Juntendo University School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Mizushima Central Hospital
kn-affil=
affil-num=7
en-affil= Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Kindai University Hospital
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Musculoskeletal Oncology, National Cancer Center Hospital
kn-affil=
affil-num=12
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=artificial intelligence
kn-keyword=artificial intelligence
en-keyword=clinical decision support
kn-keyword=clinical decision support
en-keyword=diagnostic imaging
kn-keyword=diagnostic imaging
en-keyword=image annotation
kn-keyword=image annotation
en-keyword=osteosarcoma detection
kn-keyword=osteosarcoma detection
END
start-ver=1.4
cd-journal=joma
no-vol=3
cd-vols=
no-issue=4
article-no=
start-page=583
end-page=595
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Estimation of the Effects of Achilles Tendon Geometry on the Magnitude and Distribution of Local Strain: A Finite Element Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated the influence of Achilles tendon (AT) geometry on local-strain magnitude and distribution during loading, using finite element analysis. We calculated the following eight AT parameters for 18 healthy men: thickness and width of the most distal part, minimum cross-sectional area (mCSA), and most proximal part; length; and position of the mCSA. To investigate the effect of AT geometry on the magnitude and distribution of local strain, we created three-dimensional numerical models by changing the AT parameter values for every one standard deviation (SD) in the range of ±2 SD. A 4000 N lengthening force was applied to the proximal surface of all the models. The mean first principal strain (FPS) was determined every 3% of the length. The highest FPS in each model was mainly observed in the proximal regions; the 86?89% site (the most proximal site was set at 100%) had the highest number of models with the highest FPS (nine models). The highest FPS was observed in the model with a distal thickness of ?2 SD, which was 27.1% higher than that of the standard model observed in the 2?5% site. Therefore, the AT geometry influences local-strain magnitude and distribution during loading.
en-copyright=
kn-copyright=
en-aut-name=EnomotoShota
en-aut-sei=Enomoto
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OdaToshiaki
en-aut-sei=Oda
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Institute for Promotion of Education and Campus Life, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Education, Hyogo University of Teacher Education
kn-affil=
en-keyword=computational model
kn-keyword=computational model
en-keyword=Mooney-Rivlin model
kn-keyword=Mooney-Rivlin model
en-keyword=soft tissue
kn-keyword=soft tissue
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=5
article-no=
start-page=897
end-page=900
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202409
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A randomized, open-label phase II study on the preventive effect of goshajinkigan against peripheral neuropathy induced by paclitaxel-containing chemotherapy: The OLCSG2101 study protocol
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Paclitaxel (PTX) is an essential cytotoxic anticancer agent and a standard treatment regimen component for various malignant tumors, including advanced unresectable non-small cell lung cancer, thymic cancer, and primary unknown cancers. However, chemotherapy-induced peripheral neuropathy (CIPN) caused by PTX is a significant adverse event that may lead to chemotherapy discontinuation and deterioration of the quality of life (QOL). Although treatment modalities such as goshajinkigan (GJG), pregabalin, and duloxetine are empirically utilized for CIPN, there is no established evidence for an agent as a preventive measure. We designed a randomized phase II trial (OLCSG2101) to investigate whether prophylactic GJG administration can prevent the onset of CIPN induced by PTX.
Methods: This study was designed as a two-arm, prospective, randomized, multicenter phase II trial. The patients will be randomly assigned to either the GJG prophylaxis arm (Arm A) or the GJG non-prophylaxis arm (Arm B), using cancer type (lung cancer or not) and age (<70 years or not) as adjustment factors. A total of 66 patients (33 in each arm) will be enrolled.
Discussion: The results of this study may contribute to better management of CIPN, which can enable the continuation of chemotherapy and maintenance of the patient's QOL.
Ethics and dissemination: Ethical approval was obtained from the certified review board of Okayama University (approval no. CRB21-005) on September 28, 2021. Results will be published in peer-reviewed journals and presented at national and international conferences.
Trial registration: Japan Registry of Clinical Trials (registration number jRCTs061210047).
en-copyright=
kn-copyright=
en-aut-name=NakamuraNaoki
en-aut-sei=Nakamura
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MakimotoGo
en-aut-sei=Makimoto
en-aut-mei=Go
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaTakaaki
en-aut-sei=Tanaka
en-aut-mei=Takaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatoYuka
en-aut-sei=Kato
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OzeIsao
en-aut-sei=Oze
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KozukiToshiyuki
en-aut-sei=Kozuki
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YokoyamaToshihide
en-aut-sei=Yokoyama
en-aut-mei=Toshihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IchikawaHirohisa
en-aut-sei=Ichikawa
en-aut-mei=Hirohisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KuyamaShoichi
en-aut-sei=Kuyama
en-aut-mei=Shoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaraNaofumi
en-aut-sei=Hara
en-aut-mei=Naofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Center of Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute
kn-affil=
affil-num=6
en-affil=Department of Respiratory Medicine, Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Respiratory Medicine, KKR Takamatsu Hospital
kn-affil=
affil-num=9
en-affil=Department of Respiratory Medicine, Iwakuni Clinical Center
kn-affil=
affil-num=10
en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Center of Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
en-keyword=Kampo
kn-keyword=Kampo
en-keyword=CIPN
kn-keyword=CIPN
en-keyword=prophylaxis
kn-keyword=prophylaxis
en-keyword=neuropathy
kn-keyword=neuropathy
en-keyword=taxane
kn-keyword=taxane
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=18063
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240808
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Human heart-on-a-chip microphysiological system comprising endothelial cells, fibroblasts, and iPSC-derived cardiomyocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In recent years, research on organ-on-a-chip technology has been flourishing, particularly for drug screening and disease model development. Fibroblasts and vascular endothelial cells engage in crosstalk through paracrine signaling and direct cell-cell contact, which is essential for the normal development and function of the heart. Therefore, to faithfully recapitulate cardiac function, it is imperative to incorporate fibroblasts and vascular endothelial cells into a heart-on-a-chip model. Here, we report the development of a human heart-on-a-chip composed of induced pluripotent stem cell (iPSC)-derived cardiomyocytes, fibroblasts, and vascular endothelial cells. Vascular endothelial cells cultured on microfluidic channels responded to the flow of culture medium mimicking blood flow by orienting themselves parallel to the flow direction, akin to in vivo vascular alignment in response to blood flow. Furthermore, the flow of culture medium promoted integrity among vascular endothelial cells, as evidenced by CD31 staining and lower apparent permeability. The tri-culture condition of iPSC-derived cardiomyocytes, fibroblasts, and vascular endothelial cells resulted in higher expression of the ventricular cardiomyocyte marker IRX4 and increased contractility compared to the bi-culture condition with iPSC-derived cardiomyocytes and fibroblasts alone. Such tri-culture-derived cardiac tissues exhibited cardiac responses similar to in vivo hearts, including an increase in heart rate upon noradrenaline administration. In summary, we have achieved the development of a heart-on-a-chip composed of cardiomyocytes, fibroblasts, and vascular endothelial cells that mimics in vivo cardiac behavior.
en-copyright=
kn-copyright=
en-aut-name=LiuYun
en-aut-sei=Liu
en-aut-mei=Yun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KamranRumaisa
en-aut-sei=Kamran
en-aut-mei=Rumaisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HanXiaoxia
en-aut-sei=Han
en-aut-mei=Xiaoxia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangMengxue
en-aut-sei=Wang
en-aut-mei=Mengxue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=LiQiang
en-aut-sei=Li
en-aut-mei=Qiang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LaiDaoyue
en-aut-sei=Lai
en-aut-mei=Daoyue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakahashiKen
en-aut-sei=Takahashi
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Induced pluripotent stem cells
kn-keyword=Induced pluripotent stem cells
en-keyword=Fibroblasts
kn-keyword=Fibroblasts
en-keyword=Endothelial cells
kn-keyword=Endothelial cells
en-keyword=Heart
kn-keyword=Heart
en-keyword=Heart-on-a-chip
kn-keyword=Heart-on-a-chip
en-keyword=Organ-on-a-chip
kn-keyword=Organ-on-a-chip
END
start-ver=1.4
cd-journal=joma
no-vol=136
cd-vols=
no-issue=2
article-no=
start-page=51
end-page=53
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240801
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=The 2023 Incentive Award of the Okayama Medical Association in Neuroscience (2023 Niimi Prize)
kn-title=令和5年度岡山医学会賞 脳神経研究奨励賞(新見賞)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=YabunoSatoru
en-aut-sei=Yabuno
en-aut-mei=Satoru
kn-aut-name=藪野諭
kn-aut-sei=藪野
kn-aut-mei=諭
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=岡山大学大学院医歯薬学総合研究科 脳神経外科学
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=
article-no=
start-page=1329162
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240809
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency.
Methods: A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed.
Results and discussion: Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC.
en-copyright=
kn-copyright=
en-aut-name=SumiTomonari
en-aut-sei=Sumi
en-aut-mei=Tomonari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaradaKouji
en-aut-sei=Harada
en-aut-mei=Kouji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Computer Science and Engineering, Toyohashi University of Technology
kn-affil=
en-keyword=post-acute sequelae of SARS-CoV-2 infection
kn-keyword=post-acute sequelae of SARS-CoV-2 infection
en-keyword=PASC
kn-keyword=PASC
en-keyword=long Covid
kn-keyword=long Covid
en-keyword=persistent viruses
kn-keyword=persistent viruses
en-keyword=vaccine
kn-keyword=vaccine
en-keyword=antiviral drug
kn-keyword=antiviral drug
en-keyword=mathematical model
kn-keyword=mathematical model
en-keyword=immune response
kn-keyword=immune response
END
start-ver=1.4
cd-journal=joma
no-vol=115
cd-vols=
no-issue=10
article-no=
start-page=3231
end-page=3247
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240809
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Overcoming immunotherapy resistance and inducing abscopal effects with boron neutron immunotherapy (B-NIT)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors (ICIs) are effective against many advanced malignancies. However, many patients are nonresponders to immunotherapy, and overcoming this resistance to treatment is important. Boron neutron capture therapy (BNCT) is a local chemoradiation therapy with the combination of boron drugs that accumulate selectively in cancer and the neutron irradiation of the cancer site. Here, we report the first boron neutron immunotherapy (B-NIT), combining BNCT and ICI immunotherapy, which was performed on a radioresistant and immunotherapy-resistant advanced-stage B16F10 melanoma mouse model. The BNCT group showed localized tumor suppression, but the anti-PD-1 antibody immunotherapy group did not show tumor suppression. Only the B-NIT group showed strong tumor growth inhibition at both BNCT-treated and shielded distant sites. Intratumoral CD8+ T-cell infiltration and serum high mobility group box 1 (HMGB1) levels were higher in the B-NIT group. Analysis of CD8(+) T cells in tumor-infiltrating lymphocytes (TILs) showed that CD62L- CD44(+) effector memory T cells and CD69(+) early-activated T cells were predominantly increased in the B-NIT group. Administration of CD8-depleting mAb to the B-NIT group completely suppressed the augmented therapeutic effects. This indicated that B-NIT has a potent immune-induced abscopal effect, directly destroying tumors with BNCT, inducing antigen-spreading effects, and protecting normal tissue. B-NIT, immunotherapy combined with BNCT, is the first treatment to overcome immunotherapy resistance in malignant melanoma. In the future, as its therapeutic efficacy is demonstrated not only in melanoma but also in other immunotherapy-resistant malignancies, B-NIT can become a new treatment candidate for advanced-stage cancers.
en-copyright=
kn-copyright=
en-aut-name=FujimotoTakuya
en-aut-sei=Fujimoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamasakiOsamu
en-aut-sei=Yamasaki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanehiraNoriyuki
en-aut-sei=Kanehira
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsushitaHirokazu
en-aut-sei=Matsushita
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakuraiYoshinori
en-aut-sei=Sakurai
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KenmotsuNaoya
en-aut-sei=Kenmotsu
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MizutaRyo
en-aut-sei=Mizuta
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KondoNatsuko
en-aut-sei=Kondo
en-aut-mei=Natsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakataTakushi
en-aut-sei=Takata
en-aut-mei=Takushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KitamatsuMizuki
en-aut-sei=Kitamatsu
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IgawaKazuyo
en-aut-sei=Igawa
en-aut-mei=Kazuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ShirakawaMakoto
en-aut-sei=Shirakawa
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuzukiMinoru
en-aut-sei=Suzuki
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute
kn-affil=
affil-num=5
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=6
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=9
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=10
en-affil=Faculty of Science and Engineering, Kindai University
kn-affil=
affil-num=11
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=12
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
en-keyword=abscopal effect
kn-keyword=abscopal effect
en-keyword=advanced melanoma
kn-keyword=advanced melanoma
en-keyword=boron neutron capture therapy
kn-keyword=boron neutron capture therapy
en-keyword=boron-neutron immunotherapy
kn-keyword=boron-neutron immunotherapy
en-keyword=immune combination therapy
kn-keyword=immune combination therapy
END
start-ver=1.4
cd-journal=joma
no-vol=42
cd-vols=
no-issue=21
article-no=
start-page=126156
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202408
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Kinetics of SARS-CoV-2 antibody titers after booster vaccinations during an Omicron surge in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Despite the emergence of SARS-CoV-2 variants and waning immunity after initial vaccination, data on antibody kinetics following booster doses, particularly those adapted to Omicron subvariants like XBB.1.5, remain limited. This study assesses the kinetics of anti-spike protein receptor-binding domain (S-RBD) IgG antibody titers post-booster vaccination in a Japanese population during the Omicron variant epidemic.
Methods: A prospective cohort study was conducted in Bizen City, Japan, from November 2023 to January 2024. Participants included residents and workers aged ?18 years, with at least three COVID-19 vaccinations. Antibody levels were measured from venous blood samples. The study analyzed 424 participants and 821 antibody measurements, adjusting for variables such as age, sex, underlying conditions, and prior infection status. Mixed-effects models were employed to describe the kinetics of log-transformed S-RBD antibody titers.
Results: The study found that S-RBD antibody titers declined over time but increased with the number of booster vaccinations, particularly those adapted to Omicron and its subvariant XBB.1.5 (Pfizer-BioNTech Omicron-compatible: 0.156, 95%CI ?0.032 to 0.344; Pfizer-BioNTech XBB-compatible: 0.226; 95%CI ?0.051 to 0.504; Moderna Omicron-compatible: 0.279, 95%CI 0.012 to 0.546; and Moderna XBB-compatible: 0.338, 95%CI ?0.052 to 0.728). Previously infected individuals maintained higher antibody titers, which declined more gradually compared to uninfected individuals (coefficient for interaction with time 0.006; 95%CI 0.001 to 0.011). Sensitivity analyses using Generalized Estimating Equations and interval-censored random intercept model confirmed the robustness of these findings.
Conclusions: The study provides specific data on antibody kinetics post-booster vaccination, including the XBB.1.5-adapted vaccine, in a highly vaccinated Japanese population. The results highlight the importance of considering individual demographics and prior infection history in optimizing vaccination strategies.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoNaomi
en-aut-sei=Matsumoto
en-aut-mei=Naomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SasakiAyako
en-aut-sei=Sasaki
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KadowakiTomoka
en-aut-sei=Kadowaki
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakaoSoshi
en-aut-sei=Takao
en-aut-mei=Soshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=SARS-CoV-2
kn-keyword=SARS-CoV-2
en-keyword=Vaccine
kn-keyword=Vaccine
en-keyword=Antibody
kn-keyword=Antibody
en-keyword=Mixed-effects model
kn-keyword=Mixed-effects model
en-keyword=Omicron
kn-keyword=Omicron
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=4
article-no=
start-page=323
end-page=330
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202408
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Recipient Age on Perioperative Complications after Pediatric Liver Transplantation: A Single-Center Retrospective Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=It has not been clear how recipient age affects the incidence of serious complications after pediatric living donor liver transplantation (LDLT). We investigated the records of 42 pediatric patients receiving LDLT, dividing our sample into two groups: the infant group (aged < 1 year) and the non-infant group (aged ? 1 year and ?15 years). The primary outcome was postoperative complications assessed using the Clavien-Dindo classification. Multivariate analysis using the Cox regression model was applied to adjust for confounding factors in assessing the incidence of Clavien-Dindo grade ? III (C-D ? III) complications. The incidence of C-D ? III complications was higher in the non-infant group (46.2%) than in the infant group (12.5%) (odds ratio 6.00, 95% confidence interval [CI] 1.13-31.88, p=0.03). In multivariate analysis using the Cox regression model, the Graft-to-Recipient Weight Ratio (GRWR) was independently associated with the incidence of C-D ? III complications (hazard ratio [HR] 0.62, 95%CI 0.40-0.95, p=0.03), but being an infant was not (HR 0.84, 95%CI 0.35-1.98, p=0.68). In conclusion, the incidence of C-D ? III complications was higher in the non-infant group than in the infant group, but this was largely a function of GRWR: multivariate analysis revealed that GRWR was independently associated with complications.
en-copyright=
kn-copyright=
en-aut-name=KatayamaAkira
en-aut-sei=Katayama
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KimuraSatoshi
en-aut-sei=Kimura
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsusakiTakashi
en-aut-sei=Matsusaki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MorimatsuHiroshi
en-aut-sei=Morimatsu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Anesthesia, Kyoto University Hospital
kn-affil=
affil-num=3
en-affil=Department of Anesthesiology, Mie University Hospital
kn-affil=
affil-num=4
en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=pediatric liver transplantation
kn-keyword=pediatric liver transplantation
en-keyword=postoperative severe complications
kn-keyword=postoperative severe complications
en-keyword=Graft-to-Recipient Weight Ratio
kn-keyword=Graft-to-Recipient Weight Ratio
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=4
article-no=
start-page=313
end-page=322
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202408
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Multicenter Remote-Access Simulation of Vaginal Delivery for High-Flexibility Medical Education during the Coronavirus Pandemic
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=During the coronavirus pandemic, face-to-face simulation education became impossible. Therefore, we aimed to develop remote-access simulation education with a sense of realism through Information and Communication Technology (ICT) using a perinatal whole-body management and delivery simulator. In September 2021, we administered a multi-center simultaneous remote simulation based on our developed model. Ten universities in the Chugoku?Shikoku region were connected via a web-conferencing system to a live broadcast of a virtual vaginal birth in which a fictional hospitalized pregnant woman experienced accelerated labor and gave birth through vacuum delivery for fetal distress. A Video on Demand (VOD) was made beforehand using a new simulator that allowed for a visual understanding of the process of the inter-vaginal examination. We provided a participatory program that enhanced the sense of realism by combining VOD and real-time lectures on each scenario, with two-way communication between participants and trainee doctors using a chat function. Most participants answered “satisfied” or “very satisfied” with the content, level of difficulty, and level of understanding. From November 2021, we have used the videos of all processes in face-to-face classes. Our construction of a high-flexibility education system using remote simulation in the field of obstetrics and gynecology, especially in the vaginal delivery module, is unique, creative, and sustainable.
en-copyright=
kn-copyright=
en-aut-name=EtoEriko
en-aut-sei=Eto
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MakiJota
en-aut-sei=Maki
en-aut-mei=Jota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaNoriyuki
en-aut-sei=Yamashita
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HasegawaToru
en-aut-sei=Hasegawa
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuemoriAyano
en-aut-sei=Suemori
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakatoHikari
en-aut-sei=Nakato
en-aut-mei=Hikari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ObaHikaru
en-aut-sei=Oba
en-aut-mei=Hikaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MitomaTomohiro
en-aut-sei=Mitoma
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MishimaSakurako
en-aut-sei=Mishima
en-aut-mei=Sakurako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KirinoSatoe
en-aut-sei=Kirino
en-aut-mei=Satoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OhiraAkiko
en-aut-sei=Ohira
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Center for Education in Medicine and Health Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=remote simulator education
kn-keyword=remote simulator education
en-keyword=perinatal simulator
kn-keyword=perinatal simulator
en-keyword=information and communication technology
kn-keyword=information and communication technology
en-keyword=high-flexibility education
kn-keyword=high-flexibility education
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=zbae092
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240716
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cytosolic acidification and oxidation are the toxic mechanisms of SO2 in Arabidopsis guard cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=SO2/H2SO3 can damage plants. However, its toxic mechanism has still been controversial. Two models have been proposed, cytosolic acidification model and cellular oxidation model. Here, we assessed the toxic mechanism of H2SO3 in three cell types of Arabidopsis thaliana, mesophyll cells, guard cells (GCs), and petal cells. The sensitivity of GCs of Chloride channel a (CLCa)-knockout mutants to H2SO3 was significantly lower than those of wildtype plants. Expression of other CLC genes in mesophyll cells and petal cells were different from GCs. Treatment with antioxidant, disodium 4,5-dihydroxy-1,3-benzenedisulfonate (tiron), increased the median lethal concentration (LC50) of H2SO3 in GCs indicating the involvement of cellular oxidation, while the effect was negligible in mesophyll cells and petal cells. These results indicate that there are two toxic mechanisms of SO2 to Arabidopsis cells: cytosolic acidification and cellular oxidation, and the toxic mechanism may vary among cell types.
en-copyright=
kn-copyright=
en-aut-name=MozhganiMahdi
en-aut-sei=Mozhgani
en-aut-mei=Mahdi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OoiLia
en-aut-sei=Ooi
en-aut-mei=Lia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EspagneChristelle
en-aut-sei=Espagne
en-aut-mei=Christelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FilleurSophie
en-aut-sei=Filleur
en-aut-mei=Sophie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoriIzumi C
en-aut-sei=Mori
en-aut-mei=Izumi C
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Universit? Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
kn-affil=
affil-num=4
en-affil=Universit? Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=cytosolic acidification
kn-keyword=cytosolic acidification
en-keyword=Arabidopsis
kn-keyword=Arabidopsis
en-keyword=cellular oxidation
kn-keyword=cellular oxidation
en-keyword=chloride channel a
kn-keyword=chloride channel a
en-keyword=sulfur dioxide
kn-keyword=sulfur dioxide
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=6
article-no=
start-page=4019
end-page=4027
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240802
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prognostic value of right atrial function in patients with significant tricuspid regurgitation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aims Although right ventricular (RV) dysfunction is associated with adverse outcomes in tricuspid regurgitation (TR), the potential role of right atrial (RA) function is unknown. We aimed to investigate the relationship between RA function and clinical outcomes in patients with significant TR.
Methods This retrospective study included 169 outpatients with moderate or severe TR due to left-sided heart diseases who underwent transthoracic echocardiography between June 2020 and April 2023 (average age, 75 ± 10 years; male, 40%). Patients with atrial fibrillation were excluded from this study due to the inaccuracy of the evaluation using 2D speckle-tracking echocardiography. RA function was compared between patients with and without events, which were defined as all-cause mortality or hospitalization due to heart failure. RA function was calculated as RA global longitudinal strain (RAGLS) with the 2D speckle-tracking echocardiography.
Results During a median follow-up of 13 months, 19 patients had events (all-cause mortality: 14 cases, hospitalization due to heart failure: 5 cases). RAGLS was lower in patients with events than in those without events (13% ± 10% vs. 18% ± 9%, P = 0.02). When the patients were categorized into two groups [low RAGLS ? 16.2% vs. high RAGLS > 16.2%, high RA volume index (RAVI) ? 50 mL/m2 vs. low RAVI < 50 mL/m2], Kaplan?Meier curves showed that patients with low RAGLS had higher event rates than those with high RAGLS (log-rank test, P = 0.003). Patients with high RAVI had higher event rates than those with low RAVI (log-rank test, P < 0.001). In the multivariate Cox regression analysis, low RAGLS (?16.2%) was significantly associated with events in a model that included RV dysfunction (RV fractional area change ? 35%) or high RAVI (?50 mL/m2) (hazard ratio: 4.55, 95% confidence interval: 1.51?13.71, P < 0.01; hazard ratio: 4.57, 95% confidence interval: 1.52?13.79, P < 0.01, respectively).
Conclusions RAGLS is associated with all-cause mortality and hospitalization due to heart failure in patients with significant TR. Our results suggest that RA function is a sensitive marker for identifying the risk stratification of significant TR.
en-copyright=
kn-copyright=
en-aut-name=NishiharaTakahiro
en-aut-sei=Nishihara
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakayaYoichi
en-aut-sei=Takaya
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakayamaRie
en-aut-sei=Nakayama
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaYu
en-aut-sei=Yoshida
en-aut-mei=Yu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TohNorihisa
en-aut-sei=Toh
en-aut-mei=Norihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=echocardiography
kn-keyword=echocardiography
en-keyword=prognosis
kn-keyword=prognosis
en-keyword=right atrial function
kn-keyword=right atrial function
en-keyword=tricuspid regurgitation
kn-keyword=tricuspid regurgitation
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=17591
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240730
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Training high-performance deep learning classifier for diagnosis in oral cytology using diverse annotations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The uncertainty of true labels in medical images hinders diagnosis owing to the variability across professionals when applying deep learning models. We used deep learning to obtain an optimal convolutional neural network (CNN) by adequately annotating data for oral exfoliative cytology considering labels from multiple oral pathologists. Six whole-slide images were processed using QuPath for segmenting them into tiles. The images were labeled by three oral pathologists, resulting in 14,535 images with the corresponding pathologists' annotations. Data from three pathologists who provided the same diagnosis were labeled as ground truth (GT) and used for testing. We investigated six models trained using the annotations of (1) pathologist A, (2) pathologist B, (3) pathologist C, (4) GT, (5) majority voting, and (6) a probabilistic model. We divided the test by cross-validation per slide dataset and examined the classification performance of the CNN with a ResNet50 baseline. Statistical evaluation was performed repeatedly and independently using every slide 10 times as test data. For the area under the curve, three cases showed the highest values (0.861, 0.955, and 0.991) for the probabilistic model. Regarding accuracy, two cases showed the highest values (0.988 and 0.967). For the models using the pathologists and GT annotations, many slides showed very low accuracy and large variations across tests. Hence, the classifier trained with probabilistic labels provided the optimal CNN for oral exfoliative cytology considering diagnoses from multiple pathologists. These results may lead to trusted medical artificial intelligence solutions that reflect diverse diagnoses of various professionals.
en-copyright=
kn-copyright=
en-aut-name=SukegawaShintaro
en-aut-sei=Sukegawa
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaFuta
en-aut-sei=Tanaka
en-aut-mei=Futa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HaraTakeshi
en-aut-sei=Hara
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OchiaiTakanaga
en-aut-sei=Ochiai
en-aut-mei=Takanaga
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShimadaKatsumitsu
en-aut-sei=Shimada
en-aut-mei=Katsumitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=InoueYuta
en-aut-sei=Inoue
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakiYoshihiro
en-aut-sei=Taki
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakaiFumi
en-aut-sei=Nakai
en-aut-mei=Fumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakaiYasuhiro
en-aut-sei=Nakai
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IshihamaTakanori
en-aut-sei=Ishihama
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyazakiRyo
en-aut-sei=Miyazaki
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MurakamiSatoshi
en-aut-sei=Murakami
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MiyakeMinoru
en-aut-sei=Miyake
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University
kn-affil=
affil-num=3
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University
kn-affil=
affil-num=5
en-affil=Division of Oral Pathogenesis and Disease Control, Department of Oral Pathology, Asahi University School of Dentistry
kn-affil=
affil-num=6
en-affil=Department of Oral Pathology, Graduate School of Oral Medicine, Matsumoto Dental University
kn-affil=
affil-num=7
en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University
kn-affil=
affil-num=8
en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University
kn-affil=
affil-num=9
en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine
kn-affil=
affil-num=10
en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine
kn-affil=
affil-num=11
en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine
kn-affil=
affil-num=12
en-affil=Stony Brook Cancer Center, Stony Brook University
kn-affil=
affil-num=13
en-affil=Department of Oral Pathology, Graduate School of Oral Medicine, Matsumoto Dental University
kn-affil=
affil-num=14
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine
kn-affil=
en-keyword=Deep learning
kn-keyword=Deep learning
en-keyword=Oral cytology
kn-keyword=Oral cytology
en-keyword=Classification
kn-keyword=Classification
en-keyword=Convolutional neural network
kn-keyword=Convolutional neural network
en-keyword=Probabilistic labeling
kn-keyword=Probabilistic labeling
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=15
article-no=
start-page=2617
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240723
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Utilizing the Metaverse to Provide Innovative Psychosocial Support for Pediatric, Adolescent, and Young Adult Patients with Rare Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigated the potential of the metaverse in providing psychological support for pediatric and AYA cancer patients, with a focus on those with rare cancers. The research involved ten cancer patients and survivors from four distinct regions in Japan, who participated in metaverse sessions using customizable avatars, facilitating interactions across geographical and temporal barriers. Surveys and qualitative feedback were collected to assess the psychosocial impact of the intervention. The results demonstrated that the metaverse enabled patients to connect with peers, share experiences, and receive emotional support. The anonymity provided by avatars helped reduce appearance-related anxiety and stigma associated with cancer treatment. A case study of a 19-year-old male with spinal Ewing’s sarcoma highlighted the profound emotional relief fostered by metaverse interactions. The findings suggest that integrating virtual spaces into healthcare models can effectively address the unique needs of pediatric and AYA cancer patients, offering a transformative approach to delivering psychosocial support and fostering a global patient community. This innovative intervention has the potential to revolutionize patient care in the digital age.
en-copyright=
kn-copyright=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshidaHisashi
en-aut-sei=Ishida
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatayamaHideki
en-aut-sei=Katayama
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaNaoko
en-aut-sei=Maeda
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaganoAkihito
en-aut-sei=Nagano
en-aut-mei=Akihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OchiMotoharu
en-aut-sei=Ochi
en-aut-mei=Motoharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkamuraMasako
en-aut-sei=Okamura
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IwataShintaro
en-aut-sei=Iwata
en-aut-mei=Shintaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IkutaKunihiro
en-aut-sei=Ikuta
en-aut-mei=Kunihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YoshidaShinichirou
en-aut-sei=Yoshida
en-aut-mei=Shinichirou
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Medical Information and Assistive Technology Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Palliative and Supportive Care, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, NHO National Hospital Organization Nagoya Medical Center
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Gifu University
kn-affil=
affil-num=6
en-affil=Department of Pediatrics, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Division of Survivorship, Institute for Cancer Control, National Cancer Center
kn-affil=
affil-num=8
en-affil=Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University
kn-affil=
affil-num=10
en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University
kn-affil=
affil-num=11
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=14
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=virtual reality
kn-keyword=virtual reality
en-keyword=metaverse
kn-keyword=metaverse
en-keyword=adolescent and young adult
kn-keyword=adolescent and young adult
en-keyword=rare cancer
kn-keyword=rare cancer
en-keyword=mental health
kn-keyword=mental health
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=8
article-no=
start-page=ziae085
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240704
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Macrophages modulate mesenchymal stem cell function via tumor necrosis factor alpha in tooth extraction model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Mesenchymal stem cells (MSCs) and macrophages collaboratively contribute to bone regeneration after injury. However, detailed mechanisms underlying the interaction between MSCs and inflammatory macrophages (M1) remain unclear. A macrophage-depleted tooth extraction model was generated in 5-wk-old female C57BL/6J mice using clodronate liposome (12.5 mg/kg/mouse, intraperitoneally) or saline injection (control) before maxillary first molar extraction. Mice were sacrificed on days 1, 3, 5, 7, and 10 after tooth extraction (n?=?4). Regenerated bone volume evaluation of tooth extraction socket (TES) and histochemical analysis of CD80+M1, CD206+M2 (anti-inflammatory macrophages), PDGFRα+MSC, and TNF-α+ cells were performed. In vitro, isolated MSCs with or without TNF-α stimulation (10 ng/mL, 24 h, n?=?3) were bulk RNA-sequenced (RNA-Seq) to identify TNF-α stimulation-specific MSC transcriptomes. Day 7 micro-CT and HE staining revealed significantly lower mean bone volume (clodronate vs control: 0.01 mm3 vs 0.02 mm3, p<.0001) and mean percentage of regenerated bone area per total TES in clodronate group (41.97% vs 54.03%, p<.0001). Clodronate group showed significant reduction in mean number of CD80+, TNF-α+, PDGFRα+, and CD80+TNF-α+ cells on day 5 (306.5 vs 558.8, p<.0001; 280.5 vs 543.8, p<.0001; 365.0 vs 633.0, p<.0001, 29.0 vs 42.5, p<.0001), while these cells recovered significantly on day 7 (493.3 vs 396.0, p=.0004; 479.3 vs 384.5, p=.0008; 593.0 vs 473.0, p=.0010, 41.0 vs 32.5, p=.0003). RNA-Seq analysis showed that 15 genes (|log2FC|?>?5.0, log2TPM?>?5) after TNF-α stimulation were candidates for regulating MSC’s immunomodulatory capacity. In vivo, Clec4e and Gbp6 are involved in inflammation and bone formation. Clec4e, Gbp6, and Cxcl10 knockdown increased osteogenic differentiation of MSCs in vitro. Temporal reduction followed by apparent recovery of TNF-α-producing M1 macrophages and MSCs after temporal macrophage depletion suggests that TNF-α activated MSCs during TES healing. In vitro mimicking the effect of TNF-α on MSCs indicated that there are 15 candidate MSC genes for regulation of immunomodulatory capacity.
en-copyright=
kn-copyright=
en-aut-name=MunAung Ye
en-aut-sei=Mun
en-aut-mei=Aung Ye
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkiyamaKentaro
en-aut-sei=Akiyama
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZhangJiewen
en-aut-sei=Zhang
en-aut-mei=Jiewen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KitagawaWakana
en-aut-sei=Kitagawa
en-aut-mei=Wakana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KohnoTeisaku
en-aut-sei=Kohno
en-aut-mei=Teisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TagashiraRyuji
en-aut-sei=Tagashira
en-aut-mei=Ryuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=IshibashiKei
en-aut-sei=Ishibashi
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsunagaNaoya
en-aut-sei=Matsunaga
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ZouTingling
en-aut-sei=Zou
en-aut-mei=Tingling
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OnoMitsuaki
en-aut-sei=Ono
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KubokiTakuo
en-aut-sei=Kuboki
en-aut-mei=Takuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=cytokines
kn-keyword=cytokines
en-keyword=dental biology
kn-keyword=dental biology
en-keyword=injury healing
kn-keyword=injury healing
en-keyword=osteoimmunology
kn-keyword=osteoimmunology
en-keyword=stem cells
kn-keyword=stem cells
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=14
article-no=
start-page=2700
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Reference Paper Collection System Using Web Scraping
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Collecting reference papers from the Internet is one of the most important activities for progressing research and writing papers about their results. Unfortunately, the current process using Google Scholar may not be efficient, since a lot of paper files cannot be accessed directly by the user. Even if they are accessible, their effectiveness needs to be checked manually. In this paper, we propose a reference paper collection system using web scraping to automate paper collections from websites. This system can collect or monitor data from the Internet, which is considered as the environment, using Selenium, a popular web scraping software, as the sensor; this examines the similarity against the search target by comparing the keywords using the Bert model. The Bert model is a deep learning model for natural language processing (NLP) that can understand context by analyzing the relationships between words in a sentence bidirectionally. The Python Flask is adopted at the web application server, where Angular is used for data presentations. For the evaluation, we measured the performance, investigated the accuracy, and asked members of our laboratory to use the proposed method and provide their feedback. Their results confirm the method’s effectiveness.
en-copyright=
kn-copyright=
en-aut-name=NaingInzali
en-aut-sei=Naing
en-aut-mei=Inzali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AungSoe Thandar
en-aut-sei=Aung
en-aut-mei=Soe Thandar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WaiKhaing Hsu
en-aut-sei=Wai
en-aut-mei=Khaing Hsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
en-keyword=web scraping
kn-keyword=web scraping
en-keyword=Google Scholar
kn-keyword=Google Scholar
en-keyword=data collection
kn-keyword=data collection
en-keyword=Bert
kn-keyword=Bert
en-keyword=Selenium
kn-keyword=Selenium
en-keyword=flask framework
kn-keyword=flask framework
en-keyword=Angular
kn-keyword=Angular
END
start-ver=1.4
cd-journal=joma
no-vol=39
cd-vols=
no-issue=5
article-no=
start-page=463
end-page=483
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240731
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Detailed Re-Examination of the Period Gene Rescue Experiments Shows That Four to Six Cryptochrome-Positive Posterior Dorsal Clock Neurons (DN1p) of Drosophila melanogaster Can Control Morning and Evening Activity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Animal circadian clocks play a crucial role in regulating behavioral adaptations to daily environmental changes. The fruit fly Drosophila melanogaster exhibits 2 prominent peaks of activity in the morning and evening, known as morning (M) and evening (E) peaks. These peaks are controlled by 2 distinct circadian oscillators located in separate groups of clock neurons in the brain. To investigate the clock neurons responsible for the M and E peaks, a cell-specific gene expression system, the GAL4-UAS system, has been commonly employed. In this study, we re-examined the two-oscillator model for the M and E peaks of Drosophila by utilizing more than 50 Gal4 lines in conjunction with the UAS-period16 line, which enables the restoration of the clock function in specific cells in the period (per) null mutant background. Previous studies have indicated that the group of small ventrolateral neurons (s-LNv) is responsible for controlling the M peak, while the other group, consisting of the 5th ventrolateral neuron (5th LNv) and the three cryptochrome (CRY)-positive dorsolateral neurons (LNd), is responsible for the E peak. Furthermore, the group of posterior dorsal neurons 1 (DN1p) is thought to also contain M and E oscillators. In this study, we found that Gal4 lines directed at the same clock neuron groups can lead to different results, underscoring the fact that activity patterns are influenced by many factors. Nevertheless, we were able to confirm previous findings that the entire network of circadian clock neurons controls M and E peaks, with the lateral neurons playing a dominant role. In addition, we demonstrate that 4 to 6 CRY-positive DN1p cells are sufficient to generate M and E peaks in light-dark cycles and complex free-running rhythms in constant darkness. Ultimately, our detailed screening could serve as a catalog to choose the best Gal4 lines that can be used to rescue per in specific clock neurons.
en-copyright=
kn-copyright=
en-aut-name=SekiguchiManabu
en-aut-sei=Sekiguchi
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ReinhardNils
en-aut-sei=Reinhard
en-aut-mei=Nils
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FukudaAyumi
en-aut-sei=Fukuda
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatohShun
en-aut-sei=Katoh
en-aut-mei=Shun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=RiegerDirk
en-aut-sei=Rieger
en-aut-mei=Dirk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Helfrich-F?rsterCharlotte
en-aut-sei=Helfrich-F?rster
en-aut-mei=Charlotte
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YoshiiTaishi
en-aut-sei=Yoshii
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of W?rzburg
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of W?rzburg
kn-affil=
affil-num=6
en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of W?rzburg
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=period
kn-keyword=period
en-keyword=GAL4-UAS
kn-keyword=GAL4-UAS
en-keyword=clock neuron
kn-keyword=clock neuron
en-keyword=activity rhythm
kn-keyword=activity rhythm
en-keyword=two-oscillator model
kn-keyword=two-oscillator model
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=13
article-no=
start-page=4293
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Optimizing IoT Intrusion Detection Using Balanced Class Distribution, Feature Selection, and Ensemble Machine Learning Techniques
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Internet of Things (IoT) devices are leading to advancements in innovation, efficiency, and sustainability across various industries. However, as the number of connected IoT devices increases, the risk of intrusion becomes a major concern in IoT security. To prevent intrusions, it is crucial to implement intrusion detection systems (IDSs) that can detect and prevent such attacks. IDSs are a critical component of cybersecurity infrastructure. They are designed to detect and respond to malicious activities within a network or system. Traditional IDS methods rely on predefined signatures or rules to identify known threats, but these techniques may struggle to detect novel or sophisticated attacks. The implementation of IDSs with machine learning (ML) and deep learning (DL) techniques has been proposed to improve IDSs' ability to detect attacks. This will enhance overall cybersecurity posture and resilience. However, ML and DL techniques face several issues that may impact the models' performance and effectiveness, such as overfitting and the effects of unimportant features on finding meaningful patterns. To ensure better performance and reliability of machine learning models in IDSs when dealing with new and unseen threats, the models need to be optimized. This can be done by addressing overfitting and implementing feature selection. In this paper, we propose a scheme to optimize IoT intrusion detection by using class balancing and feature selection for preprocessing. We evaluated the experiment on the UNSW-NB15 dataset and the NSL-KD dataset by implementing two different ensemble models: one using a support vector machine (SVM) with bagging and another using long short-term memory (LSTM) with stacking. The results of the performance and the confusion matrix show that the LSTM stacking with analysis of variance (ANOVA) feature selection model is a superior model for classifying network attacks. It has remarkable accuracies of 96.92% and 99.77% and overfitting values of 0.33% and 0.04% on the two datasets, respectively. The model's ROC is also shaped with a sharp bend, with AUC values of 0.9665 and 0.9971 for the UNSW-NB15 dataset and the NSL-KD dataset, respectively.
en-copyright=
kn-copyright=
en-aut-name=MusthafaMuhammad Bisri
en-aut-sei=Musthafa
en-aut-mei=Muhammad Bisri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HudaSamsul
en-aut-sei=Huda
en-aut-mei=Samsul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KoderaYuta
en-aut-sei=Kodera
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AliMd. Arshad
en-aut-sei=Ali
en-aut-mei=Md. Arshad
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ArakiShunsuke
en-aut-sei=Araki
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MwauraJedidah
en-aut-sei=Mwaura
en-aut-mei=Jedidah
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NogamiYasuyuki
en-aut-sei=Nogami
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Green Innovation Center, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of CSE, Hajee Mohammad Danesh Science and Technology University
kn-affil=
affil-num=5
en-affil=Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology
kn-affil=
affil-num=6
en-affil=Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=intrusion detection system
kn-keyword=intrusion detection system
en-keyword=feature selection
kn-keyword=feature selection
en-keyword=class balancing
kn-keyword=class balancing
en-keyword=ensemble technique
kn-keyword=ensemble technique
en-keyword=stacked long short-term memory
kn-keyword=stacked long short-term memory
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=11
article-no=
start-page=jcs261977
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Toxicity of the model protein 3×GFP arises from degradation overload, not from aggregate formation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although protein aggregation can cause cytotoxicity, such aggregates can also form to mitigate cytotoxicity from misfolded proteins, although the nature of these contrasting aggregates remains unclear. We previously found that overproduction (op) of a three green fluorescent protein-linked protein (3×GFP) induces giant aggregates and is detrimental to growth. Here, we investigated the mechanism of growth inhibition by 3×GFP-op using non-aggregative 3×MOX-op as a control in Saccharomyces cerevisiae. The 3×GFP aggregates were induced by misfolding, and 3×GFP-op had higher cytotoxicity than 3×MOX-op because it perturbed the ubiquitin-proteasome system. Static aggregates formed by 3×GFP-op dynamically trapped Hsp70 family proteins (Ssa1 and Ssa2 in yeast), causing the heat-shock response. Systematic analysis of mutants deficient in the protein quality control suggested that 3×GFP-op did not cause a critical Hsp70 depletion and aggregation functioned in the direction of mitigating toxicity. Artificial trapping of essential cell cycle regulators into 3×GFP aggregates caused abnormalities in the cell cycle. In conclusion, the formation of the giant 3×GFP aggregates itself is not cytotoxic, as it does not entrap and deplete essential proteins. Rather, it is productive, inducing the heat-shock response while preventing an overload to the degradation system.
en-copyright=
kn-copyright=
en-aut-name=NambaShotaro
en-aut-sei=Namba
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriyaHisao
en-aut-sei=Moriya
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Aggregation
kn-keyword=Aggregation
en-keyword=Fluorescent protein
kn-keyword=Fluorescent protein
en-keyword=Hsp70
kn-keyword=Hsp70
en-keyword=Overproduction
kn-keyword=Overproduction
en-keyword=Toxicity
kn-keyword=Toxicity
en-keyword=Yeast
kn-keyword=Yeast
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=13
article-no=
start-page=e34206
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240715
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Resolvin D2-induced reparative dentin and pulp stem cells after pulpotomy in a rat model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Vital pulp therapy (VPT) is performed to preserve dental pulp. However, the biocompatibility of the existing materials is of concern. Therefore, novel materials that can induce pulp healing without adverse effects need to be developed. Resolvin D2 (RvD2), one of specialized pro-resolving mediators, can resolve inflammation and promote the healing of periapical lesions. Therefore, RvD2 may be suitable for use in VPT. In the present study, we evaluated the efficacy of RvD2 against VPT using in vivo and in vitro models.
Methods: First molars of eight-week-old male Sprague?Dawley rats were used for pulpotomy. They were then divided into three treatment groups: RvD2, phosphate-buffered saline, and calcium hydroxide groups. Treatment results were assessed using radiological, histological, and immunohistochemical (GPR18, TNF-α, Ki67, VEGF, TGF-β, CD44, CD90, and TRPA1) analyses. Dental pulp-derived cells were treated with RvD2 in vitro and analyzed using cell-proliferation and cell-migration assays, real-time PCR (Gpr18, Tnf-α, Il-1β, Tgf-β, Vegf, Nanog, and Trpa1), ELISA (VEGF and TGF-β), immunocytochemistry (TRPA1), and flow cytometry (dental pulp stem cells: DPSCs).
Results: The formation of calcified tissue in the pulp was observed in the RvD2 and calcium hydroxide groups. RvD2 inhibited inflammation in dental pulp cells. RvD2 promoted cell proliferation and migration and the expression of TGF-β and VEGF in vitro and in vivo. RvD2 increased the number of DPSCs. In addition, RvD2 suppressed TRPA1 expression as a pain receptor.
Conclusion: RvD2 induced the formation of reparative dentin, anti-inflammatory effects, and decreased pain, along with the proliferation of DPSCs via the expression of VEGF and TGF-β, on the pulp surface in pulpotomy models.
en-copyright=
kn-copyright=
en-aut-name=YonedaMitsuhiro
en-aut-sei=Yoneda
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IdeguchiHidetaka
en-aut-sei=Ideguchi
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraShin
en-aut-sei=Nakamura
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AriasZulema
en-aut-sei=Arias
en-aut-mei=Zulema
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OnoMitsuaki
en-aut-sei=Ono
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University
kn-affil=
affil-num=4
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Dental pulp
kn-keyword=Dental pulp
en-keyword=Regeneration
kn-keyword=Regeneration
en-keyword=Pulp-capping agents
kn-keyword=Pulp-capping agents
en-keyword=Specialized pro-resolving mediators
kn-keyword=Specialized pro-resolving mediators
en-keyword=Resolvin D2
kn-keyword=Resolvin D2
en-keyword=Calcification
kn-keyword=Calcification
en-keyword=Cytokine
kn-keyword=Cytokine
en-keyword=TRPA1
kn-keyword=TRPA1
en-keyword=Animal model
kn-keyword=Animal model
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2400078
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240704
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unabsorbed Fecal Fat Content Correlates with a Reduction of Immunoglobulin a Coating of Gut Bacteria in High‐Lard Diet‐Fed Mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Scope: Immunoglobulin A (IgA) selectively coats gut bacteria and contributes to regulatory functions in gastrointestinal inflammation and glucose metabolism. Excess intake of lard leads to decrease in the IgA coating of gut bacteria, although the underlying mechanisms remain unknown. This study validates how unabsorbed fat derived from a high-lard diet in the gut affects the IgA coating of bacteria, as assessed in mouse models using three types of dietary fat (lard, medium-, and long-chain triglycerides [MLCTs], and medium-chain triglycerides [MCTs]) exhibiting different digestibilities.
Methods and results: C57BL/6J mice are maintained on diets containing lard, MLCTs, or MCTs at 7% or 30% w/w for 10 weeks (n = 6 per group). The fecal fatty acid concentration is measured to quantify unabsorbed fat content. The ratio of IgA-coated bacteria to total bacteria (IgA coating ratio) in the feces is measured by flow cytometry. Compared to lard-fed mice, MLCT- and MCT-fed mice exhibit lower fecal concentrations of palmitic acid, stearic acid, and oleic acid and higher IgA coating ratios at both 7% and 30% dietary fat, and these parameters exhibit significant negative correlations.
Conclusion: Unabsorbed fat content in the gut may result in attenuated IgA coating of bacteria in high-lard diet-fed mice.
en-copyright=
kn-copyright=
en-aut-name=KatsumataEmiko
en-aut-sei=Katsumata
en-aut-mei=Emiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsurutaTakeshi
en-aut-sei=Tsuruta
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SonoyamaKei
en-aut-sei=Sonoyama
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaTakashi
en-aut-sei=Yoshida
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SasakiMio
en-aut-sei=Sasaki
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TeraokaMao
en-aut-sei=Teraoka
en-aut-mei=Mao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WangTianyang
en-aut-sei=Wang
en-aut-mei=Tianyang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishinoNaoki
en-aut-sei=Nishino
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Research Faculty of Agriculture, Hokkaido University
kn-affil=
affil-num=4
en-affil=TAIYO YUSHI Corporation
kn-affil=
affil-num=5
en-affil=TAIYO YUSHI Corporation
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=gut bacteria
kn-keyword=gut bacteria
en-keyword=immunoglobulin A
kn-keyword=immunoglobulin A
en-keyword=lard
kn-keyword=lard
END
start-ver=1.4
cd-journal=joma
no-vol=35
cd-vols=
no-issue=4
article-no=
start-page=469
end-page=472
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202407
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Errors in the Calculation of the Population Attributable Fraction
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=One of the common errors in the calculation of the population attributable fraction (PAF) is the use of an adjusted risk ratio in the Levin formula. In this article, we discuss the errors visually using wireframes by varying the standardized mortality ratio (SMR) and associational risk ratio (aRR) when the prevalence of exposure is fixed. When SMR >1 and SMR > aRR, the absolute bias is positive, and its magnitude increases as the difference between SMR and aRR increases. By contrast, when aRR > SMR > 1, the absolute bias is negative and its magnitude is relatively small. Moreover, when SMR > aRR, the relative bias is larger than one, whereas when SMR < aRR, the relative bias is smaller than one. Although the target population of the PAF is the total population, the target of causation of the PAF is not the total population but the exposed group.
en-copyright=
kn-copyright=
en-aut-name=SuzukiEtsuji
en-aut-sei=Suzuki
en-aut-mei=Etsuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoEiji
en-aut-sei=Yamamoto
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Okayama University of Science
kn-affil=
en-keyword=Attributable fraction
kn-keyword=Attributable fraction
en-keyword=Bias
kn-keyword=Bias
en-keyword=Causality
kn-keyword=Causality
en-keyword=Counterfactual model
kn-keyword=Counterfactual model
en-keyword=Potential outcomes
kn-keyword=Potential outcomes
END
start-ver=1.4
cd-journal=joma
no-vol=820
cd-vols=
no-issue=
article-no=
start-page=137598
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240118
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Neurogenesis impairment with glial activation in the hippocampus-connected regions of intracerebroventricular streptozotocin-injected mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Adult neurogenesis in the hippocampus and subventricular zone (SVZ) is impaired by intracerebroventricular administration of streptozotocin (icv-STZ) to rodents. Although neural cells in the several brain regions which connect with the hippocampus or SVZ is thought to be involved in the adult neurogenesis, few studies have investigated morphological alterations of glial cells in these areas. The present study revealed that icv-STZ induces reduction of neural progenitor cells and a dramatic increase in reactive astrocytes and microglia especially in the hippocampus and various hippocampus-connected brain areas. In contrast, there was no significant neuronal damage excluding demyelination of the stria medullaris. The results indicate the hippocampal neurogenesis impairment of this model might be occurred by activated glial cells in the hippocampus, or hippocampus-connected regions.
en-copyright=
kn-copyright=
en-aut-name=MasaiKaori
en-aut-sei=Masai
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakayamaYuta
en-aut-sei=Nakayama
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShinKotaro
en-aut-sei=Shin
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugaharaChiaki
en-aut-sei=Sugahara
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyazakiIkuko
en-aut-sei=Miyazaki
en-aut-mei=Ikuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YasuharaTakao
en-aut-sei=Yasuhara
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=DateIsao
en-aut-sei=Date
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AsanumaMasato
en-aut-sei=Asanuma
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Medical Neurobiology, Okayama University Medical School
kn-affil=
affil-num=3
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Streptozotocin
kn-keyword=Streptozotocin
en-keyword=Adult neurogenesis
kn-keyword=Adult neurogenesis
en-keyword=Astrocyte
kn-keyword=Astrocyte
en-keyword=Microglia
kn-keyword=Microglia
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=12
article-no=
start-page=6648
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240617
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Local E-rhBMP-2/β-TCP Application Rescues Osteocyte Dendritic Integrity and Reduces Microstructural Damage in Alveolar Bone Post-Extraction in MRONJ-like Mouse Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/beta-Tricalcium phosphate (E-rhBMP-2/beta-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/beta-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/beta-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/beta-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ.
en-copyright=
kn-copyright=
en-aut-name=DangAnh Tuan
en-aut-sei=Dang
en-aut-mei=Anh Tuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnoMitsuaki
en-aut-sei=Ono
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TosaIkue
en-aut-sei=Tosa
en-aut-mei=Ikue
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaraEmilio Satoshi
en-aut-sei=Hara
en-aut-mei=Emilio Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MikaiAkihiro
en-aut-sei=Mikai
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KitagawaWakana
en-aut-sei=Kitagawa
en-aut-mei=Wakana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YonezawaTomoko
en-aut-sei=Yonezawa
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KubokiTakuo
en-aut-sei=Kuboki
en-aut-mei=Takuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=medication-related osteonecrosis of the jaw
kn-keyword=medication-related osteonecrosis of the jaw
en-keyword=BMP-2
kn-keyword=BMP-2
en-keyword=osteocyte dendritic network
kn-keyword=osteocyte dendritic network
en-keyword=microcrack accumulation
kn-keyword=microcrack accumulation
en-keyword=bone remodeling
kn-keyword=bone remodeling
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=12
article-no=
start-page=1888
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240614
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prognostic Implications of Insulin Resistance in Heart Failure in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Diabetes mellitus (DM) is a major risk and prognostic factor for heart failure (HF). Insulin resistance (IR) is an important component of DM, but the relationship between IR and HF prognosis has not yet been established across a wide variety of HF populations. We retrospectively evaluated the relationship between IR and clinical outcomes of HF patients at our hospital between 2017 and 2021. IR was defined as a homeostatic model assessment of IR (HOMA-IR) index >= 2.5, calculated from fasting blood glucose and insulin concentrations. The primary outcome was a composite of all-cause death and hospitalisation for HF (HHF). Among 682 patients included in the analyses, 337 (49.4%) had IR. The median age was 70 [interquartile range (IQR): 59-77] years old, and 66% of the patients were men. Among the patients, 41% had a left ventricular ejection fraction below 40%, and 32% had DM. The median follow-up period was 16.5 [IQR: 4.4-37.3] months. IR was independently associated with the primary outcome (HR: 1.91, 95% CI: 1.39-2.62, p < 0.0001), death (hazard ratio [HR]: 1.86, 95% confidence interval [CI]: 1.28-2.83, p < 0.01), and HHF (HR: 1.91, 95% CI: 1.28-2.83, p < 0.01). HOMA-IR is an independent prognostic factor of HF in a wide variety of HF populations.
en-copyright=
kn-copyright=
en-aut-name=IwasakiKeiichiro
en-aut-sei=Iwasaki
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakayaYoichi
en-aut-sei=Takaya
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TodaHironobu
en-aut-sei=Toda
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=heart failure
kn-keyword=heart failure
en-keyword=insulin resistance
kn-keyword=insulin resistance
en-keyword=HOMA-IR
kn-keyword=HOMA-IR
en-keyword=diabetes mellitus
kn-keyword=diabetes mellitus
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=2926
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240408
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The capability of focus control has been central to optical technologies that require both high temporal and spatial resolutions. However, existing varifocal lens schemes are commonly limited to the response time on the microsecond timescale and share the fundamental trade-off between the response time and the tuning power. Here, we propose an ultrafast holographic focusing method enabled by translating the speed of a fast 1D beam scanner into the speed of the complex wavefront modulation of a relatively slow 2D spatial light modulator. Using a pair of a digital micromirror device and a resonant scanner, we demonstrate an unprecedented refresh rate of focus control of 31?MHz, which is more than 1,000 times faster than the switching rate of a digital micromirror device. We also show that multiple micrometer-sized focal spots can be independently addressed in a range of over 1?MHz within a large volume of 5?mm × 5?mm × 5.5?mm, validating the superior spatiotemporal characteristics of the proposed technique ? high temporal and spatial precision, high tuning power, and random accessibility in a three-dimensional space. The demonstrated scheme offers a new route towards three-dimensional light manipulation in the 100?MHz regime.
en-copyright=
kn-copyright=
en-aut-name=ShibukawaAtsushi
en-aut-sei=Shibukawa
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiguchiRyota
en-aut-sei=Higuchi
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SongGookho
en-aut-sei=Song
en-aut-mei=Gookho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MikamiHideharu
en-aut-sei=Mikami
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=JangMooseok
en-aut-sei=Jang
en-aut-mei=Mooseok
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Research Institute for Electronic Science, Hokkaido University
kn-affil=
affil-num=2
en-affil=Research Institute for Electronic Science, Hokkaido University
kn-affil=
affil-num=3
en-affil=Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology
kn-affil=
affil-num=4
en-affil=Research Institute for Electronic Science, Hokkaido University
kn-affil=
affil-num=5
en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=41
cd-vols=
no-issue=3
article-no=
start-page=281
end-page=289
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240408
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Volume X-Ray Micro-Computed Tomography Analysis of the Early Cephalized Central Nervous System in a Marine Flatworm, Stylochoplana pusilla
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Platyhelminthes are a phylum of simple bilaterian invertebrates with prototypic body systems. Compared with non-bilaterians such as cnidarians, the bilaterians are likely to exhibit integrated free-moving behaviors, which require a concentrated nervous system “brain” rather than the distributed nervous system of radiatans. Marine flatworms have an early cephalized ‘central’ nervous system compared not only with non-bilaterians but also with parasitic flatworms or freshwater planarians. In this study, we used the marine flatworm Stylochoplana pusilla as an excellent model organism in Platyhelminthes because of the early cephalized central nervous system. Here, we investigated the three-dimensional structures of the flatworm central nervous system by the use of X-ray micro-computed tomography (micro-CT) in a synchrotron radiation facility. We found that the obtained tomographic images were sufficient to discriminate some characteristic structures of the nervous system, including nerve cords around the cephalic ganglion, mushroom body-like structures, and putative optic nerves forming an optic commissure-like structure. Through the micro-CT imaging, we could obtain undistorted serial section images, permitting us to visualize precise spatial relationships of neuronal subpopulations and nerve tracts. 3-D micro-CT is very effective in the volume analysis of the nervous system at the cellular level; the methodology is straightforward and could be applied to many other non-model organisms.
en-copyright=
kn-copyright=
en-aut-name=IkenagaTakanori
en-aut-sei=Ikenaga
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KobayashiAoshi
en-aut-sei=Kobayashi
en-aut-mei=Aoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakeuchiAkihisa
en-aut-sei=Takeuchi
en-aut-mei=Akihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=UesugiKentaro
en-aut-sei=Uesugi
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MaezawaTakanobu
en-aut-sei=Maezawa
en-aut-mei=Takanobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShibataNorito
en-aut-sei=Shibata
en-aut-mei=Norito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SakamotoTatsuya
en-aut-sei=Sakamoto
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakamotoHirotaka
en-aut-sei=Sakamoto
en-aut-mei=Hirotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Science and Engineering, Kagoshima University
kn-affil=
affil-num=2
en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Japan Synchrotron Radiation Research Institute/SPring-8
kn-affil=
affil-num=4
en-affil=Japan Synchrotron Radiation Research Institute/SPring-8
kn-affil=
affil-num=5
en-affil=Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College
kn-affil=
affil-num=6
en-affil=Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College
kn-affil=
affil-num=7
en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=bilaterians
kn-keyword=bilaterians
en-keyword=micro-CT scan
kn-keyword=micro-CT scan
en-keyword=central nervous system
kn-keyword=central nervous system
en-keyword=Platyhelminthes
kn-keyword=Platyhelminthes
en-keyword=marine flatworms
kn-keyword=marine flatworms
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=25
article-no=
start-page=e2322765121
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Argonaute-independent, Dicer-dependent antiviral defense against RNA viruses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense.
en-copyright=
kn-copyright=
en-aut-name=SatoYukiyo
en-aut-sei=Sato
en-aut-mei=Yukiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=RNAi
kn-keyword=RNAi
en-keyword=Argonaute
kn-keyword=Argonaute
en-keyword=Dicer
kn-keyword=Dicer
en-keyword=fungal virus
kn-keyword=fungal virus
en-keyword=chestnut blight
kn-keyword=chestnut blight
END
start-ver=1.4
cd-journal=joma
no-vol=44
cd-vols=
no-issue=6
article-no=
start-page=2497
end-page=2509
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240531
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Senescent Fibroblasts Potentiate Peritoneal Metastasis of Diffuse-type Gastric Cancer Cells via IL-8?mediated Crosstalk
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/Aim: Diffuse-type gastric cancer (DGC) often forms peritoneal metastases, leading to poor prognosis. However, the underlying mechanism of DGC-mediated peritoneal metastasis is poorly understood. DGC is characterized by desmoplastic stroma, in which heterogeneous cancer-associated fibroblasts (CAFs), including myofibroblastic CAFs (myCAFs) and senescent CAFs (sCAFs), play a crucial role during tumor progression. This study investigated the CAF subtypes induced by GC cells and the role of sCAFs in peritoneal metastasis of DGC cells. Materials and Methods: Conditioned medium of human DGC cells (KATOIII, NUGC-4) and human intestinal-type GC (IGC) cells (MKN-7, N87) was used to induce CAFs. CAF subtypes were evaluated by analyzing the expression of α?smooth muscle actin (α-SMA), senescence-associated β-galactosidase (SA-β-gal), and p16 in human normal fibroblasts (GF, FEF-3). A cytokine array was used to explore the underlying mechanism of GC-induced CAF subtype development. The role of sCAFs in peritoneal metastasis of DGC cells was analyzed using a peritoneally metastatic DGC tumor model. The relationships between GC subtypes and CAF-related markers were evaluated using publicly available datasets. Results: IGC cells significantly induced α-SMA+ myCAFs by secreting transforming growth factor?β, whereas DGC cells induced SA-β-gal+/p16+ sCAFs by secreting interleukin (IL)-8. sCAFs further secreted IL-8 to promote DGC cell migration. In vivo experiments demonstrated that co-inoculation of sCAFs significantly enhanced peritoneal metastasis of NUGC-4 cells, which was attenuated by administration of the IL-8 receptor antagonist navarixin. p16 and IL-8 expression was significantly associated with poor prognosis of DGC patients. Conclusion: sCAFs promote peritoneal metastasis of DGC via IL-8?mediated crosstalk.
en-copyright=
kn-copyright=
en-aut-name=LIYUNCHENG
en-aut-sei=LI
en-aut-mei=YUNCHENG
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TAZAWAHIROSHI
en-aut-sei=TAZAWA
en-aut-mei=HIROSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NAGAIYASUO
en-aut-sei=NAGAI
en-aut-mei=YASUO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FUJITASHUTO
en-aut-sei=FUJITA
en-aut-mei=SHUTO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OKURATOMOHIRO
en-aut-sei=OKURA
en-aut-mei=TOMOHIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SHOJIRYOHEI
en-aut-sei=SHOJI
en-aut-mei=RYOHEI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YAMADAMOTOHIKO
en-aut-sei=YAMADA
en-aut-mei=MOTOHIKO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KIKUCHISATORU
en-aut-sei=KIKUCHI
en-aut-mei=SATORU
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KURODASHINJI
en-aut-sei=KURODA
en-aut-mei=SHINJI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OHARATOSHIAKI
en-aut-sei=OHARA
en-aut-mei=TOSHIAKI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NOMAKAZUHIRO
en-aut-sei=NOMA
en-aut-mei=KAZUHIRO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NISHIZAKIMASAHIKO
en-aut-sei=NISHIZAKI
en-aut-mei=MASAHIKO
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KAGAWASHUNSUKE
en-aut-sei=KAGAWA
en-aut-mei=SHUNSUKE
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FUJIWARATOSHIYOSHI
en-aut-sei=FUJIWARA
en-aut-mei=TOSHIYOSHI
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Gastric cancer
kn-keyword=Gastric cancer
en-keyword=peritoneal metastasis
kn-keyword=peritoneal metastasis
en-keyword=senescent fibroblast
kn-keyword=senescent fibroblast
en-keyword=IL-8
kn-keyword=IL-8
en-keyword=CXCR1/2
kn-keyword=CXCR1/2
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=11
article-no=
start-page=e31872
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240615
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bacterial DNA and serum IgG antibody titer assays for assessing infection of human-pathogenic and dog-pathogenic Porphyromonas species in dogs
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Periodontal disease is highly prevalent in both humans and dogs. Although there have been reports of cross-infection of periodontopathic bacteria, methods for assessing it have yet to be established. The actual status of cross-infection remains to be seen. The purpose of this study was to evaluate the utility of bacterial DNA and serum immunoglobulin G (IgG) antibody titer assays to assess infection of human-pathogenic and dog-pathogenic Porphyromonas species in dogs. Four experimental beagles were used for establishing methods. Sixty-six companion dogs at veterinary clinics visiting for treatment and prophylaxis of periodontal disease were used and divided into healthy, gingivitis, and periodontitis groups. Periodontal pathogens such as Porphyromonas gingivalis and Porphyromonas gulae were investigated as target bacteria. DNA levels of both bacteria were measured using species-specific primers designed for real-time polymerase chain reaction (PCR). Serum IgG titers of both bacteria were measured by enzyme-linked immunosorbent assay (ELISA).
PCR primers were confirmed to have high sensitivity and specificity. However, there was no relationship between the amount of bacterial DNA and the severity of the periodontal disease. In addition, dogs with periodontitis had higher IgG titers against both bacteria compared to dogs in the healthy and gingivitis groups; there was cross-reactivity between the two bacteria. Receiver operating characteristic (ROC) analysis of IgG titers against both bacteria showed high sensitivity (>90 %) and specificity (>75 %). Since both bacteria were distinguished by DNA assays, the combination of these assays may be useful in the evaluation of cross-infection.
en-copyright=
kn-copyright=
en-aut-name=Tai-TokuzenMasako
en-aut-sei=Tai-Tokuzen
en-aut-mei=Masako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ItoTakashi
en-aut-sei=Ito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TamuraKazuya
en-aut-sei=Tamura
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirayamaHaruko
en-aut-sei=Hirayama
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaHirohito
en-aut-sei=Ogawa
en-aut-mei=Hirohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakamuraShin
en-aut-sei=Nakamura
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkuboKeisuke
en-aut-sei=Okubo
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MominokiKatsumi
en-aut-sei=Mominoki
en-aut-mei=Katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Center for Collaborative Research, Department of Oral Science and Translational Research, Nova Southeastern University
kn-affil=
affil-num=7
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Comprehensive Dentistry, The Center for Graduate Medical Education (Dental Division), Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Cross infection
kn-keyword=Cross infection
en-keyword=Human and dog
kn-keyword=Human and dog
en-keyword=Periodontal disease
kn-keyword=Periodontal disease
en-keyword=Porphyromonas gingivalis
kn-keyword=Porphyromonas gingivalis
en-keyword=Porphyromonas gulae
kn-keyword=Porphyromonas gulae
en-keyword=Detection assay
kn-keyword=Detection assay
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=5938
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240311
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Palaeoproteomic investigation of an ancient human skeleton with abnormal deposition of dental calculus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Detailed investigation of extremely severe pathological conditions in ancient human skeletons is important as it could shed light on the breadth of potential interactions between humans and disease etiologies in the past. Here, we applied palaeoproteomics to investigate an ancient human skeletal individual with severe oral pathology, focusing our research on bacterial pathogenic factors and host defense response. This female skeleton, from the Okhotsk period (i.e., fifth to thirteenth century) of Northern Japan, poses relevant amounts of abnormal dental calculus deposition and exhibits oral dysfunction due to severe periodontal disease. A shotgun mass-spectrometry analysis identified 81 human proteins and 15 bacterial proteins from the calculus of the subject. We identified two pathogenic or bioinvasive proteins originating from two of the three "red complex" bacteria, the core species associated with severe periodontal disease in modern humans, as well as two additional bioinvasive proteins of periodontal-associated bacteria. Moreover, we discovered defense response system-associated human proteins, although their proportion was mostly similar to those reported in ancient and modern human individuals with lower calculus deposition. These results suggest that the bacterial etiology was similar and the host defense response was not necessarily more intense in ancient individuals with significant amounts of abnormal dental calculus deposition.
en-copyright=
kn-copyright=
en-aut-name=Uchida-FukuharaYoko
en-aut-sei=Uchida-Fukuhara
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShimamuraShigeru
en-aut-sei=Shimamura
en-aut-mei=Shigeru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SawafujiRikai
en-aut-sei=Sawafuji
en-aut-mei=Rikai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishiuchiTakumi
en-aut-sei=Nishiuchi
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YonedaMinoru
en-aut-sei=Yoneda
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshidaHajime
en-aut-sei=Ishida
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumuraHirofumi
en-aut-sei=Matsumura
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsutayaTakumi
en-aut-sei=Tsutaya
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
kn-affil=
affil-num=3
en-affil=Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI)
kn-affil=
affil-num=4
en-affil=Research Center for Experimental Modeling of Human Disease, Kanazawa University
kn-affil=
affil-num=5
en-affil=The University Museum, The University of Tokyo
kn-affil=
affil-num=6
en-affil=Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus
kn-affil=
affil-num=7
en-affil=School of Health Sciences, Sapporo Medical University
kn-affil=
affil-num=8
en-affil=Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI)
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=
article-no=
start-page=1371307
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240528
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dissection of the signal transduction machinery responsible for the lysyl oxidase-like 4-mediated increase in invasive motility in triple-negative breast cancer cells: mechanistic insight into the integrin-β1-NF-κB-MMP9 axis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-beta 1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-beta 1 hastens the invasive outgrowth of TNBC cells at the molecular level.
Methods LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively.
Results Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-kappa B (NF-kappa B). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-beta activated kinase 1 (TAK1) were required for the activation of NF-kappa B through I kappa beta kinase kinase (IKK alpha/beta) phosphorylation.
Conclusion Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-beta 1-TRAF4-TAK1-IKK alpha/beta-I kappa beta alpha-NF-kappa B-MMP9, is crucial for TNBC cell invasiveness.
en-copyright=
kn-copyright=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Kasano-CamonesCarlos Ichiro
en-aut-sei=Kasano-Camones
en-aut-mei=Carlos Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NinomiyaKazumi
en-aut-sei=Ninomiya
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoKen-Ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=RumaI. Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I. Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SumardikaI. Wayan
en-aut-sei=Sumardika
en-aut-mei=I. Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=6
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=7
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=13
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=14
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=15
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Microbiology, Tokushima Bunri University
kn-affil=
affil-num=17
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=18
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=19
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=20
en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University
kn-affil=
affil-num=21
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=22
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=invasion
kn-keyword=invasion
en-keyword=lysyl oxidase
kn-keyword=lysyl oxidase
en-keyword=NF-κB
kn-keyword=NF-κB
en-keyword=MMP9
kn-keyword=MMP9
END
start-ver=1.4
cd-journal=joma
no-vol=2024
cd-vols=
no-issue=
article-no=
start-page=6505595
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240528
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Circadian Rhythms Fluctuate the Treatment Effects of Intravesical Treatments on Rat Urinary Frequency Models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives. It is still not clear how the intravesical instillation of drugs affects rat urinary frequency. This study aimed to examine the dynamics of intravesical treatments' treatment effect on rat urinary frequency models by real-time and extended monitoring using a novel continuous urination monitoring system. Methods. Nine eleven-week-old female Wistar rats were divided into three groups to receive intravesical instillation of 0.1% acetic acid (AA), 1.0% AA, or phosphate-buffered saline (PBS). Thirty minutes later, these drugs were voided, and rats were moved to a continuous urination monitoring system, UM-100. UM-100 monitored rat urination quantitatively and continuously for 24 hours. Rats were then euthanized, and histopathologic examinations using a damage score validated the severity of bladder inflammation. We used nine additional rats to determine the treatment effect of various drugs against the urinary frequency. These rats were also treated with 1.0% AA in the same way and divided into three groups (n = 3 each) to receive intravesical instillation of lidocaine, silver nitrate (AgNO3), or dimethyl sulfoxide (DMSO), respectively. Thirty minutes later, rats were catheterized again and moved to the UM-100, and their voiding was monitored for 24 hours. Results. Intravesical instillation of AA increased the urinary frequency and decreased the mean voided volume (VV) in a concentration-dependent manner, with statistical significance at a concentration of 1.0% (urinary frequency; p = 0.0007 , mean VV; p = 0.0032 , respectively) compared with PBS. Histopathological analysis of these models demonstrated a significantly higher damage score of bladder mucosa in both 0.1% AA and 1.0% AA compared with PBS, with the severity in concordance with the clinical severity of urinary frequency (0.1% AA: p < 0.0001 , 1.0% AA: p < 0.0001 ). Moreover, intravesical instillation of lidocaine, AgNO3, and DMSO decreased the urinary frequency. Continuous monitoring with UM-100 also demonstrated that the treatment effect of these intravesically instilled drugs occurred only at night. Conclusions. The extended monitoring of rat urination by UM-100 revealed a significant fluctuation in the treatment effect of intravesically instilled drugs between day and night. These findings may help establish novel therapies for urinary frequency.
en-copyright=
kn-copyright=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagasakiNaoya
en-aut-sei=Nagasaki
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=WatanabeToyohiko
en-aut-sei=Watanabe
en-aut-mei=Toyohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=WatanabeMasami
en-aut-sei=Watanabe
en-aut-mei=Masami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=109
cd-vols=
no-issue=20
article-no=
start-page=L201103
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240503
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Realization of nodal-ring semimetal in pressurized black phosphorus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Topological semimetals are intriguing targets for exploring unconventional physical properties of massless fermions. Among them, nodal-line or nodal-ring semimetals have attracted attention for their unique one-dimensional band contact in momentum space and resulting nontrivial quantum phenomena. By field angular resolved magnetotransport measurements and theoretical calculations, we show that pressurized black phosphorus (BP) is an ideal nodal-ring semimetal with weak spin-orbit coupling, which has a sole and carrier density-tunable nodal ring isolated from other trivial bands. We also revealed that the large magnetoresistance effect and its field-angular dependence in semimetallic BP are due to highly anisotropic relaxation time. Our results establish pressurized BP as an elemental model material for exploring nontrivial quantum properties unique to the topological nodal ring.
en-copyright=
kn-copyright=
en-aut-name=AkibaKazuto
en-aut-sei=Akiba
en-aut-mei=Kazuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AkahamaYuichi
en-aut-sei=Akahama
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TokunagaMasashi
en-aut-sei=Tokunaga
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiTatsuo C.
en-aut-sei=Kobayashi
en-aut-mei=Tatsuo C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Science, University of Hyogo
kn-affil=
affil-num=3
en-affil=The Institute for Solid State Physics, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=295
end-page=300
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Calcification of a Hydrophilic Acrylic Intraocular Lens after Glaucoma Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A Japanese woman in her 70s was referred to our hospital for the evaluation and treatment of high intraocular pressure (IOP) in her right eye. She had undergone bilateral cataract surgeries and the insertion of hydrophilic acrylic intraocular lenses (IOLs). We performed trabeculotomy and trabeculectomy to lower her right IOP; thereafter, a circular opacity was observed on the right eye’s IOL surface. We removed the right IOL because that eye’s vision had decreased due to IOL opacification. The analysis of the removed IOL revealed that the main opacity component was calcium phosphate. This is the first post-glaucoma-surgery IOL calcification case report.
en-copyright=
kn-copyright=
en-aut-name=OkamotoSara
en-aut-sei=Okamoto
en-aut-mei=Sara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShiodeYusuke
en-aut-sei=Shiode
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KimuraShuhei
en-aut-sei=Kimura
en-aut-mei=Shuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HosokawaMio
en-aut-sei=Hosokawa
en-aut-mei=Mio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatobaRyo
en-aut-sei=Matoba
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KanzakiYuki
en-aut-sei=Kanzaki
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KindoHiroya
en-aut-sei=Kindo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MoritaTetsuro
en-aut-sei=Morita
en-aut-mei=Tetsuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TsujiAkihiro
en-aut-sei=Tsuji
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TakahashiKosuke
en-aut-sei=Takahashi
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MorizaneYuki
en-aut-sei=Morizane
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Fukuyama City Hospital
kn-affil=
affil-num=10
en-affil=Fukuyama City Hospital
kn-affil=
affil-num=11
en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=intraocular lens
kn-keyword=intraocular lens
en-keyword=IOL
kn-keyword=IOL
en-keyword=IOL calcification
kn-keyword=IOL calcification
en-keyword=hydrophilic acrylic IOL
kn-keyword=hydrophilic acrylic IOL
en-keyword=glaucoma surgery
kn-keyword=glaucoma surgery
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=281
end-page=284
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spontaneous Bilateral Pneumothorax in a Patient with Anorexia Nervosa: The Management of Prolonged Postoperative Air Leakage
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 24-year-old Japanese female with anorexia nervosa presented to our hospital for bilateral pneumothorax, and 12-Fr thoracostomy catheters were inserted into the bilateral pleural cavities. On hospital day 9, a thoracoscopic bullectomy was performed. However, air leakage relapsed on both sides on postoperative day 1. The air leakage on the right side was particularly persistent, and we switched the drainage to a Heimlich valve. Both lungs expanded gradually and the chest tube was removed on postoperative day 19. Passive pleural drainage might be an option for prolonged air leakage after a bullectomy in patients with anorexia nervosa.
en-copyright=
kn-copyright=
en-aut-name=OkadaKazuhiro
en-aut-sei=Okada
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MakiYuho
en-aut-sei=Maki
en-aut-mei=Yuho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsubaraKei
en-aut-sei=Matsubara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HiranoYutaka
en-aut-sei=Hirano
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsuuraMotoki
en-aut-sei=Matsuura
en-aut-mei=Motoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=4
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=5
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
en-keyword=spontaneous pneumothorax
kn-keyword=spontaneous pneumothorax
en-keyword=anorexia nervosa
kn-keyword=anorexia nervosa
en-keyword=Heimlich valve
kn-keyword=Heimlich valve
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=271
end-page=279
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Humidified High-Flow Nasal Cannula Oxygen Therapy with a Pulmonary Infection Control Window as a Ventilation Switching Indication in Combination with Atomizing Inhalation of Terbutaline on the Lung Function of Patients with Acute Exacerbation of COPD
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated how humidified high-flow nasal cannula oxygen therapy (HFNC) with a pulmonary infection control (PIC) window as a ventilation switching indication in combination with atomizing inhalation of terbutaline affects the lung function of patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). We examined 140 hospitalized AECOPD patients randomized to control and observation groups. Conventional supportive therapy and invasive mechanical ventilation with tracheal intubation were conducted in both groups, with a PIC window as the indication for ventilation switching. Noninvasive positive pressure ventilation (NIPPV) plus atomizing inhalation of terbutaline was used in the control group. In the observation group, HFNC combined with atomizing inhalation of terbutaline was used. Compared to the control group, after 48-hr treatment and treatment completion, the observation group had significantly increased levels of lung function indicators (maximal voluntary ventilation [MVV] plus forced vital capacity [FVC], p<0.05) and oxygen metabolism indicators (arterial oxygen partial pressure [PaO2], arterial oxygen content [CaO2], and oxygenation index, p<0.05). The comparison of the groups revealed that the levels of airway remodeling indicators (matrix metalloproteinase-2 [MMP-2], tissue inhibitor of metalloproteinase 2 [TIMP-2] plus MMP-9) and inflammatory indicators (interferon gamma [IFN-γ] together with interleukin-17 [IL-17], IL-10 and IL-4) were significantly lower after 48 h of treatment as well as after treatment completion (both p<0.05). These results demonstrate that HFNC with a PIC window as the indication for ventilation switching combined with atomizing inhalation of terbutaline can relieve the disorder of oxygen metabolism and correct airway hyper-reactivity.
en-copyright=
kn-copyright=
en-aut-name=YeMengjiao
en-aut-sei=Ye
en-aut-mei=Mengjiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhangRenwei
en-aut-sei=Zhang
en-aut-mei=Renwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine
kn-affil=
affil-num=2
en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine
kn-affil=
en-keyword=chronic obstructive pulmonary disease
kn-keyword=chronic obstructive pulmonary disease
en-keyword=inhalation
kn-keyword=inhalation
en-keyword=oxygen therapy
kn-keyword=oxygen therapy
en-keyword=pulmonary function
kn-keyword=pulmonary function
en-keyword=ventilation
kn-keyword=ventilation
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=259
end-page=270
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Role of the Lipid Profile and Oxidative Stress in Fatigue, Sleep Disorders and Cognitive Impairment in Patients with Multiple Sclerosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The aim of this study is to investigate the relationship of the lipid profile, dysfunctional high-density lipoprotein, ischaemia-modified albumin and thiol?disulfide homeostasis with cognitive impairment, fatigue and sleep disorders in patients with multiple sclerosis. The cognitive functions of patients were evaluated with the Brief International Cognitive Assessment for Multiple Sclerosis battery. Fatigue was evaluated with the Fatigue Severity Scale and the Fatigue Impact Scale. The Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale were used to assess patients’ sleep disturbance. Peripheral blood samples were collected, and lipid levels and myeloperoxidase and paraoxonase activity were measured. The myeloperoxidase/paraoxonase ratio, which indicates dysfunctional high-density lipoprotein, was calculated. Thiol?disulfide homeostasis and ischaemia-modified albumin were measured.
We did not identify any relationship between dysfunctional high-density lipoprotein and the physical disability, cognitive decline, fatigue and sleep problems of multiple sclerosis. Thiol?disulfide homeostasis was associated with cognitive scores. The shift of the balance towards disulfide was accompanied by a decrease in cognitive scores. On the other hand, we did not detect any relationship between fatigue and sleep disorders and thiol?disulfide homeostasis. Our findings revealed a possible correlation between cognitive dysfunction and thiol?disulfide homeostasis in multiple sclerosis patients.
en-copyright=
kn-copyright=
en-aut-name=VuralGonul
en-aut-sei=Vural
en-aut-mei=Gonul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DemirEsra
en-aut-sei=Demir
en-aut-mei=Esra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GumusyaylaSadiye
en-aut-sei=Gumusyayla
en-aut-mei=Sadiye
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ErenFunda
en-aut-sei=Eren
en-aut-mei=Funda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BarakliSerdar
en-aut-sei=Barakli
en-aut-mei=Serdar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NeseliogluSalim
en-aut-sei=Neselioglu
en-aut-mei=Salim
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ErelOzcan
en-aut-sei=Erel
en-aut-mei=Ozcan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University
kn-affil=
affil-num=2
en-affil=Department of Neurology, Ankara City Hospital
kn-affil=
affil-num=3
en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University
kn-affil=
affil-num=4
en-affil=Department of Clinical Biochemistry, Ankara City Hospital
kn-affil=
affil-num=5
en-affil=Department of Neurology, Ankara City Hospital
kn-affil=
affil-num=6
en-affil=Department of Clinical Biochemistry, Ankara City Hospital
kn-affil=
affil-num=7
en-affil=Department of Clinical Biochemistry, Ankara City Hospital
kn-affil=
en-keyword=multiple sclerosis
kn-keyword=multiple sclerosis
en-keyword=dysfunctional HDL
kn-keyword=dysfunctional HDL
en-keyword=thiol?disulfide homeostasis
kn-keyword=thiol?disulfide homeostasis
en-keyword=cognitive decline
kn-keyword=cognitive decline
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=251
end-page=258
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Comparative Analysis of Thoracic Rotation Exercises: Range of Motion Improvement in Standing and Quadruped Variants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=There have been few investigations into the effectiveness of thoracic spine exercises for improving thoracic range of motion (ROM) in any plane. This study assessed the effectiveness of two thoracic spine exercises: one in the quadruped position and one in the thoracic standing position. We determined how these exercises affect thoracic spine mobility ROM over a 2-week intervention period. Thirty-nine healthy participants were enrolled and assigned to a Quadruped Thoracic Rotation group (n=17 participants: 9 females and 8 males) or Flamenco Thoracic Spine Rotation group (n=22: 14 females and 8 males). All participants were administered a KOJI AWARENESSTM screening test, and the initial thoracic spine ROM before intervention exercise was measured in a laboratory setting. Quadruped Thoracic Rotation was performed as the quadruped exercise and Flamenco Thoracic Spine Rotation as the standing exercise. The KOJI AWARENESSTM thoracic spine test and ROM were evaluated on the day after the first exercise session and again after the program. Despite their different approaches to thoracic mobility, the quadruped exercise and standing exercise achieved equivalent improvement in thoracic ROM after 2 weeks. Practitioners have a range of exercise options for enhancing thoracic mobility based on their environmental or task-specific needs.
en-copyright=
kn-copyright=
en-aut-name=MurofushiKoji
en-aut-sei=Murofushi
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitomoSho
en-aut-sei=Mitomo
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirohataKenji
en-aut-sei=Hirohata
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FuruyaHidetaka
en-aut-sei=Furuya
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KatagiriHiroki
en-aut-sei=Katagiri
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KaneokaKoji
en-aut-sei=Kaneoka
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YagishitaKazuyoshi
en-aut-sei=Yagishita
en-aut-mei=Kazuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Sports Science Center, Tokyo Medical and Dental University (TMDU)
kn-affil=
affil-num=2
en-affil=Japan Sports Agency
kn-affil=
affil-num=3
en-affil=Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University (TMDU)
kn-affil=
affil-num=4
en-affil=Department of Rehabilitation, Sonoda Third Hospital/Tokyo Medical Institute Tokyo Spine Center
kn-affil=
affil-num=5
en-affil=Department of Orthopedics, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=6
en-affil=Faculty of Sport Science, Waseda University
kn-affil=
affil-num=7
en-affil=Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University (TMDU)
kn-affil=
en-keyword=thoracic spine
kn-keyword=thoracic spine
en-keyword=thoracic rotation range of motion
kn-keyword=thoracic rotation range of motion
en-keyword=exercise intervention
kn-keyword=exercise intervention
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=237
end-page=243
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Multidisciplinary Approach to Hip Fractures: Evaluating Outcomes on Mortality and Secondary Hip Fractures
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Fracture liaison services (FLS) have been introduced in Japan and several other countries to reduce medical complications and secondary fractures. We aimed to evaluate the effects of the implementation of an FLS approach on patient outcomes during hospitalization at our hospital and over a 2-year follow-up post-injury. This retrospective cohort study included patients ? 60 years admitted to our hospital for hip fragility fractures between October 1, 2016, and July 31, 2020. Patient groups were defined as those treated before (control group, n=238) and after (FLS group, n=196) establishment of the FLS protocol at our institution. The two groups were compared in terms of time to surgery, length of hospital stay, and the incidence of complications after admission, including secondary hip fracture and mortality rates. The follow-up period was 24 months. FLS focuses on early surgery within 48 h of injury and assessing osteoporosis treatment before injury to guide post-discharge anti-osteoporosis medication. FLS reduced the length of hospital stay (p<0.001) and the prevalence of complications after admission (p<0.001), particularly cardiovascular disease, and it increased adherence to anti-osteoporosis medication. These FLS effects resulted in lower secondary hip fracture and mortality rates at 12 and 24 months post-injury. FLS for fragility hip fractures can improve patient outcomes during hospitalization and over a 2-year follow-up period.
en-copyright=
kn-copyright=
en-aut-name=MuraokaOsamu
en-aut-sei=Muraoka
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ImaiNorio
en-aut-sei=Imai
en-aut-mei=Norio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KuraishiTatsuya
en-aut-sei=Kuraishi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImaiMakoto
en-aut-sei=Imai
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FukuharaTakashi
en-aut-sei=Fukuhara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YoshimineToshifumi
en-aut-sei=Yoshimine
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital
kn-affil=
affil-num=2
en-affil=Division of Comprehensive Musculoskeletal Medicine, Niigata University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital
kn-affil=
affil-num=6
en-affil=Department of Internal Medicine, Niigata Prefectural Tokamachi Hospital
kn-affil=
en-keyword=fracture liaison services
kn-keyword=fracture liaison services
en-keyword=complications after admission
kn-keyword=complications after admission
en-keyword=secondary hip fracture
kn-keyword=secondary hip fracture
en-keyword=mortality
kn-keyword=mortality
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=227
end-page=235
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Lipopolysaccharide on the Duration of Zolpidem-Induced Loss of Righting Reflex in Mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Zolpidem, a non-benzodiazepine hypnotic, is primarily used to treat insomnia. In a previous study, pior treatment with non-benzodiazepine receptor agonists was associated with inflammation. The present study aimed to clarify the association between the effects of zolpidem and inflammation in mice treated with lipopolysaccharide (LPS), a known model of inflammation. We assessed the zolpidem-induced loss of righting reflex (LORR) duration 24 h after LPS treatment in mice. Additionally, the expressions of γ-aminobutyric acid (GABA)A receptor subunit and K+-Cl? cotransporter isoform 2 (KCC2) mRNA in the hippocampus and frontal cortex were examined in LPS-treated mice. Pretreatment with LPS was associated with significantly prolonged duration of zolpidem-induced LORR compared to control mice. This effect was significantly attenuated by administering bicuculline, a GABAA receptor antagonist, or flumazenil, a benzodiazepine receptor antagonist, in LPS-treated mice. Compared to controls, LPS-treated mice showed no significant change in the expression of GABAA receptor subunits in the hippocampus or frontal cortex. Bumetanide, an Na+-K+-2Cl? cotransporter isoform 1 blocker, attenuated the extended duration of zolpidem-induced LORR observed in LPS-treated mice. LPS significantly decreased Kcc2 mRNA expression in the hippocampus and the frontal cortex. These findings suggest that inflammation increases zolpidem-induced LORR, possibly through a reduction in KCC2 expression.
en-copyright=
kn-copyright=
en-aut-name=WadaYudai
en-aut-sei=Wada
en-aut-mei=Yudai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UshioSoichiro
en-aut-sei=Ushio
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KitamuraYoshihisa
en-aut-sei=Kitamura
en-aut-mei=Yoshihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SendoToshiaki
en-aut-sei=Sendo
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=lipopolysaccharide
kn-keyword=lipopolysaccharide
en-keyword=zolpidem
kn-keyword=zolpidem
en-keyword=GABAA receptor
kn-keyword=GABAA receptor
en-keyword=K+-Cl? cotransporters
kn-keyword=K+-Cl? cotransporters
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=215
end-page=225
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Assessment of a New Elbow Joint Positioning Method Using Area Detector Computed Tomography
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We propose a sitting position that achieves both high image quality and a reduced radiation dose in elbow joint imaging by area detector computed tomography (ADCT), and we compared it with the ‘superman’ and supine positions. The volumetric CT dose index (CTDIvol) for the sitting, superman, and supine positions were 2.7, 8.0, and 20.0 mGy and the dose length products (DLPs) were 43.4, 204.7, and 584.8 mGy ? cm, respectively. In the task-based transfer function (TTF), the highest value was obtained for the sitting position in both bone and soft tissue images. The noise power spectrum (NPS) of bone images showed that the superman position had the lowest value up to approx. 1.1 cycles/mm or lower, whereas the sitting position had the lowest value when the NPS was greater than approx. 1.1 cycles/mm. The overall image quality in an observer study resulted in the following median Likert scores for Readers 1 and 2: 5.0 and 5.0 for the sitting position, 4.0 and 3.5 for the superman position, and 4.0 and 2.0 for the supine position. These results indicate that our proposed sitting position with ADCT of the elbow joint can provide superior image quality and allow lower radiation doses compared to the superman and supine positions.
en-copyright=
kn-copyright=
en-aut-name=AkagawaTakuya
en-aut-sei=Akagawa
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FukuiRyohei
en-aut-sei=Fukui
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KidaKatsuhiro
en-aut-sei=Kida
en-aut-mei=Katsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsuuraRyutaro
en-aut-sei=Matsuura
en-aut-mei=Ryutaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimadaMakoto
en-aut-sei=Shimada
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KinoshitaMitsuhiro
en-aut-sei=Kinoshita
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AkagawaYoko
en-aut-sei=Akagawa
en-aut-mei=Yoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GotoSachiko
en-aut-sei=Goto
en-aut-mei=Sachiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Radiological Technology, Tokushima Red Cross Hospital
kn-affil=
affil-num=2
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Radiology, Osaka International Cancer Institute
kn-affil=
affil-num=6
en-affil=Department of Radiology, Tokushima Red Cross Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiology, Tokushima Red Cross Hospital
kn-affil=
affil-num=8
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
en-keyword=area detector computed tomography
kn-keyword=area detector computed tomography
en-keyword=elbow joint
kn-keyword=elbow joint
en-keyword=sitting position
kn-keyword=sitting position
en-keyword=dose reduction
kn-keyword=dose reduction
en-keyword=image quality assessment
kn-keyword=image quality assessment
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=28
article-no=
start-page=5739
end-page=5747
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Total synthesis and structure?antifouling activity relationship of scabrolide F
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An efficient synthetic strategy for scabrolide F (7), a norcembranolide diterpene that was isolated from the Taiwanese soft coral Sinularia scabra, has only recently been reported by our group. Herein, we report details of the first total synthesis of 7. The tetrahydrofuran domain of 7 was stereoselectively constructed via the 5-endo-tet cyclization of a hydroxy vinyl epoxide. The reaction of alkyl iodide 30 with dithiane 38, followed by the introduction of an alkene moiety, afforded allylation precursor 41. The coupling of alkyl iodide 42 and allylic stannane 43 was examined as a model experiment of allylation. Because the desired allylated product 44 was not obtained, an alternative synthetic route toward 7 was investigated instead. In the second synthetic approach, fragment?coupling between alkyl iodide 56 and aldehyde 58, macrolactonization, and transannular ring-closing metathesis were used as the key steps to achieve the first total synthesis of 7. We hope that this synthetic strategy provides access to the total synthesis of other macrocyclic norcembranolides. We also evaluated the antifouling activity and toxicity of 7 and its synthetic intermediates toward the cypris larvae of the barnacle Amphibalanus amphitrite. This study is the first to report the antifouling activity of norcembranolides as well as the biological activity of 7.
en-copyright=
kn-copyright=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugitaniYuki
en-aut-sei=Sugitani
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorishitaRyohei
en-aut-sei=Morishita
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YorisueTakefumi
en-aut-sei=Yorisue
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Natural and Environmental Sciences, University of Hyogo
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=3
article-no=
start-page=e004237
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202405
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Plasma angiotensin-converting enzyme 2 (ACE2) is a marker for renal outcome of diabetic kidney disease (DKD) (U-CARE study 3)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction ACE cleaves angiotensin I (Ang I) to angiotensin II (Ang II) inducing vasoconstriction via Ang II type 1 (AT1) receptor, while ACE2 cleaves Ang II to Ang (1-7) causing vasodilatation by acting on the Mas receptor. In diabetic kidney disease (DKD), it is still unclear whether plasma or urine ACE2 levels predict renal outcomes or not.
Research design and methods Among 777 participants with diabetes enrolled in the Urinary biomarker for Continuous And Rapid progression of diabetic nEphropathy study, the 296 patients followed up for 9 years were investigated. Plasma and urinary ACE2 levels were measured by the ELISA. The primary end point was a composite of a decrease of estimated glomerular filtration rate (eGFR) by at least 30% from baseline or initiation of hemodialysis or peritoneal dialysis. The secondary end points were a 30% increase or a 30% decrease in albumin-to-creatinine ratio from baseline to 1 year.
Results The cumulative incidence of the renal composite outcome was significantly higher in group 1 with lowest tertile of plasma ACE2 (p=0.040). Group 2 with middle and highest tertile was associated with better renal outcomes in the crude Cox regression model adjusted by age and sex (HR 0.56, 95% CI 0.31 to 0.99, p=0.047). Plasma ACE2 levels demonstrated a significant association with 30% decrease in ACR (OR 1.46, 95% CI 1.044 to 2.035, p=0.027) after adjusting for age, sex, systolic blood pressure, hemoglobin A1c, and eGFR.
Conclusions Higher baseline plasma ACE2 levels in DKD were protective for development and progression of albuminuria and associated with fewer renal end points, suggesting plasma ACE2 may be used as a prognosis marker of DKD.Trial registration number UMIN000011525.
en-copyright=
kn-copyright=
en-aut-name=UenoAsami
en-aut-sei=Ueno
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnishiYasuhiro
en-aut-sei=Onishi
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiseKoki
en-aut-sei=Mise
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamaguchiSatoshi
en-aut-sei=Yamaguchi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KannoAyaka
en-aut-sei=Kanno
en-aut-mei=Ayaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NojimaIchiro
en-aut-sei=Nojima
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiguchiChigusa
en-aut-sei=Higuchi
en-aut-mei=Chigusa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UchidaHaruhito A.
en-aut-sei=Uchida
en-aut-mei=Haruhito A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShikataKenichi
en-aut-sei=Shikata
en-aut-mei=Kenichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MiyamotoSatoshi
en-aut-sei=Miyamoto
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakatsukaAtsuko
en-aut-sei=Nakatsuka
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EguchiJun
en-aut-sei=Eguchi
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HidaKazuyuki
en-aut-sei=Hida
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KatayamaAkihiro
en-aut-sei=Katayama
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=WatanabeMayu
en-aut-sei=Watanabe
en-aut-mei=Mayu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakatoTatsuaki
en-aut-sei=Nakato
en-aut-mei=Tatsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ToneAtsuhito
en-aut-sei=Tone
en-aut-mei=Atsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=TeshigawaraSanae
en-aut-sei=Teshigawara
en-aut-mei=Sanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MatsuokaTakashi
en-aut-sei=Matsuoka
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KameiShinji
en-aut-sei=Kamei
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MurakamiKazutoshi
en-aut-sei=Murakami
en-aut-mei=Kazutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ShimizuIkki
en-aut-sei=Shimizu
en-aut-mei=Ikki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=MiyashitaKatsuhito
en-aut-sei=Miyashita
en-aut-mei=Katsuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=AndoShinichiro
en-aut-sei=Ando
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NunoueTomokazu
en-aut-sei=Nunoue
en-aut-mei=Tomokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=WadaJun
en-aut-sei=Wada
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
affil-num=1
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center
kn-affil=
affil-num=14
en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center
kn-affil=
affil-num=15
en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center
kn-affil=
affil-num=16
en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital
kn-affil=
affil-num=17
en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital
kn-affil=
affil-num=18
en-affil=Okayama Saiseikai General Hospital
kn-affil=
affil-num=19
en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital
kn-affil=
affil-num=20
en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital
kn-affil=
affil-num=21
en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital
kn-affil=
affil-num=22
en-affil=Sakakibara Heart Institute of Okayama
kn-affil=
affil-num=23
en-affil=Japanese Red Cross Okayama Hospital
kn-affil=
affil-num=24
en-affil=Okayama City General Medical Center
kn-affil=
affil-num=25
en-affil=Nunoue Clinic
kn-affil=
affil-num=26
en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=5
article-no=
start-page=e0302537
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240521
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The use of artificial intelligence in induced pluripotent stem cell-based technology over 10-year period: A systematic scoping review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Stem cell research, particularly in the domain of induced pluripotent stem cell (iPSC) technology, has shown significant progress. The integration of artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), has played a pivotal role in refining iPSC classification, monitoring cell functionality, and conducting genetic analysis. These enhancements are broadening the applications of iPSC technology in disease modelling, drug screening, and regenerative medicine. This review aims to explore the role of AI in the advancement of iPSC research.
Methods
In December 2023, data were collected from three electronic databases (PubMed, Web of Science, and Science Direct) to investigate the application of AI technology in iPSC processing.
Results
This systematic scoping review encompassed 79 studies that met the inclusion criteria. The number of research studies in this area has increased over time, with the United States emerging as a leading contributor in this field. AI technologies have been diversely applied in iPSC technology, encompassing the classification of cell types, assessment of disease-specific phenotypes in iPSC-derived cells, and the facilitation of drug screening using iPSC. The precision of AI methodologies has improved significantly in recent years, creating a foundation for future advancements in iPSC-based technologies.
Conclusions
Our review offers insights into the role of AI in regenerative and personalized medicine, highlighting both challenges and opportunities. Although still in its early stages, AI technologies show significant promise in advancing our understanding of disease progression and development, paving the way for future clinical applications.
en-copyright=
kn-copyright=
en-aut-name=VoQuan Duy
en-aut-sei=Vo
en-aut-mei=Quan Duy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IdaToshihiro
en-aut-sei=Ida
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=414
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240424
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Go/No-Go Ratios Modulate Inhibition-Related Brain Activity: An Event-Related Potential Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=(1) Background: Response inhibition refers to the conscious ability to suppress behavioral responses, which is crucial for effective cognitive control. Currently, research on response inhibition remains controversial, and the neurobiological mechanisms associated with response inhibition are still being explored. The Go/No-Go task is a widely used paradigm that can be used to effectively assess response inhibition capability. While many studies have utilized equal numbers of Go and No-Go trials, how different ratios affect response inhibition remains unknown; (2) Methods: This study investigated the impact of different ratios of Go and No-Go conditions on response inhibition using the Go/No-Go task combined with event-related potential (ERP) techniques; (3) Results: The results showed that as the proportion of Go trials decreased, behavioral performance in Go trials significantly improved in terms of response time, while error rates in No-Go trials gradually decreased. Additionally, the NoGo-P3 component at the central average electrodes (Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and PC2) exhibited reduced amplitude and latency; (4) Conclusions: These findings indicate that different ratios in Go/No-Go tasks influence response inhibition, with the brain adjusting processing capabilities and rates for response inhibition. This effect may be related to the brain's predictive mechanism model.
en-copyright=
kn-copyright=
en-aut-name=ZhangNan
en-aut-sei=Zhang
en-aut-mei=Nan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AnWeichao
en-aut-sei=An
en-aut-mei=Weichao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YuYinghua
en-aut-sei=Yu
en-aut-mei=Yinghua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WuJinglong
en-aut-sei=Wu
en-aut-mei=Jinglong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YangJiajia
en-aut-sei=Yang
en-aut-mei=Jiajia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=response inhibition
kn-keyword=response inhibition
en-keyword=ratio
kn-keyword=ratio
en-keyword=go/no-go task
kn-keyword=go/no-go task
en-keyword=ERP
kn-keyword=ERP
en-keyword=NoGo-P3 component
kn-keyword=NoGo-P3 component
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=10
article-no=
start-page=1811
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of Nutritional Status on Neutrophil-to-Lymphocyte Ratio as a Predictor of Efficacy and Adverse Events of Immune Check-Point Inhibitors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The neutrophil -to-lymphocyte ratio (NLR) is useful for predicting the effectiveness of treatment with immune checkpoint inhibitors (ICIs) and immune-related adverse events (irAEs). Because a growing body of evidence has recently shown that the number of lymphocytes that comprise NLR fluctuates according to nutritional status, this study examined whether the usefulness of NLR varies in ICI treatment due to changes in nutritional status. A retrospective analysis was performed on 1234 patients who received ICI treatment for malignant tumors at our hospital. Progression-free survival (PFS) was significantly prolonged in patients with NLR < 4. Multivariate analysis revealed that the factors associated with the occurrence of irAE were NLR < 4 and the use of ipilimumab. However, when limited to cases with serum albumin levels <3.8 g/dL, lymphocyte counts significantly decreased, and the associations between NLR and PFS and between NLR and irAE occurrence disappeared. In contrast, when limited to the cases with serum albumin levels ?3.8 g/dL, the associations remained, with significantly prolonged PFS and significantly increased irAE occurrence at NLR < 4. NLR may be a good predictive tool for PFS and irAE occurrence during ICI treatment when a good nutritional status is maintained.
en-copyright=
kn-copyright=
en-aut-name=SueMasahiko
en-aut-sei=Sue
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakeuchiYasuto
en-aut-sei=Takeuchi
en-aut-mei=Yasuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirataShoichiro
en-aut-sei=Hirata
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital
kn-affil=
en-keyword=immune-related adverse events
kn-keyword=immune-related adverse events
en-keyword=serum albumin
kn-keyword=serum albumin
en-keyword=real-world practice
kn-keyword=real-world practice
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=10
article-no=
start-page=807
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Exploring the Regulators of Keratinization: Role of BMP-2 in Oral Mucosa
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.
en-copyright=
kn-copyright=
en-aut-name=MuXindi
en-aut-sei=Mu
en-aut-mei=Xindi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnoMitsuaki
en-aut-sei=Ono
en-aut-mei=Mitsuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NguyenHa Thi Thu
en-aut-sei=Nguyen
en-aut-mei=Ha Thi Thu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WangZiyi
en-aut-sei=Wang
en-aut-mei=Ziyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ZhaoKun
en-aut-sei=Zhao
en-aut-mei=Kun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KomoriTaishi
en-aut-sei=Komori
en-aut-mei=Taishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YonezawaTomoko
en-aut-sei=Yonezawa
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KubokiTakuo
en-aut-sei=Kuboki
en-aut-mei=Takuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OohashiToshitaka
en-aut-sei=Oohashi
en-aut-mei=Toshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=
kn-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
affil-num=7
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cell differentiation
kn-keyword=cell differentiation
en-keyword=epithelia
kn-keyword=epithelia
en-keyword=growth factor(s)
kn-keyword=growth factor(s)
en-keyword=bioinformatics
kn-keyword=bioinformatics
en-keyword=extracellular matrix (ECM)
kn-keyword=extracellular matrix (ECM)
en-keyword=mucocutaneous disorders
kn-keyword=mucocutaneous disorders
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=10
article-no=
start-page=980
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Antimicrobial Photodynamic Therapy on the Tongue Dorsum on Reducing Halitosis and the Duration of the Effect: A Randomized Clinical Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Antimicrobial photodynamic therapy (PDT) is a treatment that is gaining popularity in modern clinical medicine. However, little is known about the effect of PDT alone on reducing oral halitosis and the duration of the effect. This trial examined the effect of PDT on the tongue dorsum on reducing oral halitosis and the duration of the effect. This study was approved by the Ethics Committee of Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, and Okayama University Hospital (CRB20-015), and it was registered in the Japan Registry of Clinical Trials (jRCTs061200060). Twenty-two participants were randomly assigned to two groups: an intervention group and control group. PDT was performed in the intervention group using red laser emission and methylene blue gel on the middle and posterior area of the tongue dorsum. The concentration of volatile sulfur compounds, bacterial count on the tongue dorsum, probing pocket depth, bleeding on probing, and simplified oral debris index score were determined before and 1 week after PDT. The Mann-Whitney U test was used to assess the significance of the differences in each parameter between the two groups. We found that the hydrogen sulfide concentration and bacterial count on the tongue dorsum were decreased in the intervention group, but there was no statistically significant difference between the two groups. These results indicated that performing only PDT on the tongue dorsum may not contribute to reducing halitosis.
en-copyright=
kn-copyright=
en-aut-name=MaruyamaTakayuki
en-aut-sei=Maruyama
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EkuniDaisuke
en-aut-sei=Ekuni
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YokoiAya
en-aut-sei=Yokoi
en-aut-mei=Aya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagasakiJunichiro
en-aut-sei=Nagasaki
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SawadaNanami
en-aut-sei=Sawada
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MoritaManabu
en-aut-sei=Morita
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Okayama University Dental School
kn-affil=
affil-num=5
en-affil=Department of Preventive Dentistry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Oral Health Sciences, Takarazuka University of Medical and Health Care
kn-affil=
en-keyword=halitosis
kn-keyword=halitosis
en-keyword=antimicrobial photodynamic therapy
kn-keyword=antimicrobial photodynamic therapy
en-keyword=prevention
kn-keyword=prevention
en-keyword=randomized clinical trial
kn-keyword=randomized clinical trial
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=5
article-no=
start-page=477
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Buffer material (compacted bentonite), one of the engineered barrier elements in the geological disposal of a high-level radioactive waste, develops swelling stress due to groundwater penetration from the surrounding rock mass. Montmorillonite is the major clay mineral component of bentonite. Even previous studies provide few mechanical and thermodynamic data on Ca-montmorillonite. In this study, thermodynamic data on Ca-montmorillonite were obtained as a function of water content by measuring relative humidity (RH) and temperature. The activities of water and the relative partial molar Gibbs free energies of water were determined from the experimental results, and the swelling stress of Ca-bentonite was calculated using the thermodynamic model and compared with measured data. The activities of water and the relative partial molar Gibbs free energies obtained in the experiments decreased with decreasing water content in water contents lower than about 25%. This trend was similar to that of Na-montmorillonite. The swelling stress calculated based on the thermodynamic model was approximately 200 MPa at a montmorillonite partial density of 2.0 Mg/m3 and approximately 10 MPa at a montmorillonite partial density of 1.4 Mg/m3. The swelling stresses in the high-density region (around 2.0 Mg/m3) were higher than that of Na-montmorillonite and were similar levels in the low-density region (around 1.5 Mg/m3). Comparison with measured data showed the practicality of the thermodynamic model.
en-copyright=
kn-copyright=
en-aut-name=IchikawaKosuke
en-aut-sei=Ichikawa
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoHaruo
en-aut-sei=Sato
en-aut-mei=Haruo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=geological disposal
kn-keyword=geological disposal
en-keyword=buffer material
kn-keyword=buffer material
en-keyword=Ca-montmorillonite
kn-keyword=Ca-montmorillonite
en-keyword=bentonite
kn-keyword=bentonite
en-keyword=swelling stress
kn-keyword=swelling stress
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The optimum quantity of debt for an aging Japan: welfare?and demographic dynamics
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Japan’s government is heavily indebted, and the current net debt tends to increase. This paper uses an extended life-cycle general equilibrium model with endogenous fertility to investigate an optimal size of government debt from two viewpoints: individual welfare and future demographic dynamics. A simulation analysis finds that the level of net government debt, which maximizes per-capita utility, is negative at???220% of Japan’s gross domestic product (GDP). The results also indicate that the net debt-to-GDP ratio of???220% produces a considerable per-capita welfare gain; however, compared to the baseline simulation with a debt-to-GDP ratio of 150%, it substantially decreases the total population in the long run.
en-copyright=
kn-copyright=
en-aut-name=OkamotoAkira
en-aut-sei=Okamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Faculty of Economics, Okayama University
kn-affil=
en-keyword=Government debt
kn-keyword=Government debt
en-keyword=Welfare
kn-keyword=Welfare
en-keyword=Demographic dynamics
kn-keyword=Demographic dynamics
en-keyword=Japanese economy
kn-keyword=Japanese economy
en-keyword=Simulation analysis
kn-keyword=Simulation analysis
en-keyword=H30
kn-keyword=H30
en-keyword=C68
kn-keyword=C68
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=3
article-no=
start-page=1177
end-page=1189
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240516
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of output factors of different radiotherapy planning systems using Exradin W2 plastic scintillator detector
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study aims to evaluate the output factors (OPF) of different radiation therapy planning systems (TPSs) using a plastic scintillator detector (PSD). The validation results for determining a practical field size for clinical use were verified. The implemented validation system was an Exradin W2 PSD. The focus was to validate the OPFs of the small irradiation fields of two modeled radiation TPSs using RayStation version 10.0.1 and Monaco version 5.51.10. The linear accelerator used for irradiation was a TrueBeam with three energies: 4, 6, and 10 MV. RayStation calculations showed that when the irradiation field size was reduced from 10?×?10 to 0.5?×?0.5 cm2, the results were within 2.0% of the measured values for all energies. Similarly, the values calculated using Monaco were within approximately 2.0% of the measured values for irradiation field sizes between 10?×?10 and 1.5?×?1.5 cm2 for all beam energies of interest. Thus, PSDs are effective validation tools for OPF calculations in TPS. A TPS modeled with the same source data has different minimum irradiation field sizes that can be calculated. These findings could aid in verification of equipment accuracy for treatment planning requiring highly accurate dose calculations and for third-party evaluation of OPF calculations for TPS.
en-copyright=
kn-copyright=
en-aut-name=AndoYasuharu
en-aut-sei=Ando
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaMasahiro
en-aut-sei=Okada
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsumotoNatsuko
en-aut-sei=Matsumoto
en-aut-mei=Natsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IkuhiroKawasaki
en-aut-sei=Ikuhiro
en-aut-mei=Kawasaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshiharaSoichiro
en-aut-sei=Ishihara
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KiriuHiroshi
en-aut-sei=Kiriu
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanabeYoshinori
en-aut-sei=Tanabe
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Hiroshima City Hospital
kn-affil=
affil-num=2
en-affil=Hiroshima City North Medical Center Asa Citizens Hospital
kn-affil=
affil-num=3
en-affil=Hiroshima City North Medical Center Asa Citizens Hospital
kn-affil=
affil-num=4
en-affil=Hiroshima City North Medical Center Asa Citizens Hospital
kn-affil=
affil-num=5
en-affil=Hiroshima City Hospital
kn-affil=
affil-num=6
en-affil=Hiroshima City Hospital
kn-affil=
affil-num=7
en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University
kn-affil=
en-keyword=Plastic scintillator
kn-keyword=Plastic scintillator
en-keyword=Radiation therapy
kn-keyword=Radiation therapy
en-keyword=Small irradiation field
kn-keyword=Small irradiation field
en-keyword=Output factor
kn-keyword=Output factor
END
start-ver=1.4
cd-journal=joma
no-vol=391
cd-vols=
no-issue=2
article-no=
start-page=249
end-page=267
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The medaka mutant deficient in eyes shut homolog exhibits opsin transport defects and enhanced autophagy in retinal photoreceptors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Eyes shut homolog (EYS) encodes a proteoglycan and the human mutation causes retinitis pigmentosa type 25 (RP25) with progressive retinal degeneration. RP25 most frequently affects autosomal recessive RP patients with many ethnic backgrounds. Although studies using RP models have facilitated the development of therapeutic medications, Eys has been lost in rodent model animals. Here we examined the roles for Eys in the maintenance of photoreceptor structure and function by generating eys-null medaka fish using the CRISPR-Cas9 system. Medaka EYS protein was present near the connecting cilium of wild-type photoreceptors, while it was absent from the eys?/? retina. The mutant larvae exhibited a reduced visual motor response compared with wild-type. In contrast to reported eys-deficient zebrafish at the similar stage, no retinal cell death was detected in the 8-month post-hatching (8-mph) medaka eys mutant. Immunohistochemistry showed a significant reduction in the length of cone outer segments (OSs), retention of OS proteins in the inner segments of photoreceptors, and abnormal filamentous actin network at the base of cone OSs in the mutant retina by 8 mph. Electron microscopy revealed aberrant structure of calyceal processes, numerous vesiculation and lamellar interruptions, and autophagosomes in the eys-mutant cone photoreceptors. In situ hybridization showed an autophagy component gene, gabarap, was ectopically expressed in the eys-null retina. These results suggest eys is required for regeneration of OS, especially of cone photoreceptors, and transport of OS proteins by regulating actin filaments. Enhanced autophagy may delay the progression of retinal degeneration when lacking EYS in the medaka retina.
en-copyright=
kn-copyright=
en-aut-name=SatoKeita
en-aut-sei=Sato
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuYang
en-aut-sei=Liu
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaTakahiro
en-aut-sei=Yamashita
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cytology and Histology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biophysics, Graduate School of Science, Kyoto University
kn-affil=
affil-num=4
en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Eyes shut homolog
kn-keyword=Eyes shut homolog
en-keyword=Eys
kn-keyword=Eys
en-keyword=Retinitis pigmentosa
kn-keyword=Retinitis pigmentosa
en-keyword=RP25
kn-keyword=RP25
en-keyword=Cone photoreceptor
kn-keyword=Cone photoreceptor
en-keyword=Autophagy
kn-keyword=Autophagy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=単心室循環モデル動物における心臓幹細胞経静脈注射
kn-title=Intravenous infusion of cardiac progenitor cells in animal models of single ventricular physiology
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=GOTOTakuya
en-aut-sei=GOTO
en-aut-mei=Takuya
kn-aut-name=後藤拓弥
kn-aut-sei=後藤
kn-aut-mei=拓弥
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マルチコンポーネントシステムのEMC特性を満足させるための等価回路モデルを用いた効率的な最適設計・対策手法に関する研究
kn-title=A Study on Efficient Methods for Optimal Design and Countermeasures Using Equivalent Circuit Models to Satisfy EMC Performance in Multi-Component Systems
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KANShohei
en-aut-sei=KAN
en-aut-mei=Shohei
kn-aut-name=菅翔平
kn-aut-sei=菅
kn-aut-mei=翔平
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=モデルベースによる無線LANの同時通信のためのアクセスポイントの通信インターフェース設定最適化アルゴリズムの研究
kn-title=A Study of Model-Based Interface Setup Optimization Algorithm for Concurrently Communicating Access Points in Wireless Local Area Network
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AKHTERFatema
en-aut-sei=AKHTER
en-aut-mei=Fatema
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=SK-Gd実験における大気ニュートリノデータを用いたニュートリノ-酸素原子核中性カレント準弾性散乱反応断面積の測定および核子?原子核反応モデルの研究
kn-title=Measurement of the neutrino-oxygen neutral-current quasielastic cross section and study of nucleon-nucleus interaction model using atmospheric neutrino data in the SK-Gd experiment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SAKAISeiya
en-aut-sei=SAKAI
en-aut-mei=Seiya
kn-aut-name=酒井聖矢
kn-aut-sei=酒井
kn-aut-mei=聖矢
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END