start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250620 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=International Consensus Histopathological Criteria for Subtyping Idiopathic Multicentric Castleman Disease Based on Machine Learning Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Idiopathic multicentric Castleman disease (iMCD) is a rare lymphoproliferative disorder classified into three recognized clinical subtypes—idiopathic plasmacytic lymphadenopathy (IPL), TAFRO, and NOS. Although clinical criteria are available for subtyping, diagnostically challenging cases with overlapping histopathological features highlight the need for an improved classification system integrating clinical and histopathological findings. We aimed to develop an objective histopathological subtyping system for iMCD that closely correlates with the clinical subtypes. Excisional lymph node specimens from 94 Japanese iMCD patients (54 IPL, 28 TAFRO, 12 NOS) were analyzed for five key histopathological parameters: germinal center (GC) status, plasmacytosis, vascularity, hemosiderin deposition, and “whirlpool” vessel formation in GC. Using hierarchical clustering, we visualized subgroups and developed a machine learning-based decision tree to differentiate the clinical subtypes and validated it in an external cohort of 12 patients with iMCD. Hierarchical cluster analysis separated the IPL and TAFRO cases into mutually exclusive clusters, whereas the NOS cases were interspersed between them. Decision tree modeling identified plasmacytosis, vascularity, and whirlpool vessel formation as key features distinguishing IPL from TAFRO, achieving 91% and 92% accuracy in the training and test sets, respectively. External validation correctly classified all IPL and TAFRO cases, confirming the reproducibility of the system. Our histopathological classification system closely aligns with the clinical subtypes, offering a more precise approach to iMCD subtyping. It may enhance diagnostic accuracy, guide clinical decision-making for predicting treatment response in challenging cases, and improve patient selection for future research. Further validation of its versatility and clinical utility is required. en-copyright= kn-copyright= en-aut-name=NishimuraMidori Filiz en-aut-sei=Nishimura en-aut-mei=Midori Filiz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaratakeTomoka en-aut-sei=Haratake en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraYoshito en-aut-sei=Nishimura en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishikoriAsami en-aut-sei=Nishikori en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SumiyoshiRemi en-aut-sei=Sumiyoshi en-aut-mei=Remi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UjiieHideki en-aut-sei=Ujiie en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawaharaYuri en-aut-sei=Kawahara en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KogaTomohiro en-aut-sei=Koga en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UekiMasao en-aut-sei=Ueki en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LaczkoDorottya en-aut-sei=Laczko en-aut-mei=Dorottya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OksenhendlerEric en-aut-sei=Oksenhendler en-aut-mei=Eric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FajgenbaumDavid C. en-aut-sei=Fajgenbaum en-aut-mei=David C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=van RheeFrits en-aut-sei=van Rhee en-aut-mei=Frits kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawakamiAtsushi en-aut-sei=Kawakami en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SatoYasuharu en-aut-sei=Sato en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=5 en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group kn-affil= affil-num=6 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=7 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group kn-affil= affil-num=9 en-affil=School of Information and Data Sciences, Nagasaki University kn-affil= affil-num=10 en-affil=Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania kn-affil= affil-num=11 en-affil=Department of Clinical Immunology, Hôpital Saint-Louis kn-affil= affil-num=12 en-affil=Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania kn-affil= affil-num=13 en-affil=Myeloma Center, University of Arkansas for Medical Sciences kn-affil= affil-num=14 en-affil=The Research Program for Intractable Disease by Ministry of Health, Labor and Welfare, Castleman Disease, TAFRO and Related Ddisease Research Group kn-affil= affil-num=15 en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences kn-affil= en-keyword=clinical subtype kn-keyword=clinical subtype en-keyword=histopathological criteria kn-keyword=histopathological criteria en-keyword=idiopathic multicentric castleman disease kn-keyword=idiopathic multicentric castleman disease en-keyword=lymphoproliferative disease kn-keyword=lymphoproliferative disease en-keyword=machine-learning kn-keyword=machine-learning END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=果実成熟応答経路の進化学的コンテクストと深層学習によるモデル化 kn-title=The evolutionary contextualization and deep neural network modeling on fruit ripening response en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KUWADAEriko en-aut-sei=KUWADA en-aut-mei=Eriko kn-aut-name=桒田恵理子 kn-aut-sei=桒田 kn-aut-mei=恵理子 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学大学院環境生命自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=代替モデルに基づいた豪雨による地盤災害のリスク評価 kn-title=Risk Assessment for Heavy Rainfall-Induced Geohazards using Surrogate Models en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ZHENGSHIYING en-aut-sei=ZHENG en-aut-mei=SHIYING kn-aut-name=鄭詩穎 kn-aut-sei=鄭 kn-aut-mei=詩穎 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=イオンモデル開発を伴うアルコール及びPNIPAM水溶液の分子シミュレーション研究 kn-title=MOLECULAR SIMULATION STUDY ON AQUEOUS SOLUTIONS OF ALCOHOLS AND PNIPAM WITH DEVELOPMENT OF ION MODELS en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TAIRAAoi en-aut-sei=TAIRA en-aut-mei=Aoi kn-aut-name=平良碧生 kn-aut-sei=平良 kn-aut-mei=碧生 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=肝切除術後のfailure to rescueを予測するリスクモデルの構築: 1371例を対象としたコホート研究 kn-title=Risk model for predicting failure to rescue after hepatectomy: Cohort study of 1371 consecutive patients en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KIMURAJiro en-aut-sei=KIMURA en-aut-mei=Jiro kn-aut-name=木村次郎 kn-aut-sei=木村 kn-aut-mei=次郎 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=細胞自己凝集化技術を用いた内皮層反転血管構造を有するユニークなin vitro血管モデルの開発 kn-title=Development of a unique tissue-engineered in vitro vascular model with endothelial layer-inverted vascular tissue structure using a cell self-aggregation technique en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HASHIMOTOShingo en-aut-sei=HASHIMOTO en-aut-mei=Shingo kn-aut-name=橋本真悟 kn-aut-sei=橋本 kn-aut-mei=真悟 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=トラスツズマブオリジネーターとバイオシミラーのリアルワールドにおける比較分析:安全性、有効性、および費用対効果 kn-title=Real-World Comparative Analysis of Trastuzumab Originator and Biosimilars: Safety, Efficacy, and Cost Effectiveness en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MAMORITomoka en-aut-sei=MAMORI en-aut-mei=Tomoka kn-aut-name=間森智加 kn-aut-sei=間森 kn-aut-mei=智加 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=マウス頭蓋骨モデルにおける垂直骨再生のためのE-rhBMP-2含浸フィブリンを用いたβ-TCPの最適化 kn-title=Optimizing β-TCP with E-rhBMP-2-Infused Fibrin for Vertical Bone Regeneration in a Mouse Calvarium Model en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=ZHAOKUN en-aut-sei=ZHAO en-aut-mei=KUN kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=日本におけるDLBCLのdark zoneシグネチャーを有する分子サブタイプの分布と臨床的影響 kn-title=Distribution and clinical impact of molecular subtypes with dark zone signature of DLBCL in a Japanese real-world study en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=URATATomohiro en-aut-sei=URATA en-aut-mei=Tomohiro kn-aut-name=浦田知宏 kn-aut-sei=浦田 kn-aut-mei=知宏 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=集中定数モデルを用いたフォンタン循環におけるフェネストレーションの効果の検討  kn-title=Evaluation of the effects of fenestration in Fontan circulation using a lumped parameter model en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HORIONaohiro en-aut-sei=HORIO en-aut-mei=Naohiro kn-aut-name=堀尾直裕 kn-aut-sei=堀尾 kn-aut-mei=直裕 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ヒト臍帯血内皮前駆細胞はラット脳卒中モデルにおける動脈損傷の内膜過形成を緩和する kn-title=Human Cord Blood–Endothelial Progenitor Cells Alleviate Intimal Hyperplasia of Arterial Damage in a Rat Stroke Model en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SUNHONGMING en-aut-sei=SUN en-aut-mei=HONGMING kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=脳卒中モデルマウスにおけるフラボノイド、スダチチンの神経保護効果  kn-title=Neuroprotective effect of, a flavonoid, sudachitin in mice stroke model en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OTA ELLIOTT RICARDO SATOSHI en-aut-sei=OTA ELLIOTT RICARDO SATOSHI en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=頚部脊髄刺激療法はCCL2を介した経路を抑制することでてんかんモデルラットに対して抗てんかん作用を示す kn-title=Cervical spinal cord stimulation exerts anti-epileptic effects in a rat model of epileptic seizure through the suppression of CCL2-mediated cascades en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OKAZAKIYosuke en-aut-sei=OKAZAKI en-aut-mei=Yosuke kn-aut-name=岡﨑洋介 kn-aut-sei=岡﨑 kn-aut-mei=洋介 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=745 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250521 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploring the relationship between posture-dependent airway assessment in orthodontics: insights from kinetic MRI, cephalometric data, and three-dimensional MRI analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Previous studies have assessed the upper airway using various examination methods, such as cephalometric imaging and magnetic resonance imaging (MRI). However, there is a significant gap in the research regarding the relationship between these different imaging modalities. This study compares airway assessments using kinetic MRI and cephalometric scans, examining their correlation with three dimensional (3D) MRI data.
Materials and methods Kinetic MRI, cephalometric scans, and 3D MRI of forty-seven participants were used in the present study. Airway areas and widths were measured at the retropalatal, retroglossal, and hypopharyngeal levels in both kinetic MRI and cephalometric scans. Airway volumes were calculated from 3D MRI data. Statistical analyses, including the Wilcoxon Signed Rank test, Spearman correlation, and multiple linear regression, were performed to evaluate the data and identify significant differences, correlations, and prediction models, respectively.
Results Significant differences were found between kinetic MRI and cephalometric scans. Cephalometric data showed larger airway areas and widths compared to kinetic MRI measurements. Although both cephalometric and kinetic MRI showed a correlation with 3D MRI, kinetic MRI demonstrated stronger correlations with 3D MRI airway volumes than cephalometric scans. According to our linear regression model equations, RPA-Max (maximum retropalatal airway area) and RPA (retropalatal airway area) can elucidate variations in RPV (retropalatal airway volume). RGA-Med (median retroglossal airway area) and RGA-Min (minimum retroglossal airway area) can explain variations in RGV (retroglossal airway volume). HPA (hypopharyngeal airway area) and ULHPAW-Max (maximum upper limit hypopharyngeal airway width) account for variations in HPV (hypopharyngeal airway volume). Additionally, TA-Max (maximum total airway area) can account for variations in TPV (total pharyngeal airway volume).ConclusionBoth cephalometric data and kinetic MRI data showed correlations with 3D MRI data. The shared posture of kinetic MRI and 3D MRI led to stronger correlations between these two modalities. Although cephalometric data had fewer correlations with 3D MRI and predictors for 3D airway volume, they were still significant. Our study highlights the complementary nature of kinetic MRI and cephalometric imaging, as both provide valuable information for airway assessment and exhibit significant correlations with 3D MRI data. en-copyright= kn-copyright= en-aut-name=OkaNaoki en-aut-sei=Oka en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HabumugishaJanvier en-aut-sei=Habumugisha en-aut-mei=Janvier kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraMasahiro en-aut-sei=Nakamura en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KataokaTomoki en-aut-sei=Kataoka en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujisawaAtsuro en-aut-sei=Fujisawa en-aut-mei=Atsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawanabeNoriaki en-aut-sei=Kawanabe en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IzawaTakashi en-aut-sei=Izawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KamiokaHiroshi en-aut-sei=Kamioka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Division of Oral and Maxillofacial Surgery, Tottori University kn-affil= affil-num=5 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Kinetic MRI kn-keyword=Kinetic MRI en-keyword=Posture kn-keyword=Posture en-keyword=Airway assessment kn-keyword=Airway assessment END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=1 article-no= start-page=vdaf036 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250209 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluating short-term survivors of glioblastoma: A proposal based on SEER registry data en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Glioblastomas (GBMs) are central nervous system tumors with a poor prognosis and limited treatment options. Although small subsets of GBM patients survive longer than 3 years, there is little evidence regarding the prognostic factors of GBM. Therefore, we conducted a thorough characterization of GBM in the United States.
Methods: We queried the Surveillance, Epidemiology, and End Results database between 2000 and 2021 to extract age-adjusted incidence rates (AAIRs), age-adjusted mortality rates (AAMRs), and survival data for GBM. We compared trends in AAIR, AAMR, and survival time across age groups 0–14, 15–39, 40–69, and 70+ years. Also, we employed the Fine–Gray competing risk model among short-term survivors (STSs), defined as those with a survival time of 6 months or less, and long-term survivors (LTSs), defined as those with a survival time of 3 years or more.
Results: This study included 60 615 incident GBM cases, 54 998 GBM-specific deaths, and 47 207 GBM patients with available survival time between 2000 and 2021. The mortality-to-incidence ratio was constant among STSs, whereas it increased with age among LTSs. Higher age and male sex were significantly associated with GBM-specific death among LTSs, whereas non-Hispanic White and less intensive treatments were associated with GBM-specific deaths among STSs. Interestingly, higher age was significantly associated with other causes of death among STSs.
Conclusions: STSs partially consist of populations who died from causes other than GBM. It is important to include only GBM-specific deaths in STS groups to conduct reproducible research comparing STSs and LTSs. en-copyright= kn-copyright= en-aut-name=TomitaYusuke en-aut-sei=Tomita en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OmaeRyo en-aut-sei=Omae en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizutaRyo en-aut-sei=Mizuta en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HirotsuneNobuyuki en-aut-sei=Hirotsune en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Medical School kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=glioblastoma kn-keyword=glioblastoma en-keyword=long-term survivor kn-keyword=long-term survivor en-keyword=SEER kn-keyword=SEER en-keyword=short-term survivor kn-keyword=short-term survivor en-keyword=United States kn-keyword=United States END start-ver=1.4 cd-journal=joma no-vol=295 cd-vols= no-issue= article-no= start-page=128303 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Using a microfluidic paper-based analytical device and solid-phase extraction to determine phosphate concentration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Phosphate is an essential nutrient, but in high concentrations it contributes to water pollution. Traditional methods for phosphate measurement, such as absorption spectrophotometry and ion chromatography, require expensive equipment and skilled operators. This study introduces a microfluidic paper-based analytical device (μPAD) that is designed to accomplish field-based, low-concentration phosphate measurements. This μPAD utilizes colorimetric detection based on the molybdenum blue method. Herein, we describe how the conditions were optimized in terms of design and sensitivity by adjusting reagent concentrations, paper thickness, and the time frames for sample introduction, and reaction. The operation consists of simply dipping the μPAD into a sample, capturing images in a home-made photo studio box, and processing the images with ImageJ software to measure RGB intensity. An additional preconcentration step involves solid-phase extraction with an anion exchange resin that achieves a 10-fold enrichment, which enables detection that ranges from 0.05 to 1 mg L−1 with a detection limit of 0.089 mg L−1 and a quantification limit of 0.269 mg L−1. The replicated measurements showed good reproducibility both intraday and interday (five different days) as 4.7 % and 3.0 % of relative standard deviations, respectively. After storage in a refrigerator for as long as 26 days, this μPAD delivered stable and accurate results for real-world samples of natural water, soil, and toothpaste. The results produced using this system correlate well with those produced via spectrophotometry. This μPAD-based method is a cost-effective, portable, rapid, and simple approach that allows relatively unskilled operators to monitor phosphate concentrations in field applications. en-copyright= kn-copyright= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NambaHaruka en-aut-sei=Namba en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Phosphate kn-keyword=Phosphate en-keyword=Microfluidic paper-based analytical device kn-keyword=Microfluidic paper-based analytical device en-keyword=Solid-phase extraction kn-keyword=Solid-phase extraction en-keyword=Anion exchanger kn-keyword=Anion exchanger en-keyword=Molybdenum blue method kn-keyword=Molybdenum blue method END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=5 article-no= start-page=e0320426 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250519 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=LeFood-set: Baseline performance of predicting level of leftovers food dataset in a hospital using MT learning en-subtitle= kn-subtitle= en-abstract= kn-abstract=Monitoring the remaining food in patients' trays is a routine activity in healthcare facilities as it provides valuable insights into the patients' dietary intake. However, estimating food leftovers through visual observation is time-consuming and biased. To tackle this issue, we have devised an efficient deep learning-based approach that promises to revolutionize how we estimate food leftovers. Our first step was creating the LeFoodSet dataset, a pioneering large-scale open dataset explicitly designed for estimating food leftovers. This dataset is unique in its ability to estimate leftover rates and types of food. To the best of our knowledge, this is the first comprehensive dataset for this type of analysis. The dataset comprises 524 image pairs representing 34 Indonesian food categories, each with images captured before and after consumption. Our prediction models employed a combined visual feature extraction and late fusion approach utilizing soft parameter sharing. Here, we used multi-task (MT) models that simultaneously predict leftovers and food types in training. In the experiments, we tested the single task (ST) model, the ST Model with Ground Truth (ST-GT), the MT model, and the MT model with Inter-task Connection (MT-IC). Our AI-based models, particularly the MT and MT-IC models, have shown promising results, outperforming human observation in predicting leftover food. These findings show the best with the ResNet101 model, where the Mean Average Error (MAE) of leftover task and food classification accuracy task is 0.0801 and 90.44% in the MT Model and 0.0817 and 92.56% in the MT-IC Model, respectively. It is proved that the proposed solution has a bright future for AI-based approaches in medical and nursing applications. en-copyright= kn-copyright= en-aut-name=SariYuita Arum en-aut-sei=Sari en-aut-mei=Yuita Arum kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakazawaAtsushi en-aut-sei=Nakazawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WaniYudi Arimba en-aut-sei=Wani en-aut-mei=Yudi Arimba kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Nutrition Department, Faculty of Health Sciences, Brawijaya University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=213 end-page=219 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Case of Chromophobe Renal Cell Carcinoma Metastasizing to the Cervical Lymph Nodes after Long-term Follow-up en-subtitle= kn-subtitle= en-abstract= kn-abstract=Renal cell carcinoma (RCC) can metastasize hematogenously and recur after a long dormancy. Chromophobe RCC metastasized to the cervical lymph nodes 10 years after the primary resection in a woman who underwent nephrectomy for RCC (T1aN0M0 stage I). Metastatic RCC diagnosis was confirmed by aspiration. The lymph node mass was resected, and the tumor cells matched chromophobe RCC metastasis. No adjuvant therapy was administered due to the lack of evidence regarding adjuvant therapy for chromophobe RCC. Long-term surveillance is crucial in RCC because of the possibility of late metastasis. We reviewed the clinical aspects and literature on metastatic cervical RCC. en-copyright= kn-copyright= en-aut-name=WatanabeMakoto en-aut-sei=Watanabe en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OgawaTomoyuki en-aut-sei=Ogawa en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiKanao en-aut-sei=Kobayashi en-aut-mei=Kanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuyaNarutaka en-aut-sei=Katsuya en-aut-mei=Narutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshikawaAkira en-aut-sei=Ishikawa en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HamamotoTakao en-aut-sei=Hamamoto en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaharaHiroaki en-aut-sei=Tahara en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UedaTsutomu en-aut-sei=Ueda en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakenoSachio en-aut-sei=Takeno en-aut-mei=Sachio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Otolaryngology, Chugoku Rosai Hospital kn-affil= affil-num=2 en-affil=Department of Otolaryngology, Chugoku Rosai Hospital kn-affil= affil-num=3 en-affil=Department of Nephrology and Urological Surgery, Chugoku Rosai Hospital kn-affil= affil-num=4 en-affil=Department of Molecular Pathology, Graduate School of Medical Sciences, Hiroshima University kn-affil= affil-num=5 en-affil=Department of Molecular Pathology, Graduate School of Medical Sciences, Hiroshima University kn-affil= affil-num=6 en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital kn-affil= affil-num=7 en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital kn-affil= affil-num=8 en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital kn-affil= affil-num=9 en-affil=Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital kn-affil= en-keyword=renal cell carcinoma kn-keyword=renal cell carcinoma en-keyword=cervical lymph node metastasis kn-keyword=cervical lymph node metastasis en-keyword=late recurrence kn-keyword=late recurrence en-keyword=head and neck kn-keyword=head and neck END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=185 end-page=195 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Emotional Changes among Young Patients with Breast Cancer to Foster Relationship-Building with Their Partners: A Qualitative Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the emotional changes that young patients with breast cancer need to undergo in order to foster relationship-building with their partners by conducting a qualitative descriptive study (March 1 to Nov. 26, 2021) and semi-structured interviews with eight postoperative patients (age 20-40 years) with breast cancer. The data were analyzed using the modified grounded theory approach (M-GTA), yielding five categories: (i) Awareness of being a breast cancer patient, (ii) Being at a loss, (iii) Support from significant others, (iv) The struggle to transition from being a patient with cancer to becoming “the person I want to be”, and (v) Reaching the “me” I want to be who can face building a relationship with a partner. These findings suggest that young breast cancer patients must feel that they can lead a normal life through activities such as work or acquiring qualifications before building relationships with their partners, and that getting closer to their desired selves is important. Nurses can provide information to young patients with breast cancer to assist them in building a solid relationship with their partners. We believe that this support may enhance the patients’ quality of life and help them achieve stronger relationships with their partners. en-copyright= kn-copyright= en-aut-name=YoshikawaAyumi en-aut-sei=Yoshikawa en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TairaNaruto en-aut-sei=Taira en-aut-mei=Naruto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkanagaMayumi en-aut-sei=Okanaga en-aut-mei=Mayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoShinya en-aut-sei=Saito en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Faculty of Nursing, Osaka Dental University kn-affil= affil-num=2 en-affil=Kawasaki Medical School, Department of Breast and Thyroid Surgery kn-affil= affil-num=3 en-affil=Gifu College of Nursing, Nursing of Children and Child-Rearing Families kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=breast cancer patient kn-keyword=breast cancer patient en-keyword=young patient kn-keyword=young patient en-keyword=single kn-keyword=single en-keyword=partners kn-keyword=partners en-keyword=relationships kn-keyword=relationships END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=167 end-page=176 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Promising Effectiveness of Combined Chemotherapy and Immunotherapy in Patients with Advanced Non-small Cell Lung Cancer: A Real-World Prospective Observational Study (CS-Lung-003) en-subtitle= kn-subtitle= en-abstract= kn-abstract=This prospective observational study investigated the clinical status of patients with advanced non-small cell lung cancer (NSCLC) treated with cytotoxic chemotherapy+an immune checkpoint inhibitor (chemo + IO) as first-line treatment in a real-world setting. The cases of 98 patients treated with chemo + IO were prospectively collected and analyzed for effectiveness and safety. The response rate to chemo + IO was 46.9%, and the disease control rate was 76.5%. The median progression-free survival and overall survival (OS) in the total population were 5.2 and 22.3 months, respectively. The patients positive for PD-L1 (≥ 1%) showed significantly longer OS than the negative group (<1%) (median 26.7 vs. 18.7 months, p=0.04). Pre-existing interstitial lung disease (ILD) was associated with shorter OS than the absence of ILD (median 9.0 vs. 22.6 months, p<0.01). Immunerelated adverse events (irAEs) were observed in 28 patients (28.6%). The most frequent irAE was ILD (n=11); Grade 1 (n=1 patient), G2 (n=5), G3 (n=4), and only a single patient with a G5 irAE. In this CS-Lung-003 study, first-line chemo + IO in a real-world setting showed good effectiveness, comparable to that observed in international clinical trials. In real-world practice, chemo + IO is a promising and steadfast strategy. en-copyright= kn-copyright= en-aut-name=KanajiNobuhiro en-aut-sei=Kanaji en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiKazuya en-aut-sei=Nishii en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsubataYukari en-aut-sei=Tsubata en-aut-mei=Yukari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakaoMika en-aut-sei=Nakao en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkunoTakae en-aut-sei=Okuno en-aut-mei=Takae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkawaSachi en-aut-sei=Okawa en-aut-mei=Sachi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakataKenji en-aut-sei=Takata en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KodaniMasahiro en-aut-sei=Kodani en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamasakiMasahiro en-aut-sei=Yamasaki en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujitakaKazunori en-aut-sei=Fujitaka en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KubotaTetsuya en-aut-sei=Kubota en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=InoueMasaaki en-aut-sei=Inoue en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WatanabeNaoki en-aut-sei=Watanabe en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=CS-Lung-003 Investigator en-aut-sei=CS-Lung-003 Investigator en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=3 en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University Faculty of Medicine kn-affil= affil-num=6 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=8 en-affil=Division of Medical Oncology and Molecular Respirology, Faculty of Medicine, Tottori University kn-affil= affil-num=9 en-affil=Department of Respiratory Disease, Hiroshima Red Cross Hospital and Atomic-Bomb Survivors Hospital kn-affil= affil-num=10 en-affil=Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University kn-affil= affil-num=11 en-affil=Department of Respiratory Medicine and Allergology, Kochi University kn-affil= affil-num=12 en-affil=Department of Chest Surgery, Shimonoseki City Hospital kn-affil= affil-num=13 en-affil=Department of Internal Medicine, Division of Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University kn-affil= affil-num=14 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=15 en-affil= kn-affil= en-keyword=non-small cell lung cancer kn-keyword=non-small cell lung cancer en-keyword=real-world kn-keyword=real-world en-keyword=first-line kn-keyword=first-line en-keyword=immune checkpoint inhibitor kn-keyword=immune checkpoint inhibitor en-keyword=combined immunotherapy kn-keyword=combined immunotherapy END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=157 end-page=166 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Continuous Stimulation with Glycolaldehyde-derived Advanced Glycation End Product Reduces Aggrecan and COL2A1 Production via RAGE in Human OUMS-27 Chondrosarcoma Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chondrocytes are responsible for the production of extracellular matrix (ECM) components such as collagen type II alpha-1 (COL2A1) and aggrecan, which are loosely distributed in articular cartilage. Chondrocyte dysfunction has been implicated in the pathogenesis of rheumatic diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA). With age, advanced glycation end products (AGEs) accumulate in all tissues and body fluids, including cartilage and synovial fluid, causing and accelerating pathological changes associated with chronic diseases such as OA. Glycolaldehyde-derived AGE (AGE3), which is toxic to a variety of cell types, have a stronger effect on cartilage compared with other AGEs. To understand the long-term effects of AGE3 on cartilage, we stimulated a human chondrosarcoma cell line (OUMS-27), which exhibits a chondrocytic phenotype, with 10 μg/ml AGE3 for 4 weeks. As a result, the expressions of COL2A1 and aggrecan were significantly downregulated in the OUMS-27 cells without inducing cell death, but the expressions of proteases that play an important role in cartilage destruction were not affected. Inhibition of the receptor for advanced glycation end products (RAGE) suppressed the AGE3-induced reduction in cartilage component production, suggesting the involvement of RAGE in the action of AGE3. en-copyright= kn-copyright= en-aut-name=HatipogluOmer Faruk en-aut-sei=Hatipoglu en-aut-mei=Omer Faruk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishinakaTakashi en-aut-sei=Nishinaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaykasliKursat Oguz en-aut-sei=Yaykasli en-aut-mei=Kursat Oguz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriShuji en-aut-sei=Mori en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeMasahiro en-aut-sei=Watanabe en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyomuraTakao en-aut-sei=Toyomura en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirohataSatoshi en-aut-sei=Hirohata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiHideo en-aut-sei=Takahashi en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WakeHidenori en-aut-sei=Wake en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=2 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=3 en-affil=Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen kn-affil= affil-num=4 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=5 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=6 en-affil=Department of Pharmacology, School of Pharmacy, Shujitsu University kn-affil= affil-num=7 en-affil=Department of Translational Research & Dug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Medical Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= affil-num=10 en-affil=Department of Pharmacology, Faculty of Medicine, Kindai University kn-affil= en-keyword=advanced glycation end product kn-keyword=advanced glycation end product en-keyword=aging kn-keyword=aging en-keyword=cartilage kn-keyword=cartilage en-keyword=collagen kn-keyword=collagen en-keyword=aggrecan kn-keyword=aggrecan END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=3 article-no= start-page=147 end-page=155 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immunometabolic Regulation of Innate Immunity in Systemic Lupus Erythematosus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pathogens or their components can induce long-lasting changes in the behavior of innate immune cells, a process analogous to “training” for future threats or environmental adaptation. However, such training can sometimes have unintended consequences, such as the development of autoimmunity. Systemic lupus erythematosus (SLE) is a chronic and heterogeneous autoimmune disease characterized by the production of autoantibodies and progressive organ damage. Innate immunity plays a central role in its pathogenesis, contributing through impaired clearance of apoptotic cells, excessive type I interferon production, and dysregulated formation of neutrophil extracellular traps. Recent studies have revealed that metabolites and nucleic acids derived from mitochondria, a crucial energy production site, directly regulate type I interferon and anti-inflammatory cytokine production. These insights have fueled interest in targeting metabolic pathways as a novel therapeutic approach for SLE, offering promise for improving long-term patient outcomes. en-copyright= kn-copyright= en-aut-name=WatanabeHaruki en-aut-sei=Watanabe en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=systemic lupus erythematosus kn-keyword=systemic lupus erythematosus en-keyword=interferon kn-keyword=interferon en-keyword=tricarboxylic acid cycle kn-keyword=tricarboxylic acid cycle en-keyword=innate immune memory kn-keyword=innate immune memory en-keyword=trained immunity kn-keyword=trained immunity END start-ver=1.4 cd-journal=joma no-vol=192 cd-vols= no-issue=5 article-no= start-page=58 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Intertwining Property for Laguerre Processes with a Fixed Parameter en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigate the intertwining of Laguerre processes of parameter α in different dimensions. We introduce a Feller kernel that depends on α and intertwines the α-Laguerre process in N + 1 dimensions and that in N dimensions. When α is a non-negative integer, the new kernel is interpreted in terms of the conditional distribution of the squared singular values: if the singular values of a unitarily invariant random matrix of order (N+α+1)×(N+1) are fixed, then the those of its (N+α) × N truncation matrix are given by the new kernel. en-copyright= kn-copyright= en-aut-name=BufetovAlexander I. en-aut-sei=Bufetov en-aut-mei=Alexander I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawamotoYosuke en-aut-sei=Kawamoto en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Steklov Mathematical Institute of RAS kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Random matrices kn-keyword=Random matrices en-keyword=Intertwining relation kn-keyword=Intertwining relation en-keyword=Interacting Brownian motions kn-keyword=Interacting Brownian motions END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250508 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comprehensive analysis of adverse event profile changes with pertuzumab addition to trastuzumab‐based breast cancer therapy: Disproportionality analysis using VigiBase en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims: Pertuzumab is used in combination with trastuzumab-based therapy for HER2-positive breast cancer. However, real-world safety information on pertuzumab remains limited. This study assessed the safety of adding pertuzumab to trastuzumab-based therapy for HER2-positive breast cancer using real-world data.
Methods: VigiBase, the World Health Organization's global database of adverse events (AEs), containing reports from November 1967 to December 2023, was used. Signals for pertuzumab-associated AEs in breast cancer cases were detected using the reporting odds ratio (ROR).
Results: Signals of trastuzumab plus pertuzumab relative to trastuzumab alone were detected in gastrointestinal disorders (ROR: 1.45, 95% confidence interval: 1.26–1.67), including diarrhoea (3.49, 2.83–4.30); infections and infestations (1.54, 1.24–1.91); and skin and subcutaneous tissue disorders (ROR: 1.63, 1.40–1.90), including pruritus (1.96, 1.51–2.55) and rash (1.63, 1.20–2.23). Further, signals of trastuzumab plus docetaxel plus pertuzumab relative to those of trastuzumab plus docetaxel were detected in gastrointestinal disorders (1.63, 1.38–1.93), including nausea (1.72, 1.24–2.39) and vomiting (1.48, 1.01–2.17), and in nervous system disorders (1.50, 1.20–1.87), including paraesthesia (2.60, 1.33–5.08) and peripheral sensory neuropathy (5.94, 1.79–19.71). The frequency of AEs causing or prolonging hospitalization was increased with trastuzumab plus pertuzumab compared to that with trastuzumab alone (1.18, 1.00–1.38).
Conclusions: AE profiles after the addition of pertuzumab to trastuzumab-based therapy were comprehensively identified. The findings in this study highlight the importance of considering these AEs when selecting pertuzumab combination therapy to ensure the safety of patients with breast cancer. en-copyright= kn-copyright= en-aut-name=TakedaTatsuaki en-aut-sei=Takeda en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoJun en-aut-sei=Matsumoto en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakaiTomonori en-aut-sei=Sakai en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IwataNaohiro en-aut-sei=Iwata en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KoyamaToshihiro en-aut-sei=Koyama en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AriyoshiNoritaka en-aut-sei=Ariyoshi en-aut-mei=Noritaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Education and Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Education and Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Education and Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= en-keyword=adverse event kn-keyword=adverse event en-keyword=breast cancer kn-keyword=breast cancer en-keyword=pertuzumab kn-keyword=pertuzumab en-keyword=trastuzumab kn-keyword=trastuzumab en-keyword=VigiBase kn-keyword=VigiBase END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Supplement-induced acute kidney injury reproduced in kidney organoids en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Acute kidney injury associated with the consumption of Beni-koji CholesteHelp supplements, which contain red yeast rice (Beni-Koji), has become a significant public health concern in Japan. While renal biopsy findings from several case reports have suggested tubular damage, no definitive causal relationship has been established, and the underlying mechanisms of kidney injury remain poorly understood. The complexity of identifying toxic substances in supplements containing various bioactive compounds makes conventional investigative approaches both time-consuming and challenging. This highlights an urgent need to establish a reliable platform for assessing organ-specific toxicity in such supplements. In this study, we utilized a kidney organoid model derived from adult rat kidney stem cells (KS cells) to assess the potential tubular toxicity of these supplements. Methods: KS cell clusters were cultured in three-dimensional system supplemented with growth factors to promote kidney organoids. The organoids were subsequently exposed to Beni-koji CholesteHelp supplements or cisplatin, followed by histological and molecular analyses to evaluate structural impacts. Results: Established organoids had the kidney-like structures including tubular-like structures and glomerulus-like structures at the tips of multiple tubules. Treatment with Beni-koji CholesteHelp supplements induced significant tubular damage in the organoids, characterized by epithelial cell thinning, structural disruption, and increase in cleaved-caspase 3-positive apoptotic tubular cells, similar to the organoids treated with cisplatin. Conclusion: These findings provide the first evidence suggesting that certain toxicants in specific batches of Beni-koji CholesteHelp supplements cause direct renal tubular injury. This KS cell-based organoid system represents a cost-effective, reproducible, and technically simple platform for nephrotoxicity screening. en-copyright= kn-copyright= en-aut-name=NakanohHiroyuki en-aut-sei=Nakanoh en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsujiKenji en-aut-sei=Tsuji en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukushimaKazuhiko en-aut-sei=Fukushima en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaraguchiSoichiro en-aut-sei=Haraguchi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitamuraShinji en-aut-sei=Kitamura en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Acute kidney injury kn-keyword=Acute kidney injury en-keyword=Drug-induced nephrotoxicity kn-keyword=Drug-induced nephrotoxicity en-keyword=Kidney organoid kn-keyword=Kidney organoid en-keyword=Kidney stem cell kn-keyword=Kidney stem cell END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Xenopus laevis as an infection model for human pathogenic bacteria en-subtitle= kn-subtitle= en-abstract= kn-abstract=Animal infection models are essential for understanding bacterial pathogenicity and corresponding host immune responses. In this study, we investigated whether juvenile Xenopus laevis could be used as an infection model for human pathogenic bacteria. Xenopus frogs succumbed to intraperitoneal injection containing the human pathogenic bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes. In contrast, non-pathogenic bacteria Bacillus subtilis and Escherichia coli did not induce mortality in Xenopus frogs. The administration of appropriate antibiotics suppressed mortality caused by S. aureus and P. aeruginosa. Strains lacking the agr locus, cvfA (rny) gene, or hemolysin genes in S. aureus, LIPI-1-deleted mutant of L. monocytogenes, which attenuate virulence within mammals, exhibited reduced virulence in Xenopus frogs compared with their respective wild-type counterparts. Bacterial distribution analysis revealed that S. aureus persisted in the blood, liver, heart, and muscles of Xenopus frogs until death. These results suggested that intraperitoneal injection of human pathogenic bacteria induces sepsis-like symptoms in Xenopus frogs, supporting their use as a valuable animal model for evaluating antimicrobial efficacy and identifying virulence genes in various human pathogenic bacteria. en-copyright= kn-copyright= en-aut-name=KuriuAyano en-aut-sei=Kuriu en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaKazuya en-aut-sei=Ishikawa en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsuchiyaKohsuke en-aut-sei=Tsuchiya en-aut-mei=Kohsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FurutaKazuyuki en-aut-sei=Furuta en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University kn-affil= affil-num=4 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=animal infection model kn-keyword=animal infection model en-keyword=Staphylococcus aureus kn-keyword=Staphylococcus aureus en-keyword=Listeria monocytogenes kn-keyword=Listeria monocytogenes en-keyword=Pseudomonas aeruginosa kn-keyword=Pseudomonas aeruginosa en-keyword=antibiotics efficacy kn-keyword=antibiotics efficacy en-keyword=virulence genes kn-keyword=virulence genes en-keyword=hemolysin kn-keyword=hemolysin END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=2 article-no= start-page=94 end-page=100 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of different management approaches on unmet water demand in coffee-producing areas during wet and dry years: a case study of the Srepok River Watershed, Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=The primary cause of conflicts over water allocation is growing demand and limited supply, which has become an increasingly serious issue in many watersheds. To alleviate water disputes, effective management strategies can be employed, particularly in the context of intensifying agricultural production and unpredictable changes in weather. In this study, two models, SWAT and WEAP, and the modified surface water supply index (MSWSI) were utilized to evaluate water allocation in the Srepok River Watershed (SRW), considering the prioritization of demand and various irrigation methods, during both wet and dry years. The crop irrigation was chosen to be the main focus in relation to the unmet water demand (UWD). The results indicated that coffee was the primary cause of UWD in the middle of the watershed during the second half of the dry season, and annual crops (AC) were the secondary cause. This research further elucidated that while prioritizing demand had an insignificant impact, transitioning from hose irrigation to sprinkler irrigation could be remarkably effective in mitigating the issues of UWD in coffee crops during both wet and dry years. en-copyright= kn-copyright= en-aut-name=SamTruong Thao en-aut-sei=Sam en-aut-mei=Truong Thao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoroizumiToshitsugu en-aut-sei=Moroizumi en-aut-mei=Toshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=hydrological model kn-keyword=hydrological model en-keyword=drought kn-keyword=drought en-keyword=coffee irrigation kn-keyword=coffee irrigation en-keyword=water-saving technique kn-keyword=water-saving technique en-keyword=water allocation kn-keyword=water allocation END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=7 article-no= start-page=193 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Osteosarcoma cell-derived CCL2 facilitates lung metastasis via accumulation of tumor-associated macrophages en-subtitle= kn-subtitle= en-abstract= kn-abstract=Osteosarcoma (OS) is the most common malignant tumor of bone in children and adolescents. Although lung metastasis is a major obstacle to improving the prognosis of OS patients, the underlying mechanism of lung metastasis of OS is poorly understood. Tumor-associated macrophages (TAMs) with M2-like characteristics are reportedly associated with lung metastasis and poor prognosis in OS patients. In this study, we investigated the metastasis-associated tumor microenvironment (TME) in orthotopic OS tumor models with non-metastatic and metastatic OS cells. Non-metastatic and metastatic tumor cells derived from mouse OS (Dunn and LM8) and human OS (HOS and 143B) were used to analyze the TME associated with lung metastasis in orthotopic OS tumor models. OS cell-derived secretion factors were identified by cytokine array and enzyme-linked immunosorbent assay (ELISA). Orthotopic tumor models with metastatic LM8 and 143B cells were analyzed to evaluate the therapeutic potential of a neutralizing antibody in the development of primary and metastatic tumors. Metastatic OS cells developed metastatic tumors with infiltration of M2-like TAMs in the lungs. Cytokine array and ELISA demonstrated that metastatic mouse and human OS cells commonly secreted CCL2, which was partially encapsulated in extracellular vesicles. In vivo experiments demonstrated that while primary tumor growth was unaffected, administration of CCL2-neutralizing antibody led to a significant suppression of lung metastasis and infiltration of M2-like TAMs in the lung tissue. Our results suggest that CCL2 plays a crucial role in promoting the lung metastasis of OS cells via accumulation of M2-like TAMs. en-copyright= kn-copyright= en-aut-name=KondoHiroya en-aut-sei=Kondo en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KureMiho en-aut-sei=Kure en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DemiyaKoji en-aut-sei=Demiya en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HataToshiaki en-aut-sei=Hata en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UotaniKoji en-aut-sei=Uotani en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshiokaYusuke en-aut-sei=Yoshioka en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Molecular and Cellular Medicine, Tokyo Medical University kn-affil= affil-num=14 en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Osteosarcoma kn-keyword=Osteosarcoma en-keyword=Lung metastasis kn-keyword=Lung metastasis en-keyword=Tumor-associated macrophage kn-keyword=Tumor-associated macrophage en-keyword=CCL2 kn-keyword=CCL2 en-keyword=Extracellular vesicle kn-keyword=Extracellular vesicle END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=9 article-no= start-page=1559 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impacts of Dental Follicle Cells and Periodontal Ligament Cells on the Bone Invasion of Well-Differentiated Oral Squamous Cell Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Oral squamous cell carcinoma (OSCC) frequently invades the jawbone, leading to diagnostic and therapeutic challenges. While tumor-bone interactions have been studied, the specific roles of dental follicle cells (DFCs) and periodontal ligament cells (PDLCs) in OSCC-associated bone resorption remain unclear. This study aimed to compare the effects of DFCs and PDLCs on OSCC-induced bone invasion and elucidate the underlying mechanisms. Methods: Primary human DFCs and PDLCs were isolated from extracted third molars and characterized by Giemsa and immunofluorescence staining. An in vitro co-culture system and an in vivo xenograft mouse model were established using the HSC-2 OSCC cell line. Tumor invasion and osteoclast activation were assessed by hematoxylin and eosin (HE) and tartrate-resistant acid phosphatase (TRAP) staining. Immunohistochemical analysis was performed to evaluate the expression of receptor activator of NF-kappa B ligand (RANKL) and parathyroid hormone-related peptide (PTHrP). Results: DFCs significantly enhanced OSCC-induced bone resorption by promoting osteoclastogenesis and upregulating RANKL and PTHrP expression. In contrast, PDLCs suppressed RANKL expression and partially modulated PTHrP levels, thereby reducing osteoclast activity. Conclusions: DFCs and PDLCs exert opposite regulatory effects on OSCC-associated bone destruction. These findings underscore the importance of stromal heterogeneity and highlight the therapeutic potential of targeting specific stromal-tumor interactions to mitigate bone-invasive OSCC. en-copyright= kn-copyright= en-aut-name=ChangAnqi en-aut-sei=Chang en-aut-mei=Anqi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakabatakeKiyofumi en-aut-sei=Takabatake en-aut-mei=Kiyofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PiaoTianyan en-aut-sei=Piao en-aut-mei=Tianyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ArashimaTakuma en-aut-sei=Arashima en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawaiHotaka en-aut-sei=Kawai en-aut-mei=Hotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EainHtoo Shwe en-aut-sei=Eain en-aut-mei=Htoo Shwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SoeYamin en-aut-sei=Soe en-aut-mei=Yamin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MinZin Zin en-aut-sei=Min en-aut-mei=Zin Zin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Pathology and Medicine, Okayama University kn-affil= en-keyword=oral squamous cell carcinoma kn-keyword=oral squamous cell carcinoma en-keyword=dental follicle cells kn-keyword=dental follicle cells en-keyword=periodontal ligament cells kn-keyword=periodontal ligament cells en-keyword=bone invasion kn-keyword=bone invasion en-keyword=receptor activator of NF-kappa B ligand kn-keyword=receptor activator of NF-kappa B ligand en-keyword=parathyroid hormone-related peptide kn-keyword=parathyroid hormone-related peptide END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=5 article-no= start-page=101685 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prognostic Value of Pericoronary Fat Attenuation Index on Computed Tomography for Hospitalization for Heart Failure en-subtitle= kn-subtitle= en-abstract= kn-abstract=BACKGROUND Pericoronary fat attenuation index (FAI) assessed on computed tomography is associated with the inflammation of the pericoronary artery.
OBJECTIVES This study aimed to investigate whether pericoronary FAI predicts hospitalization for heart failure with preserved ejection fraction (HFpEF).
METHODS This retrospective single-center study included 1,196 consecutive patients who underwent clinically indicated coronary computed tomography angiography (CCTA) and transthoracic echocardiography. We assessed the FAI of proximal 40-mm segments for each major epicardial coronary vessel. The primary outcome was the incidence of hospitalization for HFpEF. Patients were divided into groups based on the optimal cutoff value for predicting hospitalization for HFpEF by receiver operating characteristic curve analysis.
RESULTS During a median follow-up of 4.3 years, 29 hospitalizations for HFpEF occurred. Multivariable Cox regression analysis revealed that a left anterior descending artery (LAD)-FAI >=-63.4 HU and a left circumflex artery-FAI >=-61.6 HU were significantly associated with hospitalization for HF after adjustment for age and sex (HR: 4.8; 95% CI: 2.1-10.8 and HR: 4.5; 95% CI: 2.1-9.4, respectively). The addition of LAD-FAI >-63.4 HU to a model incorporating other risk factors, including hypertension, estimated glomerular filtration rate <60 mL/min/1.73 m2, and significant stenosis on CCTA, increased the C-statistic for predicting hospitalization for HFpEF from 0.646 to 0.750 (P = 0.010).
CONCLUSIONS LAD-and left circumflex artery-FAI can predict hospitalization for HFpEF in patients undergoing clinically indicated CCTA. Pericoronary inflammation may be useful for identifying patients at high risk of developing HFpEF. en-copyright= kn-copyright= en-aut-name=NakashimaMitsutaka en-aut-sei=Nakashima en-aut-mei=Mitsutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikiTakashi en-aut-sei=Miki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EjiriKentaro en-aut-sei=Ejiri en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HaraShohei en-aut-sei=Hara en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IchikawaKeishi en-aut-sei=Ichikawa en-aut-mei=Keishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OsawaKazuhiro en-aut-sei=Osawa en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of General Internal Medicine 3, Kawasaki Medical School General Medicine Centre kn-affil= affil-num=11 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=coronary computed tomography angiography kn-keyword=coronary computed tomography angiography en-keyword=fat attenuation index kn-keyword=fat attenuation index en-keyword=heart failure kn-keyword=heart failure en-keyword=inflammation kn-keyword=inflammation END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250430 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-Resolution HPLC for Separating Peptide-Oligonucleotide Conjugates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Peptide-oligonucleotide conjugates (POCs) are chimeric molecules that combine the specificity of oligonucleotides with the functionality of peptides, improving the delivery and therapeutic potential of nucleic acid-based drugs. However, the analysis of POCs, particularly those containing arginine-rich sequences, poses major challenges because of aggregation caused by electrostatic interactions. In this study, we developed an optimized high-performance liquid chromatography (HPLC) method for analyzing POCs. Using a conjugate of DNA and nona-arginine as a model compound, we systematically investigated the effects of various analytical parameters, including column type, column temperature, mobile-phase composition, and pH. A column packed with C18 resin with wide pores combined with butylammonium acetate as the ion-pairing reagent and an optimal column temperature of 80 degrees C provided superior peak resolution and sensitivity. The optimized conditions gave clear separation of POCs from unlinked oligonucleotides and enabled the detection of nucleic acid fragments lacking an alkyne moiety as a linkage part, which is critical for quality control. Our HPLC method is robust and reproducible and substantially reduces the complexity, time, and cost associated with the POC analysis. The method may improve the efficiency of quality control in the production of POCs, thereby supporting their development as promising therapeutic agents for clinical applications. en-copyright= kn-copyright= en-aut-name=NaganumaMiyako en-aut-sei=Naganuma en-aut-mei=Miyako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsujiGenichiro en-aut-sei=Tsuji en-aut-mei=Genichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AmiyaMisato en-aut-sei=Amiya en-aut-mei=Misato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraiReira en-aut-sei=Hirai en-aut-mei=Reira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiguchiYuki en-aut-sei=Higuchi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HataNaoko en-aut-sei=Hata en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NozawaSaoko en-aut-sei=Nozawa en-aut-mei=Saoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeDaishi en-aut-sei=Watanabe en-aut-mei=Daishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakajimaTaeko en-aut-sei=Nakajima en-aut-mei=Taeko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=DemizuYosuke en-aut-sei=Demizu en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Division of Organic Chemistry, National Institute of Health Sciences kn-affil= affil-num=2 en-affil=Division of Organic Chemistry, National Institute of Health Sciences kn-affil= affil-num=3 en-affil=YMC CO., LTD. kn-affil= affil-num=4 en-affil=YMC CO., LTD. kn-affil= affil-num=5 en-affil=YMC CO., LTD. kn-affil= affil-num=6 en-affil=YMC CO., LTD. kn-affil= affil-num=7 en-affil=YMC CO., LTD. kn-affil= affil-num=8 en-affil=Division of Organic Chemistry, National Institute of Health Sciences kn-affil= affil-num=9 en-affil=YMC CO., LTD. kn-affil= affil-num=10 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=137 cd-vols= no-issue=1 article-no= start-page=7 end-page=9 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2023 Incentive Award of the Okayama Medical Association in Cancer Research (2023 Hayashibara Prize and Yamada Prize) kn-title=令和5年度岡山医学会賞 がん研究奨励賞(林原賞・山田賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=UrataTomohiro en-aut-sei=Urata en-aut-mei=Tomohiro kn-aut-name=浦田知宏 kn-aut-sei=浦田 kn-aut-mei=知宏 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 血液・腫瘍・呼吸器内科学 END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=1 article-no= start-page=1 end-page=15 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Improved sedimentary layer model including the accretionary prism in the fore-arc region of the Ryukyu arc, Japan kn-title=南西諸島の前弧域における付加体を含む堆積層のモデル化 en-subtitle= kn-subtitle= en-abstract= kn-abstract= We combine the recent seismic reflection profiles to construct a new seismic velocity model of the sedimentary layer incorporating the accretionary prism along the Ryukyu trench. In constructing the new model, we refer to the zoning (ZONE1 to ZONE4) identified by Okamura et al. (2017, Tectonophys.). The construction process consists of the following steps: First, we digitize either unconformities or VP=4 to 5 km/s lines as the seismic basement, whichever is more clearly identifiable. Second, the digitized thickness data of the sedimentary layer from the reflection profiles are geometrically modeled and interpolated to make the three-dimensional structure model. Finally, we supplement the external region of the constructed 3-D sedimentary model using the J-SHIS model provided by the NIED to complete the velocity structure model in the entire Ryukyu arc. The main features of our model are as follows: In ZONE1, off Ishigaki-jima island, the thick sedimentary layer extends about 50 km wide from the Ryukyu trench. In ZONE2, off Miyako-jima island, the thinner layer compared to the other zones is found near the trench, with a thin sedimentary terrace covering the area behind it. In ZONE3, off Okinawa-jima island, the sedimentary layer deepens as it approaches the trench. In ZONE4, off Tokara islands, the deepest layer among all zones is identified. We then conduct 3-D finite-difference simulations of seismic wave propagation using the new and the previous models to confirm the improvement of the new model. In the simulations, the effects of the accretionary prism along the Ryukyu trench on the seismic wave propagation are clearly identified. en-copyright= kn-copyright= en-aut-name=KOMATSUMasanao en-aut-sei=KOMATSU en-aut-mei=Masanao kn-aut-name=小松正直 kn-aut-sei=小松 kn-aut-mei=正直 aut-affil-num=1 ORCID= en-aut-name=URAKAMISohei en-aut-sei=URAKAMI en-aut-mei=Sohei kn-aut-name=浦上想平 kn-aut-sei=浦上 kn-aut-mei=想平 aut-affil-num=2 ORCID= en-aut-name=OKAMOTOTaro en-aut-sei=OKAMOTO en-aut-mei=Taro kn-aut-name=岡元太郎 kn-aut-sei=岡元 kn-aut-mei=太郎 aut-affil-num=3 ORCID= en-aut-name=TAKENAKAHiroshi en-aut-sei=TAKENAKA en-aut-mei=Hiroshi kn-aut-name=竹中博士 kn-aut-sei=竹中 kn-aut-mei=博士 aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama Gakuin University kn-affil=岡山学院大学 affil-num=2 en-affil=Formerly Department of Earth Sciences, Okayama University kn-affil=元・岡山大学大学院自然科学研究科 affil-num=3 en-affil=Department of Earth and Planetary Sciences, School of Science, Institute of Science Tokyo kn-affil=東京科学大学理学院地球惑星科学系 affil-num=4 en-affil=Department of Earth Sciences, Okayama University kn-affil=岡山大学学術研究院環境生命自然科学学域 en-keyword=Sedimentary layer model kn-keyword=Sedimentary layer model en-keyword=Accretionary prism kn-keyword=Accretionary prism en-keyword=Ryukyu arc kn-keyword=Ryukyu arc END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=14323 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250424 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lymphatic flow dynamics under exercise load assessed with thoracic duct ultrasonography en-subtitle= kn-subtitle= en-abstract= kn-abstract=The thoracic duct (TD) is the largest lymphatic vessel proximal to the venous system. It undergoes morphological changes in response to lymph flow from the periphery, with automatic contraction controlling the dynamics to propel lymph toward the venous system. Recent advancements in ultrasonography have facilitated non-invasive observations of the TD’s terminal, including its valve and wall motions. Observations of TD movements allow predictions of lymphatic flow dynamics. However, no studies have yet documented the changes in the TD under exercise-induced lymph flow enhancement in humans. Here, using 18-MHz high-frequency ultrasonography, we demonstrate for the first time that the TD diameter significantly expands under exercise load. This study analyzed 20 participants; the maximum TD diameters at rest and post-exercise were 2.69 ± 1.06 mm and 3.41 ± 1.32 mm, respectively (p = 0.00000056). While various methods exist for observing the TD, our approach—dynamically monitoring the TD diameter using sonography in real time and correlating it with lymphatic flow dynamics—offers a novel contribution. en-copyright= kn-copyright= en-aut-name=ShinaokaAkira en-aut-sei=Shinaoka en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimataYoshihiro en-aut-sei=Kimata en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Lymphatics and Edematology, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Plastic and Reconstructive surgery, Dentistry and Pharmaceutical Science, Okayama University Graduate School of Medicine kn-affil= en-keyword=Lymphedema kn-keyword=Lymphedema en-keyword=Lymphatic function kn-keyword=Lymphatic function en-keyword=Lymph flow kn-keyword=Lymph flow en-keyword=Chylothorax kn-keyword=Chylothorax en-keyword=Chylous ascites,lymph velocity kn-keyword=Chylous ascites,lymph velocity END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=4 article-no= start-page=139 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250402 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Implementation of Creep Test Assisting System with Dial Gauge Needle Reading and Smart Lighting Function for Laboratory Automation en-subtitle= kn-subtitle= en-abstract= kn-abstract=For decades, analog dial gauges have been essential for measuring and monitoring data at various industrial instruments including production machines and laboratory equipment. Among them, we focus on the instrument for creep test in a mechanical engineering laboratory, which evaluates material strength under sustained stress. Manual reading of gauges imposes significant labor demands, especially in long-duration tests. This burden further increases under low-lighting environments, where poor visibility can lead to misreading data points, potentially compromising the accuracy of test results. In this paper, to address the challenges, we implement a creep test assisting system that possesses the following features: (1) to save the installation cost, a web camera and Raspberry Pi are employed to capture images of the dial gauge and automate the needle reading by image processing in real time, (2) to ensure reliability under low-lighting environments, a smart lighting mechanism is integrated to turn on a supplementary light when the dial gauge is not clearly visible, and (3) to allow a user to stay in a distant place from the instrument during a creep test, material break is detected and the corresponding message is notified to a laboratory staff using LINE automatically. For evaluations, we install the implemented system into a material strength measuring instrument at Okayama University, Japan, and confirm the effectiveness and accuracy through conducting experiments under various lighting conditions. en-copyright= kn-copyright= en-aut-name=KongDezheng en-aut-sei=Kong en-aut-mei=Dezheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FangShihao en-aut-sei=Fang en-aut-mei=Shihao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NopriantoMitsuhiro en-aut-sei=Noprianto en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkayasuMitsuhiro en-aut-sei=Okayasu en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PuspitaningayuPradini en-aut-sei=Puspitaningayu en-aut-mei=Pradini kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Electrical Engineering, Universitas Negeri Surabaya kn-affil= en-keyword=creep test kn-keyword=creep test en-keyword=Raspberry Pi kn-keyword=Raspberry Pi en-keyword=dial gauge kn-keyword=dial gauge en-keyword=needle reading kn-keyword=needle reading en-keyword=smart lighting kn-keyword=smart lighting END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=1 article-no= start-page=116 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ADAR1-high tumor-associated macrophages induce drug resistance and are therapeutic targets in colorectal cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Colorectal cancer (CRC) is considered the third most common type of cancer worldwide. Tumor-associated macrophages (TAMs) have been shown to promote drug resistance. Adenosine-to-inosine RNA-editing, as regulated by adenosine deaminase acting on RNA (ADAR), is a process that induces the posttranscriptional modification of critical oncogenes. The aim of this study is to determine whether the signals from cancer cells would induce RNA-editing in macrophages.
Methods The effects of RNA-editing on phenotypes in macrophages were analyzed using clinical samples and in vitro and in vivo models.
Results The intensity of the RNA-editing enzyme ADAR1 (Adenosine deaminase acting on RNA 1) in cancer and mononuclear cells indicated a strong positive correlation between the nucleus and cytoplasm. The ADAR1-positive mononuclear cells were positive for CD68 and CD163, a marker for M2 macrophages. Cancer cells transport pro-inflammatory cytokines or ADAR1 protein directly to macrophages via the exosomes, promoting RNA-editing in AZIN1 (Antizyme Inhibitor 1) and GLI1 (Glioma-Associated Oncogene Homolog 1) and resulting in M2 macrophage polarization. GLI1 RNA-editing in the macrophages induced by cancer cells promotes the secretion of SPP1, which is supplied to the cancer cells. This activates the NF kappa B pathway in cancer cells, promoting oxaliplatin resistance. When the JAK inhibitors were administered, oncogenic RNA-editing in the macrophages was suppressed. This altered the macrophage polarization from M2 to M1 and decreased oxaliplatin resistance in cancer cells.
Conclusions This study revealed that ADAR1-high TAMs are crucial in regulating drug resistance in CRC and that targeting ADAR1 in TAMs could be a promising treatment approach for overcoming drug resistance in CRC. en-copyright= kn-copyright= en-aut-name=UmedaHibiki en-aut-sei=Umeda en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiToshiaki en-aut-sei=Takahashi en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoriwakeKazuya en-aut-sei=Moriwake en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoYoshitaka en-aut-sei=Kondo en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshidaKazuhiro en-aut-sei=Yoshida en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakedaSho en-aut-sei=Takeda en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YanoShuya en-aut-sei=Yano en-aut-mei=Shuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsumiYuki en-aut-sei=Matsumi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KishimotoHiroyuki en-aut-sei=Kishimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiTomokazu en-aut-sei=Fuji en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YasuiKazuya en-aut-sei=Yasui en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamamotoHideki en-aut-sei=Yamamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TakagiKosei en-aut-sei=Takagi en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KayanoMasashi en-aut-sei=Kayano en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NakamuraKeiichiro en-aut-sei=Nakamura en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MoriYoshiko en-aut-sei=Mori en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=GoelAjay en-aut-sei=Goel en-aut-mei=Ajay kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=17 en-affil=Department of Obstetrics and Gynecology, Okayama University Gradu�ate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=22 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=23 en-affil=Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Comprehensive Cancer Center kn-affil= affil-num=24 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=RNA-editing kn-keyword=RNA-editing en-keyword=Macrophage kn-keyword=Macrophage en-keyword=Chemoresistance kn-keyword=Chemoresistance en-keyword=Biomarker kn-keyword=Biomarker en-keyword=Colorectal cancer kn-keyword=Colorectal cancer END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=101 end-page=107 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of Postoperative Irradiation in Patients with cN0 Early Breast Cancer Treated with Sentinel Lymph Node Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=To evaluate the effectiveness of postoperative irradiation (POI) for patients with cN0 early breast cancer, we retrospectively analyzed the cases of 650 consecutive breast cancer patients who underwent sentinel lymph node (SLN)-guided surgery (2005-2022) at our hospital. In this cohort, 53% (278/521) of the patients who underwent breast conservative surgery (BCS) and 96% (124/129) of those treated with mastectomy did not receive POI. The patients who underwent BCS were treated with POI using opposing tangential field irradiation. A false negative (FN) SLN was retrospectively defined as a negative metastasis in SLN plus positive recurrence in the axillary lymph nodes. Recurrence was detected in 83 patients. A logistic regression analysis revealed that the nuclear grade (odds ratio [OR] 1.69), POI (OR 0.41), and postoperative hormone therapy (OR 0.40) were each significantly related to recurrence. The 26.1% (12/46) FN rate of the non-POI patients decreased to 5.8% (1/17) compared to those treated with POI. The rate of axillary recurrence was significantly lower in the POI group (0.4%) versus the non-POI group (2.7%) (p=0.0355). The rate of locoregional recurrence was also significantly lower in the POI group (2.0%) versus the non-POI group (13.4%) (p<0.0001). No significant difference was observed in the rate of distant recurrence between the POI (4.0%) and non-POI (3.3%) (p=0.831) groups. These results indicated that the postoperative opposing tangential field irradiation of conserved breast tissue inhibited recurrence in the axillary lymph nodes. en-copyright= kn-copyright= en-aut-name=IsozakiHiroshi en-aut-sei=Isozaki en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumotoSasau en-aut-sei=Matsumoto en-aut-mei=Sasau kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakamaTakehiro en-aut-sei=Takama en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IsozakiYuka en-aut-sei=Isozaki en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Surgery, Oomoto Hospital kn-affil= affil-num=2 en-affil=Department of Surgery, Oomoto Hospital kn-affil= affil-num=3 en-affil=Department of Surgery, Oomoto Hospital kn-affil= affil-num=4 en-affil=Department of Surgery, Oomoto Hospital kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=postoperative irradiation kn-keyword=postoperative irradiation en-keyword=radiation therapy kn-keyword=radiation therapy en-keyword=sentinel lymph nodes kn-keyword=sentinel lymph nodes en-keyword=recurrence kn-keyword=recurrence END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=81 end-page=92 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Outcomes of Neoadjuvant Paclitaxel/Cisplatin/Gemcitabine Compared with Gemcitabine/Cisplatin for Muscle-Invasive Bladder Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=We retrospectively evaluated the oncologic outcomes of paclitaxel, cisplatin, and gemcitabine (PCG) with those of gemcitabine and cisplatin (GC) as neoadjuvant chemotherapy in muscle-invasive bladder cancer (MIBC) patients. The primary outcome was efficacy: pathological complete response (pCR), ypT0N0; and pathological objective response (pOR), ypT0N0, ≤ ypT1N0, or ypT0N1. Secondary outcomes included overall survival (OS), recurrence-free survival (RFS), predictive factors for pOR, OS, and RFS, and hematologic adverse events (AEs). Among 113 patients treated (PCG, n=28; GC, n=85), similar pOR and pCR rates were achieved by the groups (pOR: PCG, 57.1% vs. GC, 49. 4%; p=0.52; pCR: PCG, 39.3% vs. GC, 29.4%; p=0.36). No significant differences were observed in OS (p=1.0) or RFS (p=0.20). Multivariate logistic regression analysis showed that hydronephrosis (odds ratio [OR] 0.32, 95%CI: 0.11-0.92) and clinical node-positive status (cN+) (OR 0.22, 95%CI: 0.050-0.99) were significantly associated with a decreased probability of pOR. On multivariate Cox regression analyses, pOR achievement was associated with improved OS (hazard ratio [HR] 0.23, 95%CI: 0.10-0.56) and RFS (HR 0.30, 95%CI: 0.13-0.67). There were no significant between-group differences in the incidence of grade ≥ 3 hematologic AEs or dose-reduction required, but the PCG group had a higher incidence of grade 4 neutropenia. en-copyright= kn-copyright= en-aut-name=KawadaTatsushi en-aut-sei=Kawada en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsugawaTakuji en-aut-sei=Tsugawa en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsuboiKazuma en-aut-sei=Tsuboi en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatayamaSatoshi en-aut-sei=Katayama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwataTakehiro en-aut-sei=Iwata en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BekkuKensuke en-aut-sei=Bekku en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiTomoko en-aut-sei=Kobayashi en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=EbaraShin en-aut-sei=Ebara en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=urothelial carcinoma kn-keyword=urothelial carcinoma en-keyword=paclitaxel kn-keyword=paclitaxel en-keyword=cisplatin kn-keyword=cisplatin en-keyword=gemcitabine kn-keyword=gemcitabine en-keyword=neoadjuvant kn-keyword=neoadjuvant END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=65 end-page=73 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between the Pretreatment Body Mass Index and Anamorelin’s Efficacy in Patients with Cancer Cachexia: A Retrospective Cohort Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Anamorelin (ANAM) is used to treat cancer-associated cachexia, a syndrome involving muscle loss and anorexia. The timing of the initiation of ANAM treatment is crucial to its efficacy. Although the body mass index (BMI) is a diagnostic criterion for cancer cachexia, no studies have explored its association with ANAM efficacy. We conducted a single-center, retrospective cohort study to investigate the association between the pre-treatment BMI and ANAM efficacy in patients with cancer-associated cachexia (n=47). The ANAM treatment was considered effective if the patient’s appetite improved within 30 days of treatment initiation. We calculated a BMI cutoff value (19.5 kg/m2) and used it to divide the patients into high- and low-BMI groups. Their background, clinical laboratory values, cancer types, and treatment lines were investigated. Twenty (42.6%) had a high BMI (≥ 19.5 kg/m2) and 27 (57.4%) had a low BMI (< 19.5 kg/m2). High BMI was significantly associated with ANAM effectiveness (odds ratio 7.86, 95% confidence interval 1.99-31.00, p=0.003). Together these results indicate that it is beneficial to initiate ANAM treatment before a patient’s BMI drops below 19.5 kg/m2. Our findings will help advance cancer cachexia treatment and serve as a reference for clinicians to predict ANAM’s efficacy. en-copyright= kn-copyright= en-aut-name=MakiMasatoshi en-aut-sei=Maki en-aut-mei=Masatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakadaRyo en-aut-sei=Takada en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshigoTomoyuki en-aut-sei=Ishigo en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiwaraMiki en-aut-sei=Fujiwara en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiYoko en-aut-sei=Takahashi en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtsukaShinya en-aut-sei=Otsuka en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TamuraKoji en-aut-sei=Tamura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HamaokaTerutaka en-aut-sei=Hamaoka en-aut-mei=Terutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center kn-affil= affil-num=2 en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center kn-affil= affil-num=3 en-affil=Department of Pharmacy, Sapporo Medical University Hospital kn-affil= affil-num=4 en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center kn-affil= affil-num=5 en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center kn-affil= affil-num=6 en-affil=Department of Surgery, NHO Fukuyama Medical Center kn-affil= affil-num=7 en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center kn-affil= affil-num=8 en-affil=Department of Hospital Pharmacy, NHO Fukuyama Medical Center kn-affil= en-keyword=anamorelin kn-keyword=anamorelin en-keyword=cancer-associated cachexia kn-keyword=cancer-associated cachexia en-keyword=body mass index kn-keyword=body mass index en-keyword=albumin kn-keyword=albumin en-keyword=efficacy rate kn-keyword=efficacy rate END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=2 article-no= start-page=156 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250411 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical-level screening of sleep apnea syndrome with single-lead ECG alone is achievable using machine learning with appropriate time windows en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose To establish a simple and noninvasive screening test for sleep apnea (SA) that imposes less burden on potential patients. The specific objective of this study was to verify the effectiveness of past and future single-lead electrocardiogram (ECG) data from SA occurrence sites in improving the estimation accuracy of SA and sleep apnea syndrome (SAS) using machine learning.
Methods The Apnea-ECG dataset comprising 70 ECG recordings was used to construct various machine-learning models. The time window size was adjusted based on the accuracy of SA detection, and the performance of SA detection and SAS diagnosis (apnea‒hypopnea index ≥ 5 was considered SAS) was compared.
Results Using ECG data from a few minutes before and after the occurrence of SAs improved the estimation accuracy of SA and SAS in all machine learning models. The optimal range of the time window and achieved accuracy for SAS varied by model; however, the sensitivity ranged from 95.7 to 100%, and the specificity ranged from 91.7 to 100%.
Conclusions ECG data from a few minutes before and after SA occurrence were effective in SA detection and SAS diagnosis, confirming that SA is a continuous phenomenon and that SA affects heart function over a few minutes before and after SA occurrence. Screening tests for SAS, using data obtained from single-lead ECGs with appropriate past and future time windows, should be performed with clinical-level accuracy. en-copyright= kn-copyright= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiMasanori en-aut-sei=Fujii en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoritaMizuki en-aut-sei=Morita en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Geriatric Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biomedical Informatics, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Disease screening kn-keyword=Disease screening en-keyword=Sleep apnea syndrome (SAS) kn-keyword=Sleep apnea syndrome (SAS) en-keyword=Single-lead ECG kn-keyword=Single-lead ECG en-keyword=Artificial intelligence kn-keyword=Artificial intelligence en-keyword=Machine learning kn-keyword=Machine learning END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=7 article-no= start-page=2221 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Length Estimation of Pneumatic Artificial Muscle with Optical Fiber Sensor Using Machine Learning en-subtitle= kn-subtitle= en-abstract= kn-abstract=A McKibben artificial muscle is a soft actuator driven by air pressure, characterized by its flexibility, lightweight design, and high power-to-weight ratio. We have developed a smart artificial muscle that is capable of sensing its motion. To enable this sensing function, an optical fiber was integrated into the sleeve consisting of multiple fibers and serving as a component of the McKibben artificial muscle. By measuring the macrobending loss of the optical fiber, the length of the smart artificial muscle is expected to be estimated. However, experimental results indicated that the sensor's characteristics depend not only on the length but also on the load and the applied air pressure. This dependency arises because the stress applied to the optical fiber increases, causing microbending loss. In this study, we employed a machine learning model, primarily composed of Long Short-Term Memory (LSTM) neural networks, to estimate the length of the smart artificial muscle. The experimental results demonstrate that the length estimation obtained through machine learning exhibits a smaller error. This suggests that machine learning is a feasible approach to enhancing the length measurement accuracy of the smart artificial muscle. en-copyright= kn-copyright= en-aut-name=NiYilei en-aut-sei=Ni en-aut-mei=Yilei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WakimotoShuichi en-aut-sei=Wakimoto en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TianWeihang en-aut-sei=Tian en-aut-mei=Weihang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TodaYuichiro en-aut-sei=Toda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KandaTakefumi en-aut-sei=Kanda en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamaguchiDaisuke en-aut-sei=Yamaguchi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=McKibben artificial muscle kn-keyword=McKibben artificial muscle en-keyword=machine learning kn-keyword=machine learning en-keyword=optical fiber kn-keyword=optical fiber en-keyword=motion estimation kn-keyword=motion estimation END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The association between objectively measured physical activity and home blood pressure: a population-based real-world data analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Few studies have examined the association of objectively measured habitual physical activity (PA) and sedentary behavior with out-of-office blood pressure (BP). We investigated the associations of objectively measured PA intensity time, sedentary time, and step count with at-home BP. Using accelerometer-recorded PA indices and self-measured BP in 368 participants (mean age, 53.8 years; 58.7% women), we analyzed 115,575 records of each parameter between May 2019 and April 2024. PA intensities were categorized as light (2.0–2.9 metabolic equivalents [METs]); moderate (3.0–5.9 METs); vigorous (≥6.0 METs), or sedentary (<2.0 METs): the median [interquartile ranges] for these variables was 188 [146–232], 83 [59–114], 1 [0–2], 501 [428–579] minutes, respectively, and for step count, was 6040 [4164–8457]. Means [standard deviations] for systolic and diastolic BP were 116.4 [14.2] and 75.2 [9.3] mmHg, respectively. A mixed-effect model adjusted for possible confounders showed that 1-h longer in vigorous PA was associated with lower systolic and diastolic BP (−1.69 and −1.09 mmHg, respectively). A 1000-step increase in step count was associated with lower systolic and diastolic BP (−0.05 and −0.02 mmHg, respectively). Associations were more pronounced among men and participants aged <60 years. Sedentary time was positively associated with BP in men and participants aged <60 years, but inversely associated with BP in women and participants aged ≥60 years. Our findings suggest that more PA and less sedentary behavior were associated with BP reduction, particularly among men and participants aged <60 years. However, the clinical relevance of this effect remains uncertain because of its modest magnitude. en-copyright= kn-copyright= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaniguchiKaori en-aut-sei=Taniguchi en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakahataNoriko en-aut-sei=Nakahata en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Environmental Medicine and Public Health, Izumo, Shimane University Faculty of Medicine kn-affil= affil-num=4 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Health and Nutrition, The University of Shimane Faculty of Nursing and Nutrition kn-affil= affil-num=6 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=213 cd-vols= no-issue= article-no= start-page=128 end-page=137 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The potential mechanism maintaining transactive response DNA binding protein 43 kDa in the mouse stroke model en-subtitle= kn-subtitle= en-abstract= kn-abstract=The disruption of transactive response DNA binding protein 43 kDa (TDP-43) shuttling leads to the depletion of nuclear localization and the cytoplasmic accumulation of TDP-43. We aimed to evaluate the mechanism underlying the behavior of TDP-43 in ischemic stroke. Adult male C57BL/6 J mice were subjected to 30 or 60 min of transient middle cerebral artery occlusion (tMCAO), and examined at 1, 6, and 24 h post reperfusion. Immunostaining was used to evaluate the expression of TDP-43, G3BP1, HDAC6, and RAD23B. The total and cytoplasmic number of TDP-43–positive cells increased compared with sham operation group and peaked at 6 h post reperfusion after tMCAO. The elevated expression of G3BP1 protein peaked at 6 h after reperfusion and decreased at 24 h after reperfusion in ischemic mice brains. We also observed an increase of expression level of HDAC6 and the number of RAD23B-positive cells increased after tMCAO. RAD23B was colocalized with TDP-43 24 h after tMCAO. We proposed that the formation of stress granules might be involved in the mislocalization of TDP-43, based on an evaluation of G3BP1 and HDAC6. Subsequently, RAD23B, may also contribute to the downstream degradation of mislocalized TDP-43 in mice tMCAO model. en-copyright= kn-copyright= en-aut-name=BianYuting en-aut-sei=Bian en-aut-mei=Yuting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Ota-ElliottRicardo Satoshi en-aut-sei=Ota-Elliott en-aut-mei=Ricardo Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HuXinran en-aut-sei=Hu en-aut-mei=Xinran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SunHongming en-aut-sei=Sun en-aut-mei=Hongming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BianZhihong en-aut-sei=Bian en-aut-mei=Zhihong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhaiYun en-aut-sei=Zhai en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YuHaibo en-aut-sei=Yu en-aut-mei=Haibo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HuXiao en-aut-sei=Hu en-aut-mei=Xiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AnHangping en-aut-sei=An en-aut-mei=Hangping kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=LiuHongzhi en-aut-sei=Liu en-aut-mei=Hongzhi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=TDP-43 kn-keyword=TDP-43 en-keyword=ALS kn-keyword=ALS en-keyword=RNA-binding protein kn-keyword=RNA-binding protein en-keyword=Mislocalization kn-keyword=Mislocalization en-keyword=G3BP1 kn-keyword=G3BP1 en-keyword=HDAC6 kn-keyword=HDAC6 en-keyword=RAD23B kn-keyword=RAD23B en-keyword=tMCAO kn-keyword=tMCAO END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=12 article-no= start-page=135 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241217 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elliptic virtual structure constants and generalizations of BCOV-Zinger formula to projective Fano hypersurfaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we propose a method for computing genus 1 Gromov-Witten invariants of Calabi-Yau and Fano projective hypersurfaces using the B-model. Our formalism is applicable to both Calabi-Yau and Fano cases. In the Calabi-Yau case, significant cancellation of terms within our formalism occurs, resulting in an alternative representation of the BCOV-Zinger formula for projective Calabi-Yau hypersurfaces. en-copyright= kn-copyright= en-aut-name=JinzenjiMasao en-aut-sei=Jinzenji en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuwataKen en-aut-sei=Kuwata en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Mathematics, Okayama University kn-affil= affil-num=2 en-affil=Department of General Education, National Institute of Technology, Kagawa College kn-affil= en-keyword=Nonperturbative Effects kn-keyword=Nonperturbative Effects en-keyword=String Duality kn-keyword=String Duality en-keyword=Topological Field Theories kn-keyword=Topological Field Theories en-keyword=Topological Strings kn-keyword=Topological Strings END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=133 end-page=147 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tsetlin library on p-colored permutations and q-analogue en-subtitle= kn-subtitle= en-abstract= kn-abstract=K. Brown [1] studied the random to top shuffle (the Tsetlin libary) by semigroup method. In this paper, (i) we extend his results to the colored permutation groups, and (ii) we consider a q-analogue of Tsetlin library which is different from what is studied in [1]. In (i), the results also extends those results for the top to random shuffle [4],[5], [6] to arbitrary distribution of choosing cards, but we still have derangement numbers in the multiplicity of each eigenvalues. In (ii), a version of q-analogue of derangement numbers by Chen-Rota [3] appears in the multiplicity of eigenvalues. en-copyright= kn-copyright= en-aut-name=NakagawaYuto en-aut-sei=Nakagawa en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakanoFumihiko en-aut-sei=Nakano en-aut-mei=Fumihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Mathematical Institute, Tohoku University kn-affil= affil-num=2 en-affil=Mathematical Institute, Tohoku University kn-affil= en-keyword=Tsetlin library kn-keyword=Tsetlin library en-keyword=Left Regular Band kn-keyword=Left Regular Band en-keyword=colored permutation group kn-keyword=colored permutation group END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=101 end-page=131 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The characterizations of an alternating sign matrices using a triplet en-subtitle= kn-subtitle= en-abstract= kn-abstract=An alternating sign matrix (ASM for short) is a square matrix which consists of 0, 1 and −1. In this paper, we characterize an ASM by showing a bijection between alternating sign matrix and six vertex model, and a bijection between six vertex model and height function. In order to show these bijections, we define a triplet (ai,j , ci,j , ri,j) for each entry of an ASM. We also define a track for each index of height function, and state more properties of height function. en-copyright= kn-copyright= en-aut-name=OhmotoToyokazu en-aut-sei=Ohmoto en-aut-mei=Toyokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Mathematics, Faculty of Science, Okayama University kn-affil= en-keyword=Alternating sign matrix kn-keyword=Alternating sign matrix en-keyword=six vertex model kn-keyword=six vertex model en-keyword=height function kn-keyword=height function END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=29 end-page=51 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Quillen model structure on the category of diffeological spaces en-subtitle= kn-subtitle= en-abstract= kn-abstract=We construct on the category of diffeological spaces a Quillen model structure having smooth weak homotopy equivalences as the class of weak equivalences. en-copyright= kn-copyright= en-aut-name=HaraguchiTadayuki en-aut-sei=Haraguchi en-aut-mei=Tadayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimakawaKazuhisa en-aut-sei=Shimakawa en-aut-mei=Kazuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Faculty of Education for Human Growth, Nara Gakuen University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= en-keyword=Diffeological space kn-keyword=Diffeological space en-keyword=Homotopy theory kn-keyword=Homotopy theory en-keyword=Model category kn-keyword=Model category END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=6 article-no= start-page=668 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Robustness of Machine Learning Predictions for Determining Whether Deep Inspiration Breath-Hold Is Required in Breast Cancer Radiation Therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Deep inspiration breath-hold (DIBH) is a commonly used technique to reduce the mean heart dose (MHD), which is critical for minimizing late cardiac side effects in breast cancer patients undergoing radiation therapy (RT). Although previous studies have explored the potential of machine learning (ML) to predict which patients might benefit from DIBH, none have rigorously assessed ML model performance across various MHD thresholds and parameter settings. This study aims to evaluate the robustness of ML models in predicting the need for DIBH across different clinical scenarios. Methods: Using data from 207 breast cancer patients treated with RT, we developed and tested ML models at three MHD cut-off values (240, 270, and 300 cGy), considering variations in the number of independent variables (three vs. six) and folds in the cross-validation (three, four, and five). Robustness was defined as achieving high F2 scores and low instability in predictive performance. Results: Our findings indicate that the decision tree (DT) model demonstrated consistently high robustness at 240 and 270 cGy, while the random forest model performed optimally at 300 cGy. At 240 cGy, a threshold critical to minimize late cardiac risks, the DT model exhibited stable predictive power, reducing the risk of overestimating DIBH necessity. Conclusions: These results suggest that the DT model, particularly at lower MHD thresholds, may be the most reliable for clinical applications. By providing a tool for targeted DIBH implementation, this model has the potential to enhance patient-specific treatment planning and improve clinical outcomes in RT. en-copyright= kn-copyright= en-aut-name=Al-HammadWlla E. en-aut-sei=Al-Hammad en-aut-mei=Wlla E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaMasahiro en-aut-sei=Kuroda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Al JamalJamal, Ghaida en-aut-sei=Al Jamal en-aut-mei=Jamal, Ghaida kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujikuraMamiko en-aut-sei=Fujikura en-aut-mei=Mamiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KamizakiRyo en-aut-sei=Kamizaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurodaKazuhiro en-aut-sei=Kuroda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshidaSuzuka en-aut-sei=Yoshida en-aut-mei=Suzuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraYoshihide en-aut-sei=Nakamura en-aut-mei=Yoshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugimotoKohei en-aut-sei=Sugimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SugiantoIrfan en-aut-sei=Sugianto en-aut-mei=Irfan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=BarhamMajd en-aut-sei=Barham en-aut-mei=Majd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TekikiNouha en-aut-sei=Tekiki en-aut-mei=Nouha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HisatomiMiki en-aut-sei=Hisatomi en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=AsaumiJunichi en-aut-sei=Asaumi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University kn-affil= affil-num=10 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=11 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University kn-affil= affil-num=13 en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University kn-affil= affil-num=14 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=radiation therapy kn-keyword=radiation therapy en-keyword=heart dose kn-keyword=heart dose en-keyword=cut-off value kn-keyword=cut-off value en-keyword=machine learning kn-keyword=machine learning en-keyword=robustness kn-keyword=robustness en-keyword=instability kn-keyword=instability en-keyword=F2 score kn-keyword=F2 score en-keyword=deep inspiration breath-hold technique kn-keyword=deep inspiration breath-hold technique en-keyword=computed tomography kn-keyword=computed tomography END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=6 article-no= start-page=790 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250320 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Improving Diagnostic Performance for Head and Neck Tumors with Simple Diffusion Kurtosis Imaging and Machine Learning Bi-Parameter Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Mean kurtosis (MK) values in simple diffusion kurtosis imaging (SDI)-a type of diffusion kurtosis imaging (DKI)-have been reported to be useful in the diagnosis of head and neck malignancies, for which pre-processing with smoothing filters has been reported to improve the diagnostic accuracy. Multi-parameter analysis using DKI in combination with other image types has recently been reported to improve the diagnostic performance. The purpose of this study was to evaluate the usefulness of machine learning (ML)-based multi-parameter analysis using the MK and apparent diffusion coefficient (ADC) values-which can be acquired simultaneously through SDI-for the differential diagnosis of benign and malignant head and neck tumors, which is important for determining the treatment strategy, as well as examining the usefulness of filter pre-processing. Methods: A total of 32 pathologically diagnosed head and neck tumors were included in the study, and a Gaussian filter was used for image pre-processing. MK and ADC values were extracted from pixels within the tumor area and used as explanatory variables. Five ML algorithms were used to create models for the prediction of tumor status (benign or malignant), which were evaluated through ROC analysis. Results: Bi-parameter analysis with gradient boosting achieved the best diagnostic performance, with an AUC of 0.81. Conclusions: The usefulness of bi-parameter analysis with ML methods for the differential diagnosis of benign and malignant head and neck tumors using SDI data were demonstrated. en-copyright= kn-copyright= en-aut-name=YoshidaSuzuka en-aut-sei=Yoshida en-aut-mei=Suzuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaMasahiro en-aut-sei=Kuroda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraYoshihide en-aut-sei=Nakamura en-aut-mei=Yoshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukumuraYuka en-aut-sei=Fukumura en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamitsuYuki en-aut-sei=Nakamitsu en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Al-HammadWlla E. en-aut-sei=Al-Hammad en-aut-mei=Wlla E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaKazuhiro en-aut-sei=Kuroda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShimizuYudai en-aut-sei=Shimizu en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OitaMasataka en-aut-sei=Oita en-aut-mei=Masataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugiantoIrfan en-aut-sei=Sugianto en-aut-mei=Irfan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=BarhamMajd en-aut-sei=Barham en-aut-mei=Majd kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TekikiNouha en-aut-sei=Tekiki en-aut-mei=Nouha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KamaruddinNurul N. en-aut-sei=Kamaruddin en-aut-mei=Nurul N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HisatomiMiki en-aut-sei=Hisatomi en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YanagiYoshinobu en-aut-sei=Yanagi en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=AsaumiJunichi en-aut-sei=Asaumi en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Interdisciplinary Sciences and Engineering in Health Systems, Okayama University kn-affil= affil-num=11 en-affil=Department of Oral Radiology, Faculty of Dentistry, Hasanuddin University kn-affil= affil-num=12 en-affil=Department of Dentistry and Dental Surgery, College of Medicine and Health Sciences, An-Najah National University kn-affil= affil-num=13 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=17 en-affil=Department of Oral and Maxillofacial Radiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=head and neck tumors kn-keyword=head and neck tumors en-keyword=mean kurtosis kn-keyword=mean kurtosis en-keyword=simple diffusion kurtosis imaging kn-keyword=simple diffusion kurtosis imaging en-keyword=magnetic resonance imaging kn-keyword=magnetic resonance imaging en-keyword=apparent diffusion coefficient value kn-keyword=apparent diffusion coefficient value en-keyword=diffusion kurtosis imaging kn-keyword=diffusion kurtosis imaging en-keyword=machine learning kn-keyword=machine learning en-keyword=bi-parameter analysis kn-keyword=bi-parameter analysis en-keyword=gradient boosting kn-keyword=gradient boosting en-keyword=differential diagnosis of benign and malignant kn-keyword=differential diagnosis of benign and malignant END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=6 article-no= start-page=619 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250313 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Trehalose on Halitosis: A Randomized Cross-Over Clinical Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Halitosis is a condition characterized by an unpleasant malodor. Intra-oral halitosis is caused by volatile sulfur compounds (VSCs) and can be associated with oral dryness. Trehalose is one of the materials used to relieve oral dryness. The aim of the present study was to investigate the effect of trehalose on halitosis. Methods: This prospective, double-blinded, placebo-controlled, cross-over study enrolled volunteers from Okayama University Hospital. The participants were randomly divided into two groups, with one group receiving trehalose (a 10% trehalose solution) and the other receiving a placebo (distilled water) in a 1:1 allocation. The primary study outcome was the subjective organoleptic test. The secondary outcomes were the concentrations of the VSCs, which were measured using a portable gas chromatography device, and the oral moisture status, which was measured using an oral moisture meter. The planned sample size was 10 participants based on the previous study. Results: The final intention-to-treat analysis was performed using the data from 9 participants. After applying 10% trehalose as an oral spray, the organoleptic score decreased in a time-dependent manner. However, no significant differences were seen between the trehalose and placebo groups. In terms of secondary outcomes, the oral moisture levels increased immediately after the trehalose spray application, and significant differences in the amount of change from the baseline were seen between the trehalose and placebo groups (p = 0.047). No significant differences were seen in any of the other variables (p > 0.05). Conclusions: We could not identify any positive effects on halitosis from a one-time 10% trehalose application as an oral spray in this prospective, double-blinded, placebo-controlled, cross-over study. However, the trehalose application immediately improved the oral moisture levels and was useful for treating oral dryness. en-copyright= kn-copyright= en-aut-name=MiyaiHisataka en-aut-sei=Miyai en-aut-mei=Hisataka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TomofujiTakaaki en-aut-sei=Tomofuji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizunoHirofumi en-aut-sei=Mizuno en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakaharaMomoko en-aut-sei=Nakahara en-aut-mei=Momoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KataokaKota en-aut-sei=Kataoka en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SumitaIchiro en-aut-sei=Sumita en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UchidaYurika en-aut-sei=Uchida en-aut-mei=Yurika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyamaNaoki en-aut-sei=Toyama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YokoiAya en-aut-sei=Yokoi en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=Yamanaka-KohnoReiko en-aut-sei=Yamanaka-Kohno en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakeuchiNoriko en-aut-sei=Takeuchi en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Community Oral Health, School of Dentistry, Asahi University kn-affil= affil-num=3 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=halitosis kn-keyword=halitosis en-keyword=trehalose kn-keyword=trehalose en-keyword=oral dryness kn-keyword=oral dryness en-keyword=cross-over study kn-keyword=cross-over study en-keyword=randomized trial kn-keyword=randomized trial END start-ver=1.4 cd-journal=joma no-vol=85 cd-vols= no-issue=6 article-no= start-page=1082 end-page=1096 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250314 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Myeloid Cells Induce Infiltration and Activation of B Cells and CD4+ T Follicular Helper Cells to Sensitize Brain Metastases to Combination Immunotherapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Brain metastasis is a poor prognostic factor in patients with cancer. Despite showing efficacy in many extracranial tumors, immunotherapy with anti–PD-1 mAb or anti–CTLA4 mAb seems to be less effective against intracranial tumors. Promisingly, recent clinical studies have reported that combination therapy with anti–PD-1 and anti–CTLA4 mAbs has a potent antitumor effect on brain metastasis, highlighting the need to elucidate the detailed mechanisms controlling the intracranial tumor microenvironment (TME) to develop effective immunotherapeutic strategies. In this study, we analyzed the tumor-infiltrating lymphocytes in murine models of brain metastasis that responded to anti–CTLA4 and anti–PD-1 mAbs. Activated CD4+ T follicular helper (TFH) cells with high CTLA4 expression characteristically infiltrated the intracranial TME, which were activated by combination anti–CTLA4 and anti–PD-1 treatment. The loss of TFH cells suppressed the additive effect of CTLA4 blockade on anti–PD-1 mAb. B-cell–activating factor belonging to the TNF family (BAFF) and a proliferation-inducing ligand (APRIL) produced by abundant myeloid cells, particularly CD80hiCD206lo proinflammatory M1-like macrophages, in the intracranial TME induced B-cell and TFH-cell infiltration and activation. Furthermore, the intracranial TME of patients with non–small cell lung cancer featured TFH- and B-cell infiltration as tertiary lymphoid structures. Together, these findings provide insights into the immune cell cross-talk in the intracranial TME that facilitates an additive antitumor effect of CTLA4 blockade with anti–PD-1 treatment, supporting the potential of a combination immunotherapeutic strategy for brain metastases.
Significance: B-cell and CD4+ T follicular helper cell activation via BAFF/APRIL from abundant myeloid cells in the intracranial tumor microenvironment enables a combinatorial effect of CTLA4 and PD-1 blockade in brain metastases. en-copyright= kn-copyright= en-aut-name=NinomiyaToshifumi en-aut-sei=Ninomiya en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KemmotsuNaoya en-aut-sei=Kemmotsu en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MukoharaFumiaki en-aut-sei=Mukohara en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MagariMasaki en-aut-sei=Magari en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyamotoAi en-aut-sei=Miyamoto en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamamotoHidetaka en-aut-sei=Yamamoto en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HayashiHidetoshi en-aut-sei=Hayashi en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TachibanaKota en-aut-sei=Tachibana en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OkamotoIsamu en-aut-sei=Okamoto en-aut-mei=Isamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Medical Protein Engineering, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathology and Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=12 en-affil=Department of Dermatology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Neurological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of General Thoracic Surgery, Breast and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Science, Okayama University kn-affil= affil-num=17 en-affil=Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=18 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=1757 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Keratinocyte-driven dermal collagen formation in the axolotl skin en-subtitle= kn-subtitle= en-abstract= kn-abstract=Type I collagen is a major component of the dermis and is formed by dermal fibroblasts. The development of dermal collagen structures has not been fully elucidated despite the major presence and importance of the dermis. This lack of understanding is due in part to the opacity of mammalian skin and it has been an obstacle to cosmetic and medical developments. We reveal the process of dermal collagen formation using the highly transparent skin of the axolotl and fluorescent collagen probes. We clarify that epidermal cells, not dermal fibroblasts, contribute to dermal collagen formation. Mesenchymal cells (fibroblasts) play a role in modifying the collagen fibers already built by keratinocytes. We confirm that collagen production by keratinocytes is a widely conserved mechanism in other model organisms. Our findings warrant a change in the current consensus about dermal collagen formation and could lead to innovations in cosmetology and skin medication. en-copyright= kn-copyright= en-aut-name=OhashiAyaka en-aut-sei=Ohashi en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurodaJunpei en-aut-sei=Kuroda en-aut-mei=Junpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoYohei en-aut-sei=Kondo en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KameiYasuhiro en-aut-sei=Kamei en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NonakaShigenori en-aut-sei=Nonaka en-aut-mei=Shigenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FurukawaSaya en-aut-sei=Furukawa en-aut-mei=Saya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamamotoSakiya en-aut-sei=Yamamoto en-aut-mei=Sakiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatohAkira en-aut-sei=Satoh en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Frontier Biosciences, Osaka University kn-affil= affil-num=4 en-affil=Center for One Medicine Innovative Translational Research (COMIT), Nagoya University kn-affil= affil-num=5 en-affil=Laboratory for Biothermology, National Institute for Basic Biology kn-affil= affil-num=6 en-affil=The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=7 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=5 article-no= start-page=577 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250306 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficacy of Oral Intake of Hydrogen-Rich Jelly Intake on Gingival Inflammation: A Double-Blind, Placebo-Controlled and Exploratory Randomized Clinical Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Initiation and progression of periodontal disease include oxidative stress. Systemic application of antioxidants may provide clinical benefits against periodontal disease including gingivitis. Recently, a jelly containing a high concentration of hydrogen (40 ppm) was developed. We hypothesized that oral intake of this hydrogen-rich jelly may be safe and effective on gingivitis. This clinical trial was designed to investigate the safety and efficacy of oral intake of hydrogen-rich jelly against gingival inflammation. Methods: Participants with gingivitis were instructed to orally ingest 30 g of hydrogen-rich jelly (experimental group) or placebo jelly (control group) three times a day for 14 consecutive days. The primary outcome of this trial was the percentage of bleeding on probing (BOP) sites. Secondary outcomes were oral parameters, serum reactive oxygen metabolites, antioxidant capacity, oxidative index, concentrations of cytokine (interleukin [IL]-1β, IL-6, IL-10, IL-17, and tumor necrosis factor-alpha) in gingival crevicular fluid, and adverse events. For all parameters, Mann–Whitney U test was used for comparison between experimental and control groups. Analysis of covariance, controlling for baseline periodontal inflamed surface area, was performed to evaluate the association between the effect of the hydrogen-rich jelly and gingival inflammation. Results: In the experiment and control groups, the percentage of sites with BOP and PISA significantly decreased at the end of the experiment compared to the baseline. However, no significant differences were found between groups (p > 0.05). Conclusions: Administration of hydrogen-rich jelly for 14 days decreased gingival inflammation. However, no significant differences were identified compared to the control group. en-copyright= kn-copyright= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayamaEiji en-aut-sei=Takayama en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TokunoShinichi en-aut-sei=Tokuno en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Biochemistry, Asahi University School of Dentistry kn-affil= affil-num=3 en-affil=Graduate School of Health Innovation, Kanagawa University of Human Services kn-affil= affil-num=4 en-affil=Department of Oral Health, Takarazuka University of Medical and Health Care kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=periodontal disease kn-keyword=periodontal disease en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=hydrogen kn-keyword=hydrogen en-keyword=randomized controlled trial kn-keyword=randomized controlled trial END start-ver=1.4 cd-journal=joma no-vol=195 cd-vols= no-issue= article-no= start-page=123743 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Utility of Surgical Simulation for Tubular Retractor Surgery Using Three-Dimensional Printed Intraventricular Tumor Models: Case Series en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: The utility of the tubular retractor for deep-seated tumors, including intraventricular tumors, has recently been reported. However, the surgical field’s depth and narrowness can lead to blind spots, and it is crucial to prevent damage to the cortex and white matter fibers in eloquent areas. Therefore, preoperative simulation is critical for tubular retractor surgery. In this study, we investigated the benefits of threedimensional (3D)-printed intraventricular tumor models for tubular retractor surgery.
Methods: Nine patients with intraventricular central neurocytoma who underwent tubular retractor surgery at our institution between March 2013 and August 2023 were retrospectively reviewed. Fusion images and 3D-printed intraventricular tumor models were developed from preoperative computed tomography (CT) and magnetic resonance imaging (MRI). The puncture points of the tubular retractor were simulated using fusion images and 3D-printed intraventricular tumor models by 11 neurosurgeons (3 experts in brain tumors, 2 experts in areas other than brain tumors, and 6 residents). The dispersion of puncture points among 8 neurosurgeons (excluding brain tumor experts) was compared in each simulation model.
Results: These cases were categorized into two groups based on the dispersion of puncture points simulated by fusion images. Puncture point dispersion was markedly smaller in all cases when using 3D-printed intraventricular tumor models compared to simulations solely based on fusion images.
Conclusions: In intraventricular tumor surgery using a tubular retractor, 3D-printed intraventricular tumor models proved more beneficial in preoperative simulation compared to fusion images. en-copyright= kn-copyright= en-aut-name=OmaeRyo en-aut-sei=Omae en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraRyu en-aut-sei=Kimura en-aut-mei=Ryu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HarumaJun en-aut-sei=Haruma en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaijoTomoya en-aut-sei=Saijo en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujitaJuntaro en-aut-sei=Fujita en-aut-mei=Juntaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishigakiShohei en-aut-sei=Nishigaki en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IkemachiRyosuke en-aut-sei=Ikemachi en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiranoShuichiro en-aut-sei=Hirano en-aut-mei=Shuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiiKentaro en-aut-sei=Fujii en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=3D-printed model kn-keyword=3D-printed model en-keyword=Case series kn-keyword=Case series en-keyword=Intraventricular tumors kn-keyword=Intraventricular tumors en-keyword=Preoperative surgical simulation kn-keyword=Preoperative surgical simulation en-keyword=Tubular retractor kn-keyword=Tubular retractor END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=5 article-no= start-page=2421 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deep Reinforcement Learning for Dynamic Pricing and Ordering Policies in Perishable Inventory Management en-subtitle= kn-subtitle= en-abstract= kn-abstract=Perishable goods have a limited shelf life, and inventory should be discarded once it exceeds its shelf life. Finding optimal inventory management policies is essential since inefficient policies can lead to increased waste and higher costs. While many previous studies assume the perishable inventory is processed following the First In, First Out rule, it does not reflect customer purchasing behavior. In practice, customers' preferences are influenced by the shelf life and price of products. This study optimizes inventory and pricing policies for a perishable inventory management problem considering age-dependent probabilistic demand. However, introducing dynamic pricing significantly increases the complexity of the problem. To tackle this challenge, we propose eliminating irrational actions in dynamic programming without sacrificing optimality. To solve this problem more efficiently, we also implement a deep reinforcement learning algorithm, proximal policy optimization, to solve this problem. The results show that dynamic programming with action reduction achieved an average of 63.1% reduction in computation time compared to vanilla dynamic programming. In most cases, proximal policy optimization achieved an optimality gap of less than 10%. Sensitivity analysis of the demand model revealed a negative correlation between customer sensitivity to shelf lives or prices and total profits. en-copyright= kn-copyright= en-aut-name=NomuraYusuke en-aut-sei=Nomura en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=reinforcement learning kn-keyword=reinforcement learning en-keyword=supply chain kn-keyword=supply chain en-keyword=inventory management kn-keyword=inventory management en-keyword=perishable inventory kn-keyword=perishable inventory en-keyword=dynamic pricing kn-keyword=dynamic pricing END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue= article-no= start-page=1543543 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Empowering pediatric, adolescent, and young adult patients with cancer utilizing generative AI chatbots to reduce psychological burden and enhance treatment engagement: a pilot study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Pediatric and adolescent/young adult (AYA) cancer patients face profound psychological challenges, exacerbated by limited access to continuous mental health support. While conventional therapeutic interventions often follow structured protocols, the potential of generative artificial intelligence (AI) chatbots to provide continuous conversational support remains unexplored. This study evaluates the feasibility and impact of AI chatbots in alleviating psychological distress and enhancing treatment engagement in this vulnerable population.
Methods: Two age-appropriate AI chatbots, leveraging GPT-4, were developed to provide natural, empathetic conversations without structured therapeutic protocols. Five pediatric and AYA cancer patients participated in a two-week intervention, engaging with the chatbots via a messaging platform. Pre- and post-intervention anxiety and stress levels were self-reported, and usage patterns were analyzed to assess the chatbots' effectiveness.
Results: Four out of five participants reported significant reductions in anxiety and stress levels post-intervention. Participants engaged with the chatbot every 2-3 days, with sessions lasting approximately 10 min. All participants noted improved treatment motivation, with 80% disclosing personal concerns to the chatbot they had not shared with healthcare providers. The 24/7 availability particularly benefited patients experiencing nighttime anxiety.
Conclusions: This pilot study demonstrates the potential of generative AI chatbots to complement traditional mental health services by addressing unmet psychological needs in pediatric and AYA cancer patients. The findings suggest these tools can serve as accessible, continuous support systems. Further large-scale studies are warranted to validate these promising results. en-copyright= kn-copyright= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HanzawaMana en-aut-sei=Hanzawa en-aut-mei=Mana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaganoAkihito en-aut-sei=Nagano en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaNaoko en-aut-sei=Maeda en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaShinichirou en-aut-sei=Yoshida en-aut-mei=Shinichirou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EndoMakoto en-aut-sei=Endo en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokoyamaNobuhiko en-aut-sei=Yokoyama en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OchiMotoharu en-aut-sei=Ochi en-aut-mei=Motoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshidaHisashi en-aut-sei=Ishida en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatayamaHideki en-aut-sei=Katayama en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Orthopedic Surgery, Gifu University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Pediatrics, NHO National Hospital Organization Nagoya Medical Center kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=7 en-affil=Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=8 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Palliative and Supportive Care, Okayama University Hospital kn-affil= affil-num=11 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=generative AI chatbot kn-keyword=generative AI chatbot en-keyword=large language model kn-keyword=large language model en-keyword=pediatric cancer kn-keyword=pediatric cancer en-keyword=adolescent and young adult (AYA) kn-keyword=adolescent and young adult (AYA) en-keyword=psychological support kn-keyword=psychological support END start-ver=1.4 cd-journal=joma no-vol=188 cd-vols= no-issue= article-no= start-page=35 end-page=45 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250228 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=This Study on “Modeling Self-Transformation” and “Gestaltkreis” in the “Craftical Formation” of Individual Creators: Understanding Creative Processes Toward the Realization of “Individually Optimized Learning” kn-title=個々の制作者の「工芸的造形」における「造形的自己変革」と「ゲシュタルトクライス」の文献研究 ―「 個別最適な学び」の実現に向けた制作者の制作過程を捉える視点の検討 ― en-subtitle= kn-subtitle= en-abstract= kn-abstract= 本研究では,造形行為の過程で制作者が経験する学びを分析し考察する視点について,特に,工芸制作に関連した文献の調査により検討することを目的とした。そのため,制作者自身の見方,感じ方,考え方と造形物を共に形成していく工芸の制作過程としての金子賢治の「工芸的造形」と,制作者が自身の変化と素材の変化を一体とした造形行為を連鎖させていく学びの過程としての橋本真之の「造形的自己変革」と,人間の「自己」が生み出されていく過程としてのヴァイツゼッカーの「ゲシュタルトクライス」について文献調査した。これにより,制作者自身の見方,感じ方,考え方と造形物を共に形成していきながら,制作者自身の変化と素材の変化が一体となって生じる造形行為の過程において,自らの「自己」を生み出し続けていく制作者の学びを分析し考察する視点をまとめた。今後は,本研究の成果を検証するため,本研究で示した視点に立つ事例研究の実施を課題とする。 en-copyright= kn-copyright= en-aut-name=OHIRAShuya en-aut-sei=OHIRA en-aut-mei=Shuya kn-aut-name=大平修也 kn-aut-sei=大平 kn-aut-mei=修也 aut-affil-num=1 ORCID= affil-num=1 en-affil=Faculty of Education, Okayama University kn-affil=岡山大学学術研究院教育学域 en-keyword=工芸的造形 kn-keyword=工芸的造形 en-keyword=造形的自己変革 kn-keyword=造形的自己変革 en-keyword=ゲシュタルトクライス kn-keyword=ゲシュタルトクライス en-keyword=令和の日本型学校教育 kn-keyword=令和の日本型学校教育 en-keyword=個別最適な学び kn-keyword=個別最適な学び END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A randomized controlled trial of conventional GVHD prophylaxis with or without teprenone for the prevention of severe acute GVHD en-subtitle= kn-subtitle= en-abstract= kn-abstract=Therapies that effectively suppress graft-versus-host disease (GVHD) without compromising graft-versus-leukemia/lymphoma (GVL) effects is important in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematopoietic malignancies. Geranylgeranylacetone (GGA) is a main component of teprenone, a gastric mucosal protectant commonly used in clinical practice. In preclinical models, GGA suppresses proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), which are associated with GVHD as well as induces thioredoxin-1 (Trx-1), which suppresses GVHD while maintaining GVL effects. Here, we investigated whether the addition of teprenone to standard GVHD prophylaxis could reduce the cumulative incidence of severe acute GVHD (aGVHD) without attenuating GVL effects. This open-label, randomized clinical trial enrolled 40 patients (21 control and 19 teprenone group) who received allo-HSCT between May 2022 and February 2023 in our institution. Patients in the teprenone group received 50 mg of teprenone orally thrice daily for 21 days from the initiation of the conditioning regimen. The cumulative incidence of severe aGVHD by day 100 after allo-HSCT was not significantly different in the two groups (27.9 vs. 16.1%, p = 0.25). The exploratory studies revealed no obvious changes in Trx-1 levels, but the alternations from baseline in IL-1β and TNF-α levels at day 28 after allo-HSCT tended to be lower in the teprenone group. In conclusion, we could not demonstrate that teprenone significantly prevented the development of severe aGVHD. Discrepancy with preclinical model suggests that appropriate dose of teprenone may be necessary to induce the expression of antioxidant enzymes that suppress severe aGVHD. Clinical Trial Registration number:jRCTs 061210072. en-copyright= kn-copyright= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsugeMitsuru en-aut-sei=Tsuge en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiHiroki en-aut-sei=Kobayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KamoiChihiro en-aut-sei=Kamoi en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoAkira en-aut-sei=Yamamoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoTakumi en-aut-sei=Kondo en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SeikeKeisuke en-aut-sei=Seike en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pediatric Acute Diseases, Okayama University Academic Field of Medicine Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=7 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=15 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= en-keyword=Allogeneic hematopoietic stem cell transplantation kn-keyword=Allogeneic hematopoietic stem cell transplantation en-keyword=Graft-versus-host disease kn-keyword=Graft-versus-host disease en-keyword=Teprenone kn-keyword=Teprenone en-keyword=Oxidative stress kn-keyword=Oxidative stress en-keyword=Interleukin-33 kn-keyword=Interleukin-33 END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=2 article-no= start-page=267 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Abnormal Expression of Tubular SGLT2 and GULT2 in Diabetes Model Mice with Malocclusion-Induced Hyperglycemia en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: A relationship between malocclusion and the promotion of diabetes has been suggested. In hyperglycemia, the expression of sodium-glucose cotransporter 2 (SGLT2) and the facilitative glucose transporter 2 (GLUT2) is upregulated in proximal tubular cells, leading to an increase in renal glucose reabsorption. The present study aimed to investigate whether malocclusion contributes to diabetic exacerbation. Methods: Streptozotocin (STZ)-induced diabetic mice with malocclusion due to cutting molars were investigated based on increased blood glucose levels. PCR and immunohistochemical analyses were performed on diabetic mice kidneys to investigate the expression of SGLT2 and GLUT2. Results: Animal experiments were performed using 32 mice for 21 days. The time to reach a diabetic condition in STZ-administered mice was shorter with malocclusion than without malocclusion. The increase and mean blood glucose levels in STZ-administered mice were steeper and higher with malocclusion than without malocclusion. Urea albumin, BUN, and CRE levels were higher in diabetic mice with malocclusion than in diabetic mice without. Immunoreaction with anti-SGLT2 and anti-GLUT2 in the renal tissue of STZ-administered mice was stronger with malocclusion than without malocclusion. The amounts of SGLT2 and GLUT2 mRNA in the renal tissue in STZ-administered mice were higher with malocclusion than without malocclusion. The amounts of TNF-a and IL-6 mRNA in the large intestinal tissue in STZ-administered mice were higher with malocclusion than without malocclusion. Conclusions: Our results indicate that malocclusion accelerates the tubular expression of SGLT2 and GLUT2 under hyperglycemia. Malocclusion may be a diabetes-exacerbating factor with increased poor glycemic control due to shortened occlusion time resulting from swallowing food without chewing. en-copyright= kn-copyright= en-aut-name=KajiwaraKoichiro en-aut-sei=Kajiwara en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TamaokiSachio en-aut-sei=Tamaoki en-aut-mei=Sachio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SawaYoshihiko en-aut-sei=Sawa en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Oral Growth & Development, Fukuoka Dental College kn-affil= affil-num=2 en-affil=Department of Oral Growth & Development, Fukuoka Dental College kn-affil= affil-num=3 en-affil=Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=malocclusion kn-keyword=malocclusion en-keyword= hyperglycemia kn-keyword= hyperglycemia en-keyword= SGLT2 kn-keyword= SGLT2 en-keyword= GLUT2 kn-keyword= GLUT2 END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=2 article-no= start-page=217 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Interchangeability of Cross-Platform Orthophotographic and LiDAR Data in DeepLabV3+-Based Land Cover Classification Method en-subtitle= kn-subtitle= en-abstract= kn-abstract=Riverine environmental information includes important data to collect, and the data collection still requires personnel's field surveys. These on-site tasks still face significant limitations (i.e., hard or danger to entry). In recent years, as one of the efficient approaches for data collection, air-vehicle-based Light Detection and Ranging technologies have already been applied in global environmental research, i.e., land cover classification (LCC) or environmental monitoring. For this study, the authors specifically focused on seven types of LCC (i.e., bamboo, tree, grass, bare ground, water, road, and clutter) that can be parameterized for flood simulation. A validated airborne LiDAR bathymetry system (ALB) and a UAV-borne green LiDAR System (GLS) were applied in this study for cross-platform analysis of LCC. Furthermore, LiDAR data were visualized using high-contrast color scales to improve the accuracy of land cover classification methods through image fusion techniques. If high-resolution aerial imagery is available, then it must be downscaled to match the resolution of low-resolution point clouds. Cross-platform data interchangeability was assessed by comparing the interchangeability, which measures the absolute difference in overall accuracy (OA) or macro-F1 by comparing the cross-platform interchangeability. It is noteworthy that relying solely on aerial photographs is inadequate for achieving precise labeling, particularly under limited sunlight conditions that can lead to misclassification. In such cases, LiDAR plays a crucial role in facilitating target recognition. All the approaches (i.e., low-resolution digital imagery, LiDAR-derived imagery and image fusion) present results of over 0.65 OA and of around 0.6 macro-F1. The authors found that the vegetation (bamboo, tree, grass) and road species have comparatively better performance compared with clutter and bare ground species. Given the stated conditions, differences in the species derived from different years (ALB from year 2017 and GLS from year 2020) are the main reason. Because the identification of clutter species includes all the items except for the relative species in this research, RGB-based features of the clutter species cannot be substituted easily because of the 3-year gap compared with other species. Derived from on-site reconstruction, the bare ground species also has a further color change between ALB and GLS that leads to decreased interchangeability. In the case of individual species, without considering seasons and platforms, image fusion can classify bamboo and trees with higher F1 scores compared to low-resolution digital imagery and LiDAR-derived imagery, which has especially proved the cross-platform interchangeability in the high vegetation types. In recent years, high-resolution photography (UAV), high-precision LiDAR measurement (ALB, GLS), and satellite imagery have been used. LiDAR measurement equipment is expensive, and measurement opportunities are limited. Based on this, it would be desirable if ALB and GLS could be continuously classified by Artificial Intelligence, and in this study, the authors investigated such data interchangeability. A unique and crucial aspect of this study is exploring the interchangeability of land cover classification models across different LiDAR platforms. en-copyright= kn-copyright= en-aut-name=PanShijun en-aut-sei=Pan en-aut-mei=Shijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaKeisuke en-aut-sei=Yoshida en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiyamaSatoshi en-aut-sei=Nishiyama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KojimaTakashi en-aut-sei=Kojima en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HashimotoYutaro en-aut-sei=Hashimoto en-aut-mei=Yutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=TOKEN C. E. E. Consultants Co., Ltd. kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=airborne LiDAR bathymetry kn-keyword=airborne LiDAR bathymetry en-keyword=cross-platform kn-keyword=cross-platform en-keyword=deep learning kn-keyword=deep learning en-keyword=green LiDAR system kn-keyword=green LiDAR system en-keyword=riverine land cover classification kn-keyword=riverine land cover classification END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=108 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250205 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Implementation of Sensor Input Setup Assistance Service Using Generative AI for SEMAR IoT Application Server Platform en-subtitle= kn-subtitle= en-abstract= kn-abstract=For rapid deployments of various IoT application systems, we have developed Smart Environmental Monitoring and Analytical in Real-Time (SEMAR) as an integrated server platform. It is equipped with rich functions for collecting, analyzing, and visualizing various data. Unfortunately, the proper configuration of SEMAR with a variety of IoT devices can be complex and challenging for novice users, since it often requires technical expertise. The assistance of Generative AI can be helpful to solve this drawback. In this paper, we present an implementation of a sensor input setup assistance service for SEMAR using prompt engineering techniques and Generative AI. A user needs to define the requirement specifications and environments of the IoT application system for sensor inputs, and give them to the service. Then, the service provides step-by-step guidance on sensor connections, communicating board configurations, network connections, and communication protocols to the user, which can help the user easily set up the configuration to connect the relevant devices to SEMAR. For evaluations, we applied the proposal to the input sensor setup processes of three practical IoT application systems with SEMAR, namely, a smart light, water heater, and room temperature monitoring system. In addition, we applied it to the setup process of an IoT application system for a course for undergraduate students at the Insitut Bisnis dan Teknologi (INSTIKI), Indonesia. The results demonstrate the effectiveness of the proposed service for SEMAR. en-copyright= kn-copyright= en-aut-name=KotamaI. Nyoman Darma en-aut-sei=Kotama en-aut-mei=I. Nyoman Darma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PradhanaAnak Agung Surya en-aut-sei=Pradhana en-aut-mei=Anak Agung Surya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Noprianto en-aut-sei=Noprianto en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DesnanjayaI. Gusti Made Ngurah en-aut-sei=Desnanjaya en-aut-mei=I. Gusti Made Ngurah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Computer System Engineering, Institute of Business and Technology Indonesia kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= generative AI kn-keyword= generative AI en-keyword= review kn-keyword= review en-keyword= application server platform kn-keyword= application server platform en-keyword= SEMAR kn-keyword= SEMAR en-keyword= sensor input kn-keyword= sensor input END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=91 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Application of SEMAR IoT Application Server Platform to Drone-Based Wall Inspection System Using AI Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recently, artificial intelligence (AI) has been adopted in a number of Internet of Things (IoT) application systems to enhance intelligence. We have developed a ready-made server with rich built-in functions to collect, process, display, analyze, and store data from various IoT devices, the SEMAR (Smart Environmental Monitoring and Analytics in Real-Time) IoT application server platform, in which various AI techniques have been implemented to enhance its capabilities. In this paper, we present an application of SEMAR to a drone-based wall inspection system using an object detection AI model called You Only Look Once (YOLO). This system aims to detect wall cracks at high places using images taken via a camera on a flying drone. An edge computing device is installed to control the drone, sending the taken images through the Kafka system, storing them with the drone flight data, and sending the data to SEMAR. The images are analyzed via YOLO through SEMAR. For evaluations, we implemented the system using Ryze Tello for the drone and Raspberry Pi for the edge, and we evaluated the detection accuracy. The preliminary experiment results confirmed the effectiveness of the proposal. en-copyright= kn-copyright= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HusnaRadhiatul en-aut-sei=Husna en-aut-mei=Radhiatul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NopriantoNobuo en-aut-sei=Noprianto en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamakiShunya en-aut-sei=Sakamaki en-aut-mei=Shunya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SukaridhotoSritrusta en-aut-sei=Sukaridhoto en-aut-mei=Sritrusta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SyaifudinYan Watequlis en-aut-sei=Syaifudin en-aut-mei=Yan Watequlis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Informatics and Computer, Politeknik Elektronika Negeri Surabaya kn-affil= affil-num=7 en-affil=Department of Information Technology, State Polytechnic of Malang kn-affil= affil-num=8 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= AI kn-keyword= AI en-keyword= SEMAR kn-keyword= SEMAR en-keyword= crack detection kn-keyword= crack detection en-keyword= drone kn-keyword= drone en-keyword= Kafka kn-keyword= Kafka END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=2 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancing Campus Environment: Real-Time Air Quality Monitoring Through IoT and Web Technologies en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nowadays, enhancing campus environments through mitigations of air pollutions is an essential endeavor to support academic achievements, health, and safety of students and staffs in higher educational institutes. In laboratories, pollutants from welding, auto repairs, or chemical experiments can drastically degrade the air quality in the campus, endangering the respiratory and cognitive health of students and staffs. Besides, in universities in Indonesia, automobile emissions of harmful substances such as carbon monoxide (CO), nitrogen dioxide (NO2), and hydrocarbon (HC) have been a serious problem for a long time. Almost everybody is using a motorbike or a car every day in daily life, while the number of students is continuously increasing. However, people in many campuses including managements do not be aware these problems, since air quality is not monitored. In this paper, we present a real-time air quality monitoring system utilizing Internet of Things (IoT) integrated sensors capable of detecting pollutants and measuring environmental conditions to visualize them. By transmitting data to the SEMAR IoT application server platform via an ESP32 microcontroller, this system provides instant alerts through a web application and Telegram notifications when pollutant levels exceed safe thresholds. For evaluations of the proposed system, we adopted three sensors to measure the levels of CO, NO2, and HC and conducted experiments in three sites, namely, Mechatronics Laboratory, Power and Emission Laboratory, and Parking Lot, at the State Polytechnic of Malang, Indonesia. Then, the results reveal Good, Unhealthy, and Dangerous for them, respectively, among the five categories defined by the Indonesian government. The system highlighted its ability to monitor air quality fluctuations, trigger warnings of hazardous conditions, and inform the campus community. The correlation of the sensor levels can identify the relationship of each pollutant, which provides insight into the characteristics of pollutants in a particular scenario. en-copyright= kn-copyright= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SyaifudinYan Watequlis en-aut-sei=Syaifudin en-aut-mei=Yan Watequlis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SetiawanBudhy en-aut-sei=Setiawan en-aut-mei=Budhy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=2 en-affil=Department of Information Technology, State Polytechnic of Malang kn-affil= affil-num=3 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=Internet of Things kn-keyword=Internet of Things en-keyword= campus air quality kn-keyword= campus air quality en-keyword= pollutant detection kn-keyword= pollutant detection en-keyword= SEMAR kn-keyword= SEMAR en-keyword= sensor technology kn-keyword= sensor technology en-keyword= web application kn-keyword= web application END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spatiotemporal expression pattern of dyslexia susceptibility 1 candidate 1 (DYX1C1) during rat cerebral cortex development en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Developmental dyslexia (DD) is a common learning disorder with significant consequences for affected individuals. Although several candidate genes, including dyslexia susceptibility 1 candidate 1 (DYX1C1), have been implicated in dyslexia, their role in brain development remains unclear. We aimed to elucidate the spatiotemporal expression patterns of DYX1C1 during cerebral cortex development in rats.
Methods We investigated DYX1C1 expression during cerebral cortex development using rat embryos at various gestational stages (E13.5, 15.5, 17.5 and 20.5) by immunohistochemistry (n = 7 embryos/stage), quantitative real-time PCR (n = 6), and in situ hybridization (n = 11–15).
Results The DYX1C1-positive cells were predominantly located in the outermost layers of the cortical plate, particularly at E15.5. DYX1C1 mRNA expression peaked at E15.5 and subsequently declined. DYX1C1-positive cells did not co-localize with reelin-positive Cajal-Retzius cells, but co-localized with neuronal markers expressed during development, and had shorter primary cilia than DYX1C1-negative cells.
Conclusions Our findings highlight the dynamic expression of DYX1C1 in the developing cerebral cortex of rats, implicating its involvement in neurodevelopmental processes. Further investigation of the functional interactions of DYX1C1, particularly its relationship with reelin and its role in cerebrocortical and hippocampal development, may provide insights into the pathophysiology of dyslexia and neurodevelopmental disorders. en-copyright= kn-copyright= en-aut-name=ZenshoKazumasa en-aut-sei=Zensho en-aut-mei=Kazumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsseAika en-aut-sei=Isse en-aut-mei=Aika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MisawaIchika en-aut-sei=Misawa en-aut-mei=Ichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasaiKaori en-aut-sei=Masai en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkaMakio en-aut-sei=Oka en-aut-mei=Makio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsukaharaHirokazu en-aut-sei=Tsukahara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Psychosocial Medicine, National Center for Child Health and Development kn-affil= affil-num=7 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue= article-no= start-page=103026 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The antimalarial activity of transdermal N-89 mediated by inhibiting ERC gene expression in P. Berghei-infected mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Through studies of new antimalarial drugs, we identified 1,2,6,7-tetraoxaspiro[7.11]nonadecane (N-89) as a potential drug candidate. Here, we analyzed the antimalarial action of a transdermal formulation (td) of N-89, designed for easy use by children, using Plasmodium berghei-infected mice as a model for malaria patients. The td N-89 or artemisinin (ART) formulation was transdermally administered to P. berghei-infected mice with 0.2–0.4 % parasitemia, twice daily for four days, at an effective dose of 90 % for malaria. Parasitemia was decreased in td N-89 and td ART groups during the drug treatment; then, three of the eight mice in td N-89 group were completely cured without relapse. Additionally, abnormal trophozoites in td N-89 group were observed 8 h after administration and increased up to 24 h. To study the change in endoplasmic reticulum-resident calcium-binding protein (ERC) gene expression with td N-89, we investigated the gene expression of P. berghei ERC (PbERC) after td N-89 treatment. PbERC gene expression was increased time-dependently in control group, and was statistically decreased at 4 and 8 h and then increased similar to that of control group at 12 h in td ART group. In contrast, the expression in td N-89 group was almost steady starting from 0 h. We also studied parasite egress-related genes expression after td N-89 treatment, plasmepsin X, subtilisin-like protease 1 and merozoite surface protein 1, were suppressed at 12 h compared to control group. These results suggest that N-89 affects function of endoplasmic reticulum via regulating gene suppression and subsequently parasite growth is inhibited. en-copyright= kn-copyright= en-aut-name=MatsumoriHiroaki en-aut-sei=Matsumori en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DinhThi Quyen en-aut-sei=Dinh en-aut-mei=Thi Quyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiyoshiShin-ichi en-aut-sei=Miyoshi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MoritaMasayuki en-aut-sei=Morita en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KimHye-Sook en-aut-sei=Kim en-aut-mei=Hye-Sook kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Research Center for Intestinal Health Science, Okayama University kn-affil= affil-num=4 en-affil=Department of Anatomy, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Division of International Infectious Diseases Control, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Synthetic antimalarial endoperoxide kn-keyword=Synthetic antimalarial endoperoxide en-keyword=Transdermal N-89 kn-keyword=Transdermal N-89 en-keyword=Artemisinin kn-keyword=Artemisinin en-keyword=In vivo kn-keyword=In vivo en-keyword=Abnormal trophozoite kn-keyword=Abnormal trophozoite en-keyword=Endoplasmic reticulum-resident calcium-binding protein (ERC) kn-keyword=Endoplasmic reticulum-resident calcium-binding protein (ERC) en-keyword=Parasite egress-related gene kn-keyword=Parasite egress-related gene END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=51 end-page=58 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoinitiators Induce Histamine Production in Human Mast Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photoinitiators are used in the manufacture of many daily products, and may produce harmful effects due to their cytotoxicity. They have also been detected in human serum. Here, we investigated the histamine-producing effects in HMC-1 cells and the inflammatory cytokine release effects in RAW264 cells for four photoinitiators: 1-hydroxycyclohexyl phenyl ketone; 2-isopropylthioxanthone; methyl 2-benzoylbenzoate; and 2-methyl-4´-(methylthio)-2-morpholinopropiophenone. All four promoted histamine production in HMC-1 cells; however, they did not significantly affect the release of inflammatory cytokines in RAW264 cells. These findings suggest that these four photoinitiators induce inflammatory cytokine-independent histamine production, potentially contributing to histamine-mediated chronic inflammation in vitro. en-copyright= kn-copyright= en-aut-name=MiuraTaro en-aut-sei=Miura en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawasakiYoichi en-aut-sei=Kawasaki en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Laboratory of Clinical Pharmacology and Therapeutics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=photoinitiator kn-keyword=photoinitiator en-keyword=ink kn-keyword=ink en-keyword=injection kn-keyword=injection en-keyword=histamine kn-keyword=histamine en-keyword=inflammation kn-keyword=inflammation END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=47 end-page=50 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immediate Effects of a Single Home-based Rehabilitation Treatment on Balance Performance and Toe-Grip Strength in Elderly Subjects Continuing the Same Rehabilitation Program en-subtitle= kn-subtitle= en-abstract= kn-abstract=We assessed the immediate effects of a home-based rehabilitation (HBR) program on the balance performance and toe-grip strength of 29 older adults (mean±SD age of 75.1±9.9; 16 males, 13 females) who were participating in HBR services provided by Japan’s nursing care insurance system. Their toe-grip strength and balance performance were measured before and after the HBR program. The subjects’ toe-grip strength was significantly improved after the treatment. The subjects who had had a stroke showed a significant improvement after HBR. Contrarily, no significant difference was observed in the subjects’ functional reach results or their one-leg standing time. These results indicate that the exercise regimen provided in the HBR program led to increased excitability of motor units and immediately enhanced the subjects’ toe-grip strength. en-copyright= kn-copyright= en-aut-name=KojimaKazunori en-aut-sei=Kojima en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UjikawaTakuya en-aut-sei=Ujikawa en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnoToshiro en-aut-sei=Ono en-aut-mei=Toshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University kn-affil= affil-num=2 en-affil=Department of Physical Therapy, Faculty of Rehabilitation, Kawasaki University of Medical Welfare kn-affil= affil-num=3 en-affil=Department of Occupational Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University kn-affil= en-keyword=home-based rehabilitation kn-keyword=home-based rehabilitation en-keyword=toe-grip strength kn-keyword=toe-grip strength en-keyword=balance performance kn-keyword=balance performance END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=12 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250208 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Voice analysis and deep learning for detecting mental disorders in pregnant women: a cross-sectional study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction Perinatal mental disorders are prevalent, affecting 10-20% of pregnant women, and can negatively impact both maternal and neonatal outcomes. Traditional screening tools, such as the Edinburgh Postnatal Depression Scale (EPDS), present limitations due to subjectivity and time constraints in clinical settings. Recent advances in voice analysis and machine learning have shown potential for providing more objective screening methods. This study aimed to develop a deep learning model that analyzes the voices of pregnant women to screen for mental disorders, thereby offering an alternative to the traditional tools.
Methods A cross-sectional study was conducted among 204 pregnant women, from whom voice samples were collected during their one-month postpartum checkup. The audio data were preprocessed into 5000 ms intervals, converted into mel-spectrograms, and augmented using TrivialAugment and context-rich minority oversampling. The EfficientFormer V2-L model, pretrained on ImageNet, was employed with transfer learning for classification. The hyperparameters were optimized using Optuna, and an ensemble learning approach was used for the final predictions. The model's performance was compared to that of the EPDS in terms of sensitivity, specificity, and other diagnostic metrics.
Results Of the 172 participants analyzed (149 without mental disorders and 23 with mental disorders), the voice-based model demonstrated a sensitivity of 1.00 and a recall of 0.82, outperforming the EPDS in these areas. However, the EPDS exhibited higher specificity (0.97) and precision (0.84). No significant difference was observed in the area under the receiver operating characteristic curve between the two methods (p = 0.759).
Discussion The voice-based model showed higher sensitivity and recall, suggesting that it may be more effective in identifying at-risk individuals than the EPDS. Machine learning and voice analysis are promising objective screening methods for mental disorders during pregnancy, potentially improving early detection.
Conclusion We developed a lightweight machine learning model to analyze pregnant women's voices for screening various mental disorders, achieving high sensitivity and demonstrating the potential of voice analysis as an effective and objective tool in perinatal mental health care. en-copyright= kn-copyright= en-aut-name=OobaHikaru en-aut-sei=Ooba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Perinatal mental disorders kn-keyword=Perinatal mental disorders en-keyword=Voice analysis kn-keyword=Voice analysis en-keyword=Machine learning kn-keyword=Machine learning en-keyword=Screening kn-keyword=Screening en-keyword=Pregnant women kn-keyword=Pregnant women END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=21 end-page=30 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prediction of Prostate Cancer Grades Using Radiomic Features en-subtitle= kn-subtitle= en-abstract= kn-abstract=We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. Logistic regression was used to construct two prediction models, one using radiomic features and prostate-specific antigen (PSA) values (Radiomics model) and the other Prostate Imaging-Reporting and Data System (PI-RADS) scores and PSA values (PI-RADS model), to differentiate high-grade (Gleason score [GS] ≥ 8) from intermediate or low-grade (GS < 8) PCa. Five imaging features were selected for the Radiomics model using the Gini coefficient. Model performance was evaluated using AUC, sensitivity, and specificity. The models were compared by leave-one-out cross-validation with Ridge regularization. Furthermore, the Radiomics model was evaluated using the holdout method and represented by a nomogram. The AUC of the Radiomics and PI-RADS models differed significantly (0.799, 95% CI: 0.712-0.869; and 0.710, 95% CI: 0.617-0.792, respectively). Using holdout method, the Radiomics model yielded AUC of 0.778 (95% CI: 0.552-0.925), sensitivity of 0.769, and specificity of 0.778. It outperformed the PI-RADS model and could be useful in predicting PCa grades, potentially aiding in determining appropriate treatment approaches in PCa patients. en-copyright= kn-copyright= en-aut-name=YamamotoYasuhiro en-aut-sei=Yamamoto en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaraguchiTakafumi en-aut-sei=Haraguchi en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsudaKaori en-aut-sei=Matsuda en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkazakiYoshio en-aut-sei=Okazaki en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KimotoShin en-aut-sei=Kimoto en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanjiNozomu en-aut-sei=Tanji en-aut-mei=Nozomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoAtsushi en-aut-sei=Matsumoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MimuraHidefumi en-aut-sei=Mimura en-aut-mei=Hidefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Radiology, Houshasen Daiichi Hospital kn-affil= affil-num=2 en-affil=Department of Advanced Biomedical Imaging and Informatics, St. Marianna University School of Medicine kn-affil= affil-num=3 en-affil=Department of Radiology, Houshasen Daiichi Hospital kn-affil= affil-num=4 en-affil=Department of Radiology, Houshasen Daiichi Hospital kn-affil= affil-num=5 en-affil=Department of Radiology, Houshasen Daiichi Hospital kn-affil= affil-num=6 en-affil=Department of Urology, Houshasen Daiichi Hospital kn-affil= affil-num=7 en-affil=Department of Urology, Houshasen Daiichi Hospital kn-affil= affil-num=8 en-affil=Department of Medical Information and Communication Technology Research, St. Marianna University School of Medicine kn-affil= affil-num=9 en-affil=Department of Radiology, St. Marianna University School of Medicine kn-affil= affil-num=10 en-affil=Department of Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=prostate cancer kn-keyword=prostate cancer en-keyword=machine learning kn-keyword=machine learning en-keyword=prostate Imaging-Reporting and Data System kn-keyword=prostate Imaging-Reporting and Data System en-keyword=radiomics kn-keyword=radiomics en-keyword=Gleason score kn-keyword=Gleason score END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=1 article-no= start-page=9 end-page=19 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gastrectomy Causes an Imbalance in the Trunk Muscles en-subtitle= kn-subtitle= en-abstract= kn-abstract=Muscle loss negatively affects gastrectomy prognosis. However, muscle loss is recognized as a systemic change, and individual muscle function is often overlooked. We investigated changes in the muscle volume of individual muscles after gastrectomy to identify clues for prognostic factors and optimal rehabilitation programs. Patients who underwent R0 gastrectomy for Stage I gastric cancer at our hospital from 2015 to 2021 were retrospectively selected to minimize the effects of malignancy and chemotherapy. Trunk muscle volume was measured by computed tomography to analyze body composition changes. Statistical analysis was performed to identify risk factors related to body composition changes. We compared the preoperative and 6-month postoperative conditions of 59 patients after gastrectomy. There was no difference in the psoas major muscle, a conventional surrogate marker of sarcopenia. There were significant decreases in the erector spinae (p=0.01) and lateral abdominal (p=0.01) muscles, and a significant increase in the rectus abdominis muscle (p=0.02). No significant correlation was found between these muscle changes and nutritional status. Body composition imbalance may serve as a new indicator of the general condition of patients after gastrectomy. Rehabilitation to correct this imbalance may improve prognosis after gastrectomy. en-copyright= kn-copyright= en-aut-name=IkeyaNanami en-aut-sei=Ikeya en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkitaAtsushi en-aut-sei=Okita en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HashidaShinsuke en-aut-sei=Hashida en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamamotoSumiharu en-aut-sei=Yamamoto en-aut-mei=Sumiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkedaHirokuni en-aut-sei=Ikeda en-aut-mei=Hirokuni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsukudaKazunori en-aut-sei=Tsukuda en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Surgery, Okayama City Hospital kn-affil= affil-num=3 en-affil=Department of Surgery, Okayama City Hospital kn-affil= affil-num=4 en-affil=Department of Surgery, Okayama City Hospital kn-affil= affil-num=5 en-affil=Department of Surgery, Okayama City Hospital kn-affil= affil-num=6 en-affil=Department of Surgery, Okayama City Hospital kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=sarcopenia kn-keyword=sarcopenia en-keyword=skeletal muscle kn-keyword=skeletal muscle en-keyword=gastric cancer kn-keyword=gastric cancer en-keyword=gastrectomy kn-keyword=gastrectomy en-keyword=erector spinae muscle kn-keyword=erector spinae muscle END start-ver=1.4 cd-journal=joma no-vol=170 cd-vols= no-issue= article-no= start-page=109242 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250315 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of small fatigue crack deflection behavior on copper using electron backscatter diffraction and crystal plasticity finite element analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, it was conducted to observe the propagation behavior of small fatigue cracks generated on the surface of α-brass and pure copper, using an electrodynamic plane bending fatigue testing machine. The EBSD method was also used to analyze the crystal orientation near the bottom of the notch on the surface of the test piece. For each slip system of the grain, we calculated the slip factor, defined as the ratio of resolved shear stresses that considers the singular stress field at the crack tip, and investigated the relationship between the propagation behavior of small cracks and the slip factor. Furthermore, we performed a crystal plasticity finite element analysis (CP-FEM) using a crystal plasticity FEM model created from the grains obtained by the EBSD method to predict the deflection behavior of small fatigue cracks when propagating through the grain boundaries. The results indicated that when a crack propagates across a grain boundary, it is difficult to predict the deflection behavior using slip factors, however, the deflection behavior of a crack can be predicted from the resolved shear stress calculated using CP-FEM, which considers the mechanical interactions between crystal grains. en-copyright= kn-copyright= en-aut-name=ArakawaJinta en-aut-sei=Arakawa en-aut-mei=Jinta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YabukiRyo en-aut-sei=Yabuki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemoriTakeshi en-aut-sei=Uemori en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoMasato en-aut-sei=Ito en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YaguchiKenichi en-aut-sei=Yaguchi en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Innovation Center, Mitsubishi Materials Corporation kn-affil= affil-num=5 en-affil=Innovation Center, Mitsubishi Materials Corporation kn-affil= en-keyword=Small fatigue crack kn-keyword=Small fatigue crack en-keyword=Crystal orientation kn-keyword=Crystal orientation en-keyword=CP-FEM kn-keyword=CP-FEM en-keyword=EBSD kn-keyword=EBSD END start-ver=1.4 cd-journal=joma no-vol=114 cd-vols= no-issue= article-no= start-page=11 end-page=20 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Uncovering the role of arcuate kisspeptin neurons as a source of the gonadotropin-releasing hormone pulse generator using gene-modified rats kn-title=遺伝子改変ラットを用いた弓状核キスペプチンニューロンの性腺刺激ホルモン放出ホルモンパルスジェネレーターとしての役割解明 en-subtitle= kn-subtitle= en-abstract= 世界において,乳牛の受胎率(妊娠率)が低下しており,家畜の繁殖成績向上のための効果的な治療法が必要とされている.家畜を含む哺乳類において,生殖機能は視床下部-下垂体-性腺軸から分泌されるホルモンによって制御されている.これらのホルモンのうち,性腺刺激ホルモン放出ホルモン(GnRH)のパルス状分泌(GnRH パルス)は,性腺刺激ホルモン分泌と性腺機能に本質的に重要である.したがって,GnRH パルスを制御するメカニズム(GnRH パルスジェネレーター)を解明することは,家畜の生殖技術を向上させるために不可欠である.本総説では,著者らの遺伝子改変ラットモデルを用いた弓状核キスペプチンニューロン(ΚNDy ニューロンとしても知られる)がGnRH パルスジェネレーターの本体であることの直接的な証拠を示した研究を中心として,過去20年間の研究を概説した.また,ΚNDy ニューロンが分泌するニューロキニンB,グルタミン酸,ダイノルフィンA がΚNDy ニューロンの神経活動を同期させ,GnRH パルスを発生させるメカニズムについて論じた.遺伝子改変ラットモデルから得られた知識は,GnRH/ 性腺刺激ホルモンパルスを刺激して,家畜の繁殖能力を向上させる新規繁殖促進剤開発に寄与すると期待できる. kn-abstract= Strategies for increasing reproductive performance are needed for domestic animals because for example the conception (pregnancy) rate has decreased in dairy cows around the world. Reproductive function is controlled by hormones released by the hypothalamus-pituitary-gonadal axis in mammals, including domestic animals. Of those hormones, tonic (pulsatile) gonadotropin-releasing hormone (GnRH) release is fundamentally important for gonadotropin release and gonadal activity. Therefore, uncovering the mechanism controlling GnRH pulses, that is GnRH pulse generator, is essential to improve reproductive technologies for domestic animals. The present review is focused on the indispensable role of arcuate nucleus (ARC) kisspeptin neurons (also known as KNDy neurons) as the GnRH pulse generator in mammals. First, we give a brief overview of studies on hypothalamic kisspeptin neurons throughout the past two decades. Second, we review studies that have provided direct evidence that ARC kisspeptin neurons serve as the GnRH pulse generator, with a special focus on our gene-modified rat models. Finally, we discuss the mechanism underlying GnRH pulse generation. The knowledge obtained from gene-modified rat models should be clinically important and could be adapted to new tools to improve reproductive performance in livestock by stimulating GnRH/gonadotropin pulses. en-copyright= kn-copyright= en-aut-name=NagaeMayuko en-aut-sei=Nagae en-aut-mei=Mayuko kn-aut-name=長江麻佑子 kn-aut-sei=長江 kn-aut-mei=麻佑子 aut-affil-num=1 ORCID= en-aut-name=UenoyamaYoshihisa en-aut-sei=Uenoyama en-aut-mei=Yoshihisa kn-aut-name=上野山賀久 kn-aut-sei=上野山 kn-aut-mei=賀久 aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil=岡山大学大学院環境生命自然科学研究科 affil-num=2 en-affil=Graduate School of Bioagricultural Sciences, Nagoya University kn-affil=名古屋大学大学院生命農学研究科 en-keyword=gene-modified rats kn-keyword=gene-modified rats en-keyword=GnRH kn-keyword=GnRH en-keyword=kisspeptin kn-keyword=kisspeptin en-keyword=LH kn-keyword=LH en-keyword=pulse generator kn-keyword=pulse generator END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=1 article-no= start-page=38 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250124 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exacerbation of diabetes due to F. Nucleatum LPS-induced SGLT2 overexpression in the renal proximal tubular epithelial cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Diabetes treatments by the control of sodium-glucose cotransporter 2 (SGLT2) is commonly conducted while there are still uncertainties about the mechanisms for the SGLT2 overexpression in kidneys with diabetes. Previously, we have reported that glomeruli and proximal tubules with diabetic nephropathy express toll-like receptor TLR2/4, and that the TLR ligand lipopolysaccharide (LPS) of periodontal pathogens have caused nephropathy in diabetic model mice. Recently, many researchers suggested that the periodontal pathogenic bacteria Fusobacterium (F.) nucleatum has the TLR4-associated strong activator of the colorectal inflammation and cancer. The present study aimed to investigate the possibility of F. nucleatum as an exacerbation factor of diabetes through the renal SGLT2 induction.
Methods The induction of the SGLT2 by F. nucleatum LPS (Fn-LPS) were investigated in the streptozotocin-induced diabetic mouse renal tissue and cultured renal proximal epithelial cells. The changes of blood glucose levels and survival curves in diabetic mice with Fn-LPS were analyzed. The Fn-LPS-induced SGLT2 production in the diabetic mouse renal tissue and in the cultured proximal epithelial cells was examined by ELISA, quantitative RT-PCR, and immunohistochemical analysis.
Results The SGLT2 expression in the cultured mouse tubular epithelial cells was significantly increased by TNF- or co-culture with Fn-LPS-supplemented J774.1 cells. The period to reach diabetic condition was significantly shorter in Fn-LPS-administered diabetic mice than in diabetic mice. All Fn-LPS-administered-diabetic mice reached humane endpoints during the healthy period of all of the mice administered Fn-LPS only. The promotion of the SGLT2 expression at the inner lumen of proximal tubules were stronger in the Fn-LPS-administered-diabetic mice than in diabetic mice. The renal tissue SGLT2 mRNA amounts and the number of renal proximal tubules with overexpressed SGLT2 in the lumen were more in the Fn-LPS-administered-diabetic mice than in diabetic mice.
Conclusions This study suggests that F. nucleatum causes the promotion of diabetes through the overexpression of SGLT2 in proximal tubules under the diabetic condition. Periodontitis with F. nucleatum may be a diabetic exacerbating factor. en-copyright= kn-copyright= en-aut-name=SekiAiko en-aut-sei=Seki en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KajiwaraKoichiro en-aut-sei=Kajiwara en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeramachiJumpei en-aut-sei=Teramachi en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EgusaMasahiko en-aut-sei=Egusa en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyawakiTakuya en-aut-sei=Miyawaki en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SawaYoshihiko en-aut-sei=Sawa en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Oral Growth & Development, Fukuoka Dental College kn-affil= affil-num=3 en-affil=Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Dental Anesthesiology & Special Care Dentistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Dental Anesthesiology & Special Care Dentistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= en-keyword=F. Nucleatum kn-keyword=F. Nucleatum en-keyword=Diabetic exacerbation kn-keyword=Diabetic exacerbation en-keyword=Diabetic nephropathy kn-keyword=Diabetic nephropathy en-keyword=SGLT2 kn-keyword=SGLT2 END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=3267 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250125 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Novel treatment strategy targeting interleukin-6 induced by cancer associated fibroblasts for peritoneal metastasis of gastric cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and alpha-smooth muscle (alpha-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro. Anti-tumor effects of anti-IL-6R Ab on PM of GC were investigated in an orthotopic murine PM model. IL-6 expression was significantly correlated with alpha-SMA expression in clinical samples of GC, and higher IL-6 expression in the primary tumor was associated with poor prognosis of GC. Higher IL-6 and alpha-SMA expressions were also observed in PM of GC. In vitro, differentiation of fibroblasts into CAFs and chemoresistance were observed in GC cells cocultured with fibroblasts. Anti-IL-6R Ab inhibited the progression of PM in GC cells cocultured with fibroblasts in the orthotopic mouse model but could not inhibit the progression of PM consisting of GC cells alone. IL-6 expression in the TME was associated with poor prognosis of GC, and CAFs were associated with establishment and progression of PM via IL-6. Anti-IL-6R Ab could inhibit PM of GC by the blockade of IL-6 secreted by CAFs, which suggests its therapeutic potential for PM of GC. en-copyright= kn-copyright= en-aut-name=MitsuiEma en-aut-sei=Mitsui en-aut-mei=Ema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkuraTomohiro en-aut-sei=Okura en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UneYuta en-aut-sei=Une en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiwakiNoriyuki en-aut-sei=Nishiwaki en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OhtsukaJunko en-aut-sei=Ohtsuka en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OhkiRieko en-aut-sei=Ohki en-aut-mei=Rieko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Laboratory of Fundamental Oncology, National Cancer Center Research Institute kn-affil= affil-num=12 en-affil=Laboratory of Fundamental Oncology, National Cancer Center Research Institute kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Peritoneal metastasis kn-keyword=Peritoneal metastasis en-keyword=Gastric cancer kn-keyword=Gastric cancer en-keyword=Interleukin-6 kn-keyword=Interleukin-6 en-keyword=Cancer-associated fibroblasts kn-keyword=Cancer-associated fibroblasts en-keyword=Interleukin-6 receptor antibody kn-keyword=Interleukin-6 receptor antibody END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=2486 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nomogram models for predicting outcomes in thyroid cancer patients with distant metastasis receiving 131iodine therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study aimed to establish and validate prognostic nomogram models for patients who underwent I-131 therapy for thyroid cancer with distant metastases. The cohort was divided into training (70%) and validation (30%) sets for nomogram development. Univariate and multivariate Cox regression analyses were used to identify independent predictors for overall survival (OS) and progression-free survival (PFS). Nomograms were developed based on these predictors, and Kaplan-Meier curves were constructed for validation. Among 451 patients who were screened, 412 met the inclusion criteria and were followed-up for a median duration of 65.2 months. The training and validation sets included 288 and 124 patients, respectively. Pathological type, first I-131 administrated activity, and lesion I-131 uptake in lesions were independent predictors for PFS. For OS, predictors included gender, age, metastasis site, first I-131 administrated activity, I-131 uptake, pulmonary lesion size, and stimulated thyroglobulin levels. These predictors were used to construct nomograms for predicting PFS and OS. Low-risk patients had significantly longer PFS and OS compared to high-risk patients, with 10-year PFS rates of 81.1% vs. 51.9% and 10-year OS rates of 86.2% vs. 37.4%. These may aid individualized prognostic assessment and clinical decision-making, especially in determining the prescribed activity for the first I-131 treatment. en-copyright= kn-copyright= en-aut-name=JinShui en-aut-sei=Jin en-aut-mei=Shui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YeXuemei en-aut-sei=Ye en-aut-mei=Xuemei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YeTing en-aut-sei=Ye en-aut-mei=Ting kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChenXinyu en-aut-sei=Chen en-aut-mei=Xinyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=JiJianfeng en-aut-sei=Ji en-aut-mei=Jianfeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WangJinyu en-aut-sei=Wang en-aut-mei=Jinyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhuXin en-aut-sei=Zhu en-aut-mei=Xin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaoXiaochun en-aut-sei=Mao en-aut-mei=Xiaochun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiguchiTakahiro en-aut-sei=Higuchi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YiHeqing en-aut-sei=Yi en-aut-mei=Heqing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital kn-affil= affil-num=2 en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital kn-affil= affil-num=3 en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital kn-affil= affil-num=4 en-affil=Nuclear Medicine, Faculty of Medicine, University of Augsburg kn-affil= affil-num=5 en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital kn-affil= affil-num=6 en-affil=Medical records and statistics office, Zhejiang Cancer Hospital kn-affil= affil-num=7 en-affil=Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital kn-affil= affil-num=8 en-affil=Department of Thyroid Surgery, Zhejiang Cancer Hospital kn-affil= affil-num=9 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Nuclear Medicine, Zhejiang Cancer Hospital kn-affil= en-keyword=131iodine kn-keyword=131iodine en-keyword=Activity kn-keyword=Activity en-keyword=Distant metastasis kn-keyword=Distant metastasis en-keyword=Iodine radioisotopes kn-keyword=Iodine radioisotopes en-keyword=Thyroid cancer kn-keyword=Thyroid cancer END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=46 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mapping Surface Potential in DNA Aptamer-Neurochemical and Membrane-Ion Interactions on the SOS Substrate Using Terahertz Microscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, we utilized a terahertz chemical microscope (TCM) to map surface potential changes induced by molecular interactions on silicon-on-sapphire (SOS) substrates. By functionalizing the SOS substrate with DNA aptamers and an ion-selective membrane, we successfully detected and visualized aptamer-neurochemical complexes through the terahertz amplitude. Additionally, comparative studies of DNA aptamers in PBS buffer and artificial cerebrospinal fluid (aCSF) were performed by computational structure modeling and terahertz measurements. Beyond neurochemicals, we also investigated calcium ions, measuring their concentrations in PDMS-fabricated micro-wells using minimal sample volumes. Our results highlight the capability of TCM as a powerful, label-free, and sensitive platform for the probing and mapping of surface potential arising from molecular interactions, with broad implications for biomedical diagnostics and research. en-copyright= kn-copyright= en-aut-name=MoritaKosei en-aut-sei=Morita en-aut-mei=Kosei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsudaYuta en-aut-sei=Mitsuda en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaSota en-aut-sei=Yoshida en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KiwaToshihiko en-aut-sei=Kiwa en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WangJin en-aut-sei=Wang en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=terahertz chemical microscope kn-keyword=terahertz chemical microscope en-keyword=surface potential kn-keyword=surface potential en-keyword=DNA aptamer-neurochemical complexes kn-keyword=DNA aptamer-neurochemical complexes en-keyword=membrane-ion interactions kn-keyword=membrane-ion interactions en-keyword=SOS substrate kn-keyword=SOS substrate en-keyword=artificial cerebrospinal fluid kn-keyword=artificial cerebrospinal fluid END start-ver=1.4 cd-journal=joma no-vol=2025 cd-vols= no-issue=1 article-no= start-page=013C01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241226 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Modification on Thermal Motion in Geant4 for Neutron Capture Simulation in Gadolinium Loaded Water en-subtitle= kn-subtitle= en-abstract= kn-abstract=Neutron tagging is a fundamental technique for electron anti-neutrino detection via the inverse beta decay channel. A reported discrepancy in neutron detection efficiency between observational data and simulation predictions prompted an investigation into neutron capture modeling in Geant4. The study revealed that an overestimation of the thermal motion of hydrogen atoms in Geant4 impacts the fraction of captured nuclei. By manually modifying the Geant4 implementation, the simulation results align with calculations based on evaluated nuclear data and show good agreement with observables derived from the SK-Gd data. en-copyright= kn-copyright= en-aut-name=HinoY. en-aut-sei=Hino en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeK. en-aut-sei=Abe en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsakaR. en-aut-sei=Asaka en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HanS. en-aut-sei=Han en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaM. en-aut-sei=Harada en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshitsukaM. en-aut-sei=Ishitsuka en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoH. en-aut-sei=Ito en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IzumiyamaS. en-aut-sei=Izumiyama en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanemuraY. en-aut-sei=Kanemura en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KoshioY. en-aut-sei=Koshio en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanishiF. en-aut-sei=Nakanishi en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SekiyaH. en-aut-sei=Sekiya en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YanoT. en-aut-sei=Yano en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=3 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= affil-num=4 en-affil=Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=5 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=6 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= affil-num=7 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= affil-num=8 en-affil=Department of Physics, Tokyo Institute of Technology kn-affil= affil-num=9 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=13 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=25 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250115 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Investigation of Hand Gestures for Controlling Video Games in a Rehabilitation Exergame System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Musculoskeletal disorders (MSDs) can significantly impact individuals' quality of life (QoL), often requiring effective rehabilitation strategies to promote recovery. However, traditional rehabilitation methods can be expensive and may lack engagement, leading to poor adherence to therapy exercise routines. An exergame system can be a solution to this problem. In this paper, we investigate appropriate hand gestures for controlling video games in a rehabilitation exergame system. The Mediapipe Python library is adopted for the real-time recognition of gestures. We choose 10 easy gestures among 32 possible simple gestures. Then, we specify and compare the best and the second-best groups used to control the game. Comprehensive experiments are conducted with 16 students at Andalas University, Indonesia, to find appropriate gestures and evaluate user experiences of the system using the System Usability Scale (SUS) and User Experience Questionnaire (UEQ). The results show that the hand gestures in the best group are more accessible than in the second-best group. The results suggest appropriate hand gestures for game controls and confirm the proposal's validity. In future work, we plan to enhance the exergame system by integrating a diverse set of video games, while expanding its application to a broader and more diverse sample. We will also study other practical applications of the hand gesture control function. en-copyright= kn-copyright= en-aut-name=HusnaRadhiatul en-aut-sei=Husna en-aut-mei=Radhiatul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnggrainiIrin Tri en-aut-sei=Anggraini en-aut-mei=Irin Tri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FanChih-Peng en-aut-sei=Fan en-aut-mei=Chih-Peng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Electrical Engineering, State Polytechnic of Malang kn-affil= affil-num=6 en-affil=Department of Electrical Engineering, National Chung Hsing University kn-affil= en-keyword=hand gesture kn-keyword=hand gesture en-keyword=application control kn-keyword=application control en-keyword=exergame kn-keyword=exergame en-keyword=SUS kn-keyword=SUS en-keyword=UEQ kn-keyword=UEQ en-keyword=python kn-keyword=python en-keyword=mediapipe kn-keyword=mediapipe END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=2 article-no= start-page=342 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250117 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Proposal of In Situ Authoring Tool with Visual-Inertial Sensor Fusion for Outdoor Location-Based Augmented Reality en-subtitle= kn-subtitle= en-abstract= kn-abstract=In location-based augmented reality (LAR) applications, a simple and effective authoring tool is essential to create immersive AR experiences in real-world contexts. Unfortunately, most of the current tools are primarily desktop-based, requiring manual location acquisitions, the use of software development kits (SDKs), and high programming skills, which poses significant challenges for novice developers and a lack of precise LAR content alignment. In this paper, we propose an intuitive in situ authoring tool with visual-inertial sensor fusions to simplify the LAR content creation and storing process directly using a smartphone at the point of interest (POI) location. The tool localizes the user’s position using smartphone sensors and maps it with the captured smartphone movement and the surrounding environment data in real-time. Thus, the AR developer can place a virtual object on-site intuitively without complex programming. By leveraging the combined capabilities of Visual Simultaneous Localization and Mapping(VSLAM) and Google Street View (GSV), it enhances localization and mapping accuracy during AR object creation. For evaluations, we conducted extensive user testing with 15 participants, assessing the task success rate and completion time of the tool in practical pedestrian navigation scenarios. The Handheld Augmented Reality Usability Scale (HARUS) was used to evaluate overall user satisfaction. The results showed that all the participants successfully completed the tasks, taking 16.76 s on average to create one AR object in a 50 m radius area, while common desktop-based methods in the literature need 1–8 min on average, depending on the user’s expertise. Usability scores reached 89.44 for manipulability and 85.14 for comprehensibility, demonstrating the high effectiveness in simplifying the outdoor LAR content creation process. en-copyright= kn-copyright= en-aut-name=BrataKomang Candra en-aut-sei=Brata en-aut-mei=Komang Candra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PandumanYohanes Yohanie Fridelin en-aut-sei=Panduman en-aut-mei=Yohanes Yohanie Fridelin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MentariMustika en-aut-sei=Mentari en-aut-mei=Mustika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SyaifudinYan Watequlis en-aut-sei=Syaifudin en-aut-mei=Yan Watequlis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RahmadaniAlfiandi Aulia en-aut-sei=Rahmadani en-aut-mei=Alfiandi Aulia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil= Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil= Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil= Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil= Department of Information Technology, Politeknik Negeri Malang kn-affil= affil-num=6 en-affil= Department of Information Technology, Politeknik Negeri Malang kn-affil= en-keyword=location-based augmented reality (LAR) kn-keyword=location-based augmented reality (LAR) en-keyword=authoring tool kn-keyword=authoring tool en-keyword=outdoor kn-keyword=outdoor en-keyword=VSLAM kn-keyword=VSLAM en-keyword=Google Street View (GSV) kn-keyword=Google Street View (GSV) en-keyword=handheld augmented reality usability scale (HARUS) kn-keyword=handheld augmented reality usability scale (HARUS) END start-ver=1.4 cd-journal=joma no-vol=53 cd-vols= no-issue=1 article-no= start-page=65 end-page=69 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effectiveness of sensing gloves–applied virtual reality education system on hand hygiene practice: A randomized controlled trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: We developed a virtual reality (VR) education system and evaluated its clinical utility for promoting hand hygiene practices.
Methods: This prospective, 2-week, randomized controlled study conducted at Okayama University Hospital, Japan, from November 2023 to January 2024, involved 22 participants (18 medical students and 4 residents). A fully immersive 360° VR system (VIVE Pro Eye) using a head-mounted display and sensing gloves was used to develop 3 health care tasks in a virtual patient room—Environmental Cleaning, Gauze Exchange, and Urine Collection. After monitoring all participants' baseline usage data of portable hand-rubbing alcohol in the first week, we randomly assigned them into 1:1 groups (VR training and video lecture groups). The primary outcome was differences in hand-rubbed alcohol use before and after intervention.
Results: Before the intervention, alcohol use did not significantly differ between both groups. After the intervention, a significant increase in alcohol use was observed in the VR training group (median: 8.2 g vs 16.2 g; P = .019) but not in the video lecture group.
Conclusions: Our immersive 360° VR education system enhanced hand hygiene practices. Infection prevention and control practitioners and digital technology experts must collaborate to advance the development of superior educational devices and content. en-copyright= kn-copyright= en-aut-name=IzumiMahiro en-aut-sei=Izumi en-aut-mei=Mahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaYuki en-aut-sei=Otsuka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SoejimaYoshiaki en-aut-sei=Soejima en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukushimaShinnosuke en-aut-sei=Fukushima en-aut-mei=Shinnosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibataMitsunobu en-aut-sei=Shibata en-aut-mei=Mitsunobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirotaSatoshi en-aut-sei=Hirota en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KoyamaToshihiro en-aut-sei=Koyama en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GofukuAkio en-aut-sei=Gofuku en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Quality Assurance Center, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=6 en-affil=Quality Assurance Center, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=7 en-affil=Quality Assurance Center, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=8 en-affil=Department of Health Data Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Quality Assurance Center, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Infection prevention and control kn-keyword=Infection prevention and control en-keyword=Medical-engineering collaboration kn-keyword=Medical-engineering collaboration END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue= article-no= start-page=71 end-page=89 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploring the Link Between Modern Household Amenities and Health in Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract= The correlation between the impact of the external and internal environment of a household on its occupants’ health has been well documented by various research studies. Yet a limitation of the literature is the prevalence of modern household basic amenities and occupant health, especially in Vietnam. This paper examines the impact of modern household basic amenities on occupant health by applying the Vietnam Household Standard Survey 2018. By applying the Tobit method, it is revealed that household amenities displayed a significant association with health outcomes. For instance, individuals residing in concrete houses or employing waste collection systems exhibited decreased illness likelihood. Handwashing with soap correlated with a diminished illness probability. Tobit analysis highlights internet accessibility as significant in reducing days of work incapacity (approximately 6 days less). Gender, residential location, and total income also impact workdays. Age and education exhibit inverse relationships with workdays missed. In essence, these findings contribute to the broader discourse on public health and underscore the importance of considering diverse factors, ranging from basic amenities to socio-economic indicators, in formulating comprehensive health policies and interventions. en-copyright= kn-copyright= en-aut-name=Do Thi Hoai Giang en-aut-sei=Do Thi Hoai Giang en-aut-mei= kn-aut-name=ド ティ ホアイ ジャン kn-aut-sei=ド ティ ホアイ ジャン kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=岡山大学大学院社会文化科学研究科 en-keyword=Modern household amenity kn-keyword=Modern household amenity en-keyword=occupant health kn-keyword=occupant health en-keyword=Vietnam kn-keyword=Vietnam en-keyword=Tobit regression kn-keyword=Tobit regression en-keyword=Logit model kn-keyword=Logit model END start-ver=1.4 cd-journal=joma no-vol=361 cd-vols= no-issue= article-no= start-page=114657 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crosstalk between prolactin, insulin-like growth factors, and thyroid hormones in feather growth regulation in neonatal chick wings en-subtitle= kn-subtitle= en-abstract= kn-abstract=The elongation of primary feathers in neonatal chicks is delayed by the late-feathering K gene located on the Z chromosome. We recently found that the K gene slows feather growth by reducing the number of functional prolactin (PRL) receptor (PRLR) dimers. In this study, we investigated the molecular mechanisms by which PRL promotes feather elongation. RT-qPCR and immunohistochemistry analyses revealed that PRLRs are predominantly localized in the pulp rather than in the epidermal layer of the feather follicle. Treatment of primary cultured feather pulp cells with PRL increased the expression of mRNAs for insulin-like growth factors (IGFs; IGF-1 and IGF-2) and type 2 deiodinase (DIO2). Furthermore, treatments with IGF-1 and triiodothyronine (T3) reciprocally enhanced the expression of mRNAs for DIO2 and IGFs. Additionally, BrdU staining in neonatal chicks showed that T3 promoted cell proliferation in both the epidermal layer and pulp cells, while this effect was suppressed by an IGF-1 receptor (IGF1R) inhibitor. These findings suggest a novel model in which PRL upregulates IGFs and DIO2 in feather pulp cells, creating a positive feedback loop between IGFs and T3, ultimately leading to the promotion of cell proliferation in both the epidermal layer and the pulp cells by IGFs. This is the first report proposing crosstalk between PRL, thyroid hormone (TH), and IGFs in feather follicles. en-copyright= kn-copyright= en-aut-name=NozawaYuri en-aut-sei=Nozawa en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkamuraAyako en-aut-sei=Okamura en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuchiHibiki en-aut-sei=Fukuchi en-aut-mei=Hibiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShinoharaMasamichi en-aut-sei=Shinohara en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AizawaSayaka en-aut-sei=Aizawa en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Prolactin kn-keyword=Prolactin en-keyword=Thyroid hormone kn-keyword=Thyroid hormone en-keyword=IGF kn-keyword=IGF en-keyword=Iodothyronine deiodinase kn-keyword=Iodothyronine deiodinase en-keyword=Feather growth kn-keyword=Feather growth END start-ver=1.4 cd-journal=joma no-vol=326 cd-vols= no-issue=6 article-no= start-page=F1054 end-page=F1065 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240530 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Preventive effects of vasohibin-2-targeting peptide vaccine for diabetic nephropathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diabetic nephropathy remains the leading cause of end-stage kidney disease in many countries, and additional therapeutic targets are needed to prevent its development and progression. Some angiogenic factors are involved in the pathogenesis of diabetic nephropathy. Vasohibin-2 (VASH2) is a novel proangiogenic factor, and our previous study showed that glomerular damage is inhibited in diabetic Vash2 homozygous knockout mice. Therefore, we established a VASH2-targeting peptide vaccine as a tool for anti-VASH2 therapy in diabetic nephropathy. In this study, the preventive effects of the VASH2-targeting peptide vaccine against glomerular injury were examined in a streptozotocin (STZ)-induced diabetic mouse model. The mice were subcutaneously injected with the vaccine at two doses 2 wk apart and then intraperitoneally injected with 50 mg/kg STZ for 5 consecutive days. Glomerular injury was evaluated 20 wk after the first vaccination. Treatment with the VASH2-targeting peptide vaccine successfully induced circulating anti-VASH2 antibody without inflammation in major organs. Although the vaccination did not affect blood glucose levels, it significantly prevented hyperglycemia-induced increases in urinary albumin excretion and glomerular volume. The vaccination did not affect increased VASH2 expression but significantly inhibited renal angiopoietin-2 (Angpt2) expression in the diabetic mice. Furthermore, it significantly prevented glomerular macrophage infiltration. The preventive effects of vaccination on glomerular injury were also confirmed in db/db mice. Taken together, the results of this study suggest that the VASH2-targeting peptide vaccine may prevent diabetic glomerular injury in mice by inhibiting Angpt2-mediated microinflammation. en-copyright= kn-copyright= en-aut-name=NakashimaYuri en-aut-sei=Nakashima en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanabeKatsuyuki en-aut-sei=Tanabe en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MifuneTomoyo en-aut-sei=Mifune en-aut-mei=Tomoyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakadoiTakato en-aut-sei=Nakadoi en-aut-mei=Takato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HayashiHiroki en-aut-sei=Hayashi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagamiHironori en-aut-sei=Nakagami en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatoYasufumi en-aut-sei=Sato en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Health Development and Medicine, Osaka University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Health Development and Medicine, Osaka University Graduate School of Medicine kn-affil= affil-num=7 en-affil=New Industry Creation Hatchery Center, Tohoku University kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=albuminuria kn-keyword=albuminuria en-keyword=diabetic nephropathy kn-keyword=diabetic nephropathy en-keyword=macrophages kn-keyword=macrophages en-keyword=peptide vaccine kn-keyword=peptide vaccine en-keyword=vasohibin-2 kn-keyword=vasohibin-2 END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=1 article-no= start-page=29 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Three-Class Annotation Method Improves the AI Detection of Early-Stage Osteosarcoma on Plain Radiographs: A Novel Approach for Rare Cancer Diagnosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Objectives: Developing high-performance artificial intelligence (AI) models for rare diseases is challenging owing to limited data availability. This study aimed to evaluate whether a novel three-class annotation method for preparing training data could enhance AI model performance in detecting osteosarcoma on plain radiographs compared to conventional single-class annotation. Methods: We developed two annotation methods for the same dataset of 468 osteosarcoma X-rays and 378 normal radiographs: a conventional single-class annotation (1C model) and a novel three-class annotation method (3C model) that separately labeled intramedullary, cortical, and extramedullary tumor components. Both models used identical U-Net-based architectures, differing only in their annotation approaches. Performance was evaluated using an independent validation dataset. Results: Although both models achieved high diagnostic accuracy (AUC: 0.99 vs. 0.98), the 3C model demonstrated superior operational characteristics. At a standardized cutoff value of 0.2, the 3C model maintained balanced performance (sensitivity: 93.28%, specificity: 92.21%), whereas the 1C model showed compromised specificity (83.58%) despite high sensitivity (98.88%). Notably, at the 25th percentile threshold, both models showed identical false-negative rates despite significantly different cutoff values (3C: 0.661 vs. 1C: 0.985), indicating the ability of the 3C model to maintain diagnostic accuracy at substantially lower thresholds. Conclusions: This study demonstrated that anatomically informed three-class annotation can enhance AI model performance for rare disease detection without requiring additional training data. The improved stability at lower thresholds suggests that thoughtful annotation strategies can optimize the AI model training, particularly in contexts where training data are limited. en-copyright= kn-copyright= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaYujiro en-aut-sei=Otsuka en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraYusuke en-aut-sei=Nakamura en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkutaKunihiro en-aut-sei=Ikuta en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OsakiShuhei en-aut-sei=Osaki en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HironariTamiya en-aut-sei=Hironari en-aut-mei=Tamiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiwaShinji en-aut-sei=Miwa en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhshikaShusa en-aut-sei=Ohshika en-aut-mei=Shusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishimuraShunji en-aut-sei=Nishimura en-aut-mei=Shunji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KaharaNaoaki en-aut-sei=Kahara en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Medical Information and Assistive Technology Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiology, Juntendo University School of Medicine kn-affil= affil-num=4 en-affil=Plusman LCC kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University kn-affil= affil-num=6 en-affil=Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital kn-affil= affil-num=7 en-affil=Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute kn-affil= affil-num=8 en-affil=Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine kn-affil= affil-num=10 en-affil=Department of Orthopaedic Surgery, Kindai University Hospital kn-affil= affil-num=11 en-affil=Department of Orthopedic Surgery, Mizushima Central Hospital kn-affil= affil-num=12 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=osteosarcoma kn-keyword=osteosarcoma en-keyword=medical image annotation kn-keyword=medical image annotation en-keyword=anatomical annotation method kn-keyword=anatomical annotation method en-keyword=rare cancer kn-keyword=rare cancer END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=12 article-no= start-page=1184 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241126 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Contributions of the Primary Sensorimotor Cortex and Posterior Parietal Cortex to Motor Learning and Transfer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Transferring learned manipulations to new manipulation tasks has enabled humans to realize thousands of dexterous object manipulations in daily life. Two-digit grasp and three-digit grasp manipulations require different fingertip forces, and our brain can switch grasp types to ensure good performance according to motor memory. We hypothesized that several brain areas contribute to the execution of the new type of motor according to the motor memory. However, the motor memory mechanisms during this transfer period are still unclear. In the present functional magnetic resonance imaging (fMRI) study, we aimed to investigate the cortical mechanisms involved in motor memory during the transfer phase of learned manipulation tasks. Methods: Using a custom-built T-shaped object with an adjustable weight distribution, the participants performed grasp and lift manipulation tasks under different conditions to simulate the learning and transfer phases. The learning phase consisted of four grasp-and-lift repetitions with one motor type, followed by a transfer phase with four repetitions involving different motors (adding or removing a digit). Results: By comparing brain activity in the learning and transfer phases, we identified three regions (the superior frontal gyrus, supramarginal gyrus, and postcentral gyrus) associated with motor memory during the transfer of learned manipulations. Conclusions: Our findings improve the understanding of the role of the posterior parietal cortex in motor memory, highlighting how sensory information from memory and real-time input is integrated to generate novel motor control signals that guide the precise reapplication of control strategies. Furthermore, we believe that these areas contribute to motor learning from motor memory and may serve as key regions of interest for investigating neurodegenerative diseases. en-copyright= kn-copyright= en-aut-name=WangChenyu en-aut-sei=Wang en-aut-mei=Chenyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YuYinghua en-aut-sei=Yu en-aut-mei=Yinghua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=fMRI kn-keyword=fMRI en-keyword=motor learning and transfer kn-keyword=motor learning and transfer en-keyword=primary sensorimotor cortex kn-keyword=primary sensorimotor cortex en-keyword=posterior parietal cortex kn-keyword=posterior parietal cortex END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=1 article-no= start-page=58 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241221 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of the effects of fenestration in Fontan circulation using a lumped parameter model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fenestration has been reported to enhance Fontan hemodynamics in several cases of Fontan circulation. However, the indication criteria for fenestration remain under discussion. To assess the effectiveness of fenestration in Fontan circulation, we conducted a theoretical analysis using a computational model of the fenestrated Fontan circulation. The cardiac chambers and vascular systems were modeled using the time-varying elastance model and the modified Windkessel model, respectively. When the pulmonary vascular resistance index was 4.01 Wood units m2, fenestration significantly reduced central venous pressure from 18.0 to 16.1 mmHg and decreased stressed blood volume from 610 to 555 ml. However, in the models with reduced ventricular end-systolic elastance, increased ventricular stiffness constant, or heightened systemic vascular resistance, the advantages of fenestration were diminished. Thus, fenestration may effectively improve the hemodynamics of Fontan circulation in patients with elevated pulmonary vascular resistance. en-copyright= kn-copyright= en-aut-name=HorioNaohiro en-aut-sei=Horio en-aut-mei=Naohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimizuShuji en-aut-sei=Shimizu en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KotaniYasuhiro en-aut-sei=Kotani en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyaharaYoshinori en-aut-sei=Miyahara en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Pediatric Heart Disease and Adult Congenital Heart Disease Center, Showa University Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Single ventricle kn-keyword=Single ventricle en-keyword=Fontan circulation kn-keyword=Fontan circulation en-keyword=Fenestration kn-keyword=Fenestration en-keyword=Hemodynamic simulation kn-keyword=Hemodynamic simulation en-keyword=Lumped parameter model kn-keyword=Lumped parameter model END start-ver=1.4 cd-journal=joma no-vol=103 cd-vols= no-issue=50 article-no= start-page=e40849 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241213 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relevance of oxidative stress for small intestinal injuries induced by nonsteroidal anti-inflammatory drugs: A multicenter prospective study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Several reports revealed that oxidative stress was involved in the mouse model of nonsteroidal anti-inflammatory drug (NSAIDs)-induced small intestinal mucosal injuries. Thus, we aimed to investigate in the prospective clinical study, that the relevance of oxidative stress balance in small intestinal mucosal injury in NSAIDs users. We prospectively included 60 patients who had been taking NSAIDs continuously for more than 3 months and exhibited obscure gastrointestinal bleeding (number UMIN 000011775). Small intestinal mucosal injuries were assessed by capsule endoscopy (CE), and reactive oxygen metabolites (d-ROMs) levels and oxidant capacity (OXY) adsorbent test were performed to investigate the relevance of oxidative stress balance. More than half of the patients (N = 32, 53%) had small intestinal mucosal injuries by CE, and 14 patients (24%) had ulcers. The incidence of ulcers was relatively higher in nonaspirin users. Serum OXY levels were significantly lower in the mucosal injury group (P = .02), and d-ROM levels were significantly higher in the ulcer group (P < .01). In aspirin users, d-ROM and OXY levels did not differ significantly with respect to mucosal injuries or ulcers. However, in nonaspirin users, OXY level was significantly lower in the mucosal injury group (P = .04), and d-ROM levels were significantly higher in the ulcer group (P = .02). Nonaspirin NSAIDs-induced intestinal mucosal injury is associated with antioxidant systems, resulting in increased oxidative stress. en-copyright= kn-copyright= en-aut-name=BabaYuki en-aut-sei=Baba en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoriiJoichiro en-aut-sei=Horii en-aut-mei=Joichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiSakuma en-aut-sei=Takahashi en-aut-mei=Sakuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawaiDaisuke en-aut-sei=Kawai en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiSayo en-aut-sei=Kobayashi en-aut-mei=Sayo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkadaHiroyuki en-aut-sei=Okada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Internal Medicine, Japanese Red Cross Himeji Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterology, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital kn-affil= affil-num=7 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=8 en-affil=Department of Internal Medicine, Fukuyama City Hospital kn-affil= affil-num=9 en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=capsule endoscopy kn-keyword=capsule endoscopy en-keyword=NSAIDs kn-keyword=NSAIDs en-keyword=oxidative stress kn-keyword=oxidative stress en-keyword=small intestinal mucosal injury kn-keyword=small intestinal mucosal injury END start-ver=1.4 cd-journal=joma no-vol=169 cd-vols= no-issue=1 article-no= start-page=e16291 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploring the Role of Ccn3 in Type III Cell of Mice Taste Buds en-subtitle= kn-subtitle= en-abstract= kn-abstract=Different taste cells express unique cell-type markers, enabling researchers to distinguish them and study their functional differentiation. Using single-cell RNA-Seq of taste cells in mouse fungiform papillae, we found that Cellular Communication Network Factor 3 (Ccn3) was highly expressed in Type III taste cells but not in Type II taste cells. Ccn3 is a protein-coding gene involved in various biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Therefore, in this study, we aimed to explore the expression and function of Ccn3 in mouse taste bud cells. Using reverse transcription polymerase chain reaction (RT-PCR), in situ hybridization, and immunohistochemistry (IHC), we confirmed that Ccn3 was predominantly expressed in Type III taste cells. Through IHC, quantitative real-time RT-PCR, gustatory nerve recordings, and short-term lick tests, we observed that Ccn3 knockout (Ccn3-KO) mice did not exhibit any significant differences in the expression of taste cell markers and taste responses compared to wild-type controls. To explore the function of Ccn3 in taste cells, bioinformatics analyses were conducted and predicted possible roles of Ccn3 in tissue regeneration, perception of pain, protein secretion, and immune response. Among them, an immune function is the most plausible based on our experimental results. In summary, our study indicates that although Ccn3 is strongly expressed in Type III taste cells, its knockout did not influence the basic taste response, but bioinformatics provided valuable insights into the possible role of Ccn3 in taste buds and shed light on future research directions. en-copyright= kn-copyright= en-aut-name=WangKuanyu en-aut-sei=Wang en-aut-mei=Kuanyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitohYoshihiro en-aut-sei=Mitoh en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HorieKengo en-aut-sei=Horie en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaRyusuke en-aut-sei=Yoshida en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Physiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=bioinformatics kn-keyword=bioinformatics en-keyword=Ccn3 kn-keyword=Ccn3 en-keyword=Type III taste cell kn-keyword=Type III taste cell END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=JAMDSM0001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=2025 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of tool life prediction system for square end-mills based on database of servo motor current value en-subtitle= kn-subtitle= en-abstract= kn-abstract=Accurate prediction of tool life is crucial for reducing production costs and enhancing quality in the machining process. However, such predictions often rely on empirical knowledge, which may limit inexperienced engineers to reliably obtain accurate predictions. This study explores a method to predict the tool life of a cutting machine using servo motor current data collected during the initial stages of tool wear, which is a cost-effective approach. The LightGBM model was identified as suitable for predicting tool life from current data, given the challenges associated with predicting from the average variation of current values. By identifying and utilizing the top 50 features from the current data for prediction, the accuracy of tool life prediction in the early wear stage improved. As this prediction method was developed based on current data obtained during the very early wear stage in experiments with square end-mills, it was tested on extrapolated data using different end-mill diameters. The findings revealed average accuracy rates of 71.2% and 69.4% when using maximum machining time and maximum removal volume as thresholds, respectively. en-copyright= kn-copyright= en-aut-name=KODAMAHiroyuki en-aut-sei=KODAMA en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SUZUKIMakoto en-aut-sei=SUZUKI en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OHASHIKazuhito en-aut-sei=OHASHI en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate school of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Milling kn-keyword=Milling en-keyword=LightGBM kn-keyword=LightGBM en-keyword=Tool life prediction kn-keyword=Tool life prediction en-keyword=Square end-mill kn-keyword=Square end-mill en-keyword=Servo motor current kn-keyword=Servo motor current END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e202404400 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Graphene Oxide as a Self‐Carbocatalyst to Facilitate the Ring‐Opening Polymerization of Glycidol for Efficient Polyglycerol Grafting en-subtitle= kn-subtitle= en-abstract= kn-abstract=Grafting carbon-based nanomaterials (CNMs) with polyglycerol (PG) improves their application potentials in biomedicine and electronics. Although “grafting from” method offers advantages over “grafting to” one in terms of operability and versatility, little is known about the reaction process of glycidol with the surface groups onto CNMs. By using graphene oxide (GO) as a multi-functional model material, we examined the reactivity of the surface groups on GO toward glycidol molecules via a set of model reactions. We reveal that carboxyl groups spontaneously react with the epoxide ring with no need of catalyst, while GO catalyzes the reactions of hydroxyl groups with the epoxide of glycidol. In addition, the hydroxyl group of glycidol can open the epoxide in the basal plane of GO. The subsequent polymerization of PG is supposed to propagate at the primary and/or the secondary hydroxyl groups, generating a ramified PG macromolecule with random branch-on-branch topology. In addition, ketones, benzyl esters and aromatic ethers are found not to react with glycidol even in the presence of GO, while the aldehydes are easily oxidized into carboxyl groups under ambient condition, behaving then as the carboxyl groups. Our findings pose the foundation for understanding the polymerization mechanism of PG on CNMs. en-copyright= kn-copyright= en-aut-name=ZouYajuan en-aut-sei=Zou en-aut-mei=Yajuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhkuraKentaro en-aut-sei=Ohkura en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Ortiz‐AnayaIsrael en-aut-sei=Ortiz‐Anaya en-aut-mei=Israel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KimuraRyota en-aut-sei=Kimura en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BiancoAlberto en-aut-sei=Bianco en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Carbon nanomaterials kn-keyword=Carbon nanomaterials en-keyword=Epoxide ring-opening kn-keyword=Epoxide ring-opening en-keyword=Catalysis kn-keyword=Catalysis en-keyword=Polyglycerol functionalization kn-keyword=Polyglycerol functionalization END start-ver=1.4 cd-journal=joma no-vol=145 cd-vols= no-issue=8 article-no= start-page=881 end-page=896 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Oral Inflammation and Microbiome Dysbiosis Exacerbate Chronic Graft-versus-host Disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=The oral microbiota, second in abundance to the gut, is implicated in chronic systemic diseases, but its specific role in graft-versus-host disease (GVHD) pathogenesis has been unclear. Our study finds that mucositis-induced oral dysbiosis in patients after hematopoietic cell transplantation (HCT) associated with increased chronic GVHD (cGVHD), even in patients receiving posttransplant cyclophosphamide. In murine HCT models, oral dysbiosis caused by bilateral molar ligatures exacerbated cGVHD and increased bacterial load in the oral cavity and gut, with Enterococcaceae significantly increasing in both organs. In this model, the migration of Enterococcaceae to cervical lymph nodes both before and after transplantation activated antigen-presenting cells, thereby promoting the expansion of donor-derived inflammatory T cells. Based on these results, we hypothesize that pathogenic bacteria increase in the oral cavity might not only exacerbate local inflammation but also enhance systemic inflammation throughout the HCT course. Additionally, these bacteria translocated to the gut and formed ectopic colonies, further amplifying systemic inflammation. Furthermore, interventions targeting the oral microbiome mitigated murine cGVHD. Collectively, our findings highlight the importance of oral dysbiosis in cGVHD and suggest that modulation of the oral microbiome during transplantation may be an effective approach for preventing or treating cGVHD. en-copyright= kn-copyright= en-aut-name=KambaraYui en-aut-sei=Kambara en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujiwaraHideaki en-aut-sei=Fujiwara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoAkira en-aut-sei=Yamamoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GotohKazuyoshi en-aut-sei=Gotoh en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsujiShuma en-aut-sei=Tsuji en-aut-mei=Shuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KunihiroMari en-aut-sei=Kunihiro en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OyamaTadashi en-aut-sei=Oyama en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TeraoToshiki en-aut-sei=Terao en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatoAyame en-aut-sei=Sato en-aut-mei=Ayame kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanakaTakehiro en-aut-sei=Tanaka en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=PeltierDaniel en-aut-sei=Peltier en-aut-mei=Daniel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SeikeKeisuke en-aut-sei=Seike en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NishimoriHisakazu en-aut-sei=Nishimori en-aut-mei=Hisakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=AsadaNoboru en-aut-sei=Asada en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=EnnishiDaisuke en-aut-sei=Ennishi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FujiiKeiko en-aut-sei=Fujii en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=FujiiNobuharu en-aut-sei=Fujii en-aut-mei=Nobuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MatsuokaKen-ichi en-aut-sei=Matsuoka en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SogaYoshihiko en-aut-sei=Soga en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=ReddyPavan en-aut-sei=Reddy en-aut-mei=Pavan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YoshinobuMaeda en-aut-sei=Yoshinobu en-aut-mei=Maeda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Medical School kn-affil= affil-num=2 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences kn-affil= affil-num=5 en-affil=Department of Microbiology and Genetics, Okayama University Graduate School of Health Sciences kn-affil= affil-num=6 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Division of Hospital Dentistry, Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Herman B Wells Center for Pediatric Research, Simon Cancer Center, Indiana University School of Medicine kn-affil= affil-num=12 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=13 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=14 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=15 en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital kn-affil= affil-num=16 en-affil=Department of Clinical Laboratory, Okayama University Hospital kn-affil= affil-num=17 en-affil=Division of Blood Transfusion, Okayama University Hospital kn-affil= affil-num=18 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=19 en-affil=Division of Hospital Dentistry, Okayama University Hospital kn-affil= affil-num=20 en-affil=Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine kn-affil= affil-num=21 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= END start-ver=1.4 cd-journal=joma no-vol=391 cd-vols= no-issue= article-no= start-page=158 end-page=176 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250215 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Magnesium isotope composition of volcanic rocks from cold and warm subduction zones: Implications for the recycling of subducted serpentinites and carbonates en-subtitle= kn-subtitle= en-abstract= kn-abstract=Magnesium (Mg) isotopes are regarded as a sensitive tracer to the contribution from subducted serpentinites and carbonates. However, the source, distribution, and controlling factors of the Mg isotope composition of arc magmas remain unclear. In this study, we investigated the intra-arc and inter-arc variations in Mg isotope compositions of volcanic rocks from two typical cold subduction zones [NE Japan (NEJ) and Izu arcs] and a typical hot subduction zone [SW Japan (SWJ) arc] to address the question. The volcanic rocks from the frontal-arc regions of NEJ and Izu have isotopically heavy Mg (δ26Mg = –0.20 to –0.08 ‰) compared to the mantle-like δ26Mg values of most of volcanic rocks from SWJ and the rear regions of NEJ and Izu arcs (–0.28 to –0.17 ‰). It is also worth noting that NEJ arc includes samples with δ26Mg values (–0.61 to –0.39 ‰) significantly lower than the mantle, but similar to the < 110 Ma intra-continental basalts from eastern China, which is the first observation in modern arc rocks. No obvious effects of post-eruptive alteration, fractional crystallization, partial melting, or the addition of silicate-rich sediment and oceanic crust components could be identified in the Mg isotope compositions of these volcanic rocks. By contrast, the correlations between the δ26Mg values and the proxy for serpentinite component (i.e., 11B/10B and Nb/B ratios) indicate that the component exerts a strong control on the Mg-isotopic signature of these arc rocks. Considering metamorphic reactions in subduction lithologies under P-T conditions postulated for these arcs, the variations in δ26Mg values of these arc magmas are unlikely to have been controlled by dehydration of serpentinites in subducted oceanic lithosphere (slab serpentinite). Instead, the high-δ26Mg values of frontal-arc rocks are delivered by the fluids from serpentinite formed in the lowermost part of the sub-arc mantle (mantle wedge serpentinite) in channelized flow. Comparatively, such a high-δ26Mg signature is invisible in volcanic rocks from rear-arc regions of NEJ and Izu, and the entire SWJ, suggesting that the major Mg carriers in subducted serpentinites (e.g., talc, chlorite, and serpentine) were broken down completely before subducted slabs reached the depth beneath these volcanoes. Moreover, the volcanic rocks with low δ26Mg values from the rear arc of NEJ are characterized by high La/Yb and U/Nb ratios as well as low Ti/Eu, Ti/Ti*, and Hf/Hf* ratios, suggesting the involvements of carbonates in their magma sources. The quantitative modeling suggests that < 20 % of sedimentary carbonate (dolomite) was recycled into their mantle source, revealing that Mg-rich carbonate could be incorporated into a deep mantle wedge at rear-arc depths of 150–400 km in subduction zones. en-copyright= kn-copyright= en-aut-name=ZhangWei en-aut-sei=Zhang en-aut-mei=Wei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitagawaHiroshi en-aut-sei=Kitagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HuangFang en-aut-sei=Huang en-aut-mei=Fang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China kn-affil= en-keyword=Magnesium isotopes kn-keyword=Magnesium isotopes en-keyword=Arc magmas kn-keyword=Arc magmas en-keyword=Mantle wedge serpentinite kn-keyword=Mantle wedge serpentinite en-keyword=Slab serpentinite kn-keyword=Slab serpentinite en-keyword=Carbonate recycle kn-keyword=Carbonate recycle END start-ver=1.4 cd-journal=joma no-vol=44 cd-vols= no-issue=2 article-no= start-page=249 end-page=260 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241005 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Loss of Nr4a1 ameliorates endothelial cell injury and vascular leakage in lung transplantation from circulatory-death donor en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Ischemia-reperfusion injury (IRI) stands as a major trigger for primary graft dysfunction (PGD) in lung transplantation (LTx). Especially in LTx from donation after cardiac death (DCD), effective control of IRI following warm ischemia (WIRI) is crucial to prevent PGD. This study aimed to identify the key factors affecting WIRI in LTx from DCD.
Methods: Previously reported RNA-sequencing dataset of lung WIRI was reanalyzed to identify nuclear receptor subfamily 4 group A member 1 (NR4A1) as the immediate early gene for WIRI. Dynamics of NR4A1 expression were verified using a mouse hilar clamp model. To investigate the role of NR4A1 in WIRI, a mouse model of LTx from DCD was established using Nr4a1 knockout (Nr4a1−/−) mice.
Results: NR4A1 was located around vascular cells, and its protein levels in the lungs increased rapidly and transiently during WIRI. LTx from Nr4a1−/− donors significantly improved pulmonary graft function compared to wild-type donors. Histological analysis showed decreased microvascular endothelial cell death, neutrophil infiltration, and albumin leakage. Evans blue permeability assay demonstrated maintained pulmonary microvascular barrier integrity in grafts from Nr4a1−/− donors, correlating with diminished pulmonary edema. However, NR4A1 did not significantly affect the inflammatory response during WIRI, and IRI was not suppressed when a wild-type donor lung was transplanted into the Nr4a1−/− recipient.
Conclusions: Donor NR4A1 plays a specialized role in the positive regulation of endothelial cell injury and microvascular hyperpermeability. These findings demonstrate the potential of targeting NR4A1 interventions to alleviate PGD and improve outcomes in LTx from DCD. en-copyright= kn-copyright= en-aut-name=KawanaShinichi en-aut-sei=Kawana en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkazakiMikio en-aut-sei=Okazaki en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakaueTomohisa en-aut-sei=Sakaue en-aut-mei=Tomohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HashimotoKohei en-aut-sei=Hashimoto en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakataKentaro en-aut-sei=Nakata en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChoshiHaruki en-aut-sei=Choshi en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaShin en-aut-sei=Tanaka en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyoshiKentaroh en-aut-sei=Miyoshi en-aut-mei=Kentaroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhtaniShinji en-aut-sei=Ohtani en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugimotoSeiichiro en-aut-sei=Sugimoto en-aut-mei=Seiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University kn-affil= affil-num=10 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=lung transplantation kn-keyword=lung transplantation en-keyword=ischemia-reperfusion injury kn-keyword=ischemia-reperfusion injury en-keyword=donation after circulatory death kn-keyword=donation after circulatory death en-keyword=nuclear receptor subfamily 4 group A member 1 kn-keyword=nuclear receptor subfamily 4 group A member 1 en-keyword=endothelial cell kn-keyword=endothelial cell END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue= article-no= start-page=64 end-page=79 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=On the “Chronology of Earthquakes” in the Rika nenpyō (Chronological Scientific Tables): Until the 10th century kn-title=『理科年表』の「地震年代表」をめぐって- 10 世紀まで- en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper is based on the oral report I gave on July 22, 2023, at the 21st “Disaster Culture and the History of Community Formation” workshop hosted by the Okayama University Research Institute for the Dynamics of Civilizations. I discuss the changes in the “Chronology of Earthquakes” contained within the Rika nenpyō (Chronological Scientific Tables) and some of the problems with them, citing historical earthquake materials. It is necessary to clearly distinguish between real and false earthquakes, such as the Tamba earthquake (701), the Kinai earthquake (734), the Minō earthquake (745), the Ecchū-Echigo earthquake (863), and the Kantō earthquake (878). The author hopes that the “Chronology of Earthquakes” will be published in a better form in the future and calls for efforts in the field of history to verify and introduce historical earthquake materials. en-copyright= kn-copyright= en-aut-name=ARAIHideki en-aut-sei=ARAI en-aut-mei=Hideki kn-aut-name=荒井秀規 kn-aut-sei=荒井 kn-aut-mei=秀規 aut-affil-num=1 ORCID= affil-num=1 en-affil=Historian kn-affil= en-keyword=Ancient Japan kn-keyword=Ancient Japan en-keyword=earthquakes kn-keyword=earthquakes en-keyword=false earthquakes kn-keyword=false earthquakes en-keyword=Chronological Scientific Tables kn-keyword=Chronological Scientific Tables END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=1 end-page=8 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Transepidermal Water Loss Estimation Model for Evaluating Skin Barrier Function en-subtitle= kn-subtitle= en-abstract= kn-abstract=Deterioration of skin barrier function causes symptoms such as allergies because it allows various chemical substances to enter the human body. Quantitative evaluation of the thickness and water content of the stratum corneum is useful as a measure of skin barrier function in fields such as dermatology, nursing science, and cosmetics development. The stratum corneum is responsible for most of the skin barrier function, and this function has conventionally been evaluated using transepidermal water loss (TEWL). In this paper, we propose a new model for estimation of TEWL from measurements of the thickness of the stratum corneum and water content of the surface of the stratum corneum, and discuss the results of the measurements. By measuring the thickness and water content of the stratum corneum using confocal laser microscopy and confocal Raman spectroscopy, respectively, and examining the relationship of these variables with TEWL, we established a new potential model for estimating TEWL from these two variables. The correlation coefficient of the validation data was 0.886 and the root mean squared error was 8.18 points. These findings indicate the feasibility of qualitative evaluation of TEWL by measuring the thickness and water content of the stratum corneum. en-copyright= kn-copyright= en-aut-name=UeharaOsamu en-aut-sei=Uehara en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KusuharaToshimasa en-aut-sei=Kusuhara en-aut-mei=Toshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraTakao en-aut-sei=Nakamura en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Medical Engineering Laboratory, ALCARE Co., Ltd. kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=TEWL kn-keyword=TEWL en-keyword=stratum corneum thickness kn-keyword=stratum corneum thickness en-keyword=water content of stratum corneum kn-keyword=water content of stratum corneum END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=6 article-no= start-page=475 end-page=483 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=C-arm Free Unilateral Biportal Endoscopic Discectomy: A Technical Note en-subtitle= kn-subtitle= en-abstract= kn-abstract=This report presents a new unilateral biportal endoscopic (UBE) technique for lumbar disc herniation without C-arm guidance. Lumbar disc herniation requires surgical intervention when conservative methods fail. Shifts towards minimally invasive percutaneous endoscopic lumbar discectomy, including uniportal and biportal approaches, have been hindered by challenges such as steep learning curves and reliance on radiation-intensive C-arm guidance. We here describe the use of standard intraoperative navigation in UBE to reduce radiation exposure and increase surgical accuracy. A 24-year-old man with low back and bilateral leg pain with gait disturbance was referred to our hospital. He had had conservative treatment for 12 months in another hospital before admission, but this proved unsuccessful. On admission he had low back pain (VAS 4/10) and bilateral leg pain (VAS 8/10), muscle weakness of the bilateral legs (manual muscle testing (MMT) grade of the extensor hallucis longus: 4/4), and numbness of the bilateral lower legs. Preoperative lumbar MRI showed L4/5 large central disc herniation. He underwent C-arm free UBE discectomy under the guidance of O-arm navigation. The surgery was successful, with postoperative lumbar MRI showing good decompression of the dural sac and bilateral L5 nerve roots. The MMT grade and sensory function of both legs had recovered fully on final follow-up at one year. The new UBE technique under navigation guidance was shown to be useful for lumbar disc herniation. This innovative technique was safe and accurate for the treatment of lumbar intervertebral disc herniation, and minimized radiation exposure to surgeons. en-copyright= kn-copyright= en-aut-name=XiangHongfei en-aut-sei=Xiang en-aut-mei=Hongfei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LatkaKajetan en-aut-sei=Latka en-aut-mei=Kajetan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MastePraful en-aut-sei=Maste en-aut-mei=Praful kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaMasato en-aut-sei=Tanaka en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KumawatChetan en-aut-sei=Kumawat en-aut-mei=Chetan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AratakiShinya en-aut-sei=Arataki en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujiwaraYoshihiro en-aut-sei=Fujiwara en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TaokaTakuya en-aut-sei=Taoka en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyamotoAkiyoshi en-aut-sei=Miyamoto en-aut-mei=Akiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=3 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=5 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=6 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=7 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=8 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= affil-num=9 en-affil=Department of Orthopaedic Surgery, Okayama Rosai Hospital kn-affil= en-keyword=lumbar disc herniation kn-keyword=lumbar disc herniation en-keyword=unilateral biportal endoscopic technique kn-keyword=unilateral biportal endoscopic technique en-keyword=navigation kn-keyword=navigation en-keyword=O-arm kn-keyword=O-arm en-keyword=minimally invasive spine surgery (MISS) kn-keyword=minimally invasive spine surgery (MISS) END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=6 article-no= start-page=469 end-page=474 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Treatment of Tenosynovial Giant Cell Tumor of the Cervical Spine with Postoperative Anti-RANKL Antibody (Denosumab) Administration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tenosynovial giant cell tumor (TGCT) is a fibrous histiocytic tumor originating in the synovial membrane. While cervical TGCT may not be considered a common diagnosis preoperatively because it is relatively rare, it has a high recurrence rate and should be considered. Total resection is preferable, but it can be challenging due to the risk of damaging the vertebral artery. Denosumab has shown effectiveness as a postoperative treatment for osteolytic bone lesion. Denosumab administration coupled with close follow-up might offer an effective postoperative treatment option for unresectable TGCT with bone invasion. en-copyright= kn-copyright= en-aut-name=HirataYuichi en-aut-sei=Hirata en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagaseTakayuki en-aut-sei=Nagase en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AyadaYoshiyuki en-aut-sei=Ayada en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyakeHayato en-aut-sei=Miyake en-aut-mei=Hayato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoHidetaka en-aut-sei=Yamamoto en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OdaYoshinao en-aut-sei=Oda en-aut-mei=Yoshinao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Pathology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=tenosynovial giant cell tumor kn-keyword=tenosynovial giant cell tumor en-keyword=bone tumor kn-keyword=bone tumor en-keyword=spine kn-keyword=spine END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=11 article-no= start-page=e70476 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genomic Introgression in the Hybrid zones at the Margins of the Species' Range Between Ecologically Distinct Rubus Species en-subtitle= kn-subtitle= en-abstract= kn-abstract=Populations in extreme environments at the margins of a species' range are often the most vulnerable to climate change, but they may also experience novel evolutionary processes, such as secondary contact and hybridization with their relatives. The range overlap resulting from secondary contact with related species that have adapted to different climatic zones may act as corridors for adaptive introgression. To test this hypothesis, we examined the hybrid zones along the altitude of two closely related Rubus species, one temperate and the other subtropical species, at their southern and northern limits on Yakushima Island, Japan. Genomic cline analysis revealed non-neutral introgression throughout the genome in both directions in the two species. Some of these genomic regions involve gene ontology terms related to the regulation of several biological processes. Our niche modeling suggests that, assuming niche conservatism, the temperate species are likely to lose their suitable habitat, and the backcrossed hybrids with the subtropical species are already expanding upslope on the island. Adaptive introgression through the hybrid zone may contribute to the persistence and expansion of the species in the southernmost and northernmost populations. en-copyright= kn-copyright= en-aut-name=MimuraMakiko en-aut-sei=Mimura en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TangZhenxing en-aut-sei=Tang en-aut-mei=Zhenxing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShigenobuShuji en-aut-sei=Shigenobu en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiKatsushi en-aut-sei=Yamaguchi en-aut-mei=Katsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YaharaTetsukazu en-aut-sei=Yahara en-aut-mei=Tetsukazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Biology, Okayama University kn-affil= affil-num=2 en-affil=Department of Biology, Okayama University kn-affil= affil-num=3 en-affil=Trans-Omics Facility, National Institute of Basic Biology kn-affil= affil-num=4 en-affil=Trans-Omics Facility, National Institute of Basic Biology kn-affil= affil-num=5 en-affil=Kyushu Open University kn-affil= en-keyword=adaptive introgression kn-keyword=adaptive introgression en-keyword=climate change kn-keyword=climate change en-keyword=hybrid zone kn-keyword=hybrid zone en-keyword=secondary contact kn-keyword=secondary contact END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=20 article-no= start-page=e70288 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=New Anti-Angiogenic Therapy for Glioblastoma With the Anti-Depressant Sertraline en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Aims: Anti-angiogenic therapies prolong patient survival in some malignancies but not glioblastoma. We focused on the relationship between the differentiation of glioma stem like cells (GSCs) into tumor derived endothelial cells (TDECs) and, anti-angiogenic therapy resistance. Especially we aimed to elucidate the mechanisms of drug resistance of TDECs to anti-angiogenic inhibitors and identify novel anti-angiogenic drugs with clinical applications.
Results: The mouse GSCs, 005, were differentiated into TDECs under hypoxic conditions, and TDECs had endothelial cell characteristics independent of the vascular endothelial growth factor (VEGF) pathway. In vivo, inhibition of the VEGF pathway had no anti-tumor effect and increased the percentage of TDECs in the 005 mouse model. Novel anti-angiogenic drugs for glioblastoma were evaluated using a tube formation assay and a drug repositioning strategy with existing blood-brain barrier permeable drugs. Drug screening revealed that the antidepressant sertraline inhibited tube formation of TDECs. Sertraline was administered to differentiated TDECs in vitro and 005 mouse models in vivo to evaluate genetic changes by RNA-Seq and tumor regression effects by immunohistochemistry and MRI. Sertraline reduced Lama4 and Ang2 expressions of TDEC, which play an important role in non-VEGF-mediated angiogenesis in tumors. The combination of a VEGF receptor inhibitor axitinib, and sertraline improved survival and reduced tumor growth in the 005 mouse model.
Conclusion: Collectively, our findings showed the diversity of tumor vascular endothelial cells across VEGF and non-VEGF pathways led to anti-angiogenic resistance. The combination of axitinib and sertraline can represent an effective anti-angiogenic therapy for glioblastoma with safe, low cost, and fast availability. en-copyright= kn-copyright= en-aut-name=TsuboiNobushige en-aut-sei=Tsuboi en-aut-mei=Nobushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UnedaAtsuhito en-aut-sei=Uneda en-aut-mei=Atsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshidaJoji en-aut-sei=Ishida en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SurugaYasuki en-aut-sei=Suruga en-aut-mei=Yasuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsumotoYuji en-aut-sei=Matsumoto en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujimuraAtsushi en-aut-sei=Fujimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiiKentaro en-aut-sei=Fujii en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsuiHideki en-aut-sei=Matsui en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KurozumiKazuhiko en-aut-sei=Kurozumi en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=10 en-affil=Department of Neurosurgery, Hamamatsu University School of Medicine kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= en-keyword=anti-angiogenic therapy kn-keyword=anti-angiogenic therapy en-keyword=antidepressant sertraline kn-keyword=antidepressant sertraline en-keyword=drug repositioning kn-keyword=drug repositioning en-keyword=glioblastoma kn-keyword=glioblastoma en-keyword=tumor derived endothelial cells kn-keyword=tumor derived endothelial cells END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=線維化を伴う膵がん微小環境の立体培養法による新規in vitroモデルの構築と解析 kn-title=Establishment and Analysis of Novel In Vitro 3D Cell Culture Models of the Fibrotic Tumor Microenvironment in Pancreatic Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TANAKAHiroyoshi en-aut-sei=TANAKA en-aut-mei=Hiroyoshi kn-aut-name=田中啓祥 kn-aut-sei=田中 kn-aut-mei=啓祥 aut-affil-num=1 ORCID= affil-num=1 en-affil=Okayama University kn-affil=岡山大学大学院 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ラットモデルにおけるくも膜下出血発症後急性期における脳波抑制は早期脳損傷の重要なマーカーである kn-title=Power suppression in EEG after the onset of SAH is a significant marker of early brain injury in rat models en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=TAKASUGIYuji en-aut-sei=TAKASUGI en-aut-mei=Yuji kn-aut-name=髙杉祐二 kn-aut-sei=髙杉 kn-aut-mei=祐二 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=水文流出モデルを用いた西日本の急峻な森林流域における地下水涵養量の時空間的・長期的評価 kn-title=Spatiotemporal and Long-term Evaluation of Groundwater Recharge in a Steep Forested Catchment Western Japan by Hydrological Modeling en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HALAKE GUYO RENDILICHA en-aut-sei=HALAKE GUYO RENDILICHA en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil=岡山大学大学院環境生命科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=E-rhBMP-2/β-TCPの局所投与は,MRONJ様モデルマウスの抜歯後の歯槽骨の骨細胞ネットワークを回復し,微細構造損傷を軽減させる kn-title=Local E-rhBMP-2/β-TCP Application Rescues Osteocyte Dendritic Integrity and Reduces Microstructural Damage in Alveolar Bone Post-Extraction in MRONJ-like Mouse Model en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=DANG Tuan Anh en-aut-sei=DANG Tuan Anh en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=酸化ストレスと炎症反応に関するマウス脳卒中モデルにおけるカルノシンの神経保護効果 kn-title=Neuroprotective effects of carnosine in a mice stroke model concerning oxidative stress and inflammatory response en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=HUXINRAN en-aut-sei=HU en-aut-mei=XINRAN kn-aut-name=胡欣冉 kn-aut-sei=胡 kn-aut-mei=欣冉 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=1445364 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241031 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Degree of twist in the Achilles tendon interacts with its length and thickness in affecting local strain magnitude: a finite element analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: The relationship between the twisting of the three subtendons of the Achilles tendon (AT) and local strain has received attention in recent years. The present study aimed to elucidate how the degree of twist in the AT affects strain using finite element (FE) analysis, while also considering other geometries (e.g., length, thickness, and width) and their combinations.
Methods: A total of 59 FE models with different degrees of twist and geometries were created. A lengthening force (z-axis) of 1,000 N was applied to each subtendon (total: 3,000 N). The average value of the first principal Lagrange strain was calculated for the middle third of the total length of the model.
Results: Statistical (stepwise) analysis revealed the effects of the degree of twist, other geometries, and their combinations on AT strain. The main findings were as follows: (1) a greater degree of twist resulted in higher average strains (t = 9.28, p < 0.0001) and (2) the effect of the degree of twist on the strain depended on dimensions of thickness of the most distal part of the AT (t = -4.49, p < 0.0001) and the length of the AT (t = -3.82, p = 0.0005). Specifically, when the thickness of the most distal part and length were large, the degree of twist had a small effect on the first principal Lagrange strain; however, when the thickness of the most distal part and length were small, a greater degree of twist results in higher first principal Lagrange strain.
Conclusion: These results indicate that the relationship between the degree of twist and local strain is complex and may not be accurately assessed by FE simulation using a single geometry. en-copyright= kn-copyright= en-aut-name=EnomotoShota en-aut-sei=Enomoto en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FuruuchiShunya en-aut-sei=Furuuchi en-aut-mei=Shunya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshibashiTatsuki en-aut-sei=Ishibashi en-aut-mei=Tatsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamadaShu en-aut-sei=Yamada en-aut-mei=Shu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OdaToshiaki en-aut-sei=Oda en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute for Promotion of Education and Campus Life, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Science and Technology, Keio University kn-affil= affil-num=3 en-affil=Graduate School of Science and Technology, Keio University kn-affil= affil-num=4 en-affil=Faculty of Science and Technology, Keio University kn-affil= affil-num=5 en-affil=Graduate School of Education, Hyogo University of Teacher Education kn-affil= en-keyword=achilles tendon kn-keyword=achilles tendon en-keyword=computational model kn-keyword=computational model en-keyword=small composite design kn-keyword=small composite design en-keyword=subtendon kn-keyword=subtendon en-keyword=tendinopathy kn-keyword=tendinopathy END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=1 article-no= start-page=33 end-page=41 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Antimalarial effect of synthetic endoperoxide on synchronized Plasmodium chabaudi infected mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=The discovery of new antimalarial drugs can be developed using asynchronized Plasmodium berghei malaria parasites in vivo in mice. Studies on a particular stage are also required to assess the effectiveness and mode of action of drugs. In this report, we used endoperoxide 6-(1,2,6,7-tetraoxaspiro [7.11] nonadec-4-yl) hexan-1-ol (N-251) as a model antimalarial compound on P. chabaudi parasites. We examined the antimalarial effect of N-251 against ring-stage- and trophozoite-stage-rich P. chabaudi parasites and asynchronized P. berghei parasites using the 4-day suppressive test. The ED50 values were 27, 22, and 22 mg/kg, respectively, and the antimalarial activity of N-251 was verified in both rodent malaria parasites. To assess the stage-specific effect of N-251 in vivo, we evaluated the change of parasitemia and distribution of parasite stages using ring-stage- and trophozoite-stage-rich P. chabaudi parasites with one-day drug administration for one life cycle. We discovered that the parasitemias decreased after 13 and 9 hours post-treatment in the ring-stage- and trophozoite-stage-rich groups, respectively. Additionally, in the ring-stage-rich N-251 treated group, the ring-stage parasites hindered trophozoite parasite development. For the trophozoite-stage-rich N-251 treated group, the distribution of the trophozoite stage was maintained without a change in parasitemia until 9 hours. Because of these findings, it can be concluded that N-251 suppressed the trophozoite stage but not the ring stage. We report for the first time that N-251 specifically suppresses the trophozoite stage using P. chabaudi in mice. The results show that P. chabaudi is a reliable model for the characterization of stage-specific antimalarial effects. en-copyright= kn-copyright= en-aut-name=AlyNagwa S. M. en-aut-sei=Aly en-aut-mei=Nagwa S. M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumoriHiroaki en-aut-sei=Matsumori en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=DinhThi Quyen en-aut-sei=Dinh en-aut-mei=Thi Quyen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SatoAkira en-aut-sei=Sato en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyoshiShin-Ichi en-aut-sei=Miyoshi en-aut-mei=Shin-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChangKyung-Soo en-aut-sei=Chang en-aut-mei=Kyung-Soo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YuHak Sun en-aut-sei=Yu en-aut-mei=Hak Sun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiFumie en-aut-sei=Kobayashi en-aut-mei=Fumie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KimHye-Sook en-aut-sei=Kim en-aut-mei=Hye-Sook kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Division of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Division of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Division of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Sanitary Microbiology, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan kn-affil= affil-num=7 en-affil=Department of Parasitology and Tropical Medicine, School of Medicine, Pusan National University kn-affil= affil-num=8 en-affil=Department of Environmental Science, School of Life Environmental Science, Azabu University kn-affil= affil-num=9 en-affil=Division of International Infectious Diseases Control, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Plasmodium chabaudi kn-keyword=Plasmodium chabaudi en-keyword=synchronization kn-keyword=synchronization en-keyword=stage-specific activity kn-keyword=stage-specific activity en-keyword=antimalarial N-251 kn-keyword=antimalarial N-251 END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=2 article-no= start-page=35 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of the Follow-Up Human 3D Oral Cancer Model in Cancer Treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=As function preservation cancer therapy, targeted radiation therapies have been developed for the quality of life of cancer patients. However, preclinical animal studies evaluating the safety and efficacy of targeted radiation therapy is challenging from the viewpoints of animal welfare and animal protection, as well as the management of animal in radiation-controlled areas under the regulations. We fabricated the human 3D oral cancer model that considers the time axis of the follow up in cancer treatment. Therefore, in this study, the 3D model with human oral cancer cells and normal oral fibroblasts was treated based on clinical protocol. After cancer treatment, the histological findings of the 3D oral cancer model indicated the clinical correlation between tumor response and surrounding normal tissue. This 3D model has potential as a tool for preclinical studies alternative to animal studies. en-copyright= kn-copyright= en-aut-name=IgawaKazuyo en-aut-sei=Igawa en-aut-mei=Kazuyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IzumiKenji en-aut-sei=Izumi en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakuraiYoshinori en-aut-sei=Sakurai en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=2 en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University kn-affil= affil-num=3 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= en-keyword=3D cancer model kn-keyword=3D cancer model en-keyword=preclinical study kn-keyword=preclinical study en-keyword=cancer treatment kn-keyword=cancer treatment en-keyword=quality of life kn-keyword=quality of life en-keyword=multidisciplinary treatment kn-keyword=multidisciplinary treatment END start-ver=1.4 cd-journal=joma no-vol=32 cd-vols= no-issue=12 article-no= start-page=809 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241120 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship among cancer treatment, quality of life, and oral function in head and neck cancer survivors: A cross-sectional study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose Treatment for head and neck cancer (HNC), such as surgery and chemoradiotherapy, can reduce oral function and affect quality of life (QoL). However, whether HNC treatment affects QoL via the decline of oral function remains unclear. This study aimed to investigate the relationship among cancer treatment, QoL, and actual oral function in HNC survivors.
Methods A total of 100 HNC survivors who had completed definitive treatment for HNC at least 6 months prior to enrollment were enrolled in this cross-sectional study. QoL was evaluated using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 summary score. Oral diadochokinesis (ODK), tongue pressure, moisture level on the mucosal surface, and mouth opening were measured. Information on age, sex, tumor site, tumor stage, history of HNC treatment, height, body weight, and lifestyle were collected from medical records. Structural equation modeling (SEM) was conducted to analyze the indirect/direct associations among HNC treatment, QoL, and oral function.
Results In total, 100 HNC survivors (58 males and 42 females; age range, 30–81 years, median, 67 years) were analyzed. Overall, 63 patients (63.0%) were diagnosed as oral cancer, 66 (66.0%) developed advanced cancer (stage 3/4), and 58 (58.0%) underwent reconstruction surgery in 100 HNC survivors. The SEM results supported the hypothesized structural model (root mean square error of approximation = 0.044, comparative fit index = 0.990, Tucker-Lewis index = 0.986). Surgery with neck dissection and reconstruction for advanced cancer had indirect effects on lower QoL via ODK and mouth opening.
Conclusion HNC treatment is indirectly associated with QoL via oral function in HNC survivors. en-copyright= kn-copyright= en-aut-name=YokoiAya en-aut-sei=Yokoi en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamanakaReiko en-aut-sei=Yamanaka en-aut-mei=Reiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakeuchiNoriko en-aut-sei=Takeuchi en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Preventive Dentistry, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Oral Health Sciences, Takarazuka University of Medical and Health Care kn-affil= affil-num=6 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Quality of life kn-keyword=Quality of life en-keyword=Oral function kn-keyword=Oral function en-keyword=Head and neck cancer kn-keyword=Head and neck cancer en-keyword=ODK kn-keyword=ODK en-keyword=Tongue pressure kn-keyword=Tongue pressure END start-ver=1.4 cd-journal=joma no-vol=36 cd-vols= no-issue=10 article-no= start-page=4585 end-page=4606 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241029 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mobile Augmented Reality Interface for Instruction-based Disaster Preparedness Guidelines en-subtitle= kn-subtitle= en-abstract= kn-abstract=Disaster preparedness guidelines help citizens protect themselves against disasters. Nonetheless, the general public has been found not to read them. Augmented reality (AR) interfaces are known to improve knowledge transfer in studies of education, industry, and elderly assistance. However, this is achieved this by creating specific interfaces for users, not the general public. To test the performance of these interfaces for general public guidance, we designed and implemented a novel AR-assisted disaster prevention guideline that leverages object detection models to identify targets of disaster preparedness advice. We then had a diverse-age audience compare our design against a real traditional paper-based preparedness guide in a room arranged as a common remote work bedroom. By testing their usability, task load, and capacity to make users aware of their environmental hazards, we gained important insights into the performance of different age groups following media developed for the general public. Regardless of different age groups achieving similar usability scores, we found minors improving their performance scores with our novel interface and adults from 20 to 49 years old seemingly performing better than other age groups. In this study, we highlight the importance of guidance alternatives for the young and the less-technology-aware population, contributing to the under-explored area of AR interfaces for the general public. en-copyright= kn-copyright= en-aut-name=AguilarSergio De León en-aut-sei=Aguilar en-aut-mei=Sergio De León kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsudaYuki en-aut-sei=Matsuda en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YasumotoKeiichi en-aut-sei=Yasumoto en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Information Science, Nara Institute of Science and Technology kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Information Science, Nara Institute of Science and Technology kn-affil= en-keyword=guidelines kn-keyword=guidelines en-keyword=augmented reality kn-keyword=augmented reality en-keyword=disaster preparedness kn-keyword=disaster preparedness en-keyword=object recognition kn-keyword=object recognition en-keyword=user interface kn-keyword=user interface en-keyword=knowledge transfer kn-keyword=knowledge transfer END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=10 article-no= start-page=e0309622 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The protective effect of carbamazepine on acute lung injury induced by hemorrhagic shock and resuscitation in rats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Hemorrhagic shock and resuscitation (HSR) enhances the risk of acute lung injury (ALI). This study investigated the protective effect of carbamazepine (CBZ) on HSR-induced ALI in rats. Male Sprague-Dawley rats were allocated into five distinct groups through randomization: control (SHAM), saline + HSR (HSR), CBZ + HSR (CBZ/HSR), dimethyl sulfoxide (DMSO) + HSR (DMSO/HSR), and CBZ + chloroquine (CQ) + HSR (CBZ/CQ/HSR). Subsequently, HSR models were established. To detect tissue damage, we measured lung histological changes, lung injury scores, and wet/dry weight ratios. We measured neutrophil counts as well as assessed the expression of inflammatory factors using RT-PCR to determine the inflammatory response. We detected autophagy-related proteins LC3II/LC3I, P62, Beclin-1, and Atg12-Atg5 using western blotting. Pretreatment with CBZ improved histopathological changes in the lungs and reduced lung injury scores. The CBZ pretreatment group exhibited significantly reduced lung wet/dry weight ratio, neutrophil aggregation and number, and inflammation factor (TNF-alpha and iNOS) expression. CBZ changed the expression levels of autophagy-related proteins (LC3II/LC3I, beclin-1, Atg12-Atg5, and P62), suggesting autophagy activation. However, after injecting CQ, an autophagy inhibitor, the beneficial effects of CBZ were reversed. Taken together, CBZ pretreatment improved HSR-induced ALI by suppressing inflammation, at least in part, through activating autophagy. Thus, our study offers a novel perspective for treating HSR-induced ALI. en-copyright= kn-copyright= en-aut-name=LiYaqiang en-aut-sei=Li en-aut-mei=Yaqiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimizuHiroko en-aut-sei=Shimizu en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraRyu en-aut-sei=Nakamura en-aut-mei=Ryu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LuYifu en-aut-sei=Lu en-aut-mei=Yifu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoRisa en-aut-sei=Sakamoto en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmoriEmiko en-aut-sei=Omori en-aut-mei=Emiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiToru en-aut-sei=Takahashi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Medical School kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Okayama Saidaiji Hospital kn-affil= affil-num=8 en-affil=Department of Anesthesiology and Resuscitology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=1 article-no= start-page=195 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between discontinuity of care and patient trust in the usual rheumatologist among patients with systemic lupus erythematosus: a cross-sectional study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Patient trust plays a central role in the patient-physician relationship. This study aimed to determine whether the number of outpatient visits with a covering rheumatologist is associated with patient trust in their usual rheumatologist.
Methods Japanese adults with systemic lupus erythematosus (SLE) who met the 1997 revised classification criteria of the American College of Rheumatology and had outpatient visits with a covering rheumatologist in the past year were included.
We used the 11-item Japanese version of the modified Trust in Physician Scale (range 0–100) to assess patient trust. A general linear model with cluster-robust variance estimation was used to evaluate the association between the number of outpatient visits with covering rheumatologists and the patient’s trust in their usual rheumatologist.
Results Of the 515 enrolled participants, 421 patients with SLE were included in our analyses. Patients were divided into groups according to the number of outpatient visits with a covering rheumatologist in the past year as follows: no visits (59.9%; reference group), one to three visits (24.2%; low-frequency group), and four or more visits (15.9%; high-frequency group). The median Trust in Physician Scale score was 81.8 (interquartile range: 72.7–93.2). Both the low-frequency group (mean difference: -3.03; 95% confidence interval [CI] -5.93 to -0.80) and high-frequency group (mean difference: -4.17; 95% CI -7.77 to -0.58) exhibited lower trust in their usual rheumatologist.
Conclusion This study revealed that the number of outpatient visits with a covering rheumatologist was associated with lower trust in a patient’s usual rheumatologist. en-copyright= kn-copyright= en-aut-name=KatayamaYu en-aut-sei=Katayama en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyawakiYoshia en-aut-sei=Miyawaki en-aut-mei=Yoshia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShidaharaKenta en-aut-sei=Shidahara en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NawachiShoichi en-aut-sei=Nawachi en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatsuyamaEri en-aut-sei=Katsuyama en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatsuyamaTakayuki en-aut-sei=Katsuyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Takano-NarazakiMariko en-aut-sei=Takano-Narazaki en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OguroNao en-aut-sei=Oguro en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YajimaNobuyuki en-aut-sei=Yajima en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IshikawaYuichi en-aut-sei=Ishikawa en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SakuraiNatsuki en-aut-sei=Sakurai en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HidekawaChiharu en-aut-sei=Hidekawa en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YoshimiRyusuke en-aut-sei=Yoshimi en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OhnoShigeru en-aut-sei=Ohno en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=IchikawaTakanori en-aut-sei=Ichikawa en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KishidaDai en-aut-sei=Kishida en-aut-mei=Dai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ShimojimaYasuhiro en-aut-sei=Shimojima en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SadaKen-Ei en-aut-sei=Sada en-aut-mei=Ken-Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ThomDavid H. en-aut-sei=Thom en-aut-mei=David H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KuritaNoriaki en-aut-sei=Kurita en-aut-mei=Noriaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= affil-num=11 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= affil-num=12 en-affil=The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health kn-affil= affil-num=13 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=14 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=15 en-affil=Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine kn-affil= affil-num=16 en-affil=Centre for Rheumatic Disease, Yokohama City University Medical Centre kn-affil= affil-num=17 en-affil=Department of Clinical Epidemiology, Graduate School of Medicine, Fukushima Medical University kn-affil= affil-num=18 en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine kn-affil= affil-num=19 en-affil=Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine kn-affil= affil-num=20 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=22 en-affil=Department of Medicine, Stanford University School of Medicine kn-affil= affil-num=23 en-affil=Division of Rheumatology, Department of Medicine, Showa University School of Medicine kn-affil= en-keyword=Systemic lupus erythematosus kn-keyword=Systemic lupus erythematosus en-keyword=Patient-physician relationship kn-keyword=Patient-physician relationship en-keyword=Outpatient visits kn-keyword=Outpatient visits en-keyword=Patient trust kn-keyword=Patient trust en-keyword=Discontinuity of care kn-keyword=Discontinuity of care END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=11 article-no= start-page=113D01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241026 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Measurement of γ-Rays Generated by Neutron Interaction with 16O at 30 MeV and 250 MeV en-subtitle= kn-subtitle= en-abstract= kn-abstract=Deep understanding of γ-ray production from the fast neutron reaction in water is crucial for various physics studies at large-scale water Cherenkov detectors. We performed test experiments using quasi-mono energetic neutron beams (⁠En = 30 and 250 MeV) at Osaka University’s Research Center for Nuclear Physics to measure γ-rays originating from the neutron–oxygen reaction with a high-purity germanium detector. Multiple γ-ray peaks which are expected to be from excited nuclei after the neutron–oxygen reaction were successfully observed. We measured the neutron beam flux using an organic liquid scintillator for the cross section measurement. With a spectral fitting analysis based on the tailored γ-ray signal and background templates, we measured cross sections for each observed γ-ray component. The results will be useful to validate neutron models employed in ongoing and future water Cherenkov experiments. en-copyright= kn-copyright= en-aut-name=TanoT. en-aut-sei=Tano en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HoraiT. en-aut-sei=Horai en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AshidaY. en-aut-sei=Ashida en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HinoY. en-aut-sei=Hino en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IacobF. en-aut-sei=Iacob en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaurelA. en-aut-sei=Maurel en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoriM. en-aut-sei=Mori en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CollazuolG. en-aut-sei=Collazuol en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KonakaA. en-aut-sei=Konaka en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KoshioY. en-aut-sei=Koshio en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakayaT. en-aut-sei=Nakaya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShimaT. en-aut-sei=Shima en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WendellR. en-aut-sei=Wendell en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics and Astronomy, University of Utah kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Department of Physics and Astronomy, University of Padova kn-affil= affil-num=6 en-affil=Ecole Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet kn-affil= affil-num=7 en-affil=National Astronomical Observatory of Japan kn-affil= affil-num=8 en-affil=Department of Physics and Astronomy, University of Padova kn-affil= affil-num=9 en-affil=TRIUMF kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Kyoto University kn-affil= affil-num=12 en-affil=Research Center for Nuclear Physics (RCNP) kn-affil= affil-num=13 en-affil=Department of Physics, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=1 article-no= start-page=12 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dendritic cell maturation is induced by p53-armed oncolytic adenovirus via tumor-derived exosomes enhancing systemic antitumor immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Dendritic cells (DCs) are crucial in cancer immunity, because they activate cytotoxic T cells by presenting tumor antigens. Recently, oncolytic virus therapy has been recognized as a systemic immune stimulator. We previously developed a telomerase-specific oncolytic adenovirus (OBP-301) and a p53-armed OBP-301 (OBP-702), demonstrating that these viruses strongly activate systemic antitumor immunity. However, their effects on DCs remained unclear. In the present study, the aim was to elucidate the mechanisms of DC activation by OBP-702, focusing particularly on tumor-derived exosomes. Exosomes (Exo53, Exo301, or Exo702) were isolated from conditioned media of human or murine pancreatic cancer cell lines (Panc-1, MiaPaCa-2, and PAN02) after treatment with Ad-p53, OBP-301, or OBP-702. Exo702 derived from Panc-1 and MiaPaCa-2 cells significantly upregulated CD86, CD80, CD83 (markers of DC maturation), and IFN-γ in DCs in vitro. Similarly, Exo702 derived from PAN02 cells upregulated CD86 and IFN-γ in bone marrow-derived DCs in a bilateral PAN02 subcutaneous tumor model. This DC maturation was inhibited by GW4869, an inhibitor of exosome release, and anti-CD63, an antibody targeting the exosome marker. Intratumoral injection of OBP-702 into PAN02 subcutaneous tumors significantly increased the presence of mature DCs and CD8-positive T cells in draining lymph nodes, leading to long-lasting antitumor effects through the durable activation of systemic antitumor immunity. In conclusion, tumor-derived exosomes play a significant role in DC maturation following OBP-702 treatment and are critical for the systemic activation of antitumor immunity, leading to the abscopal effect. en-copyright= kn-copyright= en-aut-name=OhtaniTomoko en-aut-sei=Ohtani en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanayaNobuhiko en-aut-sei=Kanaya en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KumonKento en-aut-sei=Kumon en-aut-mei=Kento kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashimotoMasashi en-aut-sei=Hashimoto en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YagiChiaki en-aut-sei=Yagi en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugimotoRyoma en-aut-sei=Sugimoto en-aut-mei=Ryoma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UrataYasuo en-aut-sei=Urata en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Oncolys BioPharma, Inc kn-affil= affil-num=13 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Oncolytic adenovirus kn-keyword=Oncolytic adenovirus en-keyword=p53 kn-keyword=p53 en-keyword=Dendritic cells kn-keyword=Dendritic cells en-keyword=Anti-tumor immunity kn-keyword=Anti-tumor immunity en-keyword=Exosome kn-keyword=Exosome END start-ver=1.4 cd-journal=joma no-vol=106 cd-vols= no-issue=5 article-no= start-page=972 end-page=984 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202411 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A randomized, open-label, clinical trial examined the effects of canagliflozin on albuminuria and eGFR decline using an individual pre-intervention eGFR slope en-subtitle= kn-subtitle= en-abstract= kn-abstract=Demonstrating drug efficacy in slowing kidney disease progression requires large clinical trials when targeting participants with an early stage of chronic kidney disease (CKD). In this randomized, parallel-group, open-labeled trial (CANPIONE study), we assessed the effect of the sodium-glucose cotransporter 2 (SGLT2) inhibitor canagliflozin using the individual’s change in estimated glomerular filtration rate (eGFR) slope before (pre-intervention slope) and during treatment (chronic slope). We randomly assigned (1:1) participants with type 2 diabetes, urinary albumin-to-creatinine ratio (UACR) of 50 to under 300 mg/g, and an eGFR of at least 45 ml/min/1.73m2 to receive canagliflozin or guideline-recommended treatment except for SGLT2 inhibitors (control). The first and second primary outcomes were the geometric mean percentage change from baseline in UACR and the change in eGFR slope, respectively. Of 98 randomized participants, 96 received at least one study treatment. The least-squares mean change from baseline in log-transformed geometric mean UACR was significantly greater in the canagliflozin group than the control group (between group-difference, −30.8% (95% confidence interval −42.6 to −16.8). The between-group difference (canagliflozin group – control group) of change in eGFR slope (chronic – pre-intervention) was 4.4 (1.6 to 7.3) ml/min/1.73 m2 per year, which was more pronounced in participants with faster eGFR decline. In summary, canagliflozin reduced albuminuria and the participant-specific natural course of eGFR decline in participants with type 2 diabetes and microalbuminuria. Thus, the CANPIONE study suggests that the within-individual change in eGFR slope may be a novel approach to determine the kidney protective potential of new therapies in early stages of CKD. en-copyright= kn-copyright= en-aut-name=MiyamotoSatoshi en-aut-sei=Miyamoto en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HeerspinkHiddo J.L. en-aut-sei=Heerspink en-aut-mei=Hiddo J.L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=de ZeeuwDick en-aut-sei=de Zeeuw en-aut-mei=Dick kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoKota en-aut-sei=Sakamoto en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaMichihiro en-aut-sei=Yoshida en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaMasao en-aut-sei=Toyoda en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HatanakaTakashi en-aut-sei=Hatanaka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakamuraTohru en-aut-sei=Nakamura en-aut-mei=Tohru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KameiShinji en-aut-sei=Kamei en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MuraoSatoshi en-aut-sei=Murao en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HidaKazuyuki en-aut-sei=Hida en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AndoShinichiro en-aut-sei=Ando en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=AkaiHiroaki en-aut-sei=Akai en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakahashiYasushi en-aut-sei=Takahashi en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KitadaMunehiro en-aut-sei=Kitada en-aut-mei=Munehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SuganoHisashi en-aut-sei=Sugano en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NunoueTomokazu en-aut-sei=Nunoue en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NakamuraAkihiko en-aut-sei=Nakamura en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SasakiMotofumi en-aut-sei=Sasaki en-aut-mei=Motofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NakatouTatsuaki en-aut-sei=Nakatou en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=FujimotoKei en-aut-sei=Fujimoto en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KawanamiDaiji en-aut-sei=Kawanami en-aut-mei=Daiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=WadaTakashi en-aut-sei=Wada en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=MiyatakeNobuyuki en-aut-sei=Miyatake en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KuramotoHiromi en-aut-sei=Kuramoto en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=ShikataKenichi en-aut-sei=Shikata en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= affil-num=1 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=6 en-affil=Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine kn-affil= affil-num=7 en-affil=Suzuki Diadetes Clinic kn-affil= affil-num=8 en-affil=Department of Diabetes and Endocrinology, National Hospital Organization Fukuyama Medical Center kn-affil= affil-num=9 en-affil=Diabetes Internal Medicine, Sumitomo Besshi Hospital kn-affil= affil-num=10 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=11 en-affil=Department of Diabetes and Endocrinology, Takamatsu Hospital kn-affil= affil-num=12 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=13 en-affil=Department of Internal Medicine Diabetic Center, Okayama City Hospital kn-affil= affil-num=14 en-affil=Division of Diabetes and Metabolism, Faculty of Medicine, Tohoku Medical and Pharmaceutical University kn-affil= affil-num=15 en-affil=Department of Diabetes, Ochiai General Hospital kn-affil= affil-num=16 en-affil=Department of Diabetology and Endocrinology, Kanazawa Medical University kn-affil= affil-num=17 en-affil=Department of Diabetes and Endocrinology, Kochi Health Sciences Center kn-affil= affil-num=18 en-affil=Nunoue Clinic kn-affil= affil-num=19 en-affil=Internal Medicine, Osafune Clinic kn-affil= affil-num=20 en-affil=Department of Diabetes and Endocrinology, Matsue City Hospital kn-affil= affil-num=21 en-affil=Diabetes Center, Okayama Saiseikai General Hospital kn-affil= affil-num=22 en-affil=Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University Kashiwa Hospital kn-affil= affil-num=23 en-affil=Department of Endocrinology and Diabetes, Fukuoka University School of Medicine kn-affil= affil-num=24 en-affil=Department of Nephrology and Laboratory Medicine, Graduate School of Medical Sciences, Kanazawa University kn-affil= affil-num=25 en-affil=Department of Hygiene, Faculty of Medicine, Kagawa University kn-affil= affil-num=26 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=27 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= en-keyword=canagliflozin kn-keyword=canagliflozin en-keyword=CANPIONE study kn-keyword=CANPIONE study en-keyword=chronic kidney disease microalbuminuria kn-keyword=chronic kidney disease microalbuminuria en-keyword=preintervention eGFR slope kn-keyword=preintervention eGFR slope en-keyword=sodium-glucose cotransporter 2 inhibitor kn-keyword=sodium-glucose cotransporter 2 inhibitor END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=318 end-page=326 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Region-Specific Material Properties of Patellar Tendon on the Magnitude and Distribution of Local Stress and Strain en-subtitle= kn-subtitle= en-abstract= kn-abstract=The effects of the region-specific material properties of the patellar tendon (PT) on the magnitude and distribution of local stress and strain are poorly understood. Hence, this study investigated this issue using finite element analysis. A three-dimensional PT model was developed based on parameters obtained from previous studies, and was bisected in the frontal plane. Two models were created: one that considered region-specific material properties (two-material model) and one that did not (one-material model). An 8% strain was applied to the proximal surface, and the mean and peak first principal stress and strain were calculated. In the two-material model, the mean first principal stress observed in the anterior region was 28.5% higher than that in the posterior region. However, in the one-material model, the mean first principal stress in the anterior region was 19.5% lower than that in the posterior region. Focusing on the differences between the models, the mean and peak first principal stresses in the posterior region of the one-material model were 61.1% and 41.2% higher, respectively, compared with those in the two-material model. Furthermore, the mean and peak first principal stresses in the proximal and distal regions of the posterior region in the one-material model were 41.8-75.8% higher than those in the two-material model. These results suggest that the region-specific material properties of PT influence the stress distribution and underscore the importance of modeling that incorporates region-specific material properties in PT finite element models. en-copyright= kn-copyright= en-aut-name=EnomotoShota en-aut-sei=Enomoto en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OdaToshiaki en-aut-sei=Oda en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Institute for Promotion of Education and Campus Life, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Education, Hyogo University of Teacher Education kn-affil= en-keyword=computational model kn-keyword=computational model en-keyword=Mooney-Rivlin model kn-keyword=Mooney-Rivlin model en-keyword=soft tissue. kn-keyword=soft tissue. END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=2 article-no= start-page=41 end-page=71 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241125 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Reproducing Self-organizing Agglomeration using Agent-based Model: ICT Establishments in Tokyo’s Special Wards kn-title=エージェントベースモデルによる自己組織化的集積の再現:特別区におけるICT 事業所 en-subtitle= kn-subtitle= en-abstract= kn-abstract= As a preliminary step to conducting a self-organizing simulation of the agglomeration and dispersion of the information and communications industry, we quantify the spatial agglomeration of the information and communications industry in Japan’s major cities. Using the town and district data from the Economic Census for Economic Activity, we attempted a spatial analysis of the information and communications industry in the Tokyo Special Wards as well as in Sapporo, Sendai, Hiroshima, and Fukuoka, which have regional central functions. As a result of detecting spatial autocorrelation in small areas within each city, hotspots indicating the agglomeration of information and communications industry offi ces were found in the city center of each city. At the same time, we were able to confi rm the impact of agglomeration economies, which are the premise of the self-organizing model, and confi rmed that the information and communications industry is an industry suitable for simulation of the self-organizing model.  Krugman(1996)was the fi rst to model the self-organizing model in cities and clarifi ed the emergence principle of peripheral cities, but this was limited to numerical simulations. Later, Kumar et al.(2007)used actual data to show that Krugman’s self-organizing model could be applied to predict corporate agglomeration and dispersion. In this paper, we use an agent-based model to examine whether a self-organizing model is also effective in reproducing and predicting the concentration and dispersion of the information and communications industry in Japanese cities. en-copyright= kn-copyright= en-aut-name=NakamuraRyohei en-aut-sei=Nakamura en-aut-mei=Ryohei kn-aut-name=中村良平 kn-aut-sei=中村 kn-aut-mei=良平 aut-affil-num=1 ORCID= en-aut-name=NagamuneTakeshi en-aut-sei=Nagamune en-aut-mei=Takeshi kn-aut-name=長宗武司 kn-aut-sei=長宗 kn-aut-mei=武司 aut-affil-num=2 ORCID= en-aut-name=HayashiSyusei en-aut-sei=Hayashi en-aut-mei=Syusei kn-aut-name=林秀星 kn-aut-sei=林 kn-aut-mei=秀星 aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=岡山大学 affil-num=2 en-affil= kn-affil=新見公立大学 affil-num=3 en-affil= kn-affil=東北大学大学院 END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=2 article-no= start-page=1 end-page=16 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241125 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Why Is Intermediate Organization Necessary? kn-title=なぜ中間組織が必要なのか en-subtitle= kn-subtitle= en-abstract= kn-abstract= This paper challenges a fundamental question, ‘Why is an intermediate organization necessary?’ Due to transaction costs and market failures on the one hand and the limitations of organizational control mechanisms on the other hand, many‘ intermediate organizations’ are observed in the real world. How can we tackle to explain the governance mechanism considered to be‘ intermediate?’  If we are to discuss such socioeconomic orders, this paper assumes that we should not be able to link micro-level explanations and macro-level ones concerning the third mode of governance mechanisms all at once. We need to stick to the meso-level at fi rst. The theoretical elaboration since Ouchi’s(1980) discussion of clan-type governance and cumulative empirical research on industrial agglomerations have allowed us to construct a more sophisticated theory called community capital.  In effective communities, members are ‘embedded as insiders’ who serve the purpose of the community, share experiences of failures and successes, and find and deepen their common identity. This limited membership is bound by‘ mutual trust to rely on each other’ for‘ distribution of short-term risks.’ In contrast to social norms that need to be abstract enough to be widely shared, the communal norms that are concrete enough to allow the members to understand without hesitation how they should behave in localized contexts are cumulatively cultivated along socializing process. Among the norms, sense of mutual obligation to incur intermittent costs for the whole community is a crucial norm for the sustainable development of the community. However, as a practical matter, membership control, mutual trust and short-term risk allocation may serve the communities in the short run, but they do not guarantee long-term accumulation of shared capital. As a result, the limits of community capital may need to be discussed once again, especially today when market liquidity is increasing, and its failures tend to become more apparent in a variety of areas. en-copyright= kn-copyright= en-aut-name=FujiiDaiji en-aut-sei=Fujii en-aut-mei=Daiji kn-aut-name=藤井大児 kn-aut-sei=藤井 kn-aut-mei=大児 aut-affil-num=1 ORCID= en-aut-name=OshimaTamako en-aut-sei=Oshima en-aut-mei=Tamako kn-aut-name=大島珠子 kn-aut-sei=大島 kn-aut-mei=珠子 aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=岡山大学学術研究院ヘルスシステム統合科学学域 affil-num=2 en-affil= kn-affil=国際医療福祉大学小田原保健医療学部看護学科 en-keyword=中間組織 kn-keyword=中間組織 en-keyword=内部組織の経済学 kn-keyword=内部組織の経済学 en-keyword=産業集積 kn-keyword=産業集積 en-keyword=コミュニティ・キャピタル kn-keyword=コミュニティ・キャピタル END start-ver=1.4 cd-journal=joma no-vol=300 cd-vols= no-issue=3 article-no= start-page=105679 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Methyl vinyl ketone and its analogs covalently modify PI3K and alter physiological functions by inhibiting PI3K signaling en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K- Akt signaling by MVK reversed epidermal growth factor- induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species. en-copyright= kn-copyright= en-aut-name=MorimotoAtsushi en-aut-sei=Morimoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakasugiNobumasa en-aut-sei=Takasugi en-aut-mei=Nobumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PanYuexuan en-aut-sei=Pan en-aut-mei=Yuexuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KubotaSho en-aut-sei=Kubota en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AbikoYumi en-aut-sei=Abiko en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UchidaKoji en-aut-sei=Uchida en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KumagaiYoshito en-aut-sei=Kumagai en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UeharaTakashi en-aut-sei=Uehara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Graduate School of Biomedical Science, Nagasaki University kn-affil= affil-num=7 en-affil=Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=8 en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University kn-affil= affil-num=9 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=phosphatidylinositol 3-kinase (PI 3-kinase) kn-keyword=phosphatidylinositol 3-kinase (PI 3-kinase) en-keyword=cell signaling kn-keyword=cell signaling en-keyword=chemical modification kn-keyword=chemical modification en-keyword=autophagy kn-keyword=autophagy en-keyword=glucose uptake kn-keyword=glucose uptake END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=43 article-no= start-page=22614 end-page=22626 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241017 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nanoscale Structures of Tough Microparticle-Based Films Investigated by Synchrotron X-Ray Scattering and All-Atom Molecular-Dynamics Simulation en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, the nanoscale structures of microparticle-based films are revealed by synchrotron small-angle X-ray scattering (SAXS) and all-atom molecular-dynamics (AA-MD) simulations. The microparticle-based films consisting of the simplest acrylate polymer microparticles are applied as a model because the films are formed without additives and organic solvents and exhibit high toughness properties. The characteristic interfacial thickness (tinter) obtained from the SAXS analysis reflects the mixing degree of polymer chains on the microparticle surface in the film. The cross-linking density of inner microparticles is found to be strongly correlated to not only several properties of individual microparticles, such as swelling ratio and radius of gyration, but also the tinter and toughness of the corresponding films. Therefore, the tinter and toughness values follow a linear relationship because the cross-linking restricts the mixing of polymer chains between their surfaces in the film, which is a unique feature of microparticle-based films. This characteristic also affects their deformation behavior observed by in situ SAXS during tensile testing and their density profiles calculated by AA-MD simulations. This work provides a general strategy for material design to control the physical properties and structures of their films for advanced applications, including volatile organic compound-free sustainable coatings and adhesives. en-copyright= kn-copyright= en-aut-name=NambaKeita en-aut-sei=Namba en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiYuma en-aut-sei=Sasaki en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawamuraYuto en-aut-sei=Kawamura en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaShotaro en-aut-sei=Yoshida en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiedaYoshiki en-aut-sei=Hieda en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FujimotoKazushi en-aut-sei=Fujimoto en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeNatsuki en-aut-sei=Watanabe en-aut-mei=Natsuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishizawaYuichiro en-aut-sei=Nishizawa en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UchihashiTakayuki en-aut-sei=Uchihashi en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KurehaTakuma en-aut-sei=Kureha en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Textile Science &Technology, Shinshu University kn-affil= affil-num=4 en-affil=Department of Materials Chemistry, Nagoya University kn-affil= affil-num=5 en-affil=Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University kn-affil= affil-num=6 en-affil=Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University kn-affil= affil-num=7 en-affil=Department of Physics, Nagoya University kn-affil= affil-num=8 en-affil=Department of Physics, Nagoya University kn-affil= affil-num=9 en-affil=Department of Physics, Nagoya University kn-affil= affil-num=10 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=74 cd-vols= no-issue=1 article-no= start-page=53 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of systemic ventricular assist in failing Fontan patients: a theoretical analysis using a computational model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mechanical circulatory support is a potential treatment for failing Fontan patients. In this study, we performed a theoretical analysis using a computational model to clarify the effects of systemic ventricular assist device (VAD) in failing Fontan patients. Cardiac chambers and vascular systems were described using the time-varying elastance model and modified Windkessel model, respectively. A VAD was simulated as a nonlinear function. In systolic and diastolic ventricular dysfunction and atrioventricular valve regurgitation models, systemic VAD increased the cardiac index and decreased the central venous pressure (CVP). However, in the high pulmonary vascular resistance model, CVP became extremely high above 15 mmHg to maintain the cardiac index when the pulmonary vascular resistance index (PVRI) was above 5 Wood units m2. In Fontan patients with ventricular dysfunction or atrioventricular valve regurgitation, systemic VAD efficiently improves the hemodynamics. In Fontan patients with PVRI of > 5 Wood units m2, systemic VAD seems ineffective. en-copyright= kn-copyright= en-aut-name=KisamoriEiri en-aut-sei=Kisamori en-aut-mei=Eiri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KotaniYasuhiro en-aut-sei=Kotani en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShishidoToshiaki en-aut-sei=Shishido en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimizuShuji en-aut-sei=Shimizu en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Research Promotion and Management, National Cerebral and Cardiovascular Center kn-affil= affil-num=4 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences and Okayama University Hospital kn-affil= en-keyword=Ventricular assist device kn-keyword=Ventricular assist device en-keyword=Failing Fontan kn-keyword=Failing Fontan en-keyword=Hemodynamic simulation kn-keyword=Hemodynamic simulation en-keyword=Lumped parameter model kn-keyword=Lumped parameter model END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=12 article-no= start-page=1324 end-page=1326 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Detailed regimens for the prolonged β-lactam infusion therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=A recent systematic review and meta-analysis of randomized controlled trials (RCTs) evaluated the efficacy and safety of prolonged versus intermittent β-lactam infusion in adult sepsis patients. The findings revealed a significant decrease in all-cause mortality and marked clinical success in the prolonged infusion group. Unfortunately, however, the manuscript lacked data and discussion for the specific regimens of prolonged β-lactam infusion defined in the included 15 RCT studies, which are herein additionally provided. Excluding one RCT, all protocols adopted a continuous infusion for the prolonged treatment. Except for three RCTs, dosages and timings of bolus injection were clearly defined. The total daily antibiotic dose for the continuous therapy was equivalent to those recommended for intermittent therapy. We believe this supplementary data aids clinicians in providing prolonged β-lactam infusions, contributing to enhanced treatment outcomes for patients suffering from severe sepsis or septic shock. en-copyright= kn-copyright= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= en-keyword=Sepsis kn-keyword=Sepsis en-keyword=Continuous infusion kn-keyword=Continuous infusion en-keyword=Prolonged infusion kn-keyword=Prolonged infusion en-keyword=Pharmacokinetics kn-keyword=Pharmacokinetics END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=1 article-no= start-page=131 end-page=142 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Real-World Comparative Analysis of Trastuzumab Originator and Biosimilars: Safety, Efficacy, and Cost Effectiveness en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Despite the global use of trastuzumab biosimilars, concerns remain regarding their efficacy and safety. In particular, when used concurrently with pertuzumab, trastuzumab biosimilars lack extensive real-world data and safety information. Additionally, as cancer drug expenditures continue to rise worldwide, cost savings from biosimilars have become increasingly important.
Objective This study aims to assess the safety, efficacy, and cost effectiveness of trastuzumab originators and their biosimilars in real-world clinical settings, focusing on a large patient population.
Methods The analysis included 31,661 patients with HER2-positive breast cancer from the Medical Data Vision Co., Ltd. database in Japan. Additionally, adverse event reports for the trastuzumab originator and its biosimilars were obtained for 58,799 patients from the World Health Organization’s VigiBase, the global adverse event reporting database.
Results No significant differences were observed in heart failure hospitalizations, liver dysfunction, or infusion reaction rates in both the Medical Data Vision Co., Ltd. database and the World Health Organization’s VigiBase. In the Medical Data Vision Co., Ltd. database, the addition of pertuzumab did not significantly influence the incidence of adverse events, and the use of biosimilars significantly reduced medical costs, with no significant difference in breast cancer recurrence rates.
Conclusions By analyzing two large and diverse datasets from multiple perspectives, we obtained reliable results that the trastuzumab originator and its biosimilars have similar safety profiles. The concurrent use of pertuzumab was also found to be safe. The use of biosimilars can lead to cost savings. These findings provide crucial insights for the evaluation and adoption of biosimilars in clinical practice. en-copyright= kn-copyright= en-aut-name=MamoriTomoka en-aut-sei=Mamori en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaniokaMaki en-aut-sei=Tanioka en-aut-mei=Maki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakadaKenji en-aut-sei=Takada en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HamanoHirofumi en-aut-sei=Hamano en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsukiokiTakahiro en-aut-sei=Tsukioki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiYuko en-aut-sei=Takahashi en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwataniTsuguo en-aut-sei=Iwatani en-aut-mei=Tsuguo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Medical AI Project, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Machine-learning-assisted prediction of the size of microgels prepared by aqueous precipitation polymerization en-subtitle= kn-subtitle= en-abstract= kn-abstract=The size of soft colloids (microgels) is essential; however, control over their size has typically been established empirically. Herein, we report a linear-regression model that can predict microgel size using a machine learning method, sparse modeling for small data, which enables the determination of the synthesis conditions for target-sized microgels. en-copyright= kn-copyright= en-aut-name=SuzukiDaisuke en-aut-sei=Suzuki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MinatoHaruka en-aut-sei=Minato en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoYuji en-aut-sei=Sato en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NamiokaRyuji en-aut-sei=Namioka en-aut-mei=Ryuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IgarashiYasuhiko en-aut-sei=Igarashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibataRisako en-aut-sei=Shibata en-aut-mei=Risako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OakiYuya en-aut-sei=Oaki en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Textile Science & Technology, Shinshu University kn-affil= affil-num=5 en-affil=Faculty of Engineering, Information and Systems, University of Tsukuba kn-affil= affil-num=6 en-affil=Department of Applied Chemistry, Faculty of Science and Technology, Keio University kn-affil= affil-num=7 en-affil=Department of Applied Chemistry, Faculty of Science and Technology, Keio University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=3 article-no= start-page=77 end-page=83 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of drought features in the Dakbla watershed, Central Highlands of Vietnam en-subtitle= kn-subtitle= en-abstract= kn-abstract=The drought impacts in the Dakbla watershed were assessed based on a combination of hydrological modeling and drought indices. Three drought indices, the Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI), and Streamflow Drought Index (SDI) were utilized to evaluate the drought features of meteo-hydrology and agriculture. The results indicated that these indices are well adapted to the local conditions, especially the 12-month time scale. Evaluations of drought features on the watershed scale could provide more specific information regarding drought risk than regional-scale/district-level assessments, because a watershed is a hydrologically fundamental unit to consider water resources management. Additionally, evaluations of drought impacts using the SSI showed longer and higher trends than those using the SPI and SDI in terms of drought duration and frequency. Considering the spatial distribution of drought frequency, the areas predominated by agricultural land in the target watershed had higher drought risk. Thus, assessment of agricultural droughts along with meteo-hydrological droughts is extremely important to support realistic local drought management strategies by considering water availability, water balance, and soil characteristics, especially in specific agricultural areas. en-copyright= kn-copyright= en-aut-name=Ngoc Quynh TramVo en-aut-sei=Ngoc Quynh Tram en-aut-mei=Vo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoroizumiToshitsugu en-aut-sei=Moroizumi en-aut-mei=Toshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=hydrological modeling kn-keyword=hydrological modeling en-keyword=drought indices kn-keyword=drought indices en-keyword=drought features kn-keyword=drought features en-keyword=watershed scale assessment kn-keyword=watershed scale assessment en-keyword=agricultural activities kn-keyword=agricultural activities en-keyword=mountainous region kn-keyword=mountainous region END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=4 article-no= start-page=87 end-page=94 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation and selection of a set of CMIP6 GCMs for water resource modeling in the poorly gauged complex terrain of the Tana River basin in Kenya en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Tana River basin is among the least monitored in terms of meteorological data in Kenya. The Kenya Meteorological Department (KMD) provided data on a ten-day timescale, which is not adequate for water resource evaluation. To bridge this data gap, there is a growing need to leverage General Circulation Models (GCMs) and global datasets to assess current and future water resources in this basin. This study focused on evaluating the performance of 19 CMIP6 GCMs concerning precipitation (pr), maximum temperature (tasmax), and minimum temperature (tasmin) for the complex terrain of the Tana River basin. This involved a rigorous process of disaggregating the data provided by the KMD into a daily timescale for downscaling. The GCMs’ historical output was prepared using the Climate Data Operator (CDO) in Cygwin. The Kling Gupta Efficiency (KGE) was computed for each variable at three stations: Nyeri (upstream), Kitui (midstream), and Bura (downstream). The KGE results were validated using Taylor statistics. Five GCMs, CMCC-ESM2, MPI-ESM1-2-HR, ACCESS-CM2, NorESM2-MM, and GFDL-ESM4, performed best with a multivariable Multi-station KGE statistic of 0.455–0.511. The outputs from these selected GCMs were subsequently downscaled for later use in assessing the water resources and crop water demand in the basin. en-copyright= kn-copyright= en-aut-name=Mwendwa WambuaDaniel en-aut-sei=Mwendwa Wambua en-aut-mei=Daniel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SomuraHiroaki en-aut-sei=Somura en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoroizumiToshitsugu en-aut-sei=Moroizumi en-aut-mei=Toshitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=climate change kn-keyword=climate change en-keyword=adaptation kn-keyword=adaptation en-keyword=scenarios kn-keyword=scenarios en-keyword=downscaling kn-keyword=downscaling en-keyword=disaggregation kn-keyword=disaggregation en-keyword=temporal kn-keyword=temporal END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=4 article-no= start-page=557 end-page=564 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241019 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Clinical Significance of Prior Ramucirumab Use on the Effectiveness of Nivolumab as the Third-Line Regimen in Gastric Cancer: A Multicenter Retrospective Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Objective Because vascular endothelial growth factor inhibition has been suggested to improve immune cell function in the cancer microenvironment, we examined whether using ramucirumab (RAM) before nivolumab usage is more effective in advanced gastric cancer.
Methods This was a multicenter retrospective observational study. We analyzed patients who received nivolumab monotherapy as the third-line regimen for unresectable advanced or recurrent gastric cancer between October 2017 and December 2022. They were divided into the RAM (RAM-treated) group and the non-RAM (non-treated) group according to the RAM usage in the second-line regimen. The primary outcome was to compare the overall survival after nivolumab administration in the third-line regimen between the RAM and non-RAM groups.
Results Fifty-two patients were included in the present study: 42 patients in the RAM group and ten patients in the non-RAM group. The median overall survival was significantly longer in the RAM group than in the non-RAM group (8.5 months vs 6.9 months, p < 0.05). In the RAM group, patients without peritoneal metastasis had significantly better median overall survival than those with peritoneal metastasis (23.8 months vs 7.7 months, p = 0.0033). Multivariate Cox-proportional hazards analyses showed that the presence of peritoneal metastasis (hazard ratio, 2.4; 95% confidence interval 1.0-5.7) alone was significantly associated with overall survival in the RAM group.
Conclusions The use of RAM prior to nivolumab monotherapy may contribute to prolonged survival in patients with gastric cancer, especially those without peritoneal metastasis. en-copyright= kn-copyright= en-aut-name=ObayashiYuka en-aut-sei=Obayashi en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HirataShoichiro en-aut-sei=Hirata en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KonoYoshiyasu en-aut-sei=Kono en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeMakoto en-aut-sei=Abe en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyaharaKoji en-aut-sei=Miyahara en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakagawaMasahiro en-aut-sei=Nakagawa en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshidaMichihiro en-aut-sei=Ishida en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ChodaYasuhiro en-aut-sei=Choda en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HamadaKenta en-aut-sei=Hamada en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IwamuroMasaya en-aut-sei=Iwamuro en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KawanoSeiji en-aut-sei=Kawano en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawaharaYoshiro en-aut-sei=Kawahara en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=5 en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=6 en-affil=Department of Endoscopy, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=7 en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=8 en-affil=Department of Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=9 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Gastroenterology, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Practical Gastrointestinal Endoscopy, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Hepatology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=20756 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Basic characteristics of tongue pressure and electromyography generated by articulation of a syllable using the posterior part of the tongue en-subtitle= kn-subtitle= en-abstract= kn-abstract=The basic function of the tongue in pronouncing diadochokinesis and other syllables is not fully understood. This study investigates the influence of sound pressure levels and syllables on tongue pressure and muscle activity in 19 healthy adults (mean age: 28.2 years; range: 22-33 years). Tongue pressure and activity of the posterior tongue were measured using electromyography (EMG) when the velar stops /ka/, /ko/, /ga/, and /go/ were pronounced at 70, 60, 50, and 40 dB. Spearman's rank correlation revealed a significant, yet weak, positive association between tongue pressure and EMG activity (rho = 0.14, p < 0.05). Mixed-effects model analysis showed that tongue pressure and EMG activity significantly increased at 70 dB compared to other sound pressure levels. While syllables did not significantly affect tongue pressure, the syllable /ko/ significantly increased EMG activity (coefficient = 0.048, p = 0.013). Although no significant differences in tongue pressure were observed for the velar stops /ka/, /ko/, /ga/, and /go/, it is suggested that articulation is achieved by altering the activity of both extrinsic and intrinsic tongue muscles. These findings highlight the importance of considering both tongue pressure and muscle activity when examining the physiological factors contributing to sound pressure levels during speech. en-copyright= kn-copyright= en-aut-name=MandaYousuke en-aut-sei=Manda en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KodamaNaoki en-aut-sei=Kodama en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriKeitaro en-aut-sei=Mori en-aut-mei=Keitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AdachiReimi en-aut-sei=Adachi en-aut-mei=Reimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsugishiMakoto en-aut-sei=Matsugishi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MinagiShogo en-aut-sei=Minagi en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Occlusal and Oral Functional Rehabilitation, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=e58753 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240923 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhancing Medical Interview Skills Through AI-Simulated PatientInteractions:Nonrandomized Controlled Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Medical interviewing is a critical skill in clinical practice, yet opportunities for practical training are limited in Japanese medical schools, necessitating urgent measures. Given advancements in artificial intelligence (AI) technology, its application in the medical field is expanding. However, reports on its application in medical interviews in medical education are scarce.
Objective: This study aimed to investigate whether medical students' interview skills could be improved by engaging with Al-simulated patients using large language models, including the provision of feedback.
Methods: This nonrandomized controlled trial was conducted with fourth-year medical students in Japan. A simulation program using large language models was provided to 35 students in the intervention group in 2023, while 110 students from 2022 who did not participate in the intervention were selected as the control group. The primary outcome was the score on the Pre-Clinical Clerkship Objective Structured Clinical Examination (pre-CC OSCE), a national standardized clinical skills examination, in medical interviewing. Secondary outcomes included surveys such as the Simulation-Based Training Quality Assurance Tool (SBT-QA10), administered at the start and end of the study.
Results: The Al intervention group showed significantly higher scores on medical interviews than the control group (Al group vs control group: mean 28.1, SD 1.6 vs 27.1, SD 2.2; P=.01). There was a trend of inverse correlation between the SBT-QA10 and pre-CC OSCE scores (regression coefficient-2.0 to-2.1). No significant safety concerns were observed.
Conclusions: Education through medical interviews using Al-simulated patients has demonstrated safety and a certain level of educational effectiveness. However, at present, the educational effects of this platform on nonverbal communication skills are limited, suggesting that it should be used as a supplementary tool to traditional simulation education. en-copyright= kn-copyright= en-aut-name=YamamotoAkira en-aut-sei=Yamamoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KodaMasahide en-aut-sei=Koda en-aut-mei=Masahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgawaHiroko en-aut-sei=Ogawa en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyoshiTomoko en-aut-sei=Miyoshi en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=InoHideo en-aut-sei=Ino en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Co-learning Community Healthcare Re-innovation Office, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Primary Care and Medical Education, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Hematology and Oncology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Center for Education in Medicine and Health Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=medical interview kn-keyword=medical interview en-keyword=generative pretrained transformer kn-keyword=generative pretrained transformer en-keyword=large language model kn-keyword=large language model en-keyword=simulation-based learning kn-keyword=simulation-based learning en-keyword=OSCE kn-keyword=OSCE en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=medical education kn-keyword=medical education en-keyword=simulated patients kn-keyword=simulated patients en-keyword=nonrandomized controlled trial kn-keyword=nonrandomized controlled trial END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=5 article-no= start-page=387 end-page=399 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Radon Inhalation on Murine Brain Proteins: Investigation Using Proteomic and Multivariate Analyses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Radon is a known risk factor for lung cancer; however, it can be used beneficially, such as in radon therapy. We have previously reported the enhancement of antioxidant effects associated with trace amounts of oxidative stress as one of the positive biological effects of radon inhalation. However, the biological effects of radon inhalation are incompletely understood, and more detailed and comprehensive studies are required. Although several studies have used proteomics to investigate the effects of radon inhalation on body proteins, none has focused on brain proteins. In this study, we evaluated the expression status of proteins in murine brains using proteomic and multivariate analyses to identify those whose expressions changed following two days of radon inhalation at a concentration of 1,500 Bq/m3. We found associations of radon inhalation with the expressions of seven proteins related to neurotransmission and heat shock. These proteins may be proposed as biomarkers indicative of radon inhalation. Although further studies are required to obtain the detailed biological significance of these protein alterations, this study contributes to the elucidation of the biological effects of radon inhalation as a low-dose radiation. en-copyright= kn-copyright= en-aut-name=NaoeShota en-aut-sei=Naoe en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaAyumi en-aut-sei=Tanaka en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanzakiNorie en-aut-sei=Kanzaki en-aut-mei=Norie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakenakaReiju en-aut-sei=Takenaka en-aut-mei=Reiju kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakodaAkihiro en-aut-sei=Sakoda en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyajiTakaaki en-aut-sei=Miyaji en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=6 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=7 en-affil=Faculty of Health Sciences, Okayama University kn-affil= affil-num=8 en-affil=Faculty of Health Sciences, Okayama University kn-affil= en-keyword=radon inhalation kn-keyword=radon inhalation en-keyword=proteomics kn-keyword=proteomics en-keyword=multivariate analysis kn-keyword=multivariate analysis en-keyword=brain kn-keyword=brain en-keyword=oxidative stress kn-keyword=oxidative stress END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=5 article-no= start-page=377 end-page=386 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prognostic Efficacy of the Albumin Grade in Patients with Hepatocellular Carcinoma en-subtitle= kn-subtitle= en-abstract= kn-abstract=We previously found that “albumin grade”, formerly called the “ALBS grade,” demonstrated significant capability for prognostic stratification in hepatocellular carcinoma (HCC) patients treated with lenvatinib. The purpose of the present study was to compare the performance of the albumin grade with that of the modified albumin-bilirubin (mALBI) grade in predicting overall survival of HCC patients with different BCLC stages and treatment types. We enrolled 7,645 Japanese patients newly diagnosed with HCC using the Akaike information criteria (AIC), likelihood ratio, and C-index in different Barcelona Clinic Liver Cancer (BCLC) stages and treatments. The albumin grade showed similar and slightly better performance than the mALBI grade for BCLC stage 0 and A and especially for patients who underwent curative surgery and ablation. In patients treated with transcatheter arterial chemoembolization, molecular targeted agents, and the best supportive care, the mALBI grade had better performance than the albumin grade. However, the differences of the indices were very small in all scenarios. Overall, the albumin grade was comparable in efficacy to the mALBI grade, showing particular benefit for patients with early-stage HCC. en-copyright= kn-copyright= en-aut-name=HiranoYuichi en-aut-sei=Hirano en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NousoKazuhiro en-aut-sei=Nouso en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KariyamaKazuya en-aut-sei=Kariyama en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiraokaAtsushi en-aut-sei=Hiraoka en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShiotaShohei en-aut-sei=Shiota en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WakutaAkiko en-aut-sei=Wakuta en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YasudaSatoshi en-aut-sei=Yasuda en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToyodaHidenori en-aut-sei=Toyoda en-aut-mei=Hidenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsujiKunihiko en-aut-sei=Tsuji en-aut-mei=Kunihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HatanakaTakeshi en-aut-sei=Hatanaka en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KakizakiSatoru en-aut-sei=Kakizaki en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NaganumaAtsushi en-aut-sei=Naganuma en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TadaToshifumi en-aut-sei=Tada en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ItobayashiEi en-aut-sei=Itobayashi en-aut-mei=Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IshikawaToru en-aut-sei=Ishikawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ShimadaNoritomo en-aut-sei=Shimada en-aut-mei=Noritomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakaguchiKoichi en-aut-sei=Takaguchi en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TsutsuiAkemi en-aut-sei=Tsutsui en-aut-mei=Akemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NaganoTakuya en-aut-sei=Nagano en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=ImaiMichitaka en-aut-sei=Imai en-aut-mei=Michitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NakamuraShinichiro en-aut-sei=Nakamura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KumadaTakashi en-aut-sei=Kumada en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=Real-Life Practice Experts for HCC (RELPEC) Study Group in Japan en-aut-sei=Real-Life Practice Experts for HCC (RELPEC) Study Group in Japan en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=2 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=4 en-affil=Gastroenterology Center, Ehime Prefectural Central Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Okayama City Hospital kn-affil= affil-num=7 en-affil=Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital kn-affil= affil-num=8 en-affil=Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital kn-affil= affil-num=9 en-affil=Center of Gastroenterology, Teine Keijinkai Hospital kn-affil= affil-num=10 en-affil=Department of Gastroenterology, Saiseikai Maebashi Hospital kn-affil= affil-num=11 en-affil=Department of Clinical Research, NHO Takasaki General Medical Center kn-affil= affil-num=12 en-affil=Department of Gastroenterology, NHO Takasaki General Medical Center kn-affil= affil-num=13 en-affil=Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=14 en-affil=Department of Gastroenterology, Asahi General Hospital kn-affil= affil-num=15 en-affil=Department of Gastroenterology, Saiseikai Niigata Hospital kn-affil= affil-num=16 en-affil=Division of Gastroenterology and Hepatology, Otakanomori Hospital kn-affil= affil-num=17 en-affil=Department of Hepatology, Kagawa Prefectural Central Hospital kn-affil= affil-num=18 en-affil=Department of Hepatology, Kagawa Prefectural Central Hospital kn-affil= affil-num=19 en-affil=Department of Hepatology, Kagawa Prefectural Central Hospital kn-affil= affil-num=20 en-affil=Department of Gastroenterology, Niigata Cancer Center Hospital kn-affil= affil-num=21 en-affil=Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital kn-affil= affil-num=22 en-affil=Department of Nursing, Gifu Kyoritsu University kn-affil= affil-num=23 en-affil= kn-affil= en-keyword=albumin grade kn-keyword=albumin grade en-keyword=hepatocellular carcinoma kn-keyword=hepatocellular carcinoma en-keyword=modified albumin-bilirubin grade kn-keyword=modified albumin-bilirubin grade END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=5 article-no= start-page=6736 end-page=6751 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Superior Efficiency Under PWM Harmonic Current in an Axial-Flux PM Machine for HEV/EV Traction: Comparison With a Radial-Flux PM Machine en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper evaluates the harmonic current caused by a pulse width modulation (PWM) inverter and how it affects the efficiency of a novel axial-flux permanent-magnet machine using a ferrite permanent magnet (AF-FePM) in traction applications. First, differences between the finite element analysis (FEA) and experimental results are discussed using a prototype of the proposed AF-FePM. Second, the AF-FePM is compared with a commercially available radial-flux permanent-magnet machine using a Nd-sintered magnet (RF-NdPM). For both machines, the efficiency and loss are calculated using FEA when applying the sinusoidal and harmonic currents. Additionally, we present the superior efficiency of the AF-FePM under the PWM harmonic current during a WLTC driving cycle because the designed model employs the ferrite magnet and a round copper wire, unlike the RF-NdPM. Finally, motor and inverter losses at different switching frequencies are also evaluated. This paper eventually shows that the proposed AF-FePM would be one of the suitable candidates to enhance high efficiency under PWM harmonic current condition based on comprehensive discussion. en-copyright= kn-copyright= en-aut-name=TsunataRen en-aut-sei=Tsunata en-aut-mei=Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakemotoMasatsugu en-aut-sei=Takemoto en-aut-mei=Masatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ImaiJun en-aut-sei=Imai en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoTatsuya en-aut-sei=Saito en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UenoTomoyuki en-aut-sei=Ueno en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Sumitomo Electric Industries Ltd. kn-affil= affil-num=5 en-affil=Sumitomo Electric Industries Ltd. kn-affil= en-keyword=Axial gap motor kn-keyword=Axial gap motor en-keyword=axial-flux machine kn-keyword=axial-flux machine en-keyword=carbon-fiber-reinforced plastic kn-keyword=carbon-fiber-reinforced plastic en-keyword=ferrite magnet kn-keyword=ferrite magnet en-keyword=iron loss kn-keyword=iron loss en-keyword=PWM drive kn-keyword=PWM drive en-keyword=PWM harmonic current kn-keyword=PWM harmonic current en-keyword=radial-flux machine kn-keyword=radial-flux machine en-keyword=soft magnetic composite kn-keyword=soft magnetic composite en-keyword=switching frequency kn-keyword=switching frequency en-keyword=WLTC drive kn-keyword=WLTC drive END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=10 article-no= start-page=e087657 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241008 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Decline in and recovery of fertility rates after COVID-19-related state of emergency in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction The COVID-19 pandemic led to a decline in fertility rates worldwide. Although many regions have experienced a temporary drop in fertility rates with the spread of the infection, subsequent recovery has varied across countries. This study aimed to evaluate the impact of COVID-19 infection rates and regional sociodemographic factors on the recovery of fertility rates in Japan following the state of emergency.
Methods This study examined prefectural fertility data from before the COVID-19 pandemic to forecast fertility rates up to 2022 using a seasonal autoregressive integrated moving average model. A regression analysis was conducted on fertility rates during the first state of emergency and the subsequent recovery rate with respect to the number of new COVID-19 cases and sociodemographic factors specific to each prefecture.
Results During the first state of emergency, the monthly fertility rate decreased by an average of -13.8% (SD: 6.26, min: -28.78, max: 0.15) compared with the previous year. Over the following 22 months, the average fertility recovery rate was +2.31% (SD: 3.57; min: -8.55, max: 19.54). Multivariate analysis of the impact of the pandemic on fertility changes during the first emergency indicated a negative correlation between new COVID-19 cases per capita and the proportion of nuclear households. No significant correlation was found between fertility recovery rate and new COVID-19 cases or emergency duration. When classifying fertility rate fluctuation patterns before and after the emergency into four clusters, variations were noted in the proportion of the elderly population, marriage divorce rate and the number of internet searches related to pregnancy intentions across the clusters.
Conclusions No association was found between pregnancy intentions related to the spread of infection, such as the number of new cases and the fertility recovery rate following the first state of emergency. Differences in the patterns of decline and recovery during the pandemic were observed based on population composition and internet searches for infection and pregnancy across different prefectures. en-copyright= kn-copyright= en-aut-name=MitomaTomohiro en-aut-sei=Mitoma en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OobaHikaru en-aut-sei=Ooba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Obstetric and Gynecology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetric and Gynecology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Obstetric and Gynecology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Obstetric and Gynecology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=5 article-no= start-page=357 end-page=362 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Factors Affecting Dynamic Postural Control Ability in Adolescent Idiopathic Scoliosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Research on postural control in patients with adolescent idiopathic scoliosis (AIS) has focused on static postural control, with few studies assessing dynamic postural control. We aimed to identify factors affecting index of postural stability (IPS), a dynamic postural control parameter, in patients with AIS. The participants comprised 50 female patients with AIS. We measured the IPS using stabilometry to evaluate dynamic postural control ability. We investigated age of the participants, major curve position (thoracic or thoracolumbar/lumbar), Cobb angle, and coronal balance. We then assessed the relationships between stabilometry parameters and other variables. IPS was analyzed with a linear regression model. Coronal balance, major curve position, and age each correlated with dynamic postural control ability. The Cobb angle showed no correlation with any of the parameters. Our results offer new insights into the assessment of postural control in patients with AIS. en-copyright= kn-copyright= en-aut-name=YamawakiRyoko en-aut-sei=Yamawaki en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OdaYoshiaki en-aut-sei=Oda en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamaneShuhei en-aut-sei=Yamane en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UotaniKoji en-aut-sei=Uotani en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MisawaHaruo en-aut-sei=Misawa en-aut-mei=Haruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatayamaYoshimi en-aut-sei=Katayama en-aut-mei=Yoshimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HamadaMasanori en-aut-sei=Hamada en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Physical Medicine and Rehabilitation, Okayama University kn-affil= affil-num=2 en-affil=Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Division of Physical Medicine and Rehabilitation, Okayama University kn-affil= affil-num=4 en-affil=Department of Orthopaedic Surgery, Okayama University kn-affil= affil-num=5 en-affil=Ryusoh Orthopaedic Hospital kn-affil= affil-num=6 en-affil=Division of Physical Medicine and Rehabilitation, Okayama University kn-affil= affil-num=7 en-affil=Division of Physical Medicine and Rehabilitation, Okayama University kn-affil= affil-num=8 en-affil=Division of Physical Medicine and Rehabilitation, Okayama University kn-affil= en-keyword=adolescent idiopathic scoliosis kn-keyword=adolescent idiopathic scoliosis en-keyword=postural control kn-keyword=postural control en-keyword=coronal balance kn-keyword=coronal balance en-keyword=index of postural stability kn-keyword=index of postural stability en-keyword=stabilometry kn-keyword=stabilometry END start-ver=1.4 cd-journal=joma no-vol=416 cd-vols= no-issue=28 article-no= start-page=6679 end-page=6686 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of protein immobilization methods with covalent bonding on paper for paper-based enzyme-linked immunosorbent assay en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this study, two methods were examined to optimize the immobilization of antibodies on paper when conducting a paper-based enzyme-linked immunosorbent assay (P-ELISA). Human IgG, as a test-capture protein, was immobilized on paper via the formation of Schiff bases. Aldehyde groups were introduced onto the surface of the paper via two methods: NaIO4 and 3-aminopropyltriethoxysilane (APTS) with glutaraldehyde (APTS-glutaraldehyde). In the assay, horseradish peroxidase-conjugated anti-human IgG (HRP-anti-IgG) binds to the immobilized human IgG, and the colorimetric reaction of 3,3′,5,5′-tetramethylbenzyzine (TMB) produces a blue color in the presence of H2O2 and HRP-anti-IgG as a model analyte. The immobilization of human IgG, the enzymatic reaction conditions, and the reduction of the chemical bond between the paper surface and immobilized human IgG all were optimized in order to improve both the analytical performance and the stability. In addition, the thickness of the paper was examined to stabilize the analytical signal. Consequently, the APTS-glutaraldehyde method was superior to the NaIO4 method in terms of sensitivity and reproducibility. Conversely, the reduction of imine to amine with NaBH4 proved to exert only minimal influence on sensitivity and stability, although it tended to degrade reproducibility. We also found that thick paper was preferential when using P-ELISA because a rigid paper substrate prevents distortion of the paper surface that is often caused by repeated washing processes. en-copyright= kn-copyright= en-aut-name=ChenYang en-aut-sei=Chen en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DanchanaKaewta en-aut-sei=Danchana en-aut-mei=Kaewta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakashi en-aut-sei=Kaneta en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Okayama University kn-affil= en-keyword=Paper-based enzyme-linked immunosorbent assay kn-keyword=Paper-based enzyme-linked immunosorbent assay en-keyword=ELISA kn-keyword=ELISA en-keyword=Immobilization kn-keyword=Immobilization en-keyword=Covalent bonding kn-keyword=Covalent bonding en-keyword=Protein kn-keyword=Protein END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=9 article-no= start-page=471 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240909 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generating 3D Models for UAV-Based Detection of Riparian PET Plastic Bottle Waste: Integrating Local Social Media and InstantMesh en-subtitle= kn-subtitle= en-abstract= kn-abstract=In recent years, waste pollution has become a severe threat to riparian environments worldwide. Along with the advancement of deep learning (DL) algorithms (i.e., object detection models), related techniques have become useful for practical applications. This work attempts to develop a data generation approach to generate datasets for small target recognition, especially for recognition in remote sensing images. A relevant point is that similarity between data used for model training and data used for testing is crucially important for object detection model performance. Therefore, obtaining training data with high similarity to the monitored objects is a key objective of this study. Currently, Artificial Intelligence Generated Content (AIGC), such as single target objects generated by Luma AI, is a promising data source for DL-based object detection models. However, most of the training data supporting the generated results are not from Japan. Consequently, the generated data are less similar to monitored objects in Japan, having, for example, different label colors, shapes, and designs. For this study, the authors developed a data generation approach by combining social media (Clean-Up Okayama) and single-image-based 3D model generation algorithms (e.g., InstantMesh) to provide a reliable reference for future generations of localized data. The trained YOLOv8 model in this research, obtained from the S2PS (Similar to Practical Situation) AIGC dataset, produced encouraging results (high F1 scores, approximately 0.9) in scenario-controlled UAV-based riparian PET bottle waste identification tasks. The results of this study show the potential of AIGC to supplement or replace real-world data collection and reduce the on-site work load. en-copyright= kn-copyright= en-aut-name=PanShijun en-aut-sei=Pan en-aut-mei=Shijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshidaKeisuke en-aut-sei=Yoshida en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimoeDaichi en-aut-sei=Shimoe en-aut-mei=Daichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KojimaTakashi en-aut-sei=Kojima en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishiyamaSatoshi en-aut-sei=Nishiyama en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=TOKEN C.E.E. Consultants Co., Ltd. kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=generative artificial intelligence kn-keyword=generative artificial intelligence en-keyword=InstantMesh kn-keyword=InstantMesh en-keyword=riparian waste kn-keyword=riparian waste en-keyword=SNS kn-keyword=SNS en-keyword=3D model kn-keyword=3D model END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=5 article-no= start-page=464 end-page=473 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240827 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Terrein Exhibits Anti-tumor Activity by Suppressing Angiogenin Expression in Malignant Melanoma Cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aim: Malignant melanoma is a tumor with a poor prognosis that can metastasize distally at an early stage. Terrein, a metabolite produced by Aspergillus terreus, suppresses the expression of angiogenin, an angiogenic factor. However, the pharmacological effects of natural terrein have not been elucidated, because only a small amount of terrein can be extracted from large fungal cultures. In this study, we investigated the antineoplastic effects of terrein on human malignant melanoma cells and its underlying mechanisms. Materials and methods: Human malignant melanoma cell lines were cultured in the presence of terrein and analyzed. Angiogenin production was evaluated using ELISA. Ribosome biosynthesis was evaluated using silver staining of the nucleolar organizer region. Intracellular signaling pathways were analyzed using western blotting. Malignant melanoma cells were transplanted subcutaneously into the backs of nude mice. The tumors were removed at 5 weeks and analyzed histopathologically. Results: Terrein inhibited angiogenin expression, proliferation, migration, invasion, and ribosome biosynthesis in malignant melanoma cells. Terrein was shown to inhibit tumor growth and angiogenesis in animal models. Conclusion: This study demonstrated that terrein has anti-tumor effects against malignant melanoma. Furthermore, chemically synthesized non-natural terrein can be mass-produced and serve as a novel potential anti-tumor drug candidate. en-copyright= kn-copyright= en-aut-name=HIROSETAIRA en-aut-sei=HIROSE en-aut-mei=TAIRA kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KUNISADAYUKI en-aut-sei=KUNISADA en-aut-mei=YUKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KADOYAKOICHI en-aut-sei=KADOYA en-aut-mei=KOICHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MANDAIHIROKI en-aut-sei=MANDAI en-aut-mei=HIROKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SAKAMOTOYUMI en-aut-sei=SAKAMOTO en-aut-mei=YUMI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OBATAKYOICHI en-aut-sei=OBATA en-aut-mei=KYOICHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ONOKISHO en-aut-sei=ONO en-aut-mei=KISHO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TAKAKURAHIROAKI en-aut-sei=TAKAKURA en-aut-mei=HIROAKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OMORIKAZUHIRO en-aut-sei=OMORI en-aut-mei=KAZUHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TAKASHIBASHOGO en-aut-sei=TAKASHIBA en-aut-mei=SHOGO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SUGASEIJI en-aut-sei=SUGA en-aut-mei=SEIJI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IBARAGISOICHIRO en-aut-sei=IBARAGI en-aut-mei=SOICHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Head and neck cancer kn-keyword=Head and neck cancer en-keyword=oral cancer kn-keyword=oral cancer en-keyword=malignant melanoma kn-keyword=malignant melanoma en-keyword=angiogenin kn-keyword=angiogenin en-keyword=terrein kn-keyword=terrein END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Job strain and adverse pregnancy outcomes: A scoping review and meta‐analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Previous studies have shown that job strain is associated with low birthweight (LBW), preterm birth (PTB), and small for gestational age (SGA). We conducted a scoping review and meta-analysis to assess the association between job strain and adverse pregnancy outcomes.
Methods: A literature search was performed on PubMed. We included English-language studies that examined the association between job strain (based on the Karasek demand-control model) and pregnancy outcomes. We excluded letters, posters, reviews, and qualitative studies. Random effects meta-analysis was performed. Heterogeneity was assessed using τ2 and I2 statistics. Potential bias was assessed using standard funnel plots. Asymmetry was evaluated by Egger's test. Leave-one-out analysis was performed for sensitivity analyses.
Results: Three eligible studies were found for LBW, seven for PTB, and four for SGA. The number of subjects ranged from 135 to 4889, and the prevalence of high job strain ranged from 6.64% to 33.9%. The pooled odds ratio and 95% confidence interval (CI) for LBW, PTB, and SGA were 1.23 (95% CI: 0.97, 1.56), 1.10 (95% CI: 1.00, 1.22), and 1.16 (95% CI: 0.97, 1.39) respectively, indicating modest associations. Heterogeneity for LBW and PTB may not be important but may be moderate for SGA. No publication bias was detected for LBW and PTB, but possible publication bias exists for SGA.
Conclusion: We found a modest association between job strain and PTB. Since job strain is only one of the many aspects of an unhealthy work environment, interventions that improve working conditions more broadly are needed. en-copyright= kn-copyright= en-aut-name=NakayamaKota en-aut-sei=Nakayama en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SlopenNatalie en-aut-sei=Slopen en-aut-mei=Natalie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawachiIchiro en-aut-sei=Kawachi en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama University Medical School kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health kn-affil= affil-num=4 en-affil=Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health kn-affil= en-keyword=birthweight kn-keyword=birthweight en-keyword=gestational age kn-keyword=gestational age en-keyword=meta‐analysis kn-keyword=meta‐analysis en-keyword=occupational stress kn-keyword=occupational stress en-keyword=preterm birth kn-keyword=preterm birth END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=20521 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240903 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Suppression of PTBP1 in hippocampal astrocytes promotes neurogenesis and ameliorates recognition memory in mice with cerebral ischemia en-subtitle= kn-subtitle= en-abstract= kn-abstract=The therapeutic potential of suppressing polypyrimidine tract-binding protein 1 (Ptbp1) messenger RNA by viral transduction in a post-stroke dementia mouse model has not yet been examined. In this study, 3 days after cerebral ischemia, we injected a viral vector cocktail containing adeno-associated virus (AAV)-pGFAP-mCherry and AAV-pGFAP-CasRx (control vector) or a cocktail of AAV-pGFAP-mCherry and AAV-pGFAP-CasRx-SgRNA-(Ptbp1) (1:5, 1.0 x 1011 viral genomes) into post-stroke mice via the tail vein. We observed new mCherry/NeuN double-positive neuron-like cells in the hippocampus 56 days after cerebral ischemia. A portion of mCherry/GFAP double-positive astrocyte-like glia could have been converted into new mCherry/NeuN double-positive neuron-like cells with morphological changes. The new neuronal cells integrated into the dentate gyrus and recognition memory was significantly ameliorated. These results demonstrated that the in vivo conversion of hippocampal astrocyte-like glia into functional new neurons by the suppression of Ptbp1 might be a therapeutic strategy for post-stroke dementia. en-copyright= kn-copyright= en-aut-name=FukuiYusuke en-aut-sei=Fukui en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriharaRyuta en-aut-sei=Morihara en-aut-mei=Ryuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HuXinran en-aut-sei=Hu en-aut-mei=Xinran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakanoYumiko en-aut-sei=Nakano en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YunokiTaijun en-aut-sei=Yunoki en-aut-mei=Taijun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakemotoMami en-aut-sei=Takemoto en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AbeKoji en-aut-sei=Abe en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamashitaToru en-aut-sei=Yamashita en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=CasRx kn-keyword=CasRx en-keyword=Hippocampal neurogenesis kn-keyword=Hippocampal neurogenesis en-keyword=In vivo direct reprogramming kn-keyword=In vivo direct reprogramming en-keyword=Ischemic stroke kn-keyword=Ischemic stroke en-keyword=PHP.eB kn-keyword=PHP.eB en-keyword=Ptbp1 kn-keyword=Ptbp1 en-keyword=Recognition memory kn-keyword=Recognition memory END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=8 article-no= start-page=1835 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surface Pre-Reacted Glass-Ionomer Eluate Suppresses Osteoclastogenesis through Downregulation of the MAPK Signaling Pathway en-subtitle= kn-subtitle= en-abstract= kn-abstract=Surface pre-reacted glass-ionomer (S-PRG) is a new bioactive filler utilized for the restoration of decayed teeth by its ability to release six bioactive ions that prevent the adhesion of dental plaque to the tooth surface. Since ionic liquids are reported to facilitate transepithelial penetration, we reasoned that S-PRG applied to root caries could impact the osteoclasts (OCs) in the proximal alveolar bone. Therefore, this study aimed to investigate the effect of S-PRG eluate solution on RANKL-induced OC-genesis and mineral dissolution in vitro. Using RAW264.7 cells as OC precursor cells (OPCs), TRAP staining and pit formation assays were conducted to monitor OC-genesis and mineral dissolution, respectively, while OC-genesis-associated gene expression was measured using quantitative real-time PCR (qPCR). Expression of NFATc1, a master regulator of OC differentiation, and the phosphorylation of MAPK signaling molecules were measured using Western blotting. S-PRG eluate dilutions at 1/200 and 1/400 showed no cytotoxicity to RAW264.7 cells but did significantly suppress both OC-genesis and mineral dissolution. The same concentrations of S-PRG eluate downregulated the RANKL-mediated induction of OCSTAMP and CATK mRNAs, as well as the expression of NFATc1 protein and the phosphorylation of ERK, JNK, and p38. These results demonstrate that S-PRG eluate can downregulate RANKL-induced OC-genesis and mineral dissolution, suggesting that its application to root caries might prevent alveolar bone resorption. en-copyright= kn-copyright= en-aut-name=ChandraJanaki en-aut-sei=Chandra en-aut-mei=Janaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraShin en-aut-sei=Nakamura en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShindoSatoru en-aut-sei=Shindo en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=LeonElizabeth en-aut-sei=Leon en-aut-mei=Elizabeth kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=CastellonMaria en-aut-sei=Castellon en-aut-mei=Maria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=PastoreMaria Rita en-aut-sei=Pastore en-aut-mei=Maria Rita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HeidariAlireza en-aut-sei=Heidari en-aut-mei=Alireza kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WitekLukasz en-aut-sei=Witek en-aut-mei=Lukasz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=CoelhoPaulo G. en-aut-sei=Coelho en-aut-mei=Paulo G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakatsukaToshiyuki en-aut-sei=Nakatsuka en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KawaiToshihisa en-aut-sei=Kawai en-aut-mei=Toshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=2 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=4 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=5 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=6 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=7 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=8 en-affil=Biomaterials Division, NYU Dentistry kn-affil= affil-num=9 en-affil=Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami kn-affil= affil-num=10 en-affil=R&D Department, Shofu Inc. kn-affil= affil-num=11 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= en-keyword=S-PRG kn-keyword=S-PRG en-keyword=osteoclast kn-keyword=osteoclast en-keyword=hydroxyapatite kn-keyword=hydroxyapatite en-keyword=TRAP staining kn-keyword=TRAP staining en-keyword=bioactive filler kn-keyword=bioactive filler END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=1 article-no= start-page=2398895 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surrogate-Assisted Multi-Objective Optimization for Simultaneous Three-Dimensional Packing and Motion Planning Problems Using the Sequence-Triple Representation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Packing problems are classical optimization problems with wide-ranging applications. With the advancement of robotic manipulation, there are growing demands for the automation of packing tasks. However, the simultaneous optimization of packing and the robot's motion planning is challenging because these two decisions are interconnected, and no previous study has addressed this optimization problem. This paper presents a framework to simultaneously determine the robot's motion planning and packing decision to minimize the robot's processing time and the container's volume. This framework comprises three key components: solution encoding, surrogate modeling, and evolutionary computation. The sequence-triple representation encodes complex packing solutions by a sequence of integers. A surrogate model is trained to predict the processing time for a given packing solution to reduce the computational burden. Training data is generated by solving the motion planning problem for a set of packing solutions using the rapidly exploring random tree algorithm. The Non-Dominated Sorting Genetic Algorithm II searches for the Pareto solutions. Experimental evaluations are conducted using a 6-DOF robot manipulator. The experimental results suggest that implementing the surrogate model can reduce the computational time by 91.1%. The proposed surrogate-assisted optimization method can obtain significantly better solutions than the joint angular velocity-based estimation method. en-copyright= kn-copyright= en-aut-name=LiuZiang en-aut-sei=Liu en-aut-mei=Ziang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawabeTomoya en-aut-sei=Kawabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsushi en-aut-sei=Nishi en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoShun en-aut-sei=Ito en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraTomofumi en-aut-sei=Fujiwara en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Packing problem kn-keyword=Packing problem en-keyword=sequence-triple kn-keyword=sequence-triple en-keyword=motion planning kn-keyword=motion planning en-keyword=surrogate model kn-keyword=surrogate model en-keyword=multi-objective optimization kn-keyword=multi-objective optimization END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=8 article-no= start-page=464 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Image-Based User Interface Testing Method for Flutter Programming Learning Assistant System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Flutter has become popular for providing a uniform development environment for user interfaces (UIs) on smart phones, web browsers, and desktop applications. We have developed the Flutter programming learning assistant system (FPLAS) to assist its novice students' self-study. We implemented the Docker-based Flutter environment with Visual Studio Code and three introductory exercise projects. However, the correctness of students' answers is manually checked, although automatic checking is necessary to reduce teachers' workload and provide quick responses to students. This paper presents an image-based user interface (UI) testing method to automate UI testing by the answer code using the Flask framework. This method produces the UI image by running the answer code and compares it with the image made by the model code for the assignment using ORB and SIFT algorithms in the OpenCV library. One notable aspect is the necessity to capture multiple UI screenshots through page transitions by user input actions for the accurate detection of changes in UI elements. For evaluations, we assigned five Flutter exercise projects to fourth-year bachelor and first-year master engineering students at Okayama University, Japan, and applied the proposed method to their answers. The results confirm the effectiveness of the proposal. en-copyright= kn-copyright= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AungLynn Htet en-aut-sei=Aung en-aut-mei=Lynn Htet kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinariSafira Adine en-aut-sei=Kinari en-aut-mei=Safira Adine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WaiKhaing Hsu en-aut-sei=Wai en-aut-mei=Khaing Hsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MentariMustika en-aut-sei=Mentari en-aut-mei=Mustika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=6 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=Flutter kn-keyword=Flutter en-keyword=FPLAS kn-keyword=FPLAS en-keyword=testing kn-keyword=testing en-keyword=image kn-keyword=image en-keyword=Flask kn-keyword=Flask en-keyword=OpenCV kn-keyword=OpenCV en-keyword=user interface kn-keyword=user interface END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=16 article-no= start-page=9038 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240820 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quercetin Attenuates Acetaldehyde-Induced Cytotoxicity via the Heme Oxygenase-1-Dependent Antioxidant Mechanism in Hepatocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is still unclear whether or how quercetin influences the toxic events induced by acetaldehyde in hepatocytes, though quercetin has been reported to mitigate alcohol-induced mouse liver injury. In this study, we evaluated the modulating effect of quercetin on the cytotoxicity induced by acetaldehyde in mouse hepatoma Hepa1c1c7 cells, the frequently used cellular hepatocyte model. The pretreatment with quercetin significantly inhibited the cytotoxicity induced by acetaldehyde. The treatment with quercetin itself had an ability to enhance the total ALDH activity, as well as the ALDH1A1 and ALDH3A1 gene expressions. The acetaldehyde treatment significantly enhanced the intracellular reactive oxygen species (ROS) level, whereas the quercetin pretreatment dose-dependently inhibited it. Accordingly, the treatment with quercetin itself significantly up-regulated the representative intracellular antioxidant-related gene expressions, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase, catalytic subunit (GCLC), and cystine/glutamate exchanger (xCT), that coincided with the enhancement of the total intracellular glutathione (GSH) level. Tin protoporphyrin IX (SNPP), a typical HO-1 inhibitor, restored the quercetin-induced reduction in the intracellular ROS level, whereas buthionine sulphoximine, a representative GSH biosynthesis inhibitor, did not. SNPP also cancelled the quercetin-induced cytoprotection against acetaldehyde. These results suggest that the low-molecular-weight antioxidants produced by the HO-1 enzymatic reaction are mainly attributable to quercetin-induced cytoprotection. en-copyright= kn-copyright= en-aut-name=LiKexin en-aut-sei=Li en-aut-mei=Kexin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KidawaraMinori en-aut-sei=Kidawara en-aut-mei=Minori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChenQiguang en-aut-sei=Chen en-aut-mei=Qiguang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MunemasaShintaro en-aut-sei=Munemasa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraToshiyuki en-aut-sei=Nakamura en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=quercetin kn-keyword=quercetin en-keyword=acetaldehyde kn-keyword=acetaldehyde en-keyword=glutathione kn-keyword=glutathione en-keyword=aldehyde dehydrogenase kn-keyword=aldehyde dehydrogenase en-keyword=heme oxygenase-1 kn-keyword=heme oxygenase-1 END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=14543 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240624 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cervical spinal cord stimulation exerts anti-epileptic effects in a rat model of epileptic seizure through the suppression of CCL2-mediated cascades en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epidural spinal cord stimulation (SCS) is indicated for the treatment of intractable pain and is widely used in clinical practice. In previous basic research, the therapeutic effects of SCS have been demonstrated for epileptic seizure. However, the mechanism has not yet been elucidated. In this study, we investigated the therapeutic effect of SCS and the influence of epileptic seizure. First, SCS in the cervical spine was performed. The rats were divided into four groups: control group and treatment groups with SCS conducted at 2, 50, and 300 Hz frequency. Two days later, convulsions were induced by the intraperitoneal administration of kainic acid, followed by video monitoring to assess seizures. We also evaluated glial cells in the hippocampus by fluorescent immunostaining, electroencephalogram measurements, and inflammatory cytokines such as C-C motif chemokine ligand 2 (CCL2) by quantitative real-time polymerase chain reaction. Seizure frequency and the number of glial cells were significantly lower in the 300 Hz group than in the control group. SCS at 300 Hz decreased gene expression level of CCL2, which induces monocyte migration. SCS has anti-seizure effects by inhibiting CCL2-mediated cascades. The suppression of CCL2 and glial cells may be associated with the suppression of epileptic seizure. en-copyright= kn-copyright= en-aut-name=OkazakiYosuke en-aut-sei=Okazaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiTatsuya en-aut-sei=Sasaki en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HosomotoKakeru en-aut-sei=Hosomoto en-aut-mei=Kakeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanimotoShun en-aut-sei=Tanimoto en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawaiKoji en-aut-sei=Kawai en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagaseTakayuki en-aut-sei=Nagase en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YabunoSatoru en-aut-sei=Yabuno en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KinKyohei en-aut-sei=Kin en-aut-mei=Kyohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TanakaShota en-aut-sei=Tanaka en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurosurgery, Kure Kyosai Hospital kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Neurosurgery, Okayama Rosai Hospital kn-affil= en-keyword=Epileptic seizure kn-keyword=Epileptic seizure en-keyword=Glial cells kn-keyword=Glial cells en-keyword=Spinal cord stimulation kn-keyword=Spinal cord stimulation en-keyword=C-C motif chemokine ligand 2 kn-keyword=C-C motif chemokine ligand 2 END start-ver=1.4 cd-journal=joma no-vol=115 cd-vols= no-issue=11 article-no= start-page=3695 end-page=3704 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-quality expert annotations enhance artificial intelligence model accuracy for osteosarcoma X-ray diagnosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Primary malignant bone tumors, such as osteosarcoma, significantly affect the pediatric and young adult populations, necessitating early diagnosis for effective treatment. This study developed a high-performance artificial intelligence (AI) model to detect osteosarcoma from X-ray images using highly accurate annotated data to improve diagnostic accuracy at initial consultations. Traditional models trained on unannotated data have shown limited success, with sensitivities of approximately 60%–70%. In contrast, our model used a data-centric approach with annotations from an experienced oncologist, achieving a sensitivity of 95.52%, specificity of 96.21%, and an area under the curve of 0.989. The model was trained using 468 X-ray images from 31 osteosarcoma cases and 378 normal knee images with a strategy to maximize diversity in the training and validation sets. It was evaluated using an independent dataset of 268 osteosarcoma and 554 normal knee images to ensure generalizability. By applying the U-net architecture and advanced image processing techniques such as renormalization and affine transformations, our AI model outperforms existing models, reducing missed diagnoses and enhancing patient outcomes by facilitating earlier treatment. This study highlights the importance of high-quality training data and advocates a shift towards data-centric AI development in medical imaging. These insights can be extended to other rare cancers and diseases, underscoring the potential of AI in transforming diagnostic processes in oncology. The integration of this AI model into clinical workflows could support physicians in early osteosarcoma detection, thereby improving diagnostic accuracy and patient care. en-copyright= kn-copyright= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OtsukaYujiro en-aut-sei=Otsuka en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraYusuke en-aut-sei=Nakamura en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HironariTamiya en-aut-sei=Hironari en-aut-mei=Tamiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KaharaNaoaki en-aut-sei=Kahara en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MiwaShinji en-aut-sei=Miwa en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OhshikaShusa en-aut-sei=Ohshika en-aut-mei=Shusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NishimuraShunji en-aut-sei=Nishimura en-aut-mei=Shunji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IkutaKunihiro en-aut-sei=Ikuta en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OsakiShuhei en-aut-sei=Osaki en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshidaAki en-aut-sei=Yoshida en-aut-mei=Aki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Radiology, Juntendo University School of Medicine kn-affil= affil-num=4 en-affil=Department of Radiology, Juntendo University School of Medicine kn-affil= affil-num=5 en-affil=Department of Musculoskeletal Oncology Service, Osaka International Cancer Institute kn-affil= affil-num=6 en-affil=Department of Orthopedic Surgery, Mizushima Central Hospital kn-affil= affil-num=7 en-affil= Department of Orthopedic Surgery, Kanazawa University Graduate School of Medical Sciences kn-affil= affil-num=8 en-affil=Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine kn-affil= affil-num=9 en-affil=Department of Orthopedic Surgery, Kindai University Hospital kn-affil= affil-num=10 en-affil=Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Musculoskeletal Oncology, National Cancer Center Hospital kn-affil= affil-num=12 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=artificial intelligence kn-keyword=artificial intelligence en-keyword=clinical decision support kn-keyword=clinical decision support en-keyword=diagnostic imaging kn-keyword=diagnostic imaging en-keyword=image annotation kn-keyword=image annotation en-keyword=osteosarcoma detection kn-keyword=osteosarcoma detection END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue=4 article-no= start-page=583 end-page=595 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231204 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Estimation of the Effects of Achilles Tendon Geometry on the Magnitude and Distribution of Local Strain: A Finite Element Analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated the influence of Achilles tendon (AT) geometry on local-strain magnitude and distribution during loading, using finite element analysis. We calculated the following eight AT parameters for 18 healthy men: thickness and width of the most distal part, minimum cross-sectional area (mCSA), and most proximal part; length; and position of the mCSA. To investigate the effect of AT geometry on the magnitude and distribution of local strain, we created three-dimensional numerical models by changing the AT parameter values for every one standard deviation (SD) in the range of ±2 SD. A 4000 N lengthening force was applied to the proximal surface of all the models. The mean first principal strain (FPS) was determined every 3% of the length. The highest FPS in each model was mainly observed in the proximal regions; the 86–89% site (the most proximal site was set at 100%) had the highest number of models with the highest FPS (nine models). The highest FPS was observed in the model with a distal thickness of −2 SD, which was 27.1% higher than that of the standard model observed in the 2–5% site. Therefore, the AT geometry influences local-strain magnitude and distribution during loading. en-copyright= kn-copyright= en-aut-name=EnomotoShota en-aut-sei=Enomoto en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OdaToshiaki en-aut-sei=Oda en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Institute for Promotion of Education and Campus Life, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Education, Hyogo University of Teacher Education kn-affil= en-keyword=computational model kn-keyword=computational model en-keyword=Mooney-Rivlin model kn-keyword=Mooney-Rivlin model en-keyword=soft tissue kn-keyword=soft tissue END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=5 article-no= start-page=897 end-page=900 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A randomized, open-label phase II study on the preventive effect of goshajinkigan against peripheral neuropathy induced by paclitaxel-containing chemotherapy: The OLCSG2101 study protocol en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Paclitaxel (PTX) is an essential cytotoxic anticancer agent and a standard treatment regimen component for various malignant tumors, including advanced unresectable non-small cell lung cancer, thymic cancer, and primary unknown cancers. However, chemotherapy-induced peripheral neuropathy (CIPN) caused by PTX is a significant adverse event that may lead to chemotherapy discontinuation and deterioration of the quality of life (QOL). Although treatment modalities such as goshajinkigan (GJG), pregabalin, and duloxetine are empirically utilized for CIPN, there is no established evidence for an agent as a preventive measure. We designed a randomized phase II trial (OLCSG2101) to investigate whether prophylactic GJG administration can prevent the onset of CIPN induced by PTX.
Methods: This study was designed as a two-arm, prospective, randomized, multicenter phase II trial. The patients will be randomly assigned to either the GJG prophylaxis arm (Arm A) or the GJG non-prophylaxis arm (Arm B), using cancer type (lung cancer or not) and age (<70 years or not) as adjustment factors. A total of 66 patients (33 in each arm) will be enrolled.
Discussion: The results of this study may contribute to better management of CIPN, which can enable the continuation of chemotherapy and maintenance of the patient's QOL.
Ethics and dissemination: Ethical approval was obtained from the certified review board of Okayama University (approval no. CRB21-005) on September 28, 2021. Results will be published in peer-reviewed journals and presented at national and international conferences.
Trial registration: Japan Registry of Clinical Trials (registration number jRCTs061210047). en-copyright= kn-copyright= en-aut-name=NakamuraNaoki en-aut-sei=Nakamura en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakimotoGo en-aut-sei=Makimoto en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTakaaki en-aut-sei=Tanaka en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatoYuka en-aut-sei=Kato en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OzeIsao en-aut-sei=Oze en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KozukiToshiyuki en-aut-sei=Kozuki en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokoyamaToshihide en-aut-sei=Yokoyama en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IchikawaHirohisa en-aut-sei=Ichikawa en-aut-mei=Hirohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KuyamaShoichi en-aut-sei=Kuyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HaraNaofumi en-aut-sei=Hara en-aut-mei=Naofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaedaYoshinobu en-aut-sei=Maeda en-aut-mei=Yoshinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HottaKatsuyuki en-aut-sei=Hotta en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Center of Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute kn-affil= affil-num=6 en-affil=Department of Respiratory Medicine, Shikoku Cancer Center kn-affil= affil-num=7 en-affil=Department of Respiratory Medicine, Kurashiki Central Hospital kn-affil= affil-num=8 en-affil=Department of Respiratory Medicine, KKR Takamatsu Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, Iwakuni Clinical Center kn-affil= affil-num=10 en-affil=Department of Respiratory Medicine, Okayama Rosai Hospital kn-affil= affil-num=11 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Center of Innovative Clinical Medicine, Okayama University Hospital kn-affil= en-keyword=Kampo kn-keyword=Kampo en-keyword=CIPN kn-keyword=CIPN en-keyword=prophylaxis kn-keyword=prophylaxis en-keyword=neuropathy kn-keyword=neuropathy en-keyword=taxane kn-keyword=taxane END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=18063 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Human heart-on-a-chip microphysiological system comprising endothelial cells, fibroblasts, and iPSC-derived cardiomyocytes en-subtitle= kn-subtitle= en-abstract= kn-abstract=In recent years, research on organ-on-a-chip technology has been flourishing, particularly for drug screening and disease model development. Fibroblasts and vascular endothelial cells engage in crosstalk through paracrine signaling and direct cell-cell contact, which is essential for the normal development and function of the heart. Therefore, to faithfully recapitulate cardiac function, it is imperative to incorporate fibroblasts and vascular endothelial cells into a heart-on-a-chip model. Here, we report the development of a human heart-on-a-chip composed of induced pluripotent stem cell (iPSC)-derived cardiomyocytes, fibroblasts, and vascular endothelial cells. Vascular endothelial cells cultured on microfluidic channels responded to the flow of culture medium mimicking blood flow by orienting themselves parallel to the flow direction, akin to in vivo vascular alignment in response to blood flow. Furthermore, the flow of culture medium promoted integrity among vascular endothelial cells, as evidenced by CD31 staining and lower apparent permeability. The tri-culture condition of iPSC-derived cardiomyocytes, fibroblasts, and vascular endothelial cells resulted in higher expression of the ventricular cardiomyocyte marker IRX4 and increased contractility compared to the bi-culture condition with iPSC-derived cardiomyocytes and fibroblasts alone. Such tri-culture-derived cardiac tissues exhibited cardiac responses similar to in vivo hearts, including an increase in heart rate upon noradrenaline administration. In summary, we have achieved the development of a heart-on-a-chip composed of cardiomyocytes, fibroblasts, and vascular endothelial cells that mimics in vivo cardiac behavior. en-copyright= kn-copyright= en-aut-name=LiuYun en-aut-sei=Liu en-aut-mei=Yun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KamranRumaisa en-aut-sei=Kamran en-aut-mei=Rumaisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HanXiaoxia en-aut-sei=Han en-aut-mei=Xiaoxia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangMengxue en-aut-sei=Wang en-aut-mei=Mengxue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiQiang en-aut-sei=Li en-aut-mei=Qiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LaiDaoyue en-aut-sei=Lai en-aut-mei=Daoyue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiKen en-aut-sei=Takahashi en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Induced pluripotent stem cells kn-keyword=Induced pluripotent stem cells en-keyword=Fibroblasts kn-keyword=Fibroblasts en-keyword=Endothelial cells kn-keyword=Endothelial cells en-keyword=Heart kn-keyword=Heart en-keyword=Heart-on-a-chip kn-keyword=Heart-on-a-chip en-keyword=Organ-on-a-chip kn-keyword=Organ-on-a-chip END start-ver=1.4 cd-journal=joma no-vol=136 cd-vols= no-issue=2 article-no= start-page=51 end-page=53 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=The 2023 Incentive Award of the Okayama Medical Association in Neuroscience (2023 Niimi Prize) kn-title=令和5年度岡山医学会賞 脳神経研究奨励賞(新見賞) en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YabunoSatoru en-aut-sei=Yabuno en-aut-mei=Satoru kn-aut-name=藪野諭 kn-aut-sei=藪野 kn-aut-mei=諭 aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil=岡山大学大学院医歯薬学総合研究科 脳神経外科学 END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue= article-no= start-page=1329162 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency.
Methods: A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed.
Results and discussion: Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC. en-copyright= kn-copyright= en-aut-name=SumiTomonari en-aut-sei=Sumi en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaradaKouji en-aut-sei=Harada en-aut-mei=Kouji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Computer Science and Engineering, Toyohashi University of Technology kn-affil= en-keyword=post-acute sequelae of SARS-CoV-2 infection kn-keyword=post-acute sequelae of SARS-CoV-2 infection en-keyword=PASC kn-keyword=PASC en-keyword=long Covid kn-keyword=long Covid en-keyword=persistent viruses kn-keyword=persistent viruses en-keyword=vaccine kn-keyword=vaccine en-keyword=antiviral drug kn-keyword=antiviral drug en-keyword=mathematical model kn-keyword=mathematical model en-keyword=immune response kn-keyword=immune response END start-ver=1.4 cd-journal=joma no-vol=115 cd-vols= no-issue=10 article-no= start-page=3231 end-page=3247 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Overcoming immunotherapy resistance and inducing abscopal effects with boron neutron immunotherapy (B-NIT) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) are effective against many advanced malignancies. However, many patients are nonresponders to immunotherapy, and overcoming this resistance to treatment is important. Boron neutron capture therapy (BNCT) is a local chemoradiation therapy with the combination of boron drugs that accumulate selectively in cancer and the neutron irradiation of the cancer site. Here, we report the first boron neutron immunotherapy (B-NIT), combining BNCT and ICI immunotherapy, which was performed on a radioresistant and immunotherapy-resistant advanced-stage B16F10 melanoma mouse model. The BNCT group showed localized tumor suppression, but the anti-PD-1 antibody immunotherapy group did not show tumor suppression. Only the B-NIT group showed strong tumor growth inhibition at both BNCT-treated and shielded distant sites. Intratumoral CD8+ T-cell infiltration and serum high mobility group box 1 (HMGB1) levels were higher in the B-NIT group. Analysis of CD8(+) T cells in tumor-infiltrating lymphocytes (TILs) showed that CD62L- CD44(+) effector memory T cells and CD69(+) early-activated T cells were predominantly increased in the B-NIT group. Administration of CD8-depleting mAb to the B-NIT group completely suppressed the augmented therapeutic effects. This indicated that B-NIT has a potent immune-induced abscopal effect, directly destroying tumors with BNCT, inducing antigen-spreading effects, and protecting normal tissue. B-NIT, immunotherapy combined with BNCT, is the first treatment to overcome immunotherapy resistance in malignant melanoma. In the future, as its therapeutic efficacy is demonstrated not only in melanoma but also in other immunotherapy-resistant malignancies, B-NIT can become a new treatment candidate for advanced-stage cancers. en-copyright= kn-copyright= en-aut-name=FujimotoTakuya en-aut-sei=Fujimoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamasakiOsamu en-aut-sei=Yamasaki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanehiraNoriyuki en-aut-sei=Kanehira en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsushitaHirokazu en-aut-sei=Matsushita en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakuraiYoshinori en-aut-sei=Sakurai en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KenmotsuNaoya en-aut-sei=Kenmotsu en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MizutaRyo en-aut-sei=Mizuta en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KondoNatsuko en-aut-sei=Kondo en-aut-mei=Natsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakataTakushi en-aut-sei=Takata en-aut-mei=Takushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KitamatsuMizuki en-aut-sei=Kitamatsu en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IgawaKazuyo en-aut-sei=Igawa en-aut-mei=Kazuyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujimuraAtsushi en-aut-sei=Fujimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OtaniYoshihiro en-aut-sei=Otani en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ShirakawaMakoto en-aut-sei=Shirakawa en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuzukiMinoru en-aut-sei=Suzuki en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MichiueHiroyuki en-aut-sei=Michiue en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute kn-affil= affil-num=5 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=9 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=10 en-affil=Faculty of Science and Engineering, Kindai University kn-affil= affil-num=11 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=12 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=13 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= affil-num=15 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=19 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Neutron Therapy Research Center, Okayama University kn-affil= en-keyword=abscopal effect kn-keyword=abscopal effect en-keyword=advanced melanoma kn-keyword=advanced melanoma en-keyword=boron neutron capture therapy kn-keyword=boron neutron capture therapy en-keyword=boron-neutron immunotherapy kn-keyword=boron-neutron immunotherapy en-keyword=immune combination therapy kn-keyword=immune combination therapy END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=21 article-no= start-page=126156 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Kinetics of SARS-CoV-2 antibody titers after booster vaccinations during an Omicron surge in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Despite the emergence of SARS-CoV-2 variants and waning immunity after initial vaccination, data on antibody kinetics following booster doses, particularly those adapted to Omicron subvariants like XBB.1.5, remain limited. This study assesses the kinetics of anti-spike protein receptor-binding domain (S-RBD) IgG antibody titers post-booster vaccination in a Japanese population during the Omicron variant epidemic.
Methods: A prospective cohort study was conducted in Bizen City, Japan, from November 2023 to January 2024. Participants included residents and workers aged ≥18 years, with at least three COVID-19 vaccinations. Antibody levels were measured from venous blood samples. The study analyzed 424 participants and 821 antibody measurements, adjusting for variables such as age, sex, underlying conditions, and prior infection status. Mixed-effects models were employed to describe the kinetics of log-transformed S-RBD antibody titers.
Results: The study found that S-RBD antibody titers declined over time but increased with the number of booster vaccinations, particularly those adapted to Omicron and its subvariant XBB.1.5 (Pfizer-BioNTech Omicron-compatible: 0.156, 95%CI −0.032 to 0.344; Pfizer-BioNTech XBB-compatible: 0.226; 95%CI −0.051 to 0.504; Moderna Omicron-compatible: 0.279, 95%CI 0.012 to 0.546; and Moderna XBB-compatible: 0.338, 95%CI −0.052 to 0.728). Previously infected individuals maintained higher antibody titers, which declined more gradually compared to uninfected individuals (coefficient for interaction with time 0.006; 95%CI 0.001 to 0.011). Sensitivity analyses using Generalized Estimating Equations and interval-censored random intercept model confirmed the robustness of these findings.
Conclusions: The study provides specific data on antibody kinetics post-booster vaccination, including the XBB.1.5-adapted vaccine, in a highly vaccinated Japanese population. The results highlight the importance of considering individual demographics and prior infection history in optimizing vaccination strategies. en-copyright= kn-copyright= en-aut-name=MatsumotoNaomi en-aut-sei=Matsumoto en-aut-mei=Naomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiAyako en-aut-sei=Sasaki en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KadowakiTomoka en-aut-sei=Kadowaki en-aut-mei=Tomoka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaoSoshi en-aut-sei=Takao en-aut-mei=Soshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YorifujiTakashi en-aut-sei=Yorifuji en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=SARS-CoV-2 kn-keyword=SARS-CoV-2 en-keyword=Vaccine kn-keyword=Vaccine en-keyword=Antibody kn-keyword=Antibody en-keyword=Mixed-effects model kn-keyword=Mixed-effects model en-keyword=Omicron kn-keyword=Omicron END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=323 end-page=330 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Recipient Age on Perioperative Complications after Pediatric Liver Transplantation: A Single-Center Retrospective Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=It has not been clear how recipient age affects the incidence of serious complications after pediatric living donor liver transplantation (LDLT). We investigated the records of 42 pediatric patients receiving LDLT, dividing our sample into two groups: the infant group (aged < 1 year) and the non-infant group (aged ≥ 1 year and ≤15 years). The primary outcome was postoperative complications assessed using the Clavien-Dindo classification. Multivariate analysis using the Cox regression model was applied to adjust for confounding factors in assessing the incidence of Clavien-Dindo grade ≥ III (C-D ≥ III) complications. The incidence of C-D ≥ III complications was higher in the non-infant group (46.2%) than in the infant group (12.5%) (odds ratio 6.00, 95% confidence interval [CI] 1.13-31.88, p=0.03). In multivariate analysis using the Cox regression model, the Graft-to-Recipient Weight Ratio (GRWR) was independently associated with the incidence of C-D ≥ III complications (hazard ratio [HR] 0.62, 95%CI 0.40-0.95, p=0.03), but being an infant was not (HR 0.84, 95%CI 0.35-1.98, p=0.68). In conclusion, the incidence of C-D ≥ III complications was higher in the non-infant group than in the infant group, but this was largely a function of GRWR: multivariate analysis revealed that GRWR was independently associated with complications. en-copyright= kn-copyright= en-aut-name=KatayamaAkira en-aut-sei=Katayama en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimuraSatoshi en-aut-sei=Kimura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsusakiTakashi en-aut-sei=Matsusaki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesia, Kyoto University Hospital kn-affil= affil-num=3 en-affil=Department of Anesthesiology, Mie University Hospital kn-affil= affil-num=4 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=pediatric liver transplantation kn-keyword=pediatric liver transplantation en-keyword=postoperative severe complications kn-keyword=postoperative severe complications en-keyword=Graft-to-Recipient Weight Ratio kn-keyword=Graft-to-Recipient Weight Ratio END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=4 article-no= start-page=313 end-page=322 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multicenter Remote-Access Simulation of Vaginal Delivery for High-Flexibility Medical Education during the Coronavirus Pandemic en-subtitle= kn-subtitle= en-abstract= kn-abstract=During the coronavirus pandemic, face-to-face simulation education became impossible. Therefore, we aimed to develop remote-access simulation education with a sense of realism through Information and Communication Technology (ICT) using a perinatal whole-body management and delivery simulator. In September 2021, we administered a multi-center simultaneous remote simulation based on our developed model. Ten universities in the Chugoku–Shikoku region were connected via a web-conferencing system to a live broadcast of a virtual vaginal birth in which a fictional hospitalized pregnant woman experienced accelerated labor and gave birth through vacuum delivery for fetal distress. A Video on Demand (VOD) was made beforehand using a new simulator that allowed for a visual understanding of the process of the inter-vaginal examination. We provided a participatory program that enhanced the sense of realism by combining VOD and real-time lectures on each scenario, with two-way communication between participants and trainee doctors using a chat function. Most participants answered “satisfied” or “very satisfied” with the content, level of difficulty, and level of understanding. From November 2021, we have used the videos of all processes in face-to-face classes. Our construction of a high-flexibility education system using remote simulation in the field of obstetrics and gynecology, especially in the vaginal delivery module, is unique, creative, and sustainable. en-copyright= kn-copyright= en-aut-name=EtoEriko en-aut-sei=Eto en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiJota en-aut-sei=Maki en-aut-mei=Jota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamashitaNoriyuki en-aut-sei=Yamashita en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HasegawaToru en-aut-sei=Hasegawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuemoriAyano en-aut-sei=Suemori en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakatoHikari en-aut-sei=Nakato en-aut-mei=Hikari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ObaHikaru en-aut-sei=Oba en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MitomaTomohiro en-aut-sei=Mitoma en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MishimaSakurako en-aut-sei=Mishima en-aut-mei=Sakurako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KirinoSatoe en-aut-sei=Kirino en-aut-mei=Satoe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OhiraAkiko en-aut-sei=Ohira en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MasuyamaHisashi en-aut-sei=Masuyama en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Center for Education in Medicine and Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=remote simulator education kn-keyword=remote simulator education en-keyword=perinatal simulator kn-keyword=perinatal simulator en-keyword=information and communication technology kn-keyword=information and communication technology en-keyword=high-flexibility education kn-keyword=high-flexibility education END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=zbae092 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240716 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cytosolic acidification and oxidation are the toxic mechanisms of SO2 in Arabidopsis guard cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=SO2/H2SO3 can damage plants. However, its toxic mechanism has still been controversial. Two models have been proposed, cytosolic acidification model and cellular oxidation model. Here, we assessed the toxic mechanism of H2SO3 in three cell types of Arabidopsis thaliana, mesophyll cells, guard cells (GCs), and petal cells. The sensitivity of GCs of Chloride channel a (CLCa)-knockout mutants to H2SO3 was significantly lower than those of wildtype plants. Expression of other CLC genes in mesophyll cells and petal cells were different from GCs. Treatment with antioxidant, disodium 4,5-dihydroxy-1,3-benzenedisulfonate (tiron), increased the median lethal concentration (LC50) of H2SO3 in GCs indicating the involvement of cellular oxidation, while the effect was negligible in mesophyll cells and petal cells. These results indicate that there are two toxic mechanisms of SO2 to Arabidopsis cells: cytosolic acidification and cellular oxidation, and the toxic mechanism may vary among cell types. en-copyright= kn-copyright= en-aut-name=MozhganiMahdi en-aut-sei=Mozhgani en-aut-mei=Mahdi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OoiLia en-aut-sei=Ooi en-aut-mei=Lia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=EspagneChristelle en-aut-sei=Espagne en-aut-mei=Christelle kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FilleurSophie en-aut-sei=Filleur en-aut-mei=Sophie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoriIzumi C en-aut-sei=Mori en-aut-mei=Izumi C kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) kn-affil= affil-num=4 en-affil=Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=cytosolic acidification kn-keyword=cytosolic acidification en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=cellular oxidation kn-keyword=cellular oxidation en-keyword=chloride channel a kn-keyword=chloride channel a en-keyword=sulfur dioxide kn-keyword=sulfur dioxide END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=6 article-no= start-page=4019 end-page=4027 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240802 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prognostic value of right atrial function in patients with significant tricuspid regurgitation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aims Although right ventricular (RV) dysfunction is associated with adverse outcomes in tricuspid regurgitation (TR), the potential role of right atrial (RA) function is unknown. We aimed to investigate the relationship between RA function and clinical outcomes in patients with significant TR.
Methods This retrospective study included 169 outpatients with moderate or severe TR due to left-sided heart diseases who underwent transthoracic echocardiography between June 2020 and April 2023 (average age, 75 ± 10 years; male, 40%). Patients with atrial fibrillation were excluded from this study due to the inaccuracy of the evaluation using 2D speckle-tracking echocardiography. RA function was compared between patients with and without events, which were defined as all-cause mortality or hospitalization due to heart failure. RA function was calculated as RA global longitudinal strain (RAGLS) with the 2D speckle-tracking echocardiography.
Results During a median follow-up of 13 months, 19 patients had events (all-cause mortality: 14 cases, hospitalization due to heart failure: 5 cases). RAGLS was lower in patients with events than in those without events (13% ± 10% vs. 18% ± 9%, P = 0.02). When the patients were categorized into two groups [low RAGLS ≤ 16.2% vs. high RAGLS > 16.2%, high RA volume index (RAVI) ≥ 50 mL/m2 vs. low RAVI < 50 mL/m2], Kaplan–Meier curves showed that patients with low RAGLS had higher event rates than those with high RAGLS (log-rank test, P = 0.003). Patients with high RAVI had higher event rates than those with low RAVI (log-rank test, P < 0.001). In the multivariate Cox regression analysis, low RAGLS (≤16.2%) was significantly associated with events in a model that included RV dysfunction (RV fractional area change ≤ 35%) or high RAVI (≥50 mL/m2) (hazard ratio: 4.55, 95% confidence interval: 1.51–13.71, P < 0.01; hazard ratio: 4.57, 95% confidence interval: 1.52–13.79, P < 0.01, respectively).
Conclusions RAGLS is associated with all-cause mortality and hospitalization due to heart failure in patients with significant TR. Our results suggest that RA function is a sensitive marker for identifying the risk stratification of significant TR. en-copyright= kn-copyright= en-aut-name=NishiharaTakahiro en-aut-sei=Nishihara en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakayamaRie en-aut-sei=Nakayama en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaYu en-aut-sei=Yoshida en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TohNorihisa en-aut-sei=Toh en-aut-mei=Norihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=echocardiography kn-keyword=echocardiography en-keyword=prognosis kn-keyword=prognosis en-keyword=right atrial function kn-keyword=right atrial function en-keyword=tricuspid regurgitation kn-keyword=tricuspid regurgitation END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=17591 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240730 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Training high-performance deep learning classifier for diagnosis in oral cytology using diverse annotations en-subtitle= kn-subtitle= en-abstract= kn-abstract=The uncertainty of true labels in medical images hinders diagnosis owing to the variability across professionals when applying deep learning models. We used deep learning to obtain an optimal convolutional neural network (CNN) by adequately annotating data for oral exfoliative cytology considering labels from multiple oral pathologists. Six whole-slide images were processed using QuPath for segmenting them into tiles. The images were labeled by three oral pathologists, resulting in 14,535 images with the corresponding pathologists' annotations. Data from three pathologists who provided the same diagnosis were labeled as ground truth (GT) and used for testing. We investigated six models trained using the annotations of (1) pathologist A, (2) pathologist B, (3) pathologist C, (4) GT, (5) majority voting, and (6) a probabilistic model. We divided the test by cross-validation per slide dataset and examined the classification performance of the CNN with a ResNet50 baseline. Statistical evaluation was performed repeatedly and independently using every slide 10 times as test data. For the area under the curve, three cases showed the highest values (0.861, 0.955, and 0.991) for the probabilistic model. Regarding accuracy, two cases showed the highest values (0.988 and 0.967). For the models using the pathologists and GT annotations, many slides showed very low accuracy and large variations across tests. Hence, the classifier trained with probabilistic labels provided the optimal CNN for oral exfoliative cytology considering diagnoses from multiple pathologists. These results may lead to trusted medical artificial intelligence solutions that reflect diverse diagnoses of various professionals. en-copyright= kn-copyright= en-aut-name=SukegawaShintaro en-aut-sei=Sukegawa en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaFuta en-aut-sei=Tanaka en-aut-mei=Futa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanoKeisuke en-aut-sei=Nakano en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaraTakeshi en-aut-sei=Hara en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OchiaiTakanaga en-aut-sei=Ochiai en-aut-mei=Takanaga kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimadaKatsumitsu en-aut-sei=Shimada en-aut-mei=Katsumitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=InoueYuta en-aut-sei=Inoue en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakiYoshihiro en-aut-sei=Taki en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakaiFumi en-aut-sei=Nakai en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakaiYasuhiro en-aut-sei=Nakai en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshihamaTakanori en-aut-sei=Ishihama en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MiyazakiRyo en-aut-sei=Miyazaki en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MurakamiSatoshi en-aut-sei=Murakami en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NagatsukaHitoshi en-aut-sei=Nagatsuka en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MiyakeMinoru en-aut-sei=Miyake en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=3 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=5 en-affil=Division of Oral Pathogenesis and Disease Control, Department of Oral Pathology, Asahi University School of Dentistry kn-affil= affil-num=6 en-affil=Department of Oral Pathology, Graduate School of Oral Medicine, Matsumoto Dental University kn-affil= affil-num=7 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=8 en-affil=Department of Electrical, Electronic and Computer Engineering, Faculty of Engineering, Gifu University kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=10 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=11 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=12 en-affil=Stony Brook Cancer Center, Stony Brook University kn-affil= affil-num=13 en-affil=Department of Oral Pathology, Graduate School of Oral Medicine, Matsumoto Dental University kn-affil= affil-num=14 en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Department of Oral and Maxillofacial Surgery, Kagawa University Faculty of Medicine kn-affil= en-keyword=Deep learning kn-keyword=Deep learning en-keyword=Oral cytology kn-keyword=Oral cytology en-keyword=Classification kn-keyword=Classification en-keyword=Convolutional neural network kn-keyword=Convolutional neural network en-keyword=Probabilistic labeling kn-keyword=Probabilistic labeling END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=15 article-no= start-page=2617 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240723 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Utilizing the Metaverse to Provide Innovative Psychosocial Support for Pediatric, Adolescent, and Young Adult Patients with Rare Cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigated the potential of the metaverse in providing psychological support for pediatric and AYA cancer patients, with a focus on those with rare cancers. The research involved ten cancer patients and survivors from four distinct regions in Japan, who participated in metaverse sessions using customizable avatars, facilitating interactions across geographical and temporal barriers. Surveys and qualitative feedback were collected to assess the psychosocial impact of the intervention. The results demonstrated that the metaverse enabled patients to connect with peers, share experiences, and receive emotional support. The anonymity provided by avatars helped reduce appearance-related anxiety and stigma associated with cancer treatment. A case study of a 19-year-old male with spinal Ewing’s sarcoma highlighted the profound emotional relief fostered by metaverse interactions. The findings suggest that integrating virtual spaces into healthcare models can effectively address the unique needs of pediatric and AYA cancer patients, offering a transformative approach to delivering psychosocial support and fostering a global patient community. This innovative intervention has the potential to revolutionize patient care in the digital age. en-copyright= kn-copyright= en-aut-name=HaseiJoe en-aut-sei=Hasei en-aut-mei=Joe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshidaHisashi en-aut-sei=Ishida en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatayamaHideki en-aut-sei=Katayama en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaedaNaoko en-aut-sei=Maeda en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NaganoAkihito en-aut-sei=Nagano en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OchiMotoharu en-aut-sei=Ochi en-aut-mei=Motoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkamuraMasako en-aut-sei=Okamura en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwataShintaro en-aut-sei=Iwata en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkutaKunihiro en-aut-sei=Ikuta en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshidaShinichirou en-aut-sei=Yoshida en-aut-mei=Shinichirou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=FujiwaraTomohiro en-aut-sei=Fujiwara en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakataEiji en-aut-sei=Nakata en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakaharaRyuichi en-aut-sei=Nakahara en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KunisadaToshiyuki en-aut-sei=Kunisada en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OzakiToshifumi en-aut-sei=Ozaki en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Department of Medical Information and Assistive Technology Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Palliative and Supportive Care, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pediatrics, NHO National Hospital Organization Nagoya Medical Center kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Gifu University kn-affil= affil-num=6 en-affil=Department of Pediatrics, Okayama University Hospital kn-affil= affil-num=7 en-affil=Division of Survivorship, Institute for Cancer Control, National Cancer Center kn-affil= affil-num=8 en-affil=Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital kn-affil= affil-num=9 en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University kn-affil= affil-num=10 en-affil=Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University kn-affil= affil-num=11 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=14 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Science of Functional Recovery and Reconstruction, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=virtual reality kn-keyword=virtual reality en-keyword=metaverse kn-keyword=metaverse en-keyword=adolescent and young adult kn-keyword=adolescent and young adult en-keyword=rare cancer kn-keyword=rare cancer en-keyword=mental health kn-keyword=mental health END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=8 article-no= start-page=ziae085 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240704 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Macrophages modulate mesenchymal stem cell function via tumor necrosis factor alpha in tooth extraction model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mesenchymal stem cells (MSCs) and macrophages collaboratively contribute to bone regeneration after injury. However, detailed mechanisms underlying the interaction between MSCs and inflammatory macrophages (M1) remain unclear. A macrophage-depleted tooth extraction model was generated in 5-wk-old female C57BL/6J mice using clodronate liposome (12.5 mg/kg/mouse, intraperitoneally) or saline injection (control) before maxillary first molar extraction. Mice were sacrificed on days 1, 3, 5, 7, and 10 after tooth extraction (n = 4). Regenerated bone volume evaluation of tooth extraction socket (TES) and histochemical analysis of CD80+M1, CD206+M2 (anti-inflammatory macrophages), PDGFRα+MSC, and TNF-α+ cells were performed. In vitro, isolated MSCs with or without TNF-α stimulation (10 ng/mL, 24 h, n = 3) were bulk RNA-sequenced (RNA-Seq) to identify TNF-α stimulation-specific MSC transcriptomes. Day 7 micro-CT and HE staining revealed significantly lower mean bone volume (clodronate vs control: 0.01 mm3 vs 0.02 mm3, p<.0001) and mean percentage of regenerated bone area per total TES in clodronate group (41.97% vs 54.03%, p<.0001). Clodronate group showed significant reduction in mean number of CD80+, TNF-α+, PDGFRα+, and CD80+TNF-α+ cells on day 5 (306.5 vs 558.8, p<.0001; 280.5 vs 543.8, p<.0001; 365.0 vs 633.0, p<.0001, 29.0 vs 42.5, p<.0001), while these cells recovered significantly on day 7 (493.3 vs 396.0, p=.0004; 479.3 vs 384.5, p=.0008; 593.0 vs 473.0, p=.0010, 41.0 vs 32.5, p=.0003). RNA-Seq analysis showed that 15 genes (|log2FC| > 5.0, log2TPM > 5) after TNF-α stimulation were candidates for regulating MSC’s immunomodulatory capacity. In vivo, Clec4e and Gbp6 are involved in inflammation and bone formation. Clec4e, Gbp6, and Cxcl10 knockdown increased osteogenic differentiation of MSCs in vitro. Temporal reduction followed by apparent recovery of TNF-α-producing M1 macrophages and MSCs after temporal macrophage depletion suggests that TNF-α activated MSCs during TES healing. In vitro mimicking the effect of TNF-α on MSCs indicated that there are 15 candidate MSC genes for regulation of immunomodulatory capacity. en-copyright= kn-copyright= en-aut-name=MunAung Ye en-aut-sei=Mun en-aut-mei=Aung Ye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkiyamaKentaro en-aut-sei=Akiyama en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangJiewen en-aut-sei=Zhang en-aut-mei=Jiewen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitagawaWakana en-aut-sei=Kitagawa en-aut-mei=Wakana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KohnoTeisaku en-aut-sei=Kohno en-aut-mei=Teisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TagashiraRyuji en-aut-sei=Tagashira en-aut-mei=Ryuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshibashiKei en-aut-sei=Ishibashi en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsunagaNaoya en-aut-sei=Matsunaga en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ZouTingling en-aut-sei=Zou en-aut-mei=Tingling kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cytokines kn-keyword=cytokines en-keyword=dental biology kn-keyword=dental biology en-keyword=injury healing kn-keyword=injury healing en-keyword=osteoimmunology kn-keyword=osteoimmunology en-keyword=stem cells kn-keyword=stem cells END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=14 article-no= start-page=2700 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Reference Paper Collection System Using Web Scraping en-subtitle= kn-subtitle= en-abstract= kn-abstract=Collecting reference papers from the Internet is one of the most important activities for progressing research and writing papers about their results. Unfortunately, the current process using Google Scholar may not be efficient, since a lot of paper files cannot be accessed directly by the user. Even if they are accessible, their effectiveness needs to be checked manually. In this paper, we propose a reference paper collection system using web scraping to automate paper collections from websites. This system can collect or monitor data from the Internet, which is considered as the environment, using Selenium, a popular web scraping software, as the sensor; this examines the similarity against the search target by comparing the keywords using the Bert model. The Bert model is a deep learning model for natural language processing (NLP) that can understand context by analyzing the relationships between words in a sentence bidirectionally. The Python Flask is adopted at the web application server, where Angular is used for data presentations. For the evaluation, we measured the performance, investigated the accuracy, and asked members of our laboratory to use the proposed method and provide their feedback. Their results confirm the method’s effectiveness. en-copyright= kn-copyright= en-aut-name=NaingInzali en-aut-sei=Naing en-aut-mei=Inzali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WaiKhaing Hsu en-aut-sei=Wai en-aut-mei=Khaing Hsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= en-keyword=web scraping kn-keyword=web scraping en-keyword=Google Scholar kn-keyword=Google Scholar en-keyword=data collection kn-keyword=data collection en-keyword=Bert kn-keyword=Bert en-keyword=Selenium kn-keyword=Selenium en-keyword=flask framework kn-keyword=flask framework en-keyword=Angular kn-keyword=Angular END start-ver=1.4 cd-journal=joma no-vol=39 cd-vols= no-issue=5 article-no= start-page=463 end-page=483 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Detailed Re-Examination of the Period Gene Rescue Experiments Shows That Four to Six Cryptochrome-Positive Posterior Dorsal Clock Neurons (DN1p) of Drosophila melanogaster Can Control Morning and Evening Activity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Animal circadian clocks play a crucial role in regulating behavioral adaptations to daily environmental changes. The fruit fly Drosophila melanogaster exhibits 2 prominent peaks of activity in the morning and evening, known as morning (M) and evening (E) peaks. These peaks are controlled by 2 distinct circadian oscillators located in separate groups of clock neurons in the brain. To investigate the clock neurons responsible for the M and E peaks, a cell-specific gene expression system, the GAL4-UAS system, has been commonly employed. In this study, we re-examined the two-oscillator model for the M and E peaks of Drosophila by utilizing more than 50 Gal4 lines in conjunction with the UAS-period16 line, which enables the restoration of the clock function in specific cells in the period (per) null mutant background. Previous studies have indicated that the group of small ventrolateral neurons (s-LNv) is responsible for controlling the M peak, while the other group, consisting of the 5th ventrolateral neuron (5th LNv) and the three cryptochrome (CRY)-positive dorsolateral neurons (LNd), is responsible for the E peak. Furthermore, the group of posterior dorsal neurons 1 (DN1p) is thought to also contain M and E oscillators. In this study, we found that Gal4 lines directed at the same clock neuron groups can lead to different results, underscoring the fact that activity patterns are influenced by many factors. Nevertheless, we were able to confirm previous findings that the entire network of circadian clock neurons controls M and E peaks, with the lateral neurons playing a dominant role. In addition, we demonstrate that 4 to 6 CRY-positive DN1p cells are sufficient to generate M and E peaks in light-dark cycles and complex free-running rhythms in constant darkness. Ultimately, our detailed screening could serve as a catalog to choose the best Gal4 lines that can be used to rescue per in specific clock neurons. en-copyright= kn-copyright= en-aut-name=SekiguchiManabu en-aut-sei=Sekiguchi en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ReinhardNils en-aut-sei=Reinhard en-aut-mei=Nils kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukudaAyumi en-aut-sei=Fukuda en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatohShun en-aut-sei=Katoh en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RiegerDirk en-aut-sei=Rieger en-aut-mei=Dirk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Helfrich-FörsterCharlotte en-aut-sei=Helfrich-Förster en-aut-mei=Charlotte kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg kn-affil= affil-num=6 en-affil=Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=period kn-keyword=period en-keyword=GAL4-UAS kn-keyword=GAL4-UAS en-keyword=clock neuron kn-keyword=clock neuron en-keyword=activity rhythm kn-keyword=activity rhythm en-keyword=two-oscillator model kn-keyword=two-oscillator model END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=13 article-no= start-page=4293 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optimizing IoT Intrusion Detection Using Balanced Class Distribution, Feature Selection, and Ensemble Machine Learning Techniques en-subtitle= kn-subtitle= en-abstract= kn-abstract=Internet of Things (IoT) devices are leading to advancements in innovation, efficiency, and sustainability across various industries. However, as the number of connected IoT devices increases, the risk of intrusion becomes a major concern in IoT security. To prevent intrusions, it is crucial to implement intrusion detection systems (IDSs) that can detect and prevent such attacks. IDSs are a critical component of cybersecurity infrastructure. They are designed to detect and respond to malicious activities within a network or system. Traditional IDS methods rely on predefined signatures or rules to identify known threats, but these techniques may struggle to detect novel or sophisticated attacks. The implementation of IDSs with machine learning (ML) and deep learning (DL) techniques has been proposed to improve IDSs' ability to detect attacks. This will enhance overall cybersecurity posture and resilience. However, ML and DL techniques face several issues that may impact the models' performance and effectiveness, such as overfitting and the effects of unimportant features on finding meaningful patterns. To ensure better performance and reliability of machine learning models in IDSs when dealing with new and unseen threats, the models need to be optimized. This can be done by addressing overfitting and implementing feature selection. In this paper, we propose a scheme to optimize IoT intrusion detection by using class balancing and feature selection for preprocessing. We evaluated the experiment on the UNSW-NB15 dataset and the NSL-KD dataset by implementing two different ensemble models: one using a support vector machine (SVM) with bagging and another using long short-term memory (LSTM) with stacking. The results of the performance and the confusion matrix show that the LSTM stacking with analysis of variance (ANOVA) feature selection model is a superior model for classifying network attacks. It has remarkable accuracies of 96.92% and 99.77% and overfitting values of 0.33% and 0.04% on the two datasets, respectively. The model's ROC is also shaped with a sharp bend, with AUC values of 0.9665 and 0.9971 for the UNSW-NB15 dataset and the NSL-KD dataset, respectively. en-copyright= kn-copyright= en-aut-name=MusthafaMuhammad Bisri en-aut-sei=Musthafa en-aut-mei=Muhammad Bisri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HudaSamsul en-aut-sei=Huda en-aut-mei=Samsul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KoderaYuta en-aut-sei=Kodera en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AliMd. Arshad en-aut-sei=Ali en-aut-mei=Md. Arshad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ArakiShunsuke en-aut-sei=Araki en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MwauraJedidah en-aut-sei=Mwaura en-aut-mei=Jedidah kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NogamiYasuyuki en-aut-sei=Nogami en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Green Innovation Center, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of CSE, Hajee Mohammad Danesh Science and Technology University kn-affil= affil-num=5 en-affil=Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology kn-affil= affil-num=6 en-affil=Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=intrusion detection system kn-keyword=intrusion detection system en-keyword=feature selection kn-keyword=feature selection en-keyword=class balancing kn-keyword=class balancing en-keyword=ensemble technique kn-keyword=ensemble technique en-keyword=stacked long short-term memory kn-keyword=stacked long short-term memory END start-ver=1.4 cd-journal=joma no-vol=137 cd-vols= no-issue=11 article-no= start-page=jcs261977 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Toxicity of the model protein 3×GFP arises from degradation overload, not from aggregate formation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Although protein aggregation can cause cytotoxicity, such aggregates can also form to mitigate cytotoxicity from misfolded proteins, although the nature of these contrasting aggregates remains unclear. We previously found that overproduction (op) of a three green fluorescent protein-linked protein (3×GFP) induces giant aggregates and is detrimental to growth. Here, we investigated the mechanism of growth inhibition by 3×GFP-op using non-aggregative 3×MOX-op as a control in Saccharomyces cerevisiae. The 3×GFP aggregates were induced by misfolding, and 3×GFP-op had higher cytotoxicity than 3×MOX-op because it perturbed the ubiquitin-proteasome system. Static aggregates formed by 3×GFP-op dynamically trapped Hsp70 family proteins (Ssa1 and Ssa2 in yeast), causing the heat-shock response. Systematic analysis of mutants deficient in the protein quality control suggested that 3×GFP-op did not cause a critical Hsp70 depletion and aggregation functioned in the direction of mitigating toxicity. Artificial trapping of essential cell cycle regulators into 3×GFP aggregates caused abnormalities in the cell cycle. In conclusion, the formation of the giant 3×GFP aggregates itself is not cytotoxic, as it does not entrap and deplete essential proteins. Rather, it is productive, inducing the heat-shock response while preventing an overload to the degradation system. en-copyright= kn-copyright= en-aut-name=NambaShotaro en-aut-sei=Namba en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriyaHisao en-aut-sei=Moriya en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Aggregation kn-keyword=Aggregation en-keyword=Fluorescent protein kn-keyword=Fluorescent protein en-keyword=Hsp70 kn-keyword=Hsp70 en-keyword=Overproduction kn-keyword=Overproduction en-keyword=Toxicity kn-keyword=Toxicity en-keyword=Yeast kn-keyword=Yeast END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=13 article-no= start-page=e34206 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240715 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Resolvin D2-induced reparative dentin and pulp stem cells after pulpotomy in a rat model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Vital pulp therapy (VPT) is performed to preserve dental pulp. However, the biocompatibility of the existing materials is of concern. Therefore, novel materials that can induce pulp healing without adverse effects need to be developed. Resolvin D2 (RvD2), one of specialized pro-resolving mediators, can resolve inflammation and promote the healing of periapical lesions. Therefore, RvD2 may be suitable for use in VPT. In the present study, we evaluated the efficacy of RvD2 against VPT using in vivo and in vitro models.
Methods: First molars of eight-week-old male Sprague–Dawley rats were used for pulpotomy. They were then divided into three treatment groups: RvD2, phosphate-buffered saline, and calcium hydroxide groups. Treatment results were assessed using radiological, histological, and immunohistochemical (GPR18, TNF-α, Ki67, VEGF, TGF-β, CD44, CD90, and TRPA1) analyses. Dental pulp-derived cells were treated with RvD2 in vitro and analyzed using cell-proliferation and cell-migration assays, real-time PCR (Gpr18, Tnf-α, Il-1β, Tgf-β, Vegf, Nanog, and Trpa1), ELISA (VEGF and TGF-β), immunocytochemistry (TRPA1), and flow cytometry (dental pulp stem cells: DPSCs).
Results: The formation of calcified tissue in the pulp was observed in the RvD2 and calcium hydroxide groups. RvD2 inhibited inflammation in dental pulp cells. RvD2 promoted cell proliferation and migration and the expression of TGF-β and VEGF in vitro and in vivo. RvD2 increased the number of DPSCs. In addition, RvD2 suppressed TRPA1 expression as a pain receptor.
Conclusion: RvD2 induced the formation of reparative dentin, anti-inflammatory effects, and decreased pain, along with the proliferation of DPSCs via the expression of VEGF and TGF-β, on the pulp surface in pulpotomy models. en-copyright= kn-copyright= en-aut-name=YonedaMitsuhiro en-aut-sei=Yoneda en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IdeguchiHidetaka en-aut-sei=Ideguchi en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraShin en-aut-sei=Nakamura en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AriasZulema en-aut-sei=Arias en-aut-mei=Zulema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University kn-affil= affil-num=4 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Dental pulp kn-keyword=Dental pulp en-keyword=Regeneration kn-keyword=Regeneration en-keyword=Pulp-capping agents kn-keyword=Pulp-capping agents en-keyword=Specialized pro-resolving mediators kn-keyword=Specialized pro-resolving mediators en-keyword=Resolvin D2 kn-keyword=Resolvin D2 en-keyword=Calcification kn-keyword=Calcification en-keyword=Cytokine kn-keyword=Cytokine en-keyword=TRPA1 kn-keyword=TRPA1 en-keyword=Animal model kn-keyword=Animal model END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=2400078 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240704 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unabsorbed Fecal Fat Content Correlates with a Reduction of Immunoglobulin a Coating of Gut Bacteria in High‐Lard Diet‐Fed Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Scope: Immunoglobulin A (IgA) selectively coats gut bacteria and contributes to regulatory functions in gastrointestinal inflammation and glucose metabolism. Excess intake of lard leads to decrease in the IgA coating of gut bacteria, although the underlying mechanisms remain unknown. This study validates how unabsorbed fat derived from a high-lard diet in the gut affects the IgA coating of bacteria, as assessed in mouse models using three types of dietary fat (lard, medium-, and long-chain triglycerides [MLCTs], and medium-chain triglycerides [MCTs]) exhibiting different digestibilities.
Methods and results: C57BL/6J mice are maintained on diets containing lard, MLCTs, or MCTs at 7% or 30% w/w for 10 weeks (n = 6 per group). The fecal fatty acid concentration is measured to quantify unabsorbed fat content. The ratio of IgA-coated bacteria to total bacteria (IgA coating ratio) in the feces is measured by flow cytometry. Compared to lard-fed mice, MLCT- and MCT-fed mice exhibit lower fecal concentrations of palmitic acid, stearic acid, and oleic acid and higher IgA coating ratios at both 7% and 30% dietary fat, and these parameters exhibit significant negative correlations.
Conclusion: Unabsorbed fat content in the gut may result in attenuated IgA coating of bacteria in high-lard diet-fed mice.
en-copyright= kn-copyright= en-aut-name=KatsumataEmiko en-aut-sei=Katsumata en-aut-mei=Emiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsurutaTakeshi en-aut-sei=Tsuruta en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SonoyamaKei en-aut-sei=Sonoyama en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshidaTakashi en-aut-sei=Yoshida en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SasakiMio en-aut-sei=Sasaki en-aut-mei=Mio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TeraokaMao en-aut-sei=Teraoka en-aut-mei=Mao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WangTianyang en-aut-sei=Wang en-aut-mei=Tianyang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NishinoNaoki en-aut-sei=Nishino en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Research Faculty of Agriculture, Hokkaido University kn-affil= affil-num=4 en-affil=TAIYO YUSHI Corporation kn-affil= affil-num=5 en-affil=TAIYO YUSHI Corporation kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=gut bacteria kn-keyword=gut bacteria en-keyword=immunoglobulin A kn-keyword=immunoglobulin A en-keyword=lard kn-keyword=lard END start-ver=1.4 cd-journal=joma no-vol=35 cd-vols= no-issue=4 article-no= start-page=469 end-page=472 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202407 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Errors in the Calculation of the Population Attributable Fraction en-subtitle= kn-subtitle= en-abstract= kn-abstract=One of the common errors in the calculation of the population attributable fraction (PAF) is the use of an adjusted risk ratio in the Levin formula. In this article, we discuss the errors visually using wireframes by varying the standardized mortality ratio (SMR) and associational risk ratio (aRR) when the prevalence of exposure is fixed. When SMR >1 and SMR > aRR, the absolute bias is positive, and its magnitude increases as the difference between SMR and aRR increases. By contrast, when aRR > SMR > 1, the absolute bias is negative and its magnitude is relatively small. Moreover, when SMR > aRR, the relative bias is larger than one, whereas when SMR < aRR, the relative bias is smaller than one. Although the target population of the PAF is the total population, the target of causation of the PAF is not the total population but the exposed group. en-copyright= kn-copyright= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoEiji en-aut-sei=Yamamoto en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Okayama University of Science kn-affil= en-keyword=Attributable fraction kn-keyword=Attributable fraction en-keyword=Bias kn-keyword=Bias en-keyword=Causality kn-keyword=Causality en-keyword=Counterfactual model kn-keyword=Counterfactual model en-keyword=Potential outcomes kn-keyword=Potential outcomes END start-ver=1.4 cd-journal=joma no-vol=820 cd-vols= no-issue= article-no= start-page=137598 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Neurogenesis impairment with glial activation in the hippocampus-connected regions of intracerebroventricular streptozotocin-injected mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Adult neurogenesis in the hippocampus and subventricular zone (SVZ) is impaired by intracerebroventricular administration of streptozotocin (icv-STZ) to rodents. Although neural cells in the several brain regions which connect with the hippocampus or SVZ is thought to be involved in the adult neurogenesis, few studies have investigated morphological alterations of glial cells in these areas. The present study revealed that icv-STZ induces reduction of neural progenitor cells and a dramatic increase in reactive astrocytes and microglia especially in the hippocampus and various hippocampus-connected brain areas. In contrast, there was no significant neuronal damage excluding demyelination of the stria medullaris. The results indicate the hippocampal neurogenesis impairment of this model might be occurred by activated glial cells in the hippocampus, or hippocampus-connected regions. en-copyright= kn-copyright= en-aut-name=MasaiKaori en-aut-sei=Masai en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakayamaYuta en-aut-sei=Nakayama en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShinKotaro en-aut-sei=Shin en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaharaChiaki en-aut-sei=Sugahara en-aut-mei=Chiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyazakiIkuko en-aut-sei=Miyazaki en-aut-mei=Ikuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AsanumaMasato en-aut-sei=Asanuma en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Medical Neurobiology, Okayama University Medical School kn-affil= affil-num=3 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Streptozotocin kn-keyword=Streptozotocin en-keyword=Adult neurogenesis kn-keyword=Adult neurogenesis en-keyword=Astrocyte kn-keyword=Astrocyte en-keyword=Microglia kn-keyword=Microglia END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=12 article-no= start-page=6648 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240617 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local E-rhBMP-2/β-TCP Application Rescues Osteocyte Dendritic Integrity and Reduces Microstructural Damage in Alveolar Bone Post-Extraction in MRONJ-like Mouse Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=The pathology of medication-related osteonecrosis of the jaw (MRONJ), often associated with antiresorptive therapy, is still not fully understood. Osteocyte networks are known to play a critical role in maintaining bone homeostasis and repair, but the exact condition of these networks in MRONJ is unknown. On the other hand, the local application of E-coli-derived Recombinant Human Bone Morphogenetic Protein 2/beta-Tricalcium phosphate (E-rhBMP-2/beta-TCP) has been shown to promote bone regeneration and mitigate osteonecrosis in MRONJ-like mouse models, indicating its potential therapeutic application for the treatment of MRONJ. However, the detailed effect of BMP-2 treatment on restoring bone integrity, including its osteocyte network, in an MRONJ condition remains unclear. Therefore, in the present study, by applying a scanning electron microscope (SEM) analysis and a 3D osteocyte network reconstruction workflow on the alveolar bone surrounding the tooth extraction socket of an MRONJ-like mouse model, we examined the effectiveness of BMP-2/beta-TCP therapy on the alleviation of MRONJ-related bone necrosis with a particular focus on the osteocyte network and alveolar bone microstructure (microcrack accumulation). The 3D osteocyte dendritic analysis showed a significant decrease in osteocyte dendritic parameters along with a delay in bone remodeling in the MRONJ group compared to the healthy counterpart. The SEM analysis also revealed a notable increase in the number of microcracks in the alveolar bone surface in the MRONJ group compared to the healthy group. In contrast, all of those parameters were restored in the E-rhBMP-2/beta-TCP-treated group to levels that were almost similar to those in the healthy group. In summary, our study reveals that MRONJ induces osteocyte network degradation and microcrack accumulation, while application of E-rhBMP-2/beta-TCP can restore a compromised osteocyte network and abrogate microcrack accumulation in MRONJ. en-copyright= kn-copyright= en-aut-name=DangAnh Tuan en-aut-sei=Dang en-aut-mei=Anh Tuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TosaIkue en-aut-sei=Tosa en-aut-mei=Ikue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaraEmilio Satoshi en-aut-sei=Hara en-aut-mei=Emilio Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MikaiAkihiro en-aut-sei=Mikai en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KitagawaWakana en-aut-sei=Kitagawa en-aut-mei=Wakana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=medication-related osteonecrosis of the jaw kn-keyword=medication-related osteonecrosis of the jaw en-keyword=BMP-2 kn-keyword=BMP-2 en-keyword=osteocyte dendritic network kn-keyword=osteocyte dendritic network en-keyword=microcrack accumulation kn-keyword=microcrack accumulation en-keyword=bone remodeling kn-keyword=bone remodeling END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=12 article-no= start-page=1888 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240614 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prognostic Implications of Insulin Resistance in Heart Failure in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Diabetes mellitus (DM) is a major risk and prognostic factor for heart failure (HF). Insulin resistance (IR) is an important component of DM, but the relationship between IR and HF prognosis has not yet been established across a wide variety of HF populations. We retrospectively evaluated the relationship between IR and clinical outcomes of HF patients at our hospital between 2017 and 2021. IR was defined as a homeostatic model assessment of IR (HOMA-IR) index >= 2.5, calculated from fasting blood glucose and insulin concentrations. The primary outcome was a composite of all-cause death and hospitalisation for HF (HHF). Among 682 patients included in the analyses, 337 (49.4%) had IR. The median age was 70 [interquartile range (IQR): 59-77] years old, and 66% of the patients were men. Among the patients, 41% had a left ventricular ejection fraction below 40%, and 32% had DM. The median follow-up period was 16.5 [IQR: 4.4-37.3] months. IR was independently associated with the primary outcome (HR: 1.91, 95% CI: 1.39-2.62, p < 0.0001), death (hazard ratio [HR]: 1.86, 95% confidence interval [CI]: 1.28-2.83, p < 0.01), and HHF (HR: 1.91, 95% CI: 1.28-2.83, p < 0.01). HOMA-IR is an independent prognostic factor of HF in a wide variety of HF populations. en-copyright= kn-copyright= en-aut-name=IwasakiKeiichiro en-aut-sei=Iwasaki en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakayaYoichi en-aut-sei=Takaya en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TodaHironobu en-aut-sei=Toda en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyoshiToru en-aut-sei=Miyoshi en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=heart failure kn-keyword=heart failure en-keyword=insulin resistance kn-keyword=insulin resistance en-keyword=HOMA-IR kn-keyword=HOMA-IR en-keyword=diabetes mellitus kn-keyword=diabetes mellitus END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=2926 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography en-subtitle= kn-subtitle= en-abstract= kn-abstract=The capability of focus control has been central to optical technologies that require both high temporal and spatial resolutions. However, existing varifocal lens schemes are commonly limited to the response time on the microsecond timescale and share the fundamental trade-off between the response time and the tuning power. Here, we propose an ultrafast holographic focusing method enabled by translating the speed of a fast 1D beam scanner into the speed of the complex wavefront modulation of a relatively slow 2D spatial light modulator. Using a pair of a digital micromirror device and a resonant scanner, we demonstrate an unprecedented refresh rate of focus control of 31 MHz, which is more than 1,000 times faster than the switching rate of a digital micromirror device. We also show that multiple micrometer-sized focal spots can be independently addressed in a range of over 1 MHz within a large volume of 5 mm × 5 mm × 5.5 mm, validating the superior spatiotemporal characteristics of the proposed technique – high temporal and spatial precision, high tuning power, and random accessibility in a three-dimensional space. The demonstrated scheme offers a new route towards three-dimensional light manipulation in the 100 MHz regime. en-copyright= kn-copyright= en-aut-name=ShibukawaAtsushi en-aut-sei=Shibukawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiguchiRyota en-aut-sei=Higuchi en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SongGookho en-aut-sei=Song en-aut-mei=Gookho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MikamiHideharu en-aut-sei=Mikami en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JangMooseok en-aut-sei=Jang en-aut-mei=Mooseok kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Research Institute for Electronic Science, Hokkaido University kn-affil= affil-num=2 en-affil=Research Institute for Electronic Science, Hokkaido University kn-affil= affil-num=3 en-affil=Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology kn-affil= affil-num=4 en-affil=Research Institute for Electronic Science, Hokkaido University kn-affil= affil-num=5 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=3 article-no= start-page=281 end-page=289 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Volume X-Ray Micro-Computed Tomography Analysis of the Early Cephalized Central Nervous System in a Marine Flatworm, Stylochoplana pusilla en-subtitle= kn-subtitle= en-abstract= kn-abstract=Platyhelminthes are a phylum of simple bilaterian invertebrates with prototypic body systems. Compared with non-bilaterians such as cnidarians, the bilaterians are likely to exhibit integrated free-moving behaviors, which require a concentrated nervous system “brain” rather than the distributed nervous system of radiatans. Marine flatworms have an early cephalized ‘central’ nervous system compared not only with non-bilaterians but also with parasitic flatworms or freshwater planarians. In this study, we used the marine flatworm Stylochoplana pusilla as an excellent model organism in Platyhelminthes because of the early cephalized central nervous system. Here, we investigated the three-dimensional structures of the flatworm central nervous system by the use of X-ray micro-computed tomography (micro-CT) in a synchrotron radiation facility. We found that the obtained tomographic images were sufficient to discriminate some characteristic structures of the nervous system, including nerve cords around the cephalic ganglion, mushroom body-like structures, and putative optic nerves forming an optic commissure-like structure. Through the micro-CT imaging, we could obtain undistorted serial section images, permitting us to visualize precise spatial relationships of neuronal subpopulations and nerve tracts. 3-D micro-CT is very effective in the volume analysis of the nervous system at the cellular level; the methodology is straightforward and could be applied to many other non-model organisms. en-copyright= kn-copyright= en-aut-name=IkenagaTakanori en-aut-sei=Ikenaga en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiAoshi en-aut-sei=Kobayashi en-aut-mei=Aoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakeuchiAkihisa en-aut-sei=Takeuchi en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UesugiKentaro en-aut-sei=Uesugi en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaezawaTakanobu en-aut-sei=Maezawa en-aut-mei=Takanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShibataNorito en-aut-sei=Shibata en-aut-mei=Norito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Science and Engineering, Kagoshima University kn-affil= affil-num=2 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Japan Synchrotron Radiation Research Institute/SPring-8 kn-affil= affil-num=4 en-affil=Japan Synchrotron Radiation Research Institute/SPring-8 kn-affil= affil-num=5 en-affil=Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College kn-affil= affil-num=6 en-affil=Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College kn-affil= affil-num=7 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Ushimado Marine Institute (UMI), Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=bilaterians kn-keyword=bilaterians en-keyword=micro-CT scan kn-keyword=micro-CT scan en-keyword=central nervous system kn-keyword=central nervous system en-keyword=Platyhelminthes kn-keyword=Platyhelminthes en-keyword=marine flatworms kn-keyword=marine flatworms END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=25 article-no= start-page=e2322765121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Argonaute-independent, Dicer-dependent antiviral defense against RNA viruses en-subtitle= kn-subtitle= en-abstract= kn-abstract=Antiviral RNA interference (RNAi) is conserved from yeasts to mammals. Dicer recognizes and cleaves virus-derived double-stranded RNA (dsRNA) and/or structured single-stranded RNA (ssRNA) into small-interfering RNAs, which guide effector Argonaute to homologous viral RNAs for digestion and inhibit virus replication. Thus, Argonaute is believed to be essential for antiviral RNAi. Here, we show Argonaute-independent, Dicer-dependent antiviral defense against dsRNA viruses using Cryphonectria parasitica (chestnut blight fungus), which is a model filamentous ascomycetous fungus and hosts a variety of viruses. The fungus has two dicer-like genes (dcl1 and dcl2) and four argonaute-like genes (agl1 to agl4). We prepared a suite of single to quadruple agl knockout mutants with or without dcl disruption. We tested these mutants for antiviral activities against diverse dsRNA viruses and ssRNA viruses. Although both DCL2 and AGL2 worked as antiviral players against some RNA viruses, DCL2 without argonaute was sufficient to block the replication of other RNA viruses. Overall, these results indicate the existence of a Dicer-alone defense and different degrees of susceptibility to it among RNA viruses. We discuss what determines the great difference in susceptibility to the Dicer-only defense. en-copyright= kn-copyright= en-aut-name=SatoYukiyo en-aut-sei=Sato en-aut-mei=Yukiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=RNAi kn-keyword=RNAi en-keyword=Argonaute kn-keyword=Argonaute en-keyword=Dicer kn-keyword=Dicer en-keyword=fungal virus kn-keyword=fungal virus en-keyword=chestnut blight kn-keyword=chestnut blight END start-ver=1.4 cd-journal=joma no-vol=44 cd-vols= no-issue=6 article-no= start-page=2497 end-page=2509 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240531 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Senescent Fibroblasts Potentiate Peritoneal Metastasis of Diffuse-type Gastric Cancer Cells via IL-8–mediated Crosstalk en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background/Aim: Diffuse-type gastric cancer (DGC) often forms peritoneal metastases, leading to poor prognosis. However, the underlying mechanism of DGC-mediated peritoneal metastasis is poorly understood. DGC is characterized by desmoplastic stroma, in which heterogeneous cancer-associated fibroblasts (CAFs), including myofibroblastic CAFs (myCAFs) and senescent CAFs (sCAFs), play a crucial role during tumor progression. This study investigated the CAF subtypes induced by GC cells and the role of sCAFs in peritoneal metastasis of DGC cells. Materials and Methods: Conditioned medium of human DGC cells (KATOIII, NUGC-4) and human intestinal-type GC (IGC) cells (MKN-7, N87) was used to induce CAFs. CAF subtypes were evaluated by analyzing the expression of α–smooth muscle actin (α-SMA), senescence-associated β-galactosidase (SA-β-gal), and p16 in human normal fibroblasts (GF, FEF-3). A cytokine array was used to explore the underlying mechanism of GC-induced CAF subtype development. The role of sCAFs in peritoneal metastasis of DGC cells was analyzed using a peritoneally metastatic DGC tumor model. The relationships between GC subtypes and CAF-related markers were evaluated using publicly available datasets. Results: IGC cells significantly induced α-SMA+ myCAFs by secreting transforming growth factor–β, whereas DGC cells induced SA-β-gal+/p16+ sCAFs by secreting interleukin (IL)-8. sCAFs further secreted IL-8 to promote DGC cell migration. In vivo experiments demonstrated that co-inoculation of sCAFs significantly enhanced peritoneal metastasis of NUGC-4 cells, which was attenuated by administration of the IL-8 receptor antagonist navarixin. p16 and IL-8 expression was significantly associated with poor prognosis of DGC patients. Conclusion: sCAFs promote peritoneal metastasis of DGC via IL-8–mediated crosstalk. en-copyright= kn-copyright= en-aut-name=LIYUNCHENG en-aut-sei=LI en-aut-mei=YUNCHENG kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TAZAWAHIROSHI en-aut-sei=TAZAWA en-aut-mei=HIROSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NAGAIYASUO en-aut-sei=NAGAI en-aut-mei=YASUO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FUJITASHUTO en-aut-sei=FUJITA en-aut-mei=SHUTO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OKURATOMOHIRO en-aut-sei=OKURA en-aut-mei=TOMOHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SHOJIRYOHEI en-aut-sei=SHOJI en-aut-mei=RYOHEI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YAMADAMOTOHIKO en-aut-sei=YAMADA en-aut-mei=MOTOHIKO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KIKUCHISATORU en-aut-sei=KIKUCHI en-aut-mei=SATORU kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KURODASHINJI en-aut-sei=KURODA en-aut-mei=SHINJI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OHARATOSHIAKI en-aut-sei=OHARA en-aut-mei=TOSHIAKI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NOMAKAZUHIRO en-aut-sei=NOMA en-aut-mei=KAZUHIRO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NISHIZAKIMASAHIKO en-aut-sei=NISHIZAKI en-aut-mei=MASAHIKO kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KAGAWASHUNSUKE en-aut-sei=KAGAWA en-aut-mei=SHUNSUKE kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=FUJIWARATOSHIYOSHI en-aut-sei=FUJIWARA en-aut-mei=TOSHIYOSHI kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Departments of Gastroenterological Surgery and Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Gastric cancer kn-keyword=Gastric cancer en-keyword=peritoneal metastasis kn-keyword=peritoneal metastasis en-keyword=senescent fibroblast kn-keyword=senescent fibroblast en-keyword=IL-8 kn-keyword=IL-8 en-keyword=CXCR1/2 kn-keyword=CXCR1/2 END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=11 article-no= start-page=e31872 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240615 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Bacterial DNA and serum IgG antibody titer assays for assessing infection of human-pathogenic and dog-pathogenic Porphyromonas species in dogs en-subtitle= kn-subtitle= en-abstract= kn-abstract=Periodontal disease is highly prevalent in both humans and dogs. Although there have been reports of cross-infection of periodontopathic bacteria, methods for assessing it have yet to be established. The actual status of cross-infection remains to be seen. The purpose of this study was to evaluate the utility of bacterial DNA and serum immunoglobulin G (IgG) antibody titer assays to assess infection of human-pathogenic and dog-pathogenic Porphyromonas species in dogs. Four experimental beagles were used for establishing methods. Sixty-six companion dogs at veterinary clinics visiting for treatment and prophylaxis of periodontal disease were used and divided into healthy, gingivitis, and periodontitis groups. Periodontal pathogens such as Porphyromonas gingivalis and Porphyromonas gulae were investigated as target bacteria. DNA levels of both bacteria were measured using species-specific primers designed for real-time polymerase chain reaction (PCR). Serum IgG titers of both bacteria were measured by enzyme-linked immunosorbent assay (ELISA).
PCR primers were confirmed to have high sensitivity and specificity. However, there was no relationship between the amount of bacterial DNA and the severity of the periodontal disease. In addition, dogs with periodontitis had higher IgG titers against both bacteria compared to dogs in the healthy and gingivitis groups; there was cross-reactivity between the two bacteria. Receiver operating characteristic (ROC) analysis of IgG titers against both bacteria showed high sensitivity (>90 %) and specificity (>75 %). Since both bacteria were distinguished by DNA assays, the combination of these assays may be useful in the evaluation of cross-infection. en-copyright= kn-copyright= en-aut-name=Tai-TokuzenMasako en-aut-sei=Tai-Tokuzen en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ItoTakashi en-aut-sei=Ito en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TamuraKazuya en-aut-sei=Tamura en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirayamaHaruko en-aut-sei=Hirayama en-aut-mei=Haruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OgawaHirohito en-aut-sei=Ogawa en-aut-mei=Hirohito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraShin en-aut-sei=Nakamura en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkuboKeisuke en-aut-sei=Okubo en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoTadashi en-aut-sei=Yamamoto en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MominokiKatsumi en-aut-sei=Mominoki en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakashibaShogo en-aut-sei=Takashiba en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=2 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University kn-affil= affil-num=5 en-affil=Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Center for Collaborative Research, Department of Oral Science and Translational Research, Nova Southeastern University kn-affil= affil-num=7 en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital kn-affil= affil-num=8 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Comprehensive Dentistry, The Center for Graduate Medical Education (Dental Division), Okayama University Hospital kn-affil= affil-num=10 en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University kn-affil= affil-num=11 en-affil=Department of Pathophysiology-Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Cross infection kn-keyword=Cross infection en-keyword=Human and dog kn-keyword=Human and dog en-keyword=Periodontal disease kn-keyword=Periodontal disease en-keyword=Porphyromonas gingivalis kn-keyword=Porphyromonas gingivalis en-keyword=Porphyromonas gulae kn-keyword=Porphyromonas gulae en-keyword=Detection assay kn-keyword=Detection assay END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=5938 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Palaeoproteomic investigation of an ancient human skeleton with abnormal deposition of dental calculus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Detailed investigation of extremely severe pathological conditions in ancient human skeletons is important as it could shed light on the breadth of potential interactions between humans and disease etiologies in the past. Here, we applied palaeoproteomics to investigate an ancient human skeletal individual with severe oral pathology, focusing our research on bacterial pathogenic factors and host defense response. This female skeleton, from the Okhotsk period (i.e., fifth to thirteenth century) of Northern Japan, poses relevant amounts of abnormal dental calculus deposition and exhibits oral dysfunction due to severe periodontal disease. A shotgun mass-spectrometry analysis identified 81 human proteins and 15 bacterial proteins from the calculus of the subject. We identified two pathogenic or bioinvasive proteins originating from two of the three "red complex" bacteria, the core species associated with severe periodontal disease in modern humans, as well as two additional bioinvasive proteins of periodontal-associated bacteria. Moreover, we discovered defense response system-associated human proteins, although their proportion was mostly similar to those reported in ancient and modern human individuals with lower calculus deposition. These results suggest that the bacterial etiology was similar and the host defense response was not necessarily more intense in ancient individuals with significant amounts of abnormal dental calculus deposition. en-copyright= kn-copyright= en-aut-name=Uchida-FukuharaYoko en-aut-sei=Uchida-Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimamuraShigeru en-aut-sei=Shimamura en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SawafujiRikai en-aut-sei=Sawafuji en-aut-mei=Rikai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiuchiTakumi en-aut-sei=Nishiuchi en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonedaMinoru en-aut-sei=Yoneda en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshidaHajime en-aut-sei=Ishida en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumuraHirofumi en-aut-sei=Matsumura en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsutayaTakumi en-aut-sei=Tsutaya en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=3 en-affil=Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=4 en-affil=Research Center for Experimental Modeling of Human Disease, Kanazawa University kn-affil= affil-num=5 en-affil=The University Museum, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus kn-affil= affil-num=7 en-affil=School of Health Sciences, Sapporo Medical University kn-affil= affil-num=8 en-affil=Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI) kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue= article-no= start-page=1371307 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dissection of the signal transduction machinery responsible for the lysyl oxidase-like 4-mediated increase in invasive motility in triple-negative breast cancer cells: mechanistic insight into the integrin-β1-NF-κB-MMP9 axis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-beta 1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-beta 1 hastens the invasive outgrowth of TNBC cells at the molecular level.
Methods LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively.
Results Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-kappa B (NF-kappa B). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-beta activated kinase 1 (TAK1) were required for the activation of NF-kappa B through I kappa beta kinase kinase (IKK alpha/beta) phosphorylation.
Conclusion Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-beta 1-TRAF4-TAK1-IKK alpha/beta-I kappa beta alpha-NF-kappa B-MMP9, is crucial for TNBC cell invasiveness. en-copyright= kn-copyright= en-aut-name=JiangFan en-aut-sei=Jiang en-aut-mei=Fan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KomalasariNi Luh Gede Yoni en-aut-sei=Komalasari en-aut-mei=Ni Luh Gede Yoni kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Kasano-CamonesCarlos Ichiro en-aut-sei=Kasano-Camones en-aut-mei=Carlos Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NinomiyaKazumi en-aut-sei=Ninomiya en-aut-mei=Kazumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamamotoKen-Ichi en-aut-sei=Yamamoto en-aut-mei=Ken-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GoharaYuma en-aut-sei=Gohara en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OchiToshiki en-aut-sei=Ochi en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=RumaI. Made Winarsa en-aut-sei=Ruma en-aut-mei=I. Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SumardikaI. Wayan en-aut-sei=Sumardika en-aut-mei=I. Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=ZhouJin en-aut-sei=Zhou en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SakaguchiYoshihiko en-aut-sei=Sakaguchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KuribayashiFutoshi en-aut-sei=Kuribayashi en-aut-mei=Futoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=6 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=7 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=8 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=13 en-affil=Faculty of Medicine, Udayana University kn-affil= affil-num=14 en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology kn-affil= affil-num=15 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=16 en-affil=Department of Microbiology, Tokushima Bunri University kn-affil= affil-num=17 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=18 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=19 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=20 en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University kn-affil= affil-num=21 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=22 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=23 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=invasion kn-keyword=invasion en-keyword=lysyl oxidase kn-keyword=lysyl oxidase en-keyword=NF-κB kn-keyword=NF-κB en-keyword=MMP9 kn-keyword=MMP9 END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue= article-no= start-page=6505595 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Circadian Rhythms Fluctuate the Treatment Effects of Intravesical Treatments on Rat Urinary Frequency Models en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives. It is still not clear how the intravesical instillation of drugs affects rat urinary frequency. This study aimed to examine the dynamics of intravesical treatments' treatment effect on rat urinary frequency models by real-time and extended monitoring using a novel continuous urination monitoring system. Methods. Nine eleven-week-old female Wistar rats were divided into three groups to receive intravesical instillation of 0.1% acetic acid (AA), 1.0% AA, or phosphate-buffered saline (PBS). Thirty minutes later, these drugs were voided, and rats were moved to a continuous urination monitoring system, UM-100. UM-100 monitored rat urination quantitatively and continuously for 24 hours. Rats were then euthanized, and histopathologic examinations using a damage score validated the severity of bladder inflammation. We used nine additional rats to determine the treatment effect of various drugs against the urinary frequency. These rats were also treated with 1.0% AA in the same way and divided into three groups (n = 3 each) to receive intravesical instillation of lidocaine, silver nitrate (AgNO3), or dimethyl sulfoxide (DMSO), respectively. Thirty minutes later, rats were catheterized again and moved to the UM-100, and their voiding was monitored for 24 hours. Results. Intravesical instillation of AA increased the urinary frequency and decreased the mean voided volume (VV) in a concentration-dependent manner, with statistical significance at a concentration of 1.0% (urinary frequency; p = 0.0007 , mean VV; p = 0.0032 , respectively) compared with PBS. Histopathological analysis of these models demonstrated a significantly higher damage score of bladder mucosa in both 0.1% AA and 1.0% AA compared with PBS, with the severity in concordance with the clinical severity of urinary frequency (0.1% AA: p < 0.0001 , 1.0% AA: p < 0.0001 ). Moreover, intravesical instillation of lidocaine, AgNO3, and DMSO decreased the urinary frequency. Continuous monitoring with UM-100 also demonstrated that the treatment effect of these intravesically instilled drugs occurred only at night. Conclusions. The extended monitoring of rat urination by UM-100 revealed a significant fluctuation in the treatment effect of intravesically instilled drugs between day and night. These findings may help establish novel therapies for urinary frequency. en-copyright= kn-copyright= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TominagaYusuke en-aut-sei=Tominaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamaYuki en-aut-sei=Maruyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagasakiNaoya en-aut-sei=Nagasaki en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SekitoTakanori en-aut-sei=Sekito en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WatanabeToyohiko en-aut-sei=Watanabe en-aut-mei=Toyohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=109 cd-vols= no-issue=20 article-no= start-page=L201103 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Realization of nodal-ring semimetal in pressurized black phosphorus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Topological semimetals are intriguing targets for exploring unconventional physical properties of massless fermions. Among them, nodal-line or nodal-ring semimetals have attracted attention for their unique one-dimensional band contact in momentum space and resulting nontrivial quantum phenomena. By field angular resolved magnetotransport measurements and theoretical calculations, we show that pressurized black phosphorus (BP) is an ideal nodal-ring semimetal with weak spin-orbit coupling, which has a sole and carrier density-tunable nodal ring isolated from other trivial bands. We also revealed that the large magnetoresistance effect and its field-angular dependence in semimetallic BP are due to highly anisotropic relaxation time. Our results establish pressurized BP as an elemental model material for exploring nontrivial quantum properties unique to the topological nodal ring. en-copyright= kn-copyright= en-aut-name=AkibaKazuto en-aut-sei=Akiba en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkahamaYuichi en-aut-sei=Akahama en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TokunagaMasashi en-aut-sei=Tokunaga en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Science, University of Hyogo kn-affil= affil-num=3 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=295 end-page=300 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Calcification of a Hydrophilic Acrylic Intraocular Lens after Glaucoma Surgery en-subtitle= kn-subtitle= en-abstract= kn-abstract=A Japanese woman in her 70s was referred to our hospital for the evaluation and treatment of high intraocular pressure (IOP) in her right eye. She had undergone bilateral cataract surgeries and the insertion of hydrophilic acrylic intraocular lenses (IOLs). We performed trabeculotomy and trabeculectomy to lower her right IOP; thereafter, a circular opacity was observed on the right eye’s IOL surface. We removed the right IOL because that eye’s vision had decreased due to IOL opacification. The analysis of the removed IOL revealed that the main opacity component was calcium phosphate. This is the first post-glaucoma-surgery IOL calcification case report. en-copyright= kn-copyright= en-aut-name=OkamotoSara en-aut-sei=Okamoto en-aut-mei=Sara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShiodeYusuke en-aut-sei=Shiode en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KimuraShuhei en-aut-sei=Kimura en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HosokawaMio en-aut-sei=Hosokawa en-aut-mei=Mio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatobaRyo en-aut-sei=Matoba en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanzakiYuki en-aut-sei=Kanzaki en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KindoHiroya en-aut-sei=Kindo en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoritaTetsuro en-aut-sei=Morita en-aut-mei=Tetsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsujiAkihiro en-aut-sei=Tsuji en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TakahashiKosuke en-aut-sei=Takahashi en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MorizaneYuki en-aut-sei=Morizane en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Fukuyama City Hospital kn-affil= affil-num=10 en-affil=Fukuyama City Hospital kn-affil= affil-num=11 en-affil=Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=intraocular lens kn-keyword=intraocular lens en-keyword=IOL kn-keyword=IOL en-keyword=IOL calcification kn-keyword=IOL calcification en-keyword=hydrophilic acrylic IOL kn-keyword=hydrophilic acrylic IOL en-keyword=glaucoma surgery kn-keyword=glaucoma surgery END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=281 end-page=284 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spontaneous Bilateral Pneumothorax in a Patient with Anorexia Nervosa: The Management of Prolonged Postoperative Air Leakage en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 24-year-old Japanese female with anorexia nervosa presented to our hospital for bilateral pneumothorax, and 12-Fr thoracostomy catheters were inserted into the bilateral pleural cavities. On hospital day 9, a thoracoscopic bullectomy was performed. However, air leakage relapsed on both sides on postoperative day 1. The air leakage on the right side was particularly persistent, and we switched the drainage to a Heimlich valve. Both lungs expanded gradually and the chest tube was removed on postoperative day 19. Passive pleural drainage might be an option for prolonged air leakage after a bullectomy in patients with anorexia nervosa. en-copyright= kn-copyright= en-aut-name=OkadaKazuhiro en-aut-sei=Okada en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakiYuho en-aut-sei=Maki en-aut-mei=Yuho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsubaraKei en-aut-sei=Matsubara en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HiranoYutaka en-aut-sei=Hirano en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujiwaraToshiya en-aut-sei=Fujiwara en-aut-mei=Toshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsuuraMotoki en-aut-sei=Matsuura en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=2 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=3 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=4 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=5 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= affil-num=6 en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital kn-affil= en-keyword=spontaneous pneumothorax kn-keyword=spontaneous pneumothorax en-keyword=anorexia nervosa kn-keyword=anorexia nervosa en-keyword=Heimlich valve kn-keyword=Heimlich valve END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=271 end-page=279 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Humidified High-Flow Nasal Cannula Oxygen Therapy with a Pulmonary Infection Control Window as a Ventilation Switching Indication in Combination with Atomizing Inhalation of Terbutaline on the Lung Function of Patients with Acute Exacerbation of COPD en-subtitle= kn-subtitle= en-abstract= kn-abstract=We investigated how humidified high-flow nasal cannula oxygen therapy (HFNC) with a pulmonary infection control (PIC) window as a ventilation switching indication in combination with atomizing inhalation of terbutaline affects the lung function of patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). We examined 140 hospitalized AECOPD patients randomized to control and observation groups. Conventional supportive therapy and invasive mechanical ventilation with tracheal intubation were conducted in both groups, with a PIC window as the indication for ventilation switching. Noninvasive positive pressure ventilation (NIPPV) plus atomizing inhalation of terbutaline was used in the control group. In the observation group, HFNC combined with atomizing inhalation of terbutaline was used. Compared to the control group, after 48-hr treatment and treatment completion, the observation group had significantly increased levels of lung function indicators (maximal voluntary ventilation [MVV] plus forced vital capacity [FVC], p<0.05) and oxygen metabolism indicators (arterial oxygen partial pressure [PaO2], arterial oxygen content [CaO2], and oxygenation index, p<0.05). The comparison of the groups revealed that the levels of airway remodeling indicators (matrix metalloproteinase-2 [MMP-2], tissue inhibitor of metalloproteinase 2 [TIMP-2] plus MMP-9) and inflammatory indicators (interferon gamma [IFN-γ] together with interleukin-17 [IL-17], IL-10 and IL-4) were significantly lower after 48 h of treatment as well as after treatment completion (both p<0.05). These results demonstrate that HFNC with a PIC window as the indication for ventilation switching combined with atomizing inhalation of terbutaline can relieve the disorder of oxygen metabolism and correct airway hyper-reactivity. en-copyright= kn-copyright= en-aut-name=YeMengjiao en-aut-sei=Ye en-aut-mei=Mengjiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhangRenwei en-aut-sei=Zhang en-aut-mei=Renwei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine kn-affil= affil-num=2 en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine kn-affil= en-keyword=chronic obstructive pulmonary disease kn-keyword=chronic obstructive pulmonary disease en-keyword=inhalation kn-keyword=inhalation en-keyword=oxygen therapy kn-keyword=oxygen therapy en-keyword=pulmonary function kn-keyword=pulmonary function en-keyword=ventilation kn-keyword=ventilation END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=259 end-page=270 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Role of the Lipid Profile and Oxidative Stress in Fatigue, Sleep Disorders and Cognitive Impairment in Patients with Multiple Sclerosis en-subtitle= kn-subtitle= en-abstract= kn-abstract=The aim of this study is to investigate the relationship of the lipid profile, dysfunctional high-density lipoprotein, ischaemia-modified albumin and thiol–disulfide homeostasis with cognitive impairment, fatigue and sleep disorders in patients with multiple sclerosis. The cognitive functions of patients were evaluated with the Brief International Cognitive Assessment for Multiple Sclerosis battery. Fatigue was evaluated with the Fatigue Severity Scale and the Fatigue Impact Scale. The Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale were used to assess patients’ sleep disturbance. Peripheral blood samples were collected, and lipid levels and myeloperoxidase and paraoxonase activity were measured. The myeloperoxidase/paraoxonase ratio, which indicates dysfunctional high-density lipoprotein, was calculated. Thiol–disulfide homeostasis and ischaemia-modified albumin were measured.
We did not identify any relationship between dysfunctional high-density lipoprotein and the physical disability, cognitive decline, fatigue and sleep problems of multiple sclerosis. Thiol–disulfide homeostasis was associated with cognitive scores. The shift of the balance towards disulfide was accompanied by a decrease in cognitive scores. On the other hand, we did not detect any relationship between fatigue and sleep disorders and thiol–disulfide homeostasis. Our findings revealed a possible correlation between cognitive dysfunction and thiol–disulfide homeostasis in multiple sclerosis patients. en-copyright= kn-copyright= en-aut-name=VuralGonul en-aut-sei=Vural en-aut-mei=Gonul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DemirEsra en-aut-sei=Demir en-aut-mei=Esra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GumusyaylaSadiye en-aut-sei=Gumusyayla en-aut-mei=Sadiye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ErenFunda en-aut-sei=Eren en-aut-mei=Funda kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BarakliSerdar en-aut-sei=Barakli en-aut-mei=Serdar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NeseliogluSalim en-aut-sei=Neselioglu en-aut-mei=Salim kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ErelOzcan en-aut-sei=Erel en-aut-mei=Ozcan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University kn-affil= affil-num=2 en-affil=Department of Neurology, Ankara City Hospital kn-affil= affil-num=3 en-affil=Department of Neurology, Faculty of Medicine, Ankara Yildirim Beyazit University kn-affil= affil-num=4 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= affil-num=5 en-affil=Department of Neurology, Ankara City Hospital kn-affil= affil-num=6 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= affil-num=7 en-affil=Department of Clinical Biochemistry, Ankara City Hospital kn-affil= en-keyword=multiple sclerosis kn-keyword=multiple sclerosis en-keyword=dysfunctional HDL kn-keyword=dysfunctional HDL en-keyword=thiol–disulfide homeostasis kn-keyword=thiol–disulfide homeostasis en-keyword=cognitive decline kn-keyword=cognitive decline END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=251 end-page=258 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative Analysis of Thoracic Rotation Exercises: Range of Motion Improvement in Standing and Quadruped Variants en-subtitle= kn-subtitle= en-abstract= kn-abstract=There have been few investigations into the effectiveness of thoracic spine exercises for improving thoracic range of motion (ROM) in any plane. This study assessed the effectiveness of two thoracic spine exercises: one in the quadruped position and one in the thoracic standing position. We determined how these exercises affect thoracic spine mobility ROM over a 2-week intervention period. Thirty-nine healthy participants were enrolled and assigned to a Quadruped Thoracic Rotation group (n=17 participants: 9 females and 8 males) or Flamenco Thoracic Spine Rotation group (n=22: 14 females and 8 males). All participants were administered a KOJI AWARENESSTM screening test, and the initial thoracic spine ROM before intervention exercise was measured in a laboratory setting. Quadruped Thoracic Rotation was performed as the quadruped exercise and Flamenco Thoracic Spine Rotation as the standing exercise. The KOJI AWARENESSTM thoracic spine test and ROM were evaluated on the day after the first exercise session and again after the program. Despite their different approaches to thoracic mobility, the quadruped exercise and standing exercise achieved equivalent improvement in thoracic ROM after 2 weeks. Practitioners have a range of exercise options for enhancing thoracic mobility based on their environmental or task-specific needs. en-copyright= kn-copyright= en-aut-name=MurofushiKoji en-aut-sei=Murofushi en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitomoSho en-aut-sei=Mitomo en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirohataKenji en-aut-sei=Hirohata en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FuruyaHidetaka en-aut-sei=Furuya en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatagiriHiroki en-aut-sei=Katagiri en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KaneokaKoji en-aut-sei=Kaneoka en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YagishitaKazuyoshi en-aut-sei=Yagishita en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Sports Science Center, Tokyo Medical and Dental University (TMDU) kn-affil= affil-num=2 en-affil=Japan Sports Agency kn-affil= affil-num=3 en-affil=Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University (TMDU) kn-affil= affil-num=4 en-affil=Department of Rehabilitation, Sonoda Third Hospital/Tokyo Medical Institute Tokyo Spine Center kn-affil= affil-num=5 en-affil=Department of Orthopedics, Dokkyo Medical University Saitama Medical Center kn-affil= affil-num=6 en-affil=Faculty of Sport Science, Waseda University kn-affil= affil-num=7 en-affil=Clinical Center for Sports Medicine and Sports Dentistry, Tokyo Medical and Dental University (TMDU) kn-affil= en-keyword=thoracic spine kn-keyword=thoracic spine en-keyword=thoracic rotation range of motion kn-keyword=thoracic rotation range of motion en-keyword=exercise intervention kn-keyword=exercise intervention END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=237 end-page=243 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Multidisciplinary Approach to Hip Fractures: Evaluating Outcomes on Mortality and Secondary Hip Fractures en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fracture liaison services (FLS) have been introduced in Japan and several other countries to reduce medical complications and secondary fractures. We aimed to evaluate the effects of the implementation of an FLS approach on patient outcomes during hospitalization at our hospital and over a 2-year follow-up post-injury. This retrospective cohort study included patients ≥ 60 years admitted to our hospital for hip fragility fractures between October 1, 2016, and July 31, 2020. Patient groups were defined as those treated before (control group, n=238) and after (FLS group, n=196) establishment of the FLS protocol at our institution. The two groups were compared in terms of time to surgery, length of hospital stay, and the incidence of complications after admission, including secondary hip fracture and mortality rates. The follow-up period was 24 months. FLS focuses on early surgery within 48 h of injury and assessing osteoporosis treatment before injury to guide post-discharge anti-osteoporosis medication. FLS reduced the length of hospital stay (p<0.001) and the prevalence of complications after admission (p<0.001), particularly cardiovascular disease, and it increased adherence to anti-osteoporosis medication. These FLS effects resulted in lower secondary hip fracture and mortality rates at 12 and 24 months post-injury. FLS for fragility hip fractures can improve patient outcomes during hospitalization and over a 2-year follow-up period. en-copyright= kn-copyright= en-aut-name=MuraokaOsamu en-aut-sei=Muraoka en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ImaiNorio en-aut-sei=Imai en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KuraishiTatsuya en-aut-sei=Kuraishi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ImaiMakoto en-aut-sei=Imai en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukuharaTakashi en-aut-sei=Fukuhara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YoshimineToshifumi en-aut-sei=Yoshimine en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital kn-affil= affil-num=2 en-affil=Division of Comprehensive Musculoskeletal Medicine, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=3 en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital kn-affil= affil-num=4 en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital kn-affil= affil-num=5 en-affil=Department of Orthopedic Surgery, Niigata Prefectural Tokamachi Hospital kn-affil= affil-num=6 en-affil=Department of Internal Medicine, Niigata Prefectural Tokamachi Hospital kn-affil= en-keyword=fracture liaison services kn-keyword=fracture liaison services en-keyword=complications after admission kn-keyword=complications after admission en-keyword=secondary hip fracture kn-keyword=secondary hip fracture en-keyword=mortality kn-keyword=mortality END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=227 end-page=235 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Lipopolysaccharide on the Duration of Zolpidem-Induced Loss of Righting Reflex in Mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Zolpidem, a non-benzodiazepine hypnotic, is primarily used to treat insomnia. In a previous study, pior treatment with non-benzodiazepine receptor agonists was associated with inflammation. The present study aimed to clarify the association between the effects of zolpidem and inflammation in mice treated with lipopolysaccharide (LPS), a known model of inflammation. We assessed the zolpidem-induced loss of righting reflex (LORR) duration 24 h after LPS treatment in mice. Additionally, the expressions of γ-aminobutyric acid (GABA)A receptor subunit and K+-Cl− cotransporter isoform 2 (KCC2) mRNA in the hippocampus and frontal cortex were examined in LPS-treated mice. Pretreatment with LPS was associated with significantly prolonged duration of zolpidem-induced LORR compared to control mice. This effect was significantly attenuated by administering bicuculline, a GABAA receptor antagonist, or flumazenil, a benzodiazepine receptor antagonist, in LPS-treated mice. Compared to controls, LPS-treated mice showed no significant change in the expression of GABAA receptor subunits in the hippocampus or frontal cortex. Bumetanide, an Na+-K+-2Cl− cotransporter isoform 1 blocker, attenuated the extended duration of zolpidem-induced LORR observed in LPS-treated mice. LPS significantly decreased Kcc2 mRNA expression in the hippocampus and the frontal cortex. These findings suggest that inflammation increases zolpidem-induced LORR, possibly through a reduction in KCC2 expression. en-copyright= kn-copyright= en-aut-name=WadaYudai en-aut-sei=Wada en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UshioSoichiro en-aut-sei=Ushio en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KitamuraYoshihisa en-aut-sei=Kitamura en-aut-mei=Yoshihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZamamiYoshito en-aut-sei=Zamami en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SendoToshiaki en-aut-sei=Sendo en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pharmacy, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Clinical Pharmacy, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=lipopolysaccharide kn-keyword=lipopolysaccharide en-keyword=zolpidem kn-keyword=zolpidem en-keyword=GABAA receptor kn-keyword=GABAA receptor en-keyword=K+-Cl− cotransporters kn-keyword=K+-Cl− cotransporters END start-ver=1.4 cd-journal=joma no-vol=78 cd-vols= no-issue=3 article-no= start-page=215 end-page=225 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Assessment of a New Elbow Joint Positioning Method Using Area Detector Computed Tomography en-subtitle= kn-subtitle= en-abstract= kn-abstract=We propose a sitting position that achieves both high image quality and a reduced radiation dose in elbow joint imaging by area detector computed tomography (ADCT), and we compared it with the ‘superman’ and supine positions. The volumetric CT dose index (CTDIvol) for the sitting, superman, and supine positions were 2.7, 8.0, and 20.0 mGy and the dose length products (DLPs) were 43.4, 204.7, and 584.8 mGy • cm, respectively. In the task-based transfer function (TTF), the highest value was obtained for the sitting position in both bone and soft tissue images. The noise power spectrum (NPS) of bone images showed that the superman position had the lowest value up to approx. 1.1 cycles/mm or lower, whereas the sitting position had the lowest value when the NPS was greater than approx. 1.1 cycles/mm. The overall image quality in an observer study resulted in the following median Likert scores for Readers 1 and 2: 5.0 and 5.0 for the sitting position, 4.0 and 3.5 for the superman position, and 4.0 and 2.0 for the supine position. These results indicate that our proposed sitting position with ADCT of the elbow joint can provide superior image quality and allow lower radiation doses compared to the superman and supine positions. en-copyright= kn-copyright= en-aut-name=AkagawaTakuya en-aut-sei=Akagawa en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukuiRyohei en-aut-sei=Fukui en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KidaKatsuhiro en-aut-sei=Kida en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsuuraRyutaro en-aut-sei=Matsuura en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimadaMakoto en-aut-sei=Shimada en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KinoshitaMitsuhiro en-aut-sei=Kinoshita en-aut-mei=Mitsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagawaYoko en-aut-sei=Akagawa en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GotoSachiko en-aut-sei=Goto en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Radiological Technology, Tokushima Red Cross Hospital kn-affil= affil-num=2 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Radiology, Osaka International Cancer Institute kn-affil= affil-num=6 en-affil=Department of Radiology, Tokushima Red Cross Hospital kn-affil= affil-num=7 en-affil=Department of Radiology, Tokushima Red Cross Hospital kn-affil= affil-num=8 en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University kn-affil= en-keyword=area detector computed tomography kn-keyword=area detector computed tomography en-keyword=elbow joint kn-keyword=elbow joint en-keyword=sitting position kn-keyword=sitting position en-keyword=dose reduction kn-keyword=dose reduction en-keyword=image quality assessment kn-keyword=image quality assessment END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=28 article-no= start-page=5739 end-page=5747 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Total synthesis and structure–antifouling activity relationship of scabrolide F en-subtitle= kn-subtitle= en-abstract= kn-abstract=An efficient synthetic strategy for scabrolide F (7), a norcembranolide diterpene that was isolated from the Taiwanese soft coral Sinularia scabra, has only recently been reported by our group. Herein, we report details of the first total synthesis of 7. The tetrahydrofuran domain of 7 was stereoselectively constructed via the 5-endo-tet cyclization of a hydroxy vinyl epoxide. The reaction of alkyl iodide 30 with dithiane 38, followed by the introduction of an alkene moiety, afforded allylation precursor 41. The coupling of alkyl iodide 42 and allylic stannane 43 was examined as a model experiment of allylation. Because the desired allylated product 44 was not obtained, an alternative synthetic route toward 7 was investigated instead. In the second synthetic approach, fragment–coupling between alkyl iodide 56 and aldehyde 58, macrolactonization, and transannular ring-closing metathesis were used as the key steps to achieve the first total synthesis of 7. We hope that this synthetic strategy provides access to the total synthesis of other macrocyclic norcembranolides. We also evaluated the antifouling activity and toxicity of 7 and its synthetic intermediates toward the cypris larvae of the barnacle Amphibalanus amphitrite. This study is the first to report the antifouling activity of norcembranolides as well as the biological activity of 7. en-copyright= kn-copyright= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SugitaniYuki en-aut-sei=Sugitani en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MorishitaRyohei en-aut-sei=Morishita en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YorisueTakefumi en-aut-sei=Yorisue en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Institute of Natural and Environmental Sciences, University of Hyogo kn-affil= affil-num=5 en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=3 article-no= start-page=e004237 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plasma angiotensin-converting enzyme 2 (ACE2) is a marker for renal outcome of diabetic kidney disease (DKD) (U-CARE study 3) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction ACE cleaves angiotensin I (Ang I) to angiotensin II (Ang II) inducing vasoconstriction via Ang II type 1 (AT1) receptor, while ACE2 cleaves Ang II to Ang (1-7) causing vasodilatation by acting on the Mas receptor. In diabetic kidney disease (DKD), it is still unclear whether plasma or urine ACE2 levels predict renal outcomes or not.
Research design and methods Among 777 participants with diabetes enrolled in the Urinary biomarker for Continuous And Rapid progression of diabetic nEphropathy study, the 296 patients followed up for 9 years were investigated. Plasma and urinary ACE2 levels were measured by the ELISA. The primary end point was a composite of a decrease of estimated glomerular filtration rate (eGFR) by at least 30% from baseline or initiation of hemodialysis or peritoneal dialysis. The secondary end points were a 30% increase or a 30% decrease in albumin-to-creatinine ratio from baseline to 1 year.
Results The cumulative incidence of the renal composite outcome was significantly higher in group 1 with lowest tertile of plasma ACE2 (p=0.040). Group 2 with middle and highest tertile was associated with better renal outcomes in the crude Cox regression model adjusted by age and sex (HR 0.56, 95% CI 0.31 to 0.99, p=0.047). Plasma ACE2 levels demonstrated a significant association with 30% decrease in ACR (OR 1.46, 95% CI 1.044 to 2.035, p=0.027) after adjusting for age, sex, systolic blood pressure, hemoglobin A1c, and eGFR.
Conclusions Higher baseline plasma ACE2 levels in DKD were protective for development and progression of albuminuria and associated with fewer renal end points, suggesting plasma ACE2 may be used as a prognosis marker of DKD.Trial registration number UMIN000011525. en-copyright= kn-copyright= en-aut-name=UenoAsami en-aut-sei=Ueno en-aut-mei=Asami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnishiYasuhiro en-aut-sei=Onishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MiseKoki en-aut-sei=Mise en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiSatoshi en-aut-sei=Yamaguchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KannoAyaka en-aut-sei=Kanno en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NojimaIchiro en-aut-sei=Nojima en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiguchiChigusa en-aut-sei=Higuchi en-aut-mei=Chigusa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UchidaHaruhito A. en-aut-sei=Uchida en-aut-mei=Haruhito A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShikataKenichi en-aut-sei=Shikata en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MiyamotoSatoshi en-aut-sei=Miyamoto en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakatsukaAtsuko en-aut-sei=Nakatsuka en-aut-mei=Atsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=EguchiJun en-aut-sei=Eguchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HidaKazuyuki en-aut-sei=Hida en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KatayamaAkihiro en-aut-sei=Katayama en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=WatanabeMayu en-aut-sei=Watanabe en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakatoTatsuaki en-aut-sei=Nakato en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ToneAtsuhito en-aut-sei=Tone en-aut-mei=Atsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=TeshigawaraSanae en-aut-sei=Teshigawara en-aut-mei=Sanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MatsuokaTakashi en-aut-sei=Matsuoka en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KameiShinji en-aut-sei=Kamei en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=MurakamiKazutoshi en-aut-sei=Murakami en-aut-mei=Kazutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimizuIkki en-aut-sei=Shimizu en-aut-mei=Ikki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=MiyashitaKatsuhito en-aut-sei=Miyashita en-aut-mei=Katsuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=AndoShinichiro en-aut-sei=Ando en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=NunoueTomokazu en-aut-sei=Nunoue en-aut-mei=Tomokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= affil-num=1 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=14 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=15 en-affil=Department of Diabetology and Metabolism, National Hospital Organization Okayama Medical Center kn-affil= affil-num=16 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=17 en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital kn-affil= affil-num=18 en-affil=Okayama Saiseikai General Hospital kn-affil= affil-num=19 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=20 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=21 en-affil=Department of Diabetic Medicine, Kurashiki Central Hospital kn-affil= affil-num=22 en-affil=Sakakibara Heart Institute of Okayama kn-affil= affil-num=23 en-affil=Japanese Red Cross Okayama Hospital kn-affil= affil-num=24 en-affil=Okayama City General Medical Center kn-affil= affil-num=25 en-affil=Nunoue Clinic kn-affil= affil-num=26 en-affil=Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=5 article-no= start-page=e0302537 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240521 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The use of artificial intelligence in induced pluripotent stem cell-based technology over 10-year period: A systematic scoping review en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Stem cell research, particularly in the domain of induced pluripotent stem cell (iPSC) technology, has shown significant progress. The integration of artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), has played a pivotal role in refining iPSC classification, monitoring cell functionality, and conducting genetic analysis. These enhancements are broadening the applications of iPSC technology in disease modelling, drug screening, and regenerative medicine. This review aims to explore the role of AI in the advancement of iPSC research.
Methods
In December 2023, data were collected from three electronic databases (PubMed, Web of Science, and Science Direct) to investigate the application of AI technology in iPSC processing.
Results
This systematic scoping review encompassed 79 studies that met the inclusion criteria. The number of research studies in this area has increased over time, with the United States emerging as a leading contributor in this field. AI technologies have been diversely applied in iPSC technology, encompassing the classification of cell types, assessment of disease-specific phenotypes in iPSC-derived cells, and the facilitation of drug screening using iPSC. The precision of AI methodologies has improved significantly in recent years, creating a foundation for future advancements in iPSC-based technologies.
Conclusions
Our review offers insights into the role of AI in regenerative and personalized medicine, highlighting both challenges and opportunities. Although still in its early stages, AI technologies show significant promise in advancing our understanding of disease progression and development, paving the way for future clinical applications. en-copyright= kn-copyright= en-aut-name=VoQuan Duy en-aut-sei=Vo en-aut-mei=Quan Duy kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoYukihiro en-aut-sei=Saito en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IdaToshihiro en-aut-sei=Ida en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamuraKazufumi en-aut-sei=Nakamura en-aut-mei=Kazufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cardiovascular Medicine, Okayama University Hospital kn-affil= affil-num=3 en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Medicine, Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=5 article-no= start-page=414 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240424 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Go/No-Go Ratios Modulate Inhibition-Related Brain Activity: An Event-Related Potential Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=(1) Background: Response inhibition refers to the conscious ability to suppress behavioral responses, which is crucial for effective cognitive control. Currently, research on response inhibition remains controversial, and the neurobiological mechanisms associated with response inhibition are still being explored. The Go/No-Go task is a widely used paradigm that can be used to effectively assess response inhibition capability. While many studies have utilized equal numbers of Go and No-Go trials, how different ratios affect response inhibition remains unknown; (2) Methods: This study investigated the impact of different ratios of Go and No-Go conditions on response inhibition using the Go/No-Go task combined with event-related potential (ERP) techniques; (3) Results: The results showed that as the proportion of Go trials decreased, behavioral performance in Go trials significantly improved in terms of response time, while error rates in No-Go trials gradually decreased. Additionally, the NoGo-P3 component at the central average electrodes (Cz, C1, C2, FCz, FC1, FC2, PCz, PC1, and PC2) exhibited reduced amplitude and latency; (4) Conclusions: These findings indicate that different ratios in Go/No-Go tasks influence response inhibition, with the brain adjusting processing capabilities and rates for response inhibition. This effect may be related to the brain's predictive mechanism model. en-copyright= kn-copyright= en-aut-name=ZhangNan en-aut-sei=Zhang en-aut-mei=Nan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AnWeichao en-aut-sei=An en-aut-mei=Weichao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YuYinghua en-aut-sei=Yu en-aut-mei=Yinghua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WuJinglong en-aut-sei=Wu en-aut-mei=Jinglong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YangJiajia en-aut-sei=Yang en-aut-mei=Jiajia kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Graduate of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=response inhibition kn-keyword=response inhibition en-keyword=ratio kn-keyword=ratio en-keyword=go/no-go task kn-keyword=go/no-go task en-keyword=ERP kn-keyword=ERP en-keyword=NoGo-P3 component kn-keyword=NoGo-P3 component END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=10 article-no= start-page=1811 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Impact of Nutritional Status on Neutrophil-to-Lymphocyte Ratio as a Predictor of Efficacy and Adverse Events of Immune Check-Point Inhibitors en-subtitle= kn-subtitle= en-abstract= kn-abstract=The neutrophil -to-lymphocyte ratio (NLR) is useful for predicting the effectiveness of treatment with immune checkpoint inhibitors (ICIs) and immune-related adverse events (irAEs). Because a growing body of evidence has recently shown that the number of lymphocytes that comprise NLR fluctuates according to nutritional status, this study examined whether the usefulness of NLR varies in ICI treatment due to changes in nutritional status. A retrospective analysis was performed on 1234 patients who received ICI treatment for malignant tumors at our hospital. Progression-free survival (PFS) was significantly prolonged in patients with NLR < 4. Multivariate analysis revealed that the factors associated with the occurrence of irAE were NLR < 4 and the use of ipilimumab. However, when limited to cases with serum albumin levels <3.8 g/dL, lymphocyte counts significantly decreased, and the associations between NLR and PFS and between NLR and irAE occurrence disappeared. In contrast, when limited to the cases with serum albumin levels ≥3.8 g/dL, the associations remained, with significantly prolonged PFS and significantly increased irAE occurrence at NLR < 4. NLR may be a good predictive tool for PFS and irAE occurrence during ICI treatment when a good nutritional status is maintained. en-copyright= kn-copyright= en-aut-name=SueMasahiko en-aut-sei=Sue en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiYasuto en-aut-sei=Takeuchi en-aut-mei=Yasuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirataShoichiro en-aut-sei=Hirata en-aut-mei=Shoichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakakiAkinobu en-aut-sei=Takaki en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OtsukaMotoyuki en-aut-sei=Otsuka en-aut-mei=Motoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=3 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Gastroenterology and Hepatology, Okayama University Hospital kn-affil= en-keyword=immune-related adverse events kn-keyword=immune-related adverse events en-keyword=serum albumin kn-keyword=serum albumin en-keyword=real-world practice kn-keyword=real-world practice END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=10 article-no= start-page=807 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Exploring the Regulators of Keratinization: Role of BMP-2 in Oral Mucosa en-subtitle= kn-subtitle= en-abstract= kn-abstract=The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism. en-copyright= kn-copyright= en-aut-name=MuXindi en-aut-sei=Mu en-aut-mei=Xindi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NguyenHa Thi Thu en-aut-sei=Nguyen en-aut-mei=Ha Thi Thu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ZhaoKun en-aut-sei=Zhao en-aut-mei=Kun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KomoriTaishi en-aut-sei=Komori en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YonezawaTomoko en-aut-sei=Yonezawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OohashiToshitaka en-aut-sei=Oohashi en-aut-mei=Toshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil= kn-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences affil-num=7 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Oral Rehabilitation and Implantology, Okayama University Hospital kn-affil= affil-num=9 en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cell differentiation kn-keyword=cell differentiation en-keyword=epithelia kn-keyword=epithelia en-keyword=growth factor(s) kn-keyword=growth factor(s) en-keyword=bioinformatics kn-keyword=bioinformatics en-keyword=extracellular matrix (ECM) kn-keyword=extracellular matrix (ECM) en-keyword=mucocutaneous disorders kn-keyword=mucocutaneous disorders END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=10 article-no= start-page=980 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of Antimicrobial Photodynamic Therapy on the Tongue Dorsum on Reducing Halitosis and the Duration of the Effect: A Randomized Clinical Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Antimicrobial photodynamic therapy (PDT) is a treatment that is gaining popularity in modern clinical medicine. However, little is known about the effect of PDT alone on reducing oral halitosis and the duration of the effect. This trial examined the effect of PDT on the tongue dorsum on reducing oral halitosis and the duration of the effect. This study was approved by the Ethics Committee of Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, and Okayama University Hospital (CRB20-015), and it was registered in the Japan Registry of Clinical Trials (jRCTs061200060). Twenty-two participants were randomly assigned to two groups: an intervention group and control group. PDT was performed in the intervention group using red laser emission and methylene blue gel on the middle and posterior area of the tongue dorsum. The concentration of volatile sulfur compounds, bacterial count on the tongue dorsum, probing pocket depth, bleeding on probing, and simplified oral debris index score were determined before and 1 week after PDT. The Mann-Whitney U test was used to assess the significance of the differences in each parameter between the two groups. We found that the hydrogen sulfide concentration and bacterial count on the tongue dorsum were decreased in the intervention group, but there was no statistically significant difference between the two groups. These results indicated that performing only PDT on the tongue dorsum may not contribute to reducing halitosis. en-copyright= kn-copyright= en-aut-name=MaruyamaTakayuki en-aut-sei=Maruyama en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EkuniDaisuke en-aut-sei=Ekuni en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YokoiAya en-aut-sei=Yokoi en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagasakiJunichiro en-aut-sei=Nagasaki en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SawadaNanami en-aut-sei=Sawada en-aut-mei=Nanami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MoritaManabu en-aut-sei=Morita en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Preventive Dentistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Okayama University Dental School kn-affil= affil-num=5 en-affil=Department of Preventive Dentistry, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Oral Health Sciences, Takarazuka University of Medical and Health Care kn-affil= en-keyword=halitosis kn-keyword=halitosis en-keyword=antimicrobial photodynamic therapy kn-keyword=antimicrobial photodynamic therapy en-keyword=prevention kn-keyword=prevention en-keyword=randomized clinical trial kn-keyword=randomized clinical trial END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=5 article-no= start-page=477 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240430 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Measurements of Thermodynamic Data of Water in Ca-Bentonite by Relative Humidity Method en-subtitle= kn-subtitle= en-abstract= kn-abstract=Buffer material (compacted bentonite), one of the engineered barrier elements in the geological disposal of a high-level radioactive waste, develops swelling stress due to groundwater penetration from the surrounding rock mass. Montmorillonite is the major clay mineral component of bentonite. Even previous studies provide few mechanical and thermodynamic data on Ca-montmorillonite. In this study, thermodynamic data on Ca-montmorillonite were obtained as a function of water content by measuring relative humidity (RH) and temperature. The activities of water and the relative partial molar Gibbs free energies of water were determined from the experimental results, and the swelling stress of Ca-bentonite was calculated using the thermodynamic model and compared with measured data. The activities of water and the relative partial molar Gibbs free energies obtained in the experiments decreased with decreasing water content in water contents lower than about 25%. This trend was similar to that of Na-montmorillonite. The swelling stress calculated based on the thermodynamic model was approximately 200 MPa at a montmorillonite partial density of 2.0 Mg/m3 and approximately 10 MPa at a montmorillonite partial density of 1.4 Mg/m3. The swelling stresses in the high-density region (around 2.0 Mg/m3) were higher than that of Na-montmorillonite and were similar levels in the low-density region (around 1.5 Mg/m3). Comparison with measured data showed the practicality of the thermodynamic model. en-copyright= kn-copyright= en-aut-name=IchikawaKosuke en-aut-sei=Ichikawa en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoHaruo en-aut-sei=Sato en-aut-mei=Haruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=geological disposal kn-keyword=geological disposal en-keyword=buffer material kn-keyword=buffer material en-keyword=Ca-montmorillonite kn-keyword=Ca-montmorillonite en-keyword=bentonite kn-keyword=bentonite en-keyword=swelling stress kn-keyword=swelling stress END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The optimum quantity of debt for an aging Japan: welfare and demographic dynamics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Japan’s government is heavily indebted, and the current net debt tends to increase. This paper uses an extended life-cycle general equilibrium model with endogenous fertility to investigate an optimal size of government debt from two viewpoints: individual welfare and future demographic dynamics. A simulation analysis finds that the level of net government debt, which maximizes per-capita utility, is negative at − 220% of Japan’s gross domestic product (GDP). The results also indicate that the net debt-to-GDP ratio of − 220% produces a considerable per-capita welfare gain; however, compared to the baseline simulation with a debt-to-GDP ratio of 150%, it substantially decreases the total population in the long run. en-copyright= kn-copyright= en-aut-name=OkamotoAkira en-aut-sei=Okamoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Faculty of Economics, Okayama University kn-affil= en-keyword=Government debt kn-keyword=Government debt en-keyword=Welfare kn-keyword=Welfare en-keyword=Demographic dynamics kn-keyword=Demographic dynamics en-keyword=Japanese economy kn-keyword=Japanese economy en-keyword=Simulation analysis kn-keyword=Simulation analysis en-keyword=H30 kn-keyword=H30 en-keyword=C68 kn-keyword=C68 END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=3 article-no= start-page=1177 end-page=1189 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Evaluation of output factors of different radiotherapy planning systems using Exradin W2 plastic scintillator detector en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study aims to evaluate the output factors (OPF) of different radiation therapy planning systems (TPSs) using a plastic scintillator detector (PSD). The validation results for determining a practical field size for clinical use were verified. The implemented validation system was an Exradin W2 PSD. The focus was to validate the OPFs of the small irradiation fields of two modeled radiation TPSs using RayStation version 10.0.1 and Monaco version 5.51.10. The linear accelerator used for irradiation was a TrueBeam with three energies: 4, 6, and 10 MV. RayStation calculations showed that when the irradiation field size was reduced from 10 × 10 to 0.5 × 0.5 cm2, the results were within 2.0% of the measured values for all energies. Similarly, the values calculated using Monaco were within approximately 2.0% of the measured values for irradiation field sizes between 10 × 10 and 1.5 × 1.5 cm2 for all beam energies of interest. Thus, PSDs are effective validation tools for OPF calculations in TPS. A TPS modeled with the same source data has different minimum irradiation field sizes that can be calculated. These findings could aid in verification of equipment accuracy for treatment planning requiring highly accurate dose calculations and for third-party evaluation of OPF calculations for TPS. en-copyright= kn-copyright= en-aut-name=AndoYasuharu en-aut-sei=Ando en-aut-mei=Yasuharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaMasahiro en-aut-sei=Okada en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsumotoNatsuko en-aut-sei=Matsumoto en-aut-mei=Natsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IkuhiroKawasaki en-aut-sei=Ikuhiro en-aut-mei=Kawasaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshiharaSoichiro en-aut-sei=Ishihara en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KiriuHiroshi en-aut-sei=Kiriu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanabeYoshinori en-aut-sei=Tanabe en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Hiroshima City Hospital kn-affil= affil-num=2 en-affil=Hiroshima City North Medical Center Asa Citizens Hospital kn-affil= affil-num=3 en-affil=Hiroshima City North Medical Center Asa Citizens Hospital kn-affil= affil-num=4 en-affil=Hiroshima City North Medical Center Asa Citizens Hospital kn-affil= affil-num=5 en-affil=Hiroshima City Hospital kn-affil= affil-num=6 en-affil=Hiroshima City Hospital kn-affil= affil-num=7 en-affil=Department of Radiological Technology, Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=Plastic scintillator kn-keyword=Plastic scintillator en-keyword=Radiation therapy kn-keyword=Radiation therapy en-keyword=Small irradiation field kn-keyword=Small irradiation field en-keyword=Output factor kn-keyword=Output factor END start-ver=1.4 cd-journal=joma no-vol=391 cd-vols= no-issue=2 article-no= start-page=249 end-page=267 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The medaka mutant deficient in eyes shut homolog exhibits opsin transport defects and enhanced autophagy in retinal photoreceptors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Eyes shut homolog (EYS) encodes a proteoglycan and the human mutation causes retinitis pigmentosa type 25 (RP25) with progressive retinal degeneration. RP25 most frequently affects autosomal recessive RP patients with many ethnic backgrounds. Although studies using RP models have facilitated the development of therapeutic medications, Eys has been lost in rodent model animals. Here we examined the roles for Eys in the maintenance of photoreceptor structure and function by generating eys-null medaka fish using the CRISPR-Cas9 system. Medaka EYS protein was present near the connecting cilium of wild-type photoreceptors, while it was absent from the eys−/− retina. The mutant larvae exhibited a reduced visual motor response compared with wild-type. In contrast to reported eys-deficient zebrafish at the similar stage, no retinal cell death was detected in the 8-month post-hatching (8-mph) medaka eys mutant. Immunohistochemistry showed a significant reduction in the length of cone outer segments (OSs), retention of OS proteins in the inner segments of photoreceptors, and abnormal filamentous actin network at the base of cone OSs in the mutant retina by 8 mph. Electron microscopy revealed aberrant structure of calyceal processes, numerous vesiculation and lamellar interruptions, and autophagosomes in the eys-mutant cone photoreceptors. In situ hybridization showed an autophagy component gene, gabarap, was ectopically expressed in the eys-null retina. These results suggest eys is required for regeneration of OS, especially of cone photoreceptors, and transport of OS proteins by regulating actin filaments. Enhanced autophagy may delay the progression of retinal degeneration when lacking EYS in the medaka retina. en-copyright= kn-copyright= en-aut-name=SatoKeita en-aut-sei=Sato en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuYang en-aut-sei=Liu en-aut-mei=Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamashitaTakahiro en-aut-sei=Yamashita en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhuchiHideyo en-aut-sei=Ohuchi en-aut-mei=Hideyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Cytology and Histology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biophysics, Graduate School of Science, Kyoto University kn-affil= affil-num=4 en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Eyes shut homolog kn-keyword=Eyes shut homolog en-keyword=Eys kn-keyword=Eys en-keyword=Retinitis pigmentosa kn-keyword=Retinitis pigmentosa en-keyword=RP25 kn-keyword=RP25 en-keyword=Cone photoreceptor kn-keyword=Cone photoreceptor en-keyword=Autophagy kn-keyword=Autophagy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=単心室循環モデル動物における心臓幹細胞経静脈注射 kn-title=Intravenous infusion of cardiac progenitor cells in animal models of single ventricular physiology en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=GOTOTakuya en-aut-sei=GOTO en-aut-mei=Takuya kn-aut-name=後藤拓弥 kn-aut-sei=後藤 kn-aut-mei=拓弥 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil=岡山大学大学院医歯薬学総合研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=マルチコンポーネントシステムのEMC特性を満足させるための等価回路モデルを用いた効率的な最適設計・対策手法に関する研究 kn-title=A Study on Efficient Methods for Optimal Design and Countermeasures Using Equivalent Circuit Models to Satisfy EMC Performance in Multi-Component Systems en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KANShohei en-aut-sei=KAN en-aut-mei=Shohei kn-aut-name=菅翔平 kn-aut-sei=菅 kn-aut-mei=翔平 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=モデルベースによる無線LANの同時通信のためのアクセスポイントの通信インターフェース設定最適化アルゴリズムの研究 kn-title=A Study of Model-Based Interface Setup Optimization Algorithm for Concurrently Communicating Access Points in Wireless Local Area Network en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=AKHTERFatema en-aut-sei=AKHTER en-aut-mei=Fatema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=SK-Gd実験における大気ニュートリノデータを用いたニュートリノ-酸素原子核中性カレント準弾性散乱反応断面積の測定および核子—原子核反応モデルの研究 kn-title=Measurement of the neutrino-oxygen neutral-current quasielastic cross section and study of nucleon-nucleus interaction model using atmospheric neutrino data in the SK-Gd experiment en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=SAKAISeiya en-aut-sei=SAKAI en-aut-mei=Seiya kn-aut-name=酒井聖矢 kn-aut-sei=酒井 kn-aut-mei=聖矢 aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama university kn-affil=岡山大学大学院自然科学研究科 END