start-ver=1.4 cd-journal=joma no-vol=992 cd-vols= no-issue=1 article-no= start-page=27 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251003 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Observing Supernova Neutrino Light Curves with Super-Kamiokande. VI. A Practical Data Analysis Technique Considering Realistic Experimental Backgrounds en-subtitle= kn-subtitle= en-abstract= kn-abstract=Neutrinos from supernovae, especially those emitted during the late phase of core collapse, are essential for understanding the final stages of massive star evolution. We have been dedicated to developing methods for the analysis of neutrinos emitted during the late phase and observed at Super-Kamiokande (SK). Our previous studies have successfully demonstrated the potential of various analysis methods in extracting essential physical properties; however, the lack of background consideration has limited their practical application. In this study, we address this issue by incorporating a realistic treatment of the experimental signal and background events with the on-going SK experiment. We therefore optimize our analysis framework to reflect realistic observational conditions, including both signal and background events. Using this framework we study several long-time supernova models, simulating the late phase neutrino observation in SK and focusing in particular on the identification of the last observed event. We discuss the possibility of model discrimination methods using timing information from this last observed event. en-copyright= kn-copyright= en-aut-name=NakanishiFumi en-aut-sei=Nakanishi en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakazatoKen’ichiro en-aut-sei=Nakazato en-aut-mei=Ken’ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaradaMasayuki en-aut-sei=Harada en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoshioYusuke en-aut-sei=Koshio en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AkahoRyuichiro en-aut-sei=Akaho en-aut-mei=Ryuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AshidaYosuke en-aut-sei=Ashida en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HaradaAkira en-aut-sei=Harada en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoriMasamitsu en-aut-sei=Mori en-aut-mei=Masamitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SumiyoshiKohsuke en-aut-sei=Sumiyoshi en-aut-mei=Kohsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuwaYudai en-aut-sei=Suwa en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WendellRoger A. en-aut-sei=Wendell en-aut-mei=Roger A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ZaizenMasamichi en-aut-sei=Zaizen en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= affil-num=3 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Faculty of Science and Engineering, Waseda University kn-affil= affil-num=6 en-affil=Department of Physics, Tohoku University kn-affil= affil-num=7 en-affil=National Institute of Technology, Ibaraki College kn-affil= affil-num=8 en-affil=Division of Science, National Astronomical Observatory of Japan kn-affil= affil-num=9 en-affil=National Institute of Technology, Numazu College kn-affil= affil-num=10 en-affil=Department of Earth Science and Astronomy, The University of Tokyo kn-affil= affil-num=11 en-affil=Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, The University of Tokyo kn-affil= affil-num=12 en-affil=Department of Earth Science and Astronomy, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=14 article-no= start-page=12551 end-page=12562 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250709 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mesoporous Oxyhalide Aggregates Exhibiting Improved Photocatalytic Activity for Visible-Light H2 Evolution and CO2 Reduction en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oxyhalides are promising visible-light photocatalysts for water splitting and CO2 conversion; however, those exhibiting high activity for these reactions have rarely been reported. Here, we show that using water-soluble Ti complexes as precursors in the microwave-assisted hydrothermal synthesis of the oxyhalide photocatalyst Pb2Ti2O5.4F1.2 (PTOF) resulted in the production of nanoparticulate PTOF. The primary particle size of the synthesized PTOF ranged from several tens of nanometers to several hundreds of nanometers. Using Ti-citric acid or Ti-tartaric acid complexes as precursors, the PTOF was formed as mesoporous aggregates, compared with a bulky analogue (0.5–1 μm) prepared using a TiCl4 precursor. The PTOF prepared from Ti-citric acid complex had a particle size of 50–100 nm and showed a one-order-of-magnitude greater activity for H2 evolution from an aqueous ethylenediaminetetraacetic acid solution with the aid of a Rh cocatalyst. An apparent quantum yield (AQY) of 15.4 ± 1.0% at 420 nm, which is the highest among the reported oxyhalide photocatalysts, was achieved under optimal conditions. Although excess particle size reduction of PTOF lowered the H2 evolution activity, the PTOF with the smallest possible primary particle size of 15–30 nm, prepared from Ti-tartaric acid complex, showed the highest activity toward the selective reduction of CO2 into formate in a nonaqueous environment when combined with a binuclear Ru(II) complex. The CO2 reduction AQY was 10.4 ± 1.8% at 420 nm, a record-high value among metal-complex/semiconductor binary hybrid photocatalysts. This study highlights the importance of morphological control of oxyhalides for realizing their full potential as photocatalysts for artificial photosynthesis. en-copyright= kn-copyright= en-aut-name=UekiHiroto en-aut-sei=Ueki en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaToshiya en-aut-sei=Tanaka en-aut-mei=Toshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AnabukiShuji en-aut-sei=Anabuki en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakadaRyuichi en-aut-sei=Nakada en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkazakiMegumi en-aut-sei=Okazaki en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AiharaKenta en-aut-sei=Aihara en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HattoriMasashi en-aut-sei=Hattori en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshiwariFumitaka en-aut-sei=Ishiwari en-aut-mei=Fumitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HarukiRie en-aut-sei=Haruki en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NozawaShunsuke en-aut-sei=Nozawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoiToshiyuki en-aut-sei=Yokoi en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HaraMichikazu en-aut-sei=Hara en-aut-mei=Michikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IshitaniOsamu en-aut-sei=Ishitani en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SaekiAkinori en-aut-sei=Saeki en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MaedaKazuhiko en-aut-sei=Maeda en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=2 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=6 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=7 en-affil=Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=8 en-affil=Department of Applied Chemistry, Graduate School of Engineering, Osaka University kn-affil= affil-num=9 en-affil=Institute of Materials Structure Science, High Energy Accelerator Research Organization kn-affil= affil-num=10 en-affil=Institute of Materials Structure Science, High Energy Accelerator Research Organization kn-affil= affil-num=11 en-affil=Nanospace Catalysis Unit, Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=12 en-affil=Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=13 en-affil=Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University kn-affil= affil-num=14 en-affil=Department of Applied Chemistry, Graduate School of Engineering, Osaka University kn-affil= affil-num=15 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= en-keyword=artificial photosynthesis kn-keyword=artificial photosynthesis en-keyword=solar fuels kn-keyword=solar fuels en-keyword=mixed-anion compounds kn-keyword=mixed-anion compounds en-keyword=oxyfluorides kn-keyword=oxyfluorides en-keyword=water splitting kn-keyword=water splitting END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=6 article-no= start-page=3541 end-page=3552 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effects of Metal-Cation Doping on Photocatalytic H2 Evolution Activity of Layered Perovskite Oxynitride K2LaTa2O6N en-subtitle= kn-subtitle= en-abstract= kn-abstract=Aliovalent cation doping into a heterogeneous photocatalyst affects several of its physicochemical properties, including its morphological characteristics, optical absorption behavior, and charge carrier dynamics, causing a drastic change in its photocatalytic activity. In the present work, we investigated the effects of aliovalent cation doping on the visible-light H2-evolution photocatalytic activity of the Ruddlesden–Popper layered perovskite oxynitride K2LaTa2O6N. The photocatalytic activity toward H2 evolution from an aqueous NaI solution was found to be enhanced by an increase in the specific surface area of the K2LaTa2O6N photocatalyst, which could be realized upon doping with lower-valence cations (e.g., Mg2+, Al3+, and Ga3+). Among the dopants examined at 1 mol % doping, Ga resulted in the highest activity. The activity of the Ga-doped specimen was further improved with increasing Ga concentration, where the maximal activity was obtained at 10 mol %, corresponding to an apparent quantum yield of 2.7 ± 0.4% at 420 nm from aqueous methanol. This number is the highest reported for a layered oxynitride photocatalyst. In the Ga-doped K2LaTa2O6N, a trade-off was observed between the Ga concentration and the photocatalytic activity. Although doping with Ga reduced the particle size of K2LaTa2O6N and suppressed undesirable charge recombination, it led to an enlarged bandgap, unsuitable for visible-light absorption. en-copyright= kn-copyright= en-aut-name=TsuchikadoHideya en-aut-sei=Tsuchikado en-aut-mei=Hideya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AnabukiShuji en-aut-sei=Anabuki en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=CretuOvidiu en-aut-sei=Cretu en-aut-mei=Ovidiu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaYuki en-aut-sei=Kinoshita en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HattoriMasashi en-aut-sei=Hattori en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShiromaYuta en-aut-sei=Shiroma en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FanDongxiao en-aut-sei=Fan en-aut-mei=Dongxiao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkazakiMegumi en-aut-sei=Okazaki en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SomaTakuto en-aut-sei=Soma en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IshiwariFumitaka en-aut-sei=Ishiwari en-aut-mei=Fumitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NozawaShunsuke en-aut-sei=Nozawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YokoiToshiyuki en-aut-sei=Yokoi en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=HaraMichikazu en-aut-sei=Hara en-aut-mei=Michikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KimotoKoji en-aut-sei=Kimoto en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamakataAkira en-aut-sei=Yamakata en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SaekiAkinori en-aut-sei=Saeki en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MaedaKazuhiko en-aut-sei=Maeda en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Electron Microscopy Group, National Institute for Materials Science (NIMS) kn-affil= affil-num=4 en-affil=Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=6 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=7 en-affil=Institute of Materials Structure Science High Energy Accelerator Research Organization kn-affil= affil-num=8 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= affil-num=9 en-affil=Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo kn-affil= affil-num=10 en-affil=Department of Applied Chemistry, Graduate School of Engineering, Osaka University kn-affil= affil-num=11 en-affil=Institute of Materials Structure Science High Energy Accelerator Research Organization kn-affil= affil-num=12 en-affil=Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=13 en-affil=Institute of Integrated Research, Institute of Science Tokyo kn-affil= affil-num=14 en-affil=Electron Microscopy Group, National Institute for Materials Science (NIMS) kn-affil= affil-num=15 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Department of Applied Chemistry, Graduate School of Engineering, Osaka University kn-affil= affil-num=17 en-affil=Department of Chemistry, School of Science, Institute of Science Tokyo kn-affil= en-keyword=artificial photosynthesis kn-keyword=artificial photosynthesis en-keyword=heterogeneous photocatalysis kn-keyword=heterogeneous photocatalysis en-keyword=mixed-anion compounds kn-keyword=mixed-anion compounds en-keyword=topochemical reaction kn-keyword=topochemical reaction en-keyword=visible light kn-keyword=visible light END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced Charge-Transfer Kinetics Enabled by ZrO2–Based Dielectric Layers in Lithium-Ion Batteries en-subtitle= kn-subtitle= en-abstract= kn-abstract=The development of high-rate capability lithium-ion batteries (LIBs) requires suppression of charge-transfer resistance (RCT) at electrode–electrolyte interfaces. Here, zirconia-based dielectric oxides (MZ; M = Y, Gd, Sm, Er, etc.) were introduced onto LiCoO2 (LCO) surfaces as electronically and ionically insulating modifiers to accelerate interfacial ion transport. Electrochemical impedance spectroscopy showed that Y2O3 modified ZrO2 (YZ) decoration reduced RCT from 75.8 Ω in reference LCO to 38.3 Ω, accompanied by a 2.3-fold improvement in capacity retention at 20C. Density functional theory molecular dynamics (DFT–MD) simulations showed that solvated Li ions coordinate with surface oxygen atoms in discharging, and that adsorption energies are governed by local charge distributions determined by stabilizing cations. Optimal adsorption activity, and thus the lowest RCT, occurred when the surface charge corrugation was balanced. These findings provide design principles for dielectric interface engineering to enhance rate capability of LIBs. en-copyright= kn-copyright= en-aut-name=TeranishiTakashi en-aut-sei=Teranishi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HigakiYusuke en-aut-sei=Higaki en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ImamuraTomonori en-aut-sei=Imamura en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoribeMotoki en-aut-sei=Horibe en-aut-mei=Motoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KondoShinya en-aut-sei=Kondo en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasaokaChinatsu en-aut-sei=Sasaoka en-aut-mei=Chinatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirabaruHikaru en-aut-sei=Hirabaru en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatayamaShingo en-aut-sei=Katayama en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakayamaMasanobu en-aut-sei=Nakayama en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KishimotoAkira en-aut-sei=Kishimoto en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Advanced Ceramics, Nagoya Institute of Technology kn-affil= affil-num=5 en-affil=Department of Energy Engineering, Nagoya University kn-affil= affil-num=6 en-affil=R&D Laboratory, Nippon Denko Co., Ltd. kn-affil= affil-num=7 en-affil=R&D Laboratory, Nippon Denko Co., Ltd. kn-affil= affil-num=8 en-affil=R&D Laboratory, Nippon Denko Co., Ltd. kn-affil= affil-num=9 en-affil=Department of Advanced Ceramics, Nagoya Institute of Technology kn-affil= affil-num=10 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=lithium ion battery kn-keyword=lithium ion battery en-keyword=high rate capability kn-keyword=high rate capability en-keyword=charge transfer kn-keyword=charge transfer en-keyword=Li adsorption kn-keyword=Li adsorption en-keyword=dielectric interface kn-keyword=dielectric interface en-keyword=stabilized ZrO2 kn-keyword=stabilized ZrO2 END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue=1 article-no= start-page=2475735 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Linking structure and process in dendritic growth using persistent homology with energy analysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=We present a material analysis method that links structure and process in dendritic growth using explainable machine learning approaches. We employed persistent homology (PH) to quantitatively characterize the morphology of dendritic microstructures. By using interpretable machine learning with energy analysis, we established a robust relationship between structural features and Gibbs free energy. Through a detailed analysis of how Gibbs free energy evolves with morphological changes in dendrites, we uncovered specific conditions that influence the branching of dendritic structures. Moreover, energy gradient analysis based on morphological feature provides a deeper understanding of the branching mechanisms and offers a pathway to optimize thin-film growth processes. Integrating topology and free energy enables the optimization of a range of materials from fundamental research to practical applications. en-copyright= kn-copyright= en-aut-name=ToneMisato en-aut-sei=Tone en-aut-mei=Misato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SatoShunsuke en-aut-sei=Sato en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KuniiSotaro en-aut-sei=Kunii en-aut-mei=Sotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ObayashiIppei en-aut-sei=Obayashi en-aut-mei=Ippei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HiraokaYasuaki en-aut-sei=Hiraoka en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OgawaYui en-aut-sei=Ogawa en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FukidomeHirokazu en-aut-sei=Fukidome en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FoggiattoAlexandre Lira en-aut-sei=Foggiatto en-aut-mei=Alexandre Lira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MitsumataChiharu en-aut-sei=Mitsumata en-aut-mei=Chiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NagaokaRyunosuke en-aut-sei=Nagaoka en-aut-mei=Ryunosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=VaradwajArpita en-aut-sei=Varadwaj en-aut-mei=Arpita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MatsudaIwao en-aut-sei=Matsuda en-aut-mei=Iwao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KotsugiMasato en-aut-sei=Kotsugi en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Material Science and Technology, Tokyo University of Science kn-affil= affil-num=2 en-affil=Department of Material Science and Technology, Tokyo University of Science kn-affil= affil-num=3 en-affil=Department of Material Science and Technology, Tokyo University of Science kn-affil= affil-num=4 en-affil=Center for Artificial Intelligence and Mathematical Data Science, Okayama University kn-affil= affil-num=5 en-affil=Kyoto University Institute for Advanced Study, Kyoto University kn-affil= affil-num=6 en-affil=NTT Basic Research Laboratories, NTT Corporation kn-affil= affil-num=7 en-affil=Research Institute of Electrical Communication, Tohoku University kn-affil= affil-num=8 en-affil=Department of Material Science and Technology, Tokyo University of Science kn-affil= affil-num=9 en-affil=Department of Material Science and Technology, Tokyo University of Science kn-affil= affil-num=10 en-affil=Department of Material Science and Technology, Tokyo University of Science kn-affil= affil-num=11 en-affil=Department of Material Science and Technology, Tokyo University of Science kn-affil= affil-num=12 en-affil=Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=13 en-affil=Department of Material Science and Technology, Tokyo University of Science kn-affil= en-keyword=Persistent homology kn-keyword=Persistent homology en-keyword=free energy analysis kn-keyword=free energy analysis en-keyword=structure-toproperty linkage kn-keyword=structure-toproperty linkage en-keyword=dendrite growth kn-keyword=dendrite growth END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page=e21664 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251014 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Biologically-Architected Wear and Damage-Resistant Nanoparticle Coating From the Radular Teeth of Cryptochiton stelleri en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nature utilizes simple building blocks to construct mechanically robust materials that demonstrate superior performance under extreme conditions. These exquisite structures result from the controlled synthesis and hierarchical assembly of nanoscale organic and mineral components that have provided critical evolutionary advantages to ensure survival. One such example is the ultrahard radular teeth found in mollusks, which are used to scrape against rock to feed on algae. Here, it is reported that the leading edges of these teeth consist of a wear-resistant coating that is comprised of densely packed ≈65 nm magnetic nanoparticles integrated within an organic matrix of chitin and protein. These mesocrystalline magnetite-based structures are assembled from smaller, highly aligned nanocrystals with inter/intracrystalline organics introduced during the crystallization process. Nanomechanical testing reveals that this multi-scale, nano-architected coating has a combination of increased hardness and a slight decrease in modulus versus geologic magnetite provides the surface of the chiton tooth with superior abrasion resistance. The mesocrystalline structures fracture at primary domain interfaces, corroborated by computational models, providing significant toughening to the tooth under extreme contact stresses. The design features revealed provide insight for the design and fabrication of next-generation advanced wear- and impact-resistant coatings for tooling, machinery, wind turbines, armor, etc. en-copyright= kn-copyright= en-aut-name=WangTaifeng en-aut-sei=Wang en-aut-mei=Taifeng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ChenYu en-aut-sei=Chen en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SarmientoEzra en-aut-sei=Sarmiento en-aut-mei=Ezra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaoTaige en-aut-sei=Hao en-aut-mei=Taige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ArakakiAtsushi en-aut-sei=Arakaki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NemotoMichiko en-aut-sei=Nemoto en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZavattieriPablo en-aut-sei=Zavattieri en-aut-mei=Pablo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KisailusDavid en-aut-sei=Kisailus en-aut-mei=David kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Materials Science and Engineering, University of California kn-affil= affil-num=2 en-affil=Lyles School of Civil and Construction Engineering, Purdue University kn-affil= affil-num=3 en-affil=Department of Materials Science and Engineering, University of California kn-affil= affil-num=4 en-affil=Materials and Manufacturing Technologies Program, University of California kn-affil= affil-num=5 en-affil=Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Lyles School of Civil and Construction Engineering, Purdue University kn-affil= affil-num=8 en-affil=Department of Materials Science and Engineering, University of California kn-affil= en-keyword=biomineralization kn-keyword=biomineralization en-keyword=coatings kn-keyword=coatings en-keyword=damage tolerance kn-keyword=damage tolerance en-keyword=magnetite kn-keyword=magnetite en-keyword=mesocrystals kn-keyword=mesocrystals END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=27481 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Association between proteinuria and mineral metabolism disorders in chronic kidney disease: the Japan chronic kidney disease database extension (J-CKD-DB-Ex) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chronic kidney disease-mineral and bone disorder (CKD-MBD) are recognized as a systemic disease affecting the prognosis of patients with CKD. Proper management of CKD-MBD is important to improve the prognosis of patients with CKD. Although proteinuria is recognized as a poor prognostic factor in these patients, few reports have examined its association with CKD-MBD. We examined the association between proteinuria and CKD-MBD using data from the Japan Chronic Kidney Disease Database Extension (J-CKD-DB-Ex). Among the patients registered in the J-CKD-DB-Ex, 30,977 with CKD stages G2–G5 who had serum creatinine, albumin, calcium, and phosphate concentrations measured at least once and urinalysis performed were included. The patients were divided into four groups (negative, 1+, 2+, and 3+) according to the degree of proteinuria. The association between proteinuria and CKD-MBD was examined by a logistic regression analysis. In a model adjusted for age, sex, diabetes, and the estimated glomerular filtration rate (eGFR), the odds ratio of the 3 + group compared with the negative group significantly increased to 2.67 (95% confidence interval, 2.29–3.13) for hyperphosphatemia, 2.68 (1.94–3.71) for hypocalcemia, and 1.56 (1.24–1.98) for hypomagnesemia. Proteinuria is associated with hyperphosphatemia, hypocalcemia, and hypomagnesemia in patients with CKD independently of eGFR. en-copyright= kn-copyright= en-aut-name=ShimamotoSho en-aut-sei=Shimamoto en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakaharaTakako en-aut-sei=Nakahara en-aut-mei=Takako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamadaShunsuke en-aut-sei=Yamada en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NagasuHajime en-aut-sei=Nagasu en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KishiSeiji en-aut-sei=Kishi en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakashimaNaoki en-aut-sei=Nakashima en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TsuruyaKazuhiko en-aut-sei=Tsuruya en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkadaHirokazu en-aut-sei=Okada en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TamuraKouichi en-aut-sei=Tamura en-aut-mei=Kouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NaritaIchiei en-aut-sei=Narita en-aut-mei=Ichiei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MaruyamaShoichi en-aut-sei=Maruyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YanoYuichiro en-aut-sei=Yano en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YokooTakashi en-aut-sei=Yokoo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=WadaTakashi en-aut-sei=Wada en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=WadaJun en-aut-sei=Wada en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KandaEiichiro en-aut-sei=Kanda en-aut-mei=Eiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KataokaHiromi en-aut-sei=Kataoka en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NangakuMasaomi en-aut-sei=Nangaku en-aut-mei=Masaomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KashiharaNaoki en-aut-sei=Kashihara en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NakanoToshiaki en-aut-sei=Nakano en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=2 en-affil=Department of Medical Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=3 en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=4 en-affil=Department of Nephrology and Hypertension, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Nephrology and Hypertension, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Medical Informatics, Graduate School of Medical Science, Kyushu University kn-affil= affil-num=7 en-affil=Department of Nephrology, Nara Medical University kn-affil= affil-num=8 en-affil=Department of Nephrology, Faculty of Medicine, Saitama Medical University kn-affil= affil-num=9 en-affil=Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University kn-affil= affil-num=10 en-affil=Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=11 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of General Medicine, Juntendo University Faculty of Medicine kn-affil= affil-num=13 en-affil=Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine kn-affil= affil-num=14 en-affil=Department of Nephrology and Rheumatology, Kanazawa University kn-affil= affil-num=15 en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine kn-affil= affil-num=16 en-affil=Department of Health Data Science, Kawasaki Medical School kn-affil= affil-num=17 en-affil=Department of Medical Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare kn-affil= affil-num=18 en-affil=Division of Nephrology and Endocrinology, University of Tokyo Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Nephrology and Hypertension, Kawasaki Medical School kn-affil= affil-num=20 en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University kn-affil= en-keyword=CKD-MBD kn-keyword=CKD-MBD en-keyword=Proteinuria kn-keyword=Proteinuria en-keyword=Hyperphosphatemia kn-keyword=Hyperphosphatemia en-keyword=Hypocalcemia kn-keyword=Hypocalcemia en-keyword=Hypomagnesemia kn-keyword=Hypomagnesemia en-keyword=J-CKD-DB-Ex kn-keyword=J-CKD-DB-Ex END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=5 article-no= start-page=e200293 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Vanishing White Matter Disease With EIF2B2 c.254T >A Variant en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objectives
Typical MRI findings of vanishing white matter disease (VWM) include diffuse white matter lesions with cystic degeneration. However, mild cases may lack these typical features, posing diagnostic challenges.
Methods
We describe 2 of 3 individuals carrying the homozygous c.254T >A variant in EIF2B2 identified at our hospital, excluding 1 previously reported case.1 Genetic analyses were performed using whole-genome sequence or whole-exome sequence analysis, and detected variants were confirmed by direct nucleotide sequence analysis. Brain MRI findings and clinical features were reviewed for the 2 individuals along with other cases in the literature with the same variant.
Results
A 69-year-old woman presented with recurrent transient dizziness and secondary amenorrhea. MRI of the brain revealed small T2-hyperintense lesions confined to the subcortical white matter with hyperintensities on diffusion-weighted images and mildly elevated apparent diffusion coefficient values. A 28-year-old woman presented with transient dizziness and secondary amenorrhea. MRI of the brain showed mild T2-hyperintense lesions in the cerebral white matter with frontal predominance.
Discussion
This report highlights the clinically mild cases of VWM with subtle abnormalities on brain MRI who had the homozygous c.254T >A in EIF2B2, further expanding the clinical spectrum of VWM and underscoring the importance of genetic assessments in the diagnosis of individuals with mild clinical and MRI findings. en-copyright= kn-copyright= en-aut-name=KakumotoToshiyuki en-aut-sei=Kakumoto en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsukawaTakashi en-aut-sei=Matsukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TokimuraRyo en-aut-sei=Tokimura en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsuboyamaYoko en-aut-sei=Tsuboyama en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HayashiYasufumi en-aut-sei=Hayashi en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MitsutakeAkihiko en-aut-sei=Mitsutake en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IwataAtsushi en-aut-sei=Iwata en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaedaMeiko Hashimoto en-aut-sei=Maeda en-aut-mei=Meiko Hashimoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShimizuJun en-aut-sei=Shimizu en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GonoiWataru en-aut-sei=Gonoi en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IshiuraHiroyuki en-aut-sei=Ishiura en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MitsuiJun en-aut-sei=Mitsui en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TsujiShoji en-aut-sei=Tsuji en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TodaTatsushi en-aut-sei=Toda en-aut-mei=Tatsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Radiology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=13 en-affil=Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=14 en-affil=Department of Neurology, Graduate School of Medicine, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=135 cd-vols= no-issue=10 article-no= start-page=106504 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Terahertz Field Control of Electronic-Ferroelectric Anisotropy at Room Temperature in LuFe2⁢O4 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Electronic ferroelectrics, with polarization 𝑷 induced by strongly correlated charges, are expected to show ultrafast, huge, and flexible responses required in future optoelectronics. Although the challenges for ultrafast manipulation of such a polarization are ongoing, the expected advantages have been unclear. In this Letter, we demonstrate an unprecedentedly large increase by a factor of 2.7 in optical second harmonic generation at room temperature in the prototypical electronic ferroelectrics, the rare-earth ferrite LuFe2⁢O4, by applying a terahertz field of 260  kV/cm. The transient anisotropy indicates that the direction of macroscopic polarization can be controlled three dimensionally on subpicosecond timescales, offering additional degrees of freedom in controlling polarization. Although the polarization response is in phase concerning the terahertz field, its sensitivity increased with delay, indicating that cooperative interactions among microscopic domains play an important role in the unprecedented response. en-copyright= kn-copyright= en-aut-name=ItohHirotake en-aut-sei=Itoh en-aut-mei=Hirotake kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MinakamiRyusei en-aut-sei=Minakami en-aut-mei=Ryusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YuHongwu en-aut-sei=Yu en-aut-mei=Hongwu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsuruokaRyohei en-aut-sei=Tsuruoka en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AmanoTatsuya en-aut-sei=Amano en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawakamiYohei en-aut-sei=Kawakami en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KoshiharaShin-ya en-aut-sei=Koshihara en-aut-mei=Shin-ya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiwaraKosuke en-aut-sei=Fujiwara en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkedaNaoshi en-aut-sei=Ikeda en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkimotoYoichi en-aut-sei=Okimoto en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IwaiShinichiro en-aut-sei=Iwai en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Tohoku University kn-affil= affil-num=2 en-affil=Tohoku University kn-affil= affil-num=3 en-affil=Institute of Science Tokyo kn-affil= affil-num=4 en-affil=Tohoku University kn-affil= affil-num=5 en-affil=Tohoku University kn-affil= affil-num=6 en-affil=Tohoku University kn-affil= affil-num=7 en-affil=Institute of Science Tokyo kn-affil= affil-num=8 en-affil=Okayama University kn-affil= affil-num=9 en-affil=Okayama University kn-affil= affil-num=10 en-affil=Institute of Science Tokyo kn-affil= affil-num=11 en-affil=Tohoku University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20251005 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Artificial Selections for Life-History Traits Affect Effective Cumulative Temperature and Developmental Zero Point in Zeugoducus cucurbitae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Effective cumulative temperature and developmental zero point are important indicators for estimating the timing of organism development and the area of distribution. These indicators are generally considered to have unique values for different species of organisms and are also important for predicting the distribution range of animals and plants, especially insect pests. These values generally are species-specific, but there is variation within populations in traits having a genetic component. However, there are no studies on what kind of selection pressure affects these indicator values. To address this issue, it would be worthwhile to compare these values using individuals of strains that have been artificially selected for life-history traits by rearing them at various temperatures and calculating these indicators from developmental days and temperatures. In the present study, eggs were taken from adults of strains with many generations of artificial selection on two life-history traits (age at reproduction and developmental period) of the melon fly, Zeugodacus cucurbitae, under constant temperature conditions. Eggs were reared at five different temperatures, and the effective cumulative temperatures and developmental zero points of the larval and developmental periods were compared. The results demonstrate that artificial selection on life-history traits in Z. cucurbitae induces evolutionary changes in both the effective cumulative temperature and the developmental zero point across successive generations. en-copyright= kn-copyright= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of General Systems Studies, Graduate School of Arts and Sciences, the University of Tokyo kn-affil= en-keyword=age at reproduction kn-keyword=age at reproduction en-keyword=development time kn-keyword=development time en-keyword=developmental period kn-keyword=developmental period en-keyword=larval period kn-keyword=larval period en-keyword=melon fly kn-keyword=melon fly en-keyword=Tephritidae kn-keyword=Tephritidae en-keyword=thermal biology kn-keyword=thermal biology en-keyword=trade-offs kn-keyword=trade-offs END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=5 article-no= start-page=369 end-page=379 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202510 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Blood Pressure and Heart Rate Patterns Identified by Unsupervised Machine Learning and Their Associations with Subclinical Cerebral and Renal Damage in a Japanese Community: The Masuda Study en-subtitle= kn-subtitle= en-abstract= kn-abstract=We applied unsupervised machine learning to analyze blood pressure (BP) and resting heart rate (HR) patterns measured during a 1-year period to assess their cross-sectional relationships with subclinical cerebral and renal target damage. Dimension reduction via uniform manifold approximation and projection, followed by K-means++ clustering, was used to categorize 362 community-dwelling participants (mean age, 56.2 years; 54.9% women) into three groups: Low BP and Low HR (Lo-BP/Lo-HR), High BP and High HR (Hi-BP/Hi-HR), and Low BP and High HR (Lo-BP/Hi-HR). Cerebral vessel lesions were defined as the presence of at least one of the following magnetic resonance imaging findings: lacunar infarcts, white matter hyperintensities, cerebral microbleeds, or intracranial artery stenosis. A high urinary albumin-to-creatinine ratio (UACR) was defined as the top 10% (≥ 12 mg/g) of the mean value from ≥2 measurements. Poisson regression with robust error variance, adjusted for demographics, lifestyle, and medical history, showed that the Hi-BP/Hi-HR group had relative risks of 3.62 (95% confidence interval, 1.75-7.46) for cerebral vessel lesions and 3.58 (1.33-9.67) for high UACR, and the Lo-BP/Hi-HR group had a relative risk of 3.09 (1.12-8.57) for high UACR, compared with the Lo-BP/Lo-HR group. These findings demonstrate the utility of an unsupervised, data-driven approach for identifying physiological patterns associated with subclinical target organ damage. en-copyright= kn-copyright= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MunetomoSosuke en-aut-sei=Munetomo en-aut-mei=Sosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KojimaKatsuhide en-aut-sei=Kojima en-aut-mei=Katsuhide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaniguchiKaori en-aut-sei=Taniguchi en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakahataNoriko en-aut-sei=Nakahata en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Radiology, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Environmental Medicine and Public Health, Izumo, Shimane University Faculty of Medicine kn-affil= affil-num=7 en-affil=Department of Health and Nutrition, The University of Shimane Faculty of Nursing and Nutrition kn-affil= affil-num=8 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=blood pressure kn-keyword=blood pressure en-keyword=heart rate kn-keyword=heart rate en-keyword=subclinical disease kn-keyword=subclinical disease en-keyword=uniform manifold approximation and projection kn-keyword=uniform manifold approximation and projection en-keyword=unsupervised machine learning kn-keyword=unsupervised machine learning END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=5 article-no= start-page=650 end-page=661 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development and validation of an algorithm for identifying patients undergoing dialysis from patients with advanced chronic kidney disease en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Identifying patients on dialysis among those with an estimated glomerular filtration rate (eGFR) < 15 mL/min/1.73 m2 remains challenging. To facilitate clinical research in advanced chronic kidney disease (CKD) using electronic health records, we aimed to develop algorithms to identify dialysis patients using laboratory data obtained in routine practice.
Methods We collected clinical data of patients with an eGFR < 15 mL/min/1.73 m2 from six clinical research core hospitals across Japan: four hospitals for the derivation cohort and two for the validation cohort. The candidate factors for the classification models were identified using logistic regression with stepwise backward selection. To ensure transplant patients were not included in the non-dialysis population, we excluded individuals with the disease code Z94.0.
Results We collected data from 1142 patients, with 640 (56%) currently undergoing hemodialysis or peritoneal dialysis (PD), including 426 of 763 patients in the derivation cohort and 214 of 379 patients in the validation cohort. The prescription of PD solutions perfectly identified patients undergoing dialysis. After excluding patients prescribed PD solutions, seven laboratory parameters were included in the algorithm. The areas under the receiver operation characteristic curve were 0.95 and 0.98 and the positive and negative predictive values were 90.9% and 91.4% in the derivation cohort and 96.2% and 94.6% in the validation cohort, respectively. The calibrations were almost linear.
Conclusions We identified patients on dialysis among those with an eGFR < 15 ml/min/1.73 m2. This study paves the way for database research in nephrology, especially for patients with non-dialysis-dependent advanced CKD. en-copyright= kn-copyright= en-aut-name=ImaizumiTakahiro en-aut-sei=Imaizumi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokotaTakashi en-aut-sei=Yokota en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FunakoshiKouta en-aut-sei=Funakoshi en-aut-mei=Kouta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YasudaKazushi en-aut-sei=Yasuda en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HattoriAkiko en-aut-sei=Hattori en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorohashiAkemi en-aut-sei=Morohashi en-aut-mei=Akemi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KusakabeTatsumi en-aut-sei=Kusakabe en-aut-mei=Tatsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShojimaMasumi en-aut-sei=Shojima en-aut-mei=Masumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NagamineSayoko en-aut-sei=Nagamine en-aut-mei=Sayoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakanoToshiaki en-aut-sei=Nakano en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HuangYong en-aut-sei=Huang en-aut-mei=Yong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MorinagaHiroshi en-aut-sei=Morinaga en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=OhtaMiki en-aut-sei=Ohta en-aut-mei=Miki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NagashimaSatomi en-aut-sei=Nagashima en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=InoueRyusuke en-aut-sei=Inoue en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraNaoki en-aut-sei=Nakamura en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OtaHideki en-aut-sei=Ota en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MaruyamaTatsuya en-aut-sei=Maruyama en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=GobaraHideo en-aut-sei=Gobara en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=EndohAkira en-aut-sei=Endoh en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=AndoMasahiko en-aut-sei=Ando en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShiratoriYoshimune en-aut-sei=Shiratori en-aut-mei=Yoshimune kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=MaruyamaShoichi en-aut-sei=Maruyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital kn-affil= affil-num=3 en-affil=Kyusyu University Hospital kn-affil= affil-num=4 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Advanced Medicine, Nagoya University Hospital kn-affil= affil-num=7 en-affil=Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital kn-affil= affil-num=8 en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=9 en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=10 en-affil=Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University kn-affil= affil-num=11 en-affil=Division of Medical Informatics, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Comprehensive Therapy for Chronic Kidney Disease, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Clinical Research Promotion Center, The University of Tokyo Hospital kn-affil= affil-num=14 en-affil=Department of Healthcare Information Management, The University of Tokyo Hospital kn-affil= affil-num=15 en-affil=Medical Information Technology Center, Tohoku University Hospital kn-affil= affil-num=16 en-affil=Medical Information Technology Center, Tohoku University Hospital kn-affil= affil-num=17 en-affil=Medical Information Technology Center, Tohoku University Hospital kn-affil= affil-num=18 en-affil=Clinical Research Promotion Center, The University of Tokyo Hospital kn-affil= affil-num=19 en-affil=Division of Medical Informatics, Okayama University Hospital kn-affil= affil-num=20 en-affil=Department of Medical Informatics, Hokkaido University Hospital kn-affil= affil-num=21 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= affil-num=22 en-affil=Medical IT Center, Nagoya University Hospital kn-affil= affil-num=23 en-affil=Department of Nephrology, Nagoya University Graduate School of Medicine kn-affil= en-keyword=Chronic kidney disease kn-keyword=Chronic kidney disease en-keyword=Algorithm kn-keyword=Algorithm en-keyword=Classification kn-keyword=Classification en-keyword=Dialysis kn-keyword=Dialysis END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=8226 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250925 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Persistent homology elucidates hierarchical structures responsible for mechanical properties in covalent amorphous solids en-subtitle= kn-subtitle= en-abstract= kn-abstract=Understanding how atomic-level structures govern the mechanical properties of amorphous materials remains a fundamental challenge in solid-state physics. Under mechanical loading, amorphous materials exhibit simple affine and spatially inhomogeneous nonaffine displacements that contribute to the elastic modulus through the Born (affine) and nonaffine terms, respectively. The differences between soft local structures characterized by small Born terms or large nonaffine displacements have yet to be elucidated. This challenge is particularly complex in covalent amorphous materials such as silicon, where the medium-range order (MRO) plays a crucial role in the network structure. To address these issues, we combined molecular dynamics simulations with persistent homology analysis. Our results reveal that local structures with small Born terms are governed by short-range characteristics, whereas those with large nonaffine displacements exhibit hierarchical structures in which short-range disorder is embedded within the MRO. These hierarchical structures are also strongly correlated with low-energy localized vibrational excitations. Our findings demonstrate that the mechanical responses and dynamic properties of covalent amorphous materials are intrinsically linked to the MRO, providing a framework for understanding and tailoring their properties. en-copyright= kn-copyright= en-aut-name=MinamitaniEmi en-aut-sei=Minamitani en-aut-mei=Emi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraTakenobu en-aut-sei=Nakamura en-aut-mei=Takenobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ObayashiIppei en-aut-sei=Obayashi en-aut-mei=Ippei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizunoHideyuki en-aut-sei=Mizuno en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=SANKEN, The University of Osaka kn-affil= affil-num=2 en-affil=Department of Materials and Chemistry Materials DX Research Center, National Institute of Advanced Industrial Science and Technology (AIST) kn-affil= affil-num=3 en-affil=Center for Artificial Intelligence and Mathematical Data Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Arts and Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=20056 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250612 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pharmacokinetics and the effectiveness of pyrogen-free bioabsorbable wet adhesives en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bioabsorbable materials are essential for advanced therapies, including surgical sealing, cell therapy, and drug delivery. Natural bioabsorbable materials, including collagen and hyaluronic acid, have better biocompatibility than synthetic bioabsorbable polymers; however, they are mainly derived from animals, presenting infection risks. Non-animal origin polymers have a lower molecular weight than those of animal origins. Their viscosity increases with increase in molecular weight, making endotoxin removal difficult. Here, using the phosphoryl chloride disposal method, we present a strategy for synthesizing pyrogen-free bioabsorbable adhesives with controlled molecular weight. Phosphopullulan, a polysaccharide derivative, had less than detectable endotoxin levels and controllable average molecular weight of approximately 300,000 to over 1,400,000. Furthermore, it is important to ensure the safety as well as efficacy of bio-implantable materials. We have evaluated the biosafety of polysaccharide derivatives we are developing, and have examined their cell phagocytosis and pharmacokinetics in vitro and in vivo, and have confirmed that they are safe. We have also evaluated their adhesion to wet tissue adhesions and confirmed that they leak less than existing materials. en-copyright= kn-copyright= en-aut-name=OshimaRisa en-aut-sei=Oshima en-aut-mei=Risa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshiharaKumiko en-aut-sei=Yoshihara en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakanishiKo en-aut-sei=Nakanishi en-aut-mei=Ko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkasakaTsukasa en-aut-sei=Akasaka en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimojiShinji en-aut-sei=Shimoji en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraTeppei en-aut-sei=Nakamura en-aut-mei=Teppei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkiharaTakumi en-aut-sei=Okihara en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakamuraMariko en-aut-sei=Nakamura en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TamadaIkkei en-aut-sei=Tamada en-aut-mei=Ikkei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=Van MeerbeekBart en-aut-sei=Van Meerbeek en-aut-mei=Bart kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SugayaTsutomu en-aut-sei=Sugaya en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YoshidaYasuhiro en-aut-sei=Yoshida en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=4 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=5 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=6 en-affil=Department of Applied Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University kn-affil= affil-num=7 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Department of Clinical Psychology, School of Clinical Psychology, Kyushu University of Medical and Science kn-affil= affil-num=9 en-affil=Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Plastic and Reconstructive Surgery, Tokyo Metropolitan Children’s Medical Center kn-affil= affil-num=11 en-affil=BIOMAT, Department of Oral Health Sciences, & UZ Leuven, Dentistry, KU Leuven kn-affil= affil-num=12 en-affil=Department of Periodontology, Faculty of Dental Medicine, Hokkaido University kn-affil= affil-num=13 en-affil=Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University kn-affil= en-keyword=Phosphopullulan kn-keyword=Phosphopullulan en-keyword=Polysaccharide kn-keyword=Polysaccharide en-keyword=ADME kn-keyword=ADME en-keyword=Animal study kn-keyword=Animal study en-keyword=Endodontic sealer kn-keyword=Endodontic sealer END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=38 article-no= start-page=eadv9952 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250919 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Polymeric microwave rectifiers enabled by monolayer-thick ionized donors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Solution processing of polymeric semiconductors provides a facile way to fabricate functional diodes. However, energy barriers at metal-semiconductor interfaces often limit their performance. Here, we report rectifying polymer diodes with markedly modified energy-level alignments. The gold electrode surface was treated with a dimeric metal complex, which resulted in a shallow work function of 3.7 eV by forming a monolayer-thick ionized donor layer. When a polymeric semiconductor was coated on the treated electrode, most of the ionized donors remained at the metal-semiconductor interface. The confined ionized donors with the ideal thickness enabled fabrication of a polymer diode with a forward current density of over 100 A cm−2. Furthermore, a power conversion efficiency of 7.9% was observed for rectification at a microwave frequency of 920 MHz, which is orders of magnitude higher than that reported for organic diodes. Our findings will pave a way to solution-processed high-frequency and high-power devices. en-copyright= kn-copyright= en-aut-name=OsakabeNobutaka en-aut-sei=Osakabe en-aut-mei=Nobutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HerJeongeun en-aut-sei=Her en-aut-mei=Jeongeun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KanetaTakahiro en-aut-sei=Kaneta en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TajimaAkiko en-aut-sei=Tajima en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LonghiElena en-aut-sei=Longhi en-aut-mei=Elena kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TangKan en-aut-sei=Tang en-aut-mei=Kan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujimoriKazuhiro en-aut-sei=Fujimori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=BarlowStephen en-aut-sei=Barlow en-aut-mei=Stephen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MarderSeth R. en-aut-sei=Marder en-aut-mei=Seth R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeShun en-aut-sei=Watanabe en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeyaJun en-aut-sei=Takeya en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YamashitaYu en-aut-sei=Yamashita en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=2 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=3 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=4 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=5 en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology kn-affil= affil-num=6 en-affil=Renewable and Sustainable Energy Institute, University of Colorado Boulder kn-affil= affil-num=7 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology kn-affil= affil-num=9 en-affil=School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology kn-affil= affil-num=10 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=12 en-affil=Material Innovation Research Center (MIRC) and Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=4 article-no= start-page=463 end-page=474 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241225 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nationwide diversity of symbolic “city flowers” in Japan is increasing en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recognizing and maintaining locally rooted human–nature interactions is essential for utilizing ecosystem services. Although the general public's awareness of biodiversity and ecosystem services has been examined using various proxies, it remains unclear how local governments—key sectors in creating conservation policies—appreciate them within a solid local context. Here, we focused on the “city flower,” an official symbolic species of Japanese cities, as a new proxy for measuring governmental attitudes toward biota and its services. We aimed to capture temporal changes in the awareness of species with locally relevant value at the city government level by examining the changes in city flowers over more than half a century. Data from the official websites of municipalities, including the names, the adoption years, and the reasons for adoption, revealed two major periods of adoption, with a notable increase in species diversity in and after 1993. This increase could be attributed to a recent reduction in bias toward popular flowers and growing interest in alternative, less popular flowers. Analysis of the reasons for adoption suggested that the temporal change in adopted flower species was related to the increasing emphasis on species with an explicit local context, especially those with instrumental value to the city. Our findings indicate the tendency for local governments to increasingly recognize their biocultural backgrounds and the ecosystem services of plants within their regions. The growing awareness of the local governments regarding their biocultural background is a positive sign for the conservation of biodiversity and ecosystem services. en-copyright= kn-copyright= en-aut-name=TsuzukiYoichi en-aut-sei=Tsuzuki en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhsakiHaruna en-aut-sei=Ohsaki en-aut-mei=Haruna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawaguchiYawako W. en-aut-sei=Kawaguchi en-aut-mei=Yawako W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiSayaka en-aut-sei=Suzuki en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaShogo en-aut-sei=Harada en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OtakeYurie en-aut-sei=Otake en-aut-mei=Yurie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShinoharaNaoto en-aut-sei=Shinohara en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatsuharaKoki R. en-aut-sei=Katsuhara en-aut-mei=Koki R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Health and Environmental Risk Division, National Institute for Environmental Studies kn-affil= affil-num=2 en-affil=Department of Biological Sciences, Tokyo Metropolitan University kn-affil= affil-num=3 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=4 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=5 en-affil=Department of Biology, Graduate School of Science, Osaka City University kn-affil= affil-num=6 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=7 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=awareness of local governments kn-keyword=awareness of local governments en-keyword=biocultural diversity kn-keyword=biocultural diversity en-keyword=ecosystem services kn-keyword=ecosystem services en-keyword=manual web scraping kn-keyword=manual web scraping en-keyword=temporal trend kn-keyword=temporal trend END start-ver=1.4 cd-journal=joma no-vol=1869 cd-vols= no-issue=12 article-no= start-page=130860 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250913 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The F54L mutation of Thioredoxin shows protein instability and increased fluctuations of the catalytic center en-subtitle= kn-subtitle= en-abstract= kn-abstract=Thioredoxin is a ubiquitous redox protein that acts as an electron donor via its conserved dithiol motif (C32GPC35), catalyzing dithiol–disulfide exchange to regulate the redox state of target proteins. It supports antioxidant defense via peroxiredoxins, facilitates DNA synthesis by donating electrons to ribonucleotide reductase, and regulates redox-sensitive signaling pathways, including those controlling transcription and apoptosis. Neuronal degeneration and chronic kidney disease have been observed in Txn-F54L mutant rats; however, the details of why the Txn mutation causes these phenomena remain unknown. The present study aimed to elucidate the functional and structural changes caused by the F54L mutation. The Thioredoxin-F54L showed less insulin-reducing activity and more thermosensitivity to denaturation in the body temperature range compared to the wild type. The crystal structure revealed that F54 forms hydrophobic interactions with the surrounding hydrophobic amino acids. In addition, molecular dynamics simulation predicts increased fluctuations around the F54L mutation and a tendency for the distance between residues C32 and C35 at the catalytic center to be widened. The increased distance between residues C32 and C35 of the catalytic center may affect the reducing activity of the enzyme on the substrate. The finding that Thioredoxin-F54L is prone to denaturation at normal body temperature may reduce the normally functioning Thioredoxin. These molecular characteristics of Thioredoxin-F54L may be related to brain and kidney disease development in the Txn-F54L rats. en-copyright= kn-copyright= en-aut-name=BabaTakumi en-aut-sei=Baba en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UenoGo en-aut-sei=Ueno en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OheChika en-aut-sei=Ohe en-aut-mei=Chika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SajiShuku en-aut-sei=Saji en-aut-mei=Shuku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoSachiko en-aut-sei=Yamamoto en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamamotoMasaki en-aut-sei=Yamamoto en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakagawaHiroshi en-aut-sei=Nakagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkazakiNobuo en-aut-sei=Okazaki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OuchidaMamoru en-aut-sei=Ouchida en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=Kawasaki-OhmoriIori en-aut-sei=Kawasaki-Ohmori en-aut-mei=Iori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeshitaKohei en-aut-sei=Takeshita en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center kn-affil= affil-num=2 en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center kn-affil= affil-num=3 en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center kn-affil= affil-num=4 en-affil=Structural Biology Division, Japan Synchrotron Radiation Research Institute kn-affil= affil-num=5 en-affil=Structural Biology Division, Japan Synchrotron Radiation Research Institute kn-affil= affil-num=6 en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center kn-affil= affil-num=7 en-affil=Materials Sciences Research Center, Japan Atomic Energy Agency kn-affil= affil-num=8 en-affil=Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS) kn-affil= affil-num=9 en-affil=Department of Molecular Oncology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Section of Developmental Physiology and Pathology, Faculty of Education, Okayama University kn-affil= affil-num=11 en-affil=Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN SPring-8 Center kn-affil= en-keyword=Txn kn-keyword=Txn en-keyword=Thioredoxin kn-keyword=Thioredoxin en-keyword=Protein instability kn-keyword=Protein instability en-keyword=Thermosensitivity kn-keyword=Thermosensitivity en-keyword=Crystal structure kn-keyword=Crystal structure en-keyword=Molecular dynamics simulation kn-keyword=Molecular dynamics simulation END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=9 article-no= start-page=1135 end-page=1151 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250910 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heart failure-specific cardiac fibroblasts contribute to cardiac dysfunction via the MYC–CXCL1–CXCR2 axis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage. This HF-specific CF population highly expresses the transcription factor Myc. Deleting Myc in CFs improves cardiac function without reducing fibrosis. MYC directly regulates the expression of the chemokine CXCL1, which is elevated in HF-specific CFs and downregulated in Myc-deficient CFs. The CXCL1 receptor, CXCR2, is expressed in cardiomyocytes, and blocking the CXCL1–CXCR2 axis mitigates HF. CXCL1 impairs contractility in neonatal rat and human iPSC-derived cardiomyocytes. Human CFs from failing hearts also express MYC and CXCL1, unlike those from controls. These findings reveal that HF-specific CFs contribute to HF via the MYC–CXCL1–CXCR2 pathway, offering a promising therapeutic target beyond cardiomyocytes. en-copyright= kn-copyright= en-aut-name=KomuroJin en-aut-sei=Komuro en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HashimotoHisayuki en-aut-sei=Hashimoto en-aut-mei=Hisayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsukiToshiomi en-aut-sei=Katsuki en-aut-mei=Toshiomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KusumotoDai en-aut-sei=Kusumoto en-aut-mei=Dai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatohManami en-aut-sei=Katoh en-aut-mei=Manami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KoToshiyuki en-aut-sei=Ko en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoMasamichi en-aut-sei=Ito en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatagiriMikako en-aut-sei=Katagiri en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KubotaMasayuki en-aut-sei=Kubota en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaShintaro en-aut-sei=Yamada en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraTakahiro en-aut-sei=Nakamura en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AkibaYohei en-aut-sei=Akiba en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KoukaThukaa en-aut-sei=Kouka en-aut-mei=Thukaa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KomuroKaoruko en-aut-sei=Komuro en-aut-mei=Kaoruko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraMai en-aut-sei=Kimura en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=ItoShogo en-aut-sei=Ito en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NomuraSeitaro en-aut-sei=Nomura en-aut-mei=Seitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KomuroIssei en-aut-sei=Komuro en-aut-mei=Issei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FukudaKeiichi en-aut-sei=Fukuda en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=IedaMasaki en-aut-sei=Ieda en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=2 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=4 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=5 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=6 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=12 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=13 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=14 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=15 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=16 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=17 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=18 en-affil=Department of Frontier Cardiovascular Science, Graduate School of Medicine kn-affil= affil-num=19 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=20 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=21 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=wrae175 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Cyanorhodopsin-II represents a yellow-absorbing proton-pumping rhodopsin clade within cyanobacteria en-subtitle= kn-subtitle= en-abstract= kn-abstract=Microbial rhodopsins are prevalent in many cyanobacterial groups as a light-energy-harvesting system in addition to the photosynthetic system. It has been suggested that this dual system allows efficient capture of sunlight energy using complementary ranges of absorption wavelengths. However, the diversity of cyanobacterial rhodopsins, particularly in accumulated metagenomic data, remains underexplored. Here, we used a metagenomic mining approach, which led to the identification of a novel rhodopsin clade unique to cyanobacteria, cyanorhodopsin-II (CyR-II). CyR-IIs function as light-driven outward H+ pumps. CyR-IIs, together with previously identified cyanorhodopsins (CyRs) and cyanobacterial halorhodopsins (CyHRs), constitute cyanobacterial ion-pumping rhodopsins (CyipRs), a phylogenetically distinct family of rhodopsins. The CyR-II clade is further divided into two subclades, YCyR-II and GCyR-II, based on their specific absorption wavelength. YCyR-II absorbed yellow light (λmax = 570 nm), whereas GCyR-II absorbed green light (λmax = 550 nm). X-ray crystallography and mutational analysis revealed that the difference in absorption wavelengths is attributable to slight changes in the side chain structure near the retinal chromophore. The evolutionary trajectory of cyanobacterial rhodopsins suggests that the function and light-absorbing range of these rhodopsins have been adapted to a wide range of habitats with variable light and environmental conditions. Collectively, these findings shed light on the importance of rhodopsins in the evolution and environmental adaptation of cyanobacteria. en-copyright= kn-copyright= en-aut-name=Hasegawa-TakanoMasumi en-aut-sei=Hasegawa-Takano en-aut-mei=Masumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HosakaToshiaki en-aut-sei=Hosaka en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraYosuke en-aut-sei=Nishimura en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuriharaMarie en-aut-sei=Kurihara en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakajimaYu en-aut-sei=Nakajima en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Ishizuka-KatsuraYoshiko en-aut-sei=Ishizuka-Katsura en-aut-mei=Yoshiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Kimura-SomeyaTomomi en-aut-sei=Kimura-Someya en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShirouzuMikako en-aut-sei=Shirouzu en-aut-mei=Mikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=2 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=3 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=7 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=8 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=9 en-affil=Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research kn-affil= affil-num=10 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= en-keyword=cyanobacteria kn-keyword=cyanobacteria en-keyword=microbial rhodopsin kn-keyword=microbial rhodopsin en-keyword=ecology kn-keyword=ecology en-keyword=evolution kn-keyword=evolution END start-ver=1.4 cd-journal=joma no-vol=20 cd-vols= no-issue=4 article-no= start-page=401 end-page=409 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250801 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-Definition Topographic Archiving and Educational Applications in Regions Affected by the 2024 Noto Peninsula Earthquake en-subtitle= kn-subtitle= en-abstract= kn-abstract=The 2024 Noto Peninsula earthquake (Mw 7.5) caused extensive damage in Ishikawa Prefecture, Japan, and surrounding areas, with considerable coastal uplift and tsunami flooding. Past 100 years’ records show no earthquake above Mw 7.0 in the Noto Peninsula, so for everyone alive today, this event is truly without precedent. Therefore, we aimed to support disaster prevention education by developing teaching materials using unmanned aerial vehicles (UAVs) based on digitally archived topographic changes. High-definition topographic data collected from multiple UAV surveys were processed into digital and analog formats, including 3D models, spherical panorama images, and 3D printings. These materials were designed to provide detailed and intuitive representations of post-disaster landforms and were used as educational tools in schools. The learning materials were introduced during a workshop for disaster-affected teachers, featuring hands-on activities to help participants familiarize themselves with the materials, and explore their integration into geography and science classes. Feedback from participants indicated that these tools were highly effective in enhancing classroom learning. The results of this study are expected to contribute to preserving disaster records while enhancing disaster awareness in educational settings and local communities. en-copyright= kn-copyright= en-aut-name=OguraTakuro en-aut-sei=Ogura en-aut-mei=Takuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamauchiHiroyuki en-aut-sei=Yamauchi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AokiTatsuto en-aut-sei=Aoki en-aut-mei=Tatsuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MattaNobuhisa en-aut-sei=Matta en-aut-mei=Nobuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IizukaKotaro en-aut-sei=Iizuka en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwasaYoshiya en-aut-sei=Iwasa en-aut-mei=Yoshiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiTakayuki en-aut-sei=Takahashi en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HayashiKiyomi en-aut-sei=Hayashi en-aut-mei=Kiyomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HattanjiTsuyoshi en-aut-sei=Hattanji en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OguchiTakashi en-aut-sei=Oguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Education, Hyogo University of Teacher Education kn-affil= affil-num=2 en-affil=Art Research Center, Ritsumeikan University kn-affil= affil-num=3 en-affil=Faculty of Regional Development Studies, Kanazawa University kn-affil= affil-num=4 en-affil=Graduate School of Education, Okayama University kn-affil= affil-num=5 en-affil=Center for Spatial Information Science, The University of Tokyo kn-affil= affil-num=6 en-affil=Faculty of Education, University of Teacher Education Fukuoka kn-affil= affil-num=7 en-affil=International Research Institute of Disaster Science, Tohoku University kn-affil= affil-num=8 en-affil=Faculty of Regional Development Studies, Kanazawa University kn-affil= affil-num=9 en-affil=Institute of Life and Environmental Sciences, University of Tsukuba kn-affil= affil-num=10 en-affil=Center for Spatial Information Science, The University of Tokyo kn-affil= en-keyword=disaster risk-reduction education kn-keyword=disaster risk-reduction education en-keyword=uplift area kn-keyword=uplift area en-keyword=UAV kn-keyword=UAV en-keyword=3D printing kn-keyword=3D printing END start-ver=1.4 cd-journal=joma no-vol=98 cd-vols= no-issue=6 article-no= start-page=uoaf044 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250516 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes for the regio- and diastereoselective synthesis of multisubstituted halogenocyclobutanes en-subtitle= kn-subtitle= en-abstract= kn-abstract=The redox potential is an important factor for controlling the outcome of photoredox catalysis. Particularly, the selective oxidation of substrates and the control over the reactions are challenging when using photoredox catalysts that have high excited-state reduction potentials. In this study, a redox-potential-controlled intermolecular [2 + 2] cycloaddition of styrenes using a thioxanthylium organophotoredox (TXT) catalyst has been developed. This TXT catalyst selectively oxidizes β-halogenostyrenes and smoothly promotes the subsequent intermolecular [2 + 2] cycloadditions to give multisubstituted halogenocyclobutanes with excellent regio- and diastereoselectivity, which has not been effectively achieved by the hitherto reported representative photoredox catalysts. The synthesized halogenocyclobutanes exhibit interesting free radical scavenging activity. The present reaction contributes to the field of redox-potential-controlled electron transfer chemistry. en-copyright= kn-copyright= en-aut-name=MizutaniAsuka en-aut-sei=Mizutani en-aut-mei=Asuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KondoMomo en-aut-sei=Kondo en-aut-mei=Momo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ItakuraShoko en-aut-sei=Itakura en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakamuraHiroyoshi en-aut-sei=Takamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HoshinoYujiro en-aut-sei=Hoshino en-aut-mei=Yujiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishikawaMakiya en-aut-sei=Nishikawa en-aut-mei=Makiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KadotaIsao en-aut-sei=Kadota en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KusamoriKosuke en-aut-sei=Kusamori en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaKenta en-aut-sei=Tanaka en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=3 en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=4 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environment and Information Sciences, Yokohama National University kn-affil= affil-num=6 en-affil=Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=7 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Laboratory of Cellular Drug Discovery and Development, Faculty of Pharmaceutical Sciences, Tokyo University of Science kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=redox potential kn-keyword=redox potential en-keyword=photoredox catalysis kn-keyword=photoredox catalysis en-keyword=[2 + 2] cycloaddition kn-keyword=[2 + 2] cycloaddition END start-ver=1.4 cd-journal=joma no-vol=140 cd-vols= no-issue= article-no= start-page=745 end-page=776 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Advances in filler-crosslinked membranes for hydrogen fuel cells in sustainable energy generation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Fuel cell membranes can be used in various ways to achieve zero-emission transport and energy systems, which offer a promising way to power production due to their higher efficiency compared to the internal combustion engine and the eco-environment. Perfluoro sulfonic acid membranes used for proton exchange membranes (PEMs) have certain drawbacks, like higher fuel permeability and expense, lower mechanical and chemical durability, and proton conductivity under low humidity and above 80 °C temperature. Researchers have drawn their attention to the production of polymer electrolyte membranes with higher proton conductivity, thermal and chemical resilience, maximum power density, lower fuel permeability, and lower expense. For sustainable clean energy generation, a review covering the most useful features of advanced material-associated membranes would be of great benefit to all interested communities. This paper endeavors to explore several types of novel inorganic fillers and crosslinking agents, which have been incorporated into membrane matrices to design the desired properties for an advanced fuel cell system. Membrane parameters such as proton conductivity, the ability of H2 transport, and the stability of the membrane are described. Research directions for developing fuel cell membranes are addressed based on several challenges suggested. The technological advancement of nanostructured materials for fuel cell applications is believed to significantly promote the future clean energy generation technology in practice. en-copyright= kn-copyright= en-aut-name=IslamAminul en-aut-sei=Islam en-aut-mei=Aminul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShahriarMamun en-aut-sei=Shahriar en-aut-mei=Mamun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IslamMd. Tarekul en-aut-sei=Islam en-aut-mei=Md. Tarekul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TeoSiow Hwa en-aut-sei=Teo en-aut-mei=Siow Hwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KhanM. Azizur R. en-aut-sei=Khan en-aut-mei=M. Azizur R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Taufiq-YapYun Hin en-aut-sei=Taufiq-Yap en-aut-mei=Yun Hin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MohantaSuman C. en-aut-sei=Mohanta en-aut-mei=Suman C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=RehanAriyan Islam en-aut-sei=Rehan en-aut-mei=Ariyan Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=RaseeAdiba Islam en-aut-sei=Rasee en-aut-mei=Adiba Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KubraKhadiza Tul en-aut-sei=Kubra en-aut-mei=Khadiza Tul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HasanMd. Munjur en-aut-sei=Hasan en-aut-mei=Md. Munjur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SalmanMd. Shad en-aut-sei=Salman en-aut-mei=Md. Shad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WaliullahR.M. en-aut-sei=Waliullah en-aut-mei=R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasanMd. Nazmul en-aut-sei=Hasan en-aut-mei=Md. Nazmul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SheikhMd. Chanmiya en-aut-sei=Sheikh en-aut-mei=Md. Chanmiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=AwualMrs Eti en-aut-sei=Awual en-aut-mei=Mrs Eti kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=HossainMohammed Sohrab en-aut-sei=Hossain en-aut-mei=Mohammed Sohrab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=ZnadHussein en-aut-sei=Znad en-aut-mei=Hussein kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=AwualMd. Rabiul en-aut-sei=Awual en-aut-mei=Md. Rabiul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=2 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=3 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=4 en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah kn-affil= affil-num=5 en-affil=Department of Chemistry, Jashore University of Science and Technology kn-affil= affil-num=6 en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia kn-affil= affil-num=7 en-affil=Department of Chemistry, Jashore University of Science and Technology kn-affil= affil-num=8 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=9 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=10 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=11 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=12 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=13 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=14 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=15 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=18 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=19 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= affil-num=20 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= en-keyword=Advanced materials kn-keyword=Advanced materials en-keyword=Fuel cell kn-keyword=Fuel cell en-keyword=Hydrogen gas generation kn-keyword=Hydrogen gas generation en-keyword=Proton exchange membrane kn-keyword=Proton exchange membrane en-keyword=Polymer kn-keyword=Polymer END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue= article-no= start-page=173 end-page=211 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Next frontier in photocatalytic hydrogen production through CdS heterojunctions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photocatalytic hydrogen (H₂) generation via solar-powered water splitting represents a sustainable solution to the global energy crisis. Cadmium sulfide (CdS) has emerged as a promising semiconductor photocatalyst due to its tunable bandgap, high physicochemical stability, cost-effectiveness, and widespread availability. This review systematically examines recent advancements in CdS-based heterojunctions, categorized into CdS-metal (Schottky), CdS-semiconductor (p-n, Z-scheme, S-scheme), and CdS-carbon heterojunctions. Various strategies employed to enhance photocatalytic efficiency and stability are discussed, including band structure engineering, surface modification, and the incorporation of crosslinked architectures. A critical evaluation of the underlying photocatalytic mechanisms highlights recent efforts to improve charge separation and photostability under operational conditions. This review highlights the challenges and opportunities in advancing CdS-based photocatalysts and provides a direction for future research. The insights presented aim to accelerate the development of efficient and durable CdS-based photocatalysts for sustainable H₂ production. en-copyright= kn-copyright= en-aut-name=IslamAminul en-aut-sei=Islam en-aut-mei=Aminul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MalekAbdul en-aut-sei=Malek en-aut-mei=Abdul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IslamMd. Tarekul en-aut-sei=Islam en-aut-mei=Md. Tarekul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NipaFarzana Yeasmin en-aut-sei=Nipa en-aut-mei=Farzana Yeasmin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RaihanObayed en-aut-sei=Raihan en-aut-mei=Obayed kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MahmudHasan en-aut-sei=Mahmud en-aut-mei=Hasan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UddinMd. Elias en-aut-sei=Uddin en-aut-mei=Md. Elias kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IbrahimMohd Lokman en-aut-sei=Ibrahim en-aut-mei=Mohd Lokman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Abdulkareem-AlsultanG. en-aut-sei=Abdulkareem-Alsultan en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MondalAlam Hossain en-aut-sei=Mondal en-aut-mei=Alam Hossain kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HasanMd. Munjur en-aut-sei=Hasan en-aut-mei=Md. Munjur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SalmanMd. Shad en-aut-sei=Salman en-aut-mei=Md. Shad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KubraKhadiza Tul en-aut-sei=Kubra en-aut-mei=Khadiza Tul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HasanMd. Nazmul en-aut-sei=Hasan en-aut-mei=Md. Nazmul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SheikhMd. Chanmiya en-aut-sei=Sheikh en-aut-mei=Md. Chanmiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=RaseeAdiba Islam en-aut-sei=Rasee en-aut-mei=Adiba Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=RehanAriyan Islam en-aut-sei=Rehan en-aut-mei=Ariyan Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=AwualMrs Eti en-aut-sei=Awual en-aut-mei=Mrs Eti kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HossainMohammed Sohrab en-aut-sei=Hossain en-aut-mei=Mohammed Sohrab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=WaliullahR.M. en-aut-sei=Waliullah en-aut-mei=R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=AwualMd. Rabiul en-aut-sei=Awual en-aut-mei=Md. Rabiul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=2 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=3 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=4 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=5 en-affil=Department of Pharmaceutical Sciences, College of Health Sciences and Pharmacy, Chicago State University kn-affil= affil-num=6 en-affil=Bangladesh Energy and Power Research Council (BEPRC) kn-affil= affil-num=7 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=8 en-affil=School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA kn-affil= affil-num=9 en-affil=Catalysis Science and Technology Research Centre, Faculty of Science, Universiti Putra Malaysia kn-affil= affil-num=10 en-affil=USAID - Bangladesh Advancing Development and Growth through Energy (BADGE) Project, Tetra Tech kn-affil= affil-num=11 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=12 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=13 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=14 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=15 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=16 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=18 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=19 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=20 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=21 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=22 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= en-keyword=H2 kn-keyword=H2 en-keyword=Sustainability kn-keyword=Sustainability en-keyword=Photocatalytic kn-keyword=Photocatalytic en-keyword=Photo-stability kn-keyword=Photo-stability en-keyword=Heterojunction kn-keyword=Heterojunction en-keyword=CdS kn-keyword=CdS END start-ver=1.4 cd-journal=joma no-vol=343 cd-vols= no-issue= article-no= start-page=103558 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Progress in silicon-based materials for emerging solar-powered green hydrogen (H2) production en-subtitle= kn-subtitle= en-abstract= kn-abstract=The imperative demand for sustainable and renewable energy solutions has precipitated profound scientific investigations into photocatalysts designed for the processes of water splitting and hydrogen fuel generation. The abundance, low toxicity, high conductivity, and cost-effectiveness of silicon-based compounds make them attractive candidates for hydrogen production, driving ongoing research and technological advancements. Developing an effective synthesis method that is simple, economically feasible, and environmentally friendly is crucial for the widespread implementation of silicon-based heterojunctions for sustainable hydrogen production. Balancing the performance benefits with the economic and environmental considerations is a key challenge in the development of these systems. The specific performance of each catalyst type can vary depending on the synthesis method, surface modifications, catalyst loading, and reaction conditions. The confluence of high crystallinity, reduced oxygen concentration, and calcination temperature within the silicon nanoparticle has significantly contributed to its noteworthy hydrogen evolution rate. This review provides an up-to-date evaluation of Si-based photocatalysts, summarizing recent developments, guiding future research directions, and identifying areas that require further investigation. By combining theoretical insights and experimental findings, this review offers a comprehensive understanding of Si-based photocatalysts for water splitting. Through a comprehensive analysis, it aims to elucidate existing knowledge gaps and inspire future research directions towards optimized photocatalytic performance and scalability, ultimately contributing to the realization of sustainable hydrogen generation. en-copyright= kn-copyright= en-aut-name=IslamAminul en-aut-sei=Islam en-aut-mei=Aminul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IslamMd. Tarekul en-aut-sei=Islam en-aut-mei=Md. Tarekul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeoSiow Hwa en-aut-sei=Teo en-aut-mei=Siow Hwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MahmudHasan en-aut-sei=Mahmud en-aut-mei=Hasan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SwarazA.M. en-aut-sei=Swaraz en-aut-mei=A.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=RehanAriyan Islam en-aut-sei=Rehan en-aut-mei=Ariyan Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=RaseeAdiba Islam en-aut-sei=Rasee en-aut-mei=Adiba Islam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KubraKhadiza Tul en-aut-sei=Kubra en-aut-mei=Khadiza Tul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HasanMd. Munjur en-aut-sei=Hasan en-aut-mei=Md. Munjur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SalmanMd. Shad en-aut-sei=Salman en-aut-mei=Md. Shad kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WaliullahR.M. en-aut-sei=Waliullah en-aut-mei=R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=HasanMd. Nazmul en-aut-sei=Hasan en-aut-mei=Md. Nazmul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SheikhMd. Chanmiya en-aut-sei=Sheikh en-aut-mei=Md. Chanmiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=AwualMrs Eti en-aut-sei=Awual en-aut-mei=Mrs Eti kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=HossainMohammed Sohrab en-aut-sei=Hossain en-aut-mei=Mohammed Sohrab kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ZnadHussein en-aut-sei=Znad en-aut-mei=Hussein kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=AwualMd. Rabiul en-aut-sei=Awual en-aut-mei=Md. Rabiul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Petroleum and Mining Engineering, Jashore University of Science and Technology kn-affil= affil-num=2 en-affil=Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering and Technology kn-affil= affil-num=3 en-affil=Industrial Chemistry Program, Faculty of Science and Natural Resources, Universiti Malaysia Sabah kn-affil= affil-num=4 en-affil=Bangladesh Energy and Power Research Council (BEPRC) kn-affil= affil-num=5 en-affil=Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology kn-affil= affil-num=6 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=8 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=9 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=10 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=11 en-affil=Institute for Chemical Research, Kyoto University kn-affil= affil-num=12 en-affil=Department of Chemistry, School of Science, The University of Tokyo kn-affil= affil-num=13 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=14 en-affil=Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=15 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=16 en-affil=Department of Chemistry, Graduate School of Science, Osaka University kn-affil= affil-num=17 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= affil-num=18 en-affil=Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University kn-affil= en-keyword=Silicon-based materials kn-keyword=Silicon-based materials en-keyword=Water splitting kn-keyword=Water splitting en-keyword=Hydrogen kn-keyword=Hydrogen en-keyword=Sustainable kn-keyword=Sustainable en-keyword=Clean and renewable energy kn-keyword=Clean and renewable energy END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250810 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Elucidation of the relationship between solid‐state photoluminescence and crystal structures in 2,6‐substituted naphthalene derivatives en-subtitle= kn-subtitle= en-abstract= kn-abstract=Polycyclic aromatic hydrocarbons (PAHs) are known to exhibit fluorescence in solution, but generally do not emit in the solid state, with the notable exception of anthracene. We previously reported that PAHs containing multiple chromophores show solid-state emission, and we have investigated the relationship between their crystal structures and photoluminescence properties. In particular, PAHs with herringbone-type crystal packing, such as 2,6-diphenylnaphthalene (DPhNp), which has a slender and elongated molecular structure, exhibits red-shifted solid-state fluorescence spectra relative to their solution-phase counterparts. In this study, we synthesized 2,6-naphthalene derivatives bearing phenyl and/or pyridyl substituents (PhPyNp and DPyNp) and observed distinct, red-shifted emission in the solid state compared with that in solution. Crystallographic analysis revealed that both PhPyNp and DPyNp adopt herringbone packing motifs. These findings support our hypothesis that the spectral characteristics of PAH emission are closely linked to crystal packing arrangements, providing a useful strategy for screening PAH candidates for applications in organic semiconducting materials. en-copyright= kn-copyright= en-aut-name=YamajiMinoru en-aut-sei=Yamaji en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshikawaIsao en-aut-sei=Yoshikawa en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MutaiToshiki en-aut-sei=Mutai en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoujouHirohiko en-aut-sei=Houjou en-aut-mei=Hirohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=GotoKenta en-aut-sei=Goto en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaniFumito en-aut-sei=Tani en-aut-mei=Fumito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzukiKengo en-aut-sei=Suzuki en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkamotoHideki en-aut-sei=Okamoto en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Applied Chemistry, Division of Materials and Environment, Graduate School of Science and Engineering, Gunma University kn-affil= affil-num=2 en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=3 en-affil=Technology Transfer Service Corporation kn-affil= affil-num=4 en-affil=Department of Materials and Environmental Science, Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=5 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=6 en-affil=Institute for Materials Chemistry and Engineering, Kyushu University kn-affil= affil-num=7 en-affil=Hamamatsu Photonics K.K kn-affil= affil-num=8 en-affil=Department of Chemistry, Faculty of Environment, Life, Natural Sciences and Technology, Okayama University kn-affil= en-keyword=herringbone kn-keyword=herringbone en-keyword=polycyclic aromatic hydrocarbon kn-keyword=polycyclic aromatic hydrocarbon en-keyword=solid-state emission kn-keyword=solid-state emission END start-ver=1.4 cd-journal=joma no-vol=104 cd-vols= no-issue=2 article-no= start-page=151495 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tri-culture model of intestinal epithelial cell, macrophage, and bacteria for the triggering of inflammatory bowel disease on a microfluidic device en-subtitle= kn-subtitle= en-abstract= kn-abstract=Inflammatory bowel disease (IBD) involves gastrointestinal inflammation, due to intestinal epithelial barrier destruction caused by excessive immune activation. Conventional cell culture systems do not provide a model system that can recapitulate the complex interactions between epithelial cells, immune cells, and intestinal bacteria. To address this, we developed a microfluidic device that mimics the inflammatory response associated with microbial invasion of the intestinal mucosa. The device consisted of two media channels, an upper and a lower channel, and a porous membrane between these channels on which C2BBe1 intestinal epithelial cells were seeded to form a tight junction layer. Each electrode was placed in contact with both channels to continuously monitor the tight junction state. Fresh medium flow allowed bacterial numbers to be controlled and bacterial toxins to be removed, allowing co-culture of mammalian cells and bacteria. In addition, RAW264 macrophage cells were attached to the bottom of the lower channel. By introducing E. coli into the lower channel, the RAW264 cells were activated and produced TNF-α, successfully recapitulating a culture model of inflammation in which the C2BBe1cell tight junction layer was destroyed. The main structure of the device was initially made of polydimethylsiloxane to facilitate its widespread use, but with a view to introducing anaerobic bacteria in the future, a similar phenomenon was successfully reproduced using polystyrene. When TPCA-1, an IκB kinase 2 inhibitor was added into this IBD culture model, the tight junction destruction was significantly suppressed. The results suggest that this IBD culture model also is useful as a screening system for anti-IBD drugs. en-copyright= kn-copyright= en-aut-name=TamuraShiori en-aut-sei=Tamura en-aut-mei=Shiori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PasangClarissa Ellice Talitha en-aut-sei=Pasang en-aut-mei=Clarissa Ellice Talitha kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsudaMinami en-aut-sei=Tsuda en-aut-mei=Minami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaShilan en-aut-sei=Ma en-aut-mei=Shilan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShindoHiromasa en-aut-sei=Shindo en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagaokaNoriyuki en-aut-sei=Nagaoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OhkuboTomoki en-aut-sei=Ohkubo en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujiyamaYoichi en-aut-sei=Fujiyama en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TamaiMiho en-aut-sei=Tamai en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TagawaYoh-ichi en-aut-sei=Tagawa en-aut-mei=Yoh-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=2 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=3 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=4 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=6 en-affil=Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation kn-affil= affil-num=8 en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation kn-affil= affil-num=9 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=10 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= en-keyword=Intestine chip kn-keyword=Intestine chip en-keyword=Inflammatory bowel disease kn-keyword=Inflammatory bowel disease en-keyword=Co-culture kn-keyword=Co-culture en-keyword=Tri-culture kn-keyword=Tri-culture en-keyword=Fluidic device kn-keyword=Fluidic device en-keyword=Disease model kn-keyword=Disease model en-keyword=Macrophage kn-keyword=Macrophage en-keyword=Inflammation kn-keyword=Inflammation END start-ver=1.4 cd-journal=joma no-vol=638 cd-vols= no-issue=8049 article-no= start-page=225 end-page=236 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250122 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies. en-copyright= kn-copyright= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiTatsuya en-aut-sei=Nishi en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakenagaKeizo en-aut-sei=Takenaga en-aut-mei=Keizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AkiSho en-aut-sei=Aki en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=LinJason en-aut-sei=Lin en-aut-mei=Jason kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SuzukiShinichiro en-aut-sei=Suzuki en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MakinoshimaHideki en-aut-sei=Makinoshima en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ItamiMakiko en-aut-sei=Itami en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraYuki en-aut-sei=Nakamura en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TatsumiYasutoshi en-aut-sei=Tatsumi en-aut-mei=Yasutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SuenagaYusuke en-aut-sei=Suenaga en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MorinagaTakao en-aut-sei=Morinaga en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=OhnumaTakehiro en-aut-sei=Ohnuma en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=UmedaYoshiyasu en-aut-sei=Umeda en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KiniwaYukiko en-aut-sei=Kiniwa en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HayashiHidetoshi en-aut-sei=Hayashi en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=IkedaJun-ichiro en-aut-sei=Ikeda en-aut-mei=Jun-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=HanazawaToyoyuki en-aut-sei=Hanazawa en-aut-mei=Toyoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=SuzukiTakuji en-aut-sei=Suzuki en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=OsawaTsuyoshi en-aut-sei=Osawa en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= affil-num=1 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=2 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute kn-affil= affil-num=6 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo kn-affil= affil-num=9 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=10 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University kn-affil= affil-num=11 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=14 en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center kn-affil= affil-num=15 en-affil=Department of Surgical Pathology, Chiba Cancer Center kn-affil= affil-num=16 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=17 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=18 en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute kn-affil= affil-num=19 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=20 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=21 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=22 en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi kn-affil= affil-num=23 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=24 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=25 en-affil=Department of Dermatology, Shinshu University School of Medicine kn-affil= affil-num=26 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=27 en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine kn-affil= affil-num=28 en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University kn-affil= affil-num=29 en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine kn-affil= affil-num=30 en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=31 en-affil=Division of Cellular Signalling, National Cancer Center Research Institute kn-affil= affil-num=32 en-affil=Department of Respirology, Graduate School of Medicine, Chiba University kn-affil= affil-num=33 en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo kn-affil= affil-num=34 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=35 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=12 article-no= start-page=e202402802 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor en-subtitle= kn-subtitle= en-abstract= kn-abstract=Wild soybean Glycine soja is the progenitor of cultivated soybean Glycine max. Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90–92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research. en-copyright= kn-copyright= en-aut-name=TekAhmet L en-aut-sei=Tek en-aut-mei=Ahmet L kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagakiKiyotaka en-aut-sei=Nagaki en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Yıldız AkkamışHümeyra en-aut-sei=Yıldız Akkamış en-aut-mei=Hümeyra kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaKeisuke en-aut-sei=Tanaka en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiHisato en-aut-sei=Kobayashi en-aut-mei=Hisato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University kn-affil= affil-num=4 en-affil=NODAI Genome Research Center, Tokyo University of Agriculture kn-affil= affil-num=5 en-affil=NODAI Genome Research Center, Tokyo University of Agriculture kn-affil= END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=2 article-no= start-page=395 end-page=412.e6 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation. Intriguingly, diet-induced obesity was exacerbated in parallel with arrhythmic feeding behavior, hypothalamic leptin resistance, and hepatic circadian reprogramming in offspring of chronodisrupted mothers. In utero circadian desynchrony altered the phase-relationship between the mother and fetus and impacted placental efficiency. Temporal feeding restriction in offspring failed to fully prevent obesity, whereas the circadian alignment of caloric restriction with the onset of the active phase virtually ameliorated the phenotype. Thus, maternal circadian rhythms during pregnancy confer adaptive properties to metabolic functions in offspring and provide insights into the developmental origins of health and disease. en-copyright= kn-copyright= en-aut-name=YaoNa en-aut-sei=Yao en-aut-mei=Na kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KinouchiKenichiro en-aut-sei=Kinouchi en-aut-mei=Kenichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatohManami en-aut-sei=Katoh en-aut-mei=Manami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AshtianiKousha Changizi en-aut-sei=Ashtiani en-aut-mei=Kousha Changizi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AbdelkarimSherif en-aut-sei=Abdelkarim en-aut-mei=Sherif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MorimotoHiroyuki en-aut-sei=Morimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TorimitsuTakuto en-aut-sei=Torimitsu en-aut-mei=Takuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KozumaTakahide en-aut-sei=Kozuma en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwaharaAkihide en-aut-sei=Iwahara en-aut-mei=Akihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KosugiShotaro en-aut-sei=Kosugi en-aut-mei=Shotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KomuroJin en-aut-sei=Komuro en-aut-mei=Jin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KatoKyosuke en-aut-sei=Kato en-aut-mei=Kyosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TonomuraShun en-aut-sei=Tonomura en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=NakamuraToshifumi en-aut-sei=Nakamura en-aut-mei=Toshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ItohArata en-aut-sei=Itoh en-aut-mei=Arata kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamaguchiShintaro en-aut-sei=Yamaguchi en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YoshinoJun en-aut-sei=Yoshino en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=IrieJunichiro en-aut-sei=Irie en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HashimotoHisayuki en-aut-sei=Hashimoto en-aut-mei=Hisayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YuasaShinsuke en-aut-sei=Yuasa en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=SatohAkiko en-aut-sei=Satoh en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=MikamiYohei en-aut-sei=Mikami en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=UchidaShusaku en-aut-sei=Uchida en-aut-mei=Shusaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=UekiTakatoshi en-aut-sei=Ueki en-aut-mei=Takatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=NomuraSeitaro en-aut-sei=Nomura en-aut-mei=Seitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=BaldiPierre en-aut-sei=Baldi en-aut-mei=Pierre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HayashiKaori en-aut-sei=Hayashi en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=ItohHiroshi en-aut-sei=Itoh en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= affil-num=1 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=2 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Computer Science, University of California kn-affil= affil-num=5 en-affil=Department of Computer Science, University of California kn-affil= affil-num=6 en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=7 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=8 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=9 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=10 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=11 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=12 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=13 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=14 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=15 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=16 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=17 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=18 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=19 en-affil=Department of Cardiology, Keio University School of Medicine kn-affil= affil-num=20 en-affil=Department of Cardiovascular Medicine, Academic Field, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=21 en-affil=Department of Integrative Physiology, Institute of Development, Aging and Cancer, Tohoku University kn-affil= affil-num=22 en-affil=Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=23 en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=24 en-affil=Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=25 en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=26 en-affil=Department of Computer Science, University of California kn-affil= affil-num=27 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= affil-num=28 en-affil=Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine kn-affil= en-keyword=circadian rhythm kn-keyword=circadian rhythm en-keyword=metabolism kn-keyword=metabolism en-keyword=circadian clock kn-keyword=circadian clock en-keyword=pregnancy kn-keyword=pregnancy en-keyword=developmental origins of health and disease kn-keyword=developmental origins of health and disease en-keyword=obesity kn-keyword=obesity en-keyword=leptin kn-keyword=leptin en-keyword=time-restricted feeding kn-keyword=time-restricted feeding en-keyword=caloric restriction kn-keyword=caloric restriction en-keyword=eating behavior kn-keyword=eating behavior END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=5 article-no= start-page=e70046 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250304 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spider mite tetranins elicit different defense responses in different host habitats en-subtitle= kn-subtitle= en-abstract= kn-abstract=Spider mites (Tetranychus urticae) are a major threat to economically important crops. Here, we investigated the potential of tetranins, in particular Tet3 and Tet4, as T. urticae protein-type elicitors that stimulate plant defense. Truncated Tet3 and Tet4 proteins showed efficacy in activating the defense gene pathogenesis-related 1 (PR1) and inducing phytohormone production in leaves of Phaseolus vulgaris. In particular, Tet3 caused a drastically higher Ca2+ influx in leaves, but a lower reactive oxygen species (ROS) generation compared to other tetranins, whereas Tet4 caused a low Ca2+ influx and a high ROS generation in the host plants. Such specific and non-specific elicitor activities were examined by knockdown of Tet3 and Tet4 expressions in mites, confirming their respective activities and in particular showing that they function additively or synergistically to induce defense responses. Of great interest is the fact that Tet3 and Tet4 expression levels were higher in mites on their preferred host, P. vulgaris, compared to the levels in mites on the less-preferred host, Cucumis sativus, whereas Tet1 and Tet2 were constitutively expressed regardless of their host. Furthermore, mites that had been hosted on C. sativus induced lower levels of PR1 expression, Ca2+ influx and ROS generation, i.e., Tet3- and Tet4-responsive defense responses, in both P. vulgaris and C. sativus leaves compared to the levels induced by mites that had been hosted on P. vulgaris. Taken together, these findings show that selected tetranins respond to variable host cues that may optimize herbivore fitness by altering the anti-mite response of the host plant. en-copyright= kn-copyright= en-aut-name=EndoYukiko en-aut-sei=Endo en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaMiku en-aut-sei=Tanaka en-aut-mei=Miku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemuraTakuya en-aut-sei=Uemura en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanimuraKaori en-aut-sei=Tanimura en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DesakiYoshitake en-aut-sei=Desaki en-aut-mei=Yoshitake kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OzawaRika en-aut-sei=Ozawa en-aut-mei=Rika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=BonzanoSara en-aut-sei=Bonzano en-aut-mei=Sara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MaffeiMassimo E. en-aut-sei=Maffei en-aut-mei=Massimo E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShinyaTomonori en-aut-sei=Shinya en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=GalisIvan en-aut-sei=Galis en-aut-mei=Ivan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ArimuraGen‐ichiro en-aut-sei=Arimura en-aut-mei=Gen‐ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=2 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=3 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=4 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=5 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=6 en-affil=Center for Ecological Research, Kyoto University kn-affil= affil-num=7 en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin kn-affil= affil-num=8 en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=11 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= en-keyword=Cucumis sativus kn-keyword=Cucumis sativus en-keyword=elicitor kn-keyword=elicitor en-keyword=Phaseolus vulgaris kn-keyword=Phaseolus vulgaris en-keyword=spider mite (Tetranychus urticae) kn-keyword=spider mite (Tetranychus urticae) en-keyword=tetranin kn-keyword=tetranin END start-ver=1.4 cd-journal=joma no-vol=637 cd-vols= no-issue=8046 article-no= start-page=744 end-page=748 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis en-subtitle= kn-subtitle= en-abstract= kn-abstract=In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3,4,5. Despite the high impact of ‘centrophilic’ retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes. en-copyright= kn-copyright= en-aut-name=TsukaharaSayuri en-aut-sei=Tsukahara en-aut-mei=Sayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BousiosAlexandros en-aut-sei=Bousios en-aut-mei=Alexandros kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Perez-RomanEstela en-aut-sei=Perez-Roman en-aut-mei=Estela kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiSota en-aut-sei=Yamaguchi en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeduqueBasile en-aut-sei=Leduque en-aut-mei=Basile kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoAimi en-aut-sei=Nakano en-aut-mei=Aimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NaishMatthew en-aut-sei=Naish en-aut-mei=Matthew kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OsakabeAkihisa en-aut-sei=Osakabe en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ToyodaAtsushi en-aut-sei=Toyoda en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ItoHidetaka en-aut-sei=Ito en-aut-mei=Hidetaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EderaAlejandro en-aut-sei=Edera en-aut-mei=Alejandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TominagaSayaka en-aut-sei=Tominaga en-aut-mei=Sayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Juliarni en-aut-sei=Juliarni en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KatoKae en-aut-sei=Kato en-aut-mei=Kae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OdaShoko en-aut-sei=Oda en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=InagakiSoichi en-aut-sei=Inagaki en-aut-mei=Soichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=LorkovićZdravko en-aut-sei=Lorković en-aut-mei=Zdravko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NagakiKiyotaka en-aut-sei=Nagaki en-aut-mei=Kiyotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=BergerFrédéric en-aut-sei=Berger en-aut-mei=Frédéric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KawabeAkira en-aut-sei=Kawabe en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=QuadranaLeandro en-aut-sei=Quadrana en-aut-mei=Leandro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HendersonIan en-aut-sei=Henderson en-aut-mei=Ian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KakutaniTetsuji en-aut-sei=Kakutani en-aut-mei=Tetsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=2 en-affil=School of Life Sciences, University of Sussex kn-affil= affil-num=3 en-affil=School of Life Sciences, University of Sussex kn-affil= affil-num=4 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=5 en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université Evry, Université Paris kn-affil= affil-num=6 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=7 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=8 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=9 en-affil=Center for Genetic Resource Information, National Institute of Genetics kn-affil= affil-num=10 en-affil=Faculty of Science, Hokkaido University kn-affil= affil-num=11 en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université Evry, Université Paris kn-affil= affil-num=12 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=13 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=14 en-affil=Department of Integrated Genetics, National Institute of Genetics kn-affil= affil-num=15 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=16 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= affil-num=17 en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) kn-affil= affil-num=18 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=19 en-affil=Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC) kn-affil= affil-num=20 en-affil=Faculty of Life Sciences, Kyoto Sangyo University kn-affil= affil-num=21 en-affil=Institute of Plant Sciences Paris‐Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université Evry, Université Paris kn-affil= affil-num=22 en-affil=Department of Plant Sciences, University of Cambridge kn-affil= affil-num=23 en-affil=Department of Biological Sciences, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=186 cd-vols= no-issue= article-no= start-page=118030 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=(+)-Terrein exerts anti-obesity and anti-diabetic effects by regulating the differentiation and thermogenesis of brown adipocytes in mice fed a high-fat diet en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective: (+)-Terrein, a low-molecular-weight secondary metabolite from Aspergillus terreus, inhibits adipocyte differentiation in vitro. However, the precise mechanisms underlying the effects of (+)-terrein on adipocytes remain unclear. We hypothesized that (+)-terrein modulates adipogenesis and glucose homeostasis in obesity and diabetes via anti-inflammatory action and regulation of adipocyte differentiation. Hence, in this study, we aimed to investigate the in vivo anti-diabetic and anti-obesity effects of (+)-terrein.
Methods: Male C57BL/6 J mice were fed normal chow or high-fat (HF) diet and administered (+)-terrein (180 mg/kg) via intraperitoneal injection. Glucose and insulin tolerance tests, serum biochemical assays, and histological analyses were also performed. Rat brown preadipocytes, mouse brown preadipocytes (T37i cells), and inguinal white adipose tissue (ingWAT) preadipocytes were exposed to (+)-terrein during in vitro adipocyte differentiation. Molecular markers associated with thermogenesis and differentiation were quantified using real-time polymerase chain reaction and western blotting.
Results: (+)-Terrein-treated mice exhibited improved insulin sensitivity and reduced serum lipid and glucose levels, irrespective of the diet. Furthermore, (+)-terrein suppressed body weight gain and mitigated fat accumulation by activating brown adipose tissue in HF-fed mice. (+)-Terrein facilitated the in vitro differentiation of rat brown preadipocytes, T37i cells, and ingWAT preadipocytes by upregulating peroxisome proliferator-activated receptor-γ (PPARγ). This effect was synergistic with that of a PPARγ agonist.
Conclusion: This study demonstrated that (+)-terrein effectively induces PPARγ expression and brown adipocyte differentiation, leading to reduced weight gain and improved glucose and lipid profiles in HF-fed mice. Thus, (+)-terrein is a potent novel agent with potential anti-obesity and anti-diabetic properties. en-copyright= kn-copyright= en-aut-name=Aoki-SaitoHaruka en-aut-sei=Aoki-Saito en-aut-mei=Haruka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MandaiHiroki en-aut-sei=Mandai en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakakuraTakashi en-aut-sei=Nakakura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SasakiTsutomu en-aut-sei=Sasaki en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitamuraTadahiro en-aut-sei=Kitamura en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OmoriKazuhiro en-aut-sei=Omori en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HisadaTakeshi en-aut-sei=Hisada en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OkadaShuichi en-aut-sei=Okada en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SugaSeiji en-aut-sei=Suga en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamadaMasanobu en-aut-sei=Yamada en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SaitoTsugumichi en-aut-sei=Saito en-aut-mei=Tsugumichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine kn-affil= affil-num=2 en-affil=Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science kn-affil= affil-num=3 en-affil=Department of Anatomy, Teikyo University School of Medicine kn-affil= affil-num=4 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=5 en-affil=Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=6 en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Gunma University Graduate School of Health Sciences kn-affil= affil-num=8 en-affil=Department of Diabetes, Soleiyu Asahi Clinic kn-affil= affil-num=9 en-affil=Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University kn-affil= affil-num=10 en-affil=Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine kn-affil= affil-num=11 en-affil=Department of Health & Sports Sciences, Faculty of Education, Tokyo Gakugei University kn-affil= en-keyword=(+)-Terrein kn-keyword=(+)-Terrein en-keyword=Brown adipose tissue kn-keyword=Brown adipose tissue en-keyword=Thermogenesis kn-keyword=Thermogenesis en-keyword=Obesity kn-keyword=Obesity en-keyword=PPARγ kn-keyword=PPARγ END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=10819 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241230 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A high-protein diet-responsive gut hormone regulates behavioral and metabolic optimization in Drosophila melanogaster en-subtitle= kn-subtitle= en-abstract= kn-abstract=Protein is essential for all living organisms; however, excessive protein intake can have adverse effects, such as hyperammonemia. Although mechanisms responding to protein deficiency are well-studied, there is a significant gap in our understanding of how organisms adaptively suppress excessive protein intake. In the present study, utilizing the fruit fly, Drosophila melanogaster, we discover that the peptide hormone CCHamide1 (CCHa1), secreted by enteroendocrine cells in response to a high-protein diet (HPD), is vital for suppressing overconsumption of protein. Gut-derived CCHa1 is received by a small subset of enteric neurons that produce short neuropeptide F, thereby modulating protein-specific satiety. Importantly, impairment of the CCHa1-mediated gut-enteric neuronal axis results in ammonia accumulation and a shortened lifespan under HPD conditions. Collectively, our findings unravel the crosstalk of gut hormone and neuronal pathways that orchestrate physiological responses to prevent and adapt to dietary protein overload. en-copyright= kn-copyright= en-aut-name=YoshinariYuto en-aut-sei=Yoshinari en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishimuraTakashi en-aut-sei=Nishimura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KondoShu en-aut-sei=Kondo en-aut-mei=Shu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TanimotoHiromu en-aut-sei=Tanimoto en-aut-mei=Hiromu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiTomoe en-aut-sei=Kobayashi en-aut-mei=Tomoe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuyamaMakoto en-aut-sei=Matsuyama en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NiwaRyusuke en-aut-sei=Niwa en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=2 en-affil=Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science kn-affil= affil-num=5 en-affil=Graduate School of Life Sciences, Tohoku University kn-affil= affil-num=6 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=7 en-affil=Division of Molecular Genetics, Shigei Medical Research Institute kn-affil= affil-num=8 en-affil=Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba kn-affil= END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=7 article-no= start-page=1073 end-page=1082 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250520 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Direct insertion of an ion channel immobilized on a soft agarose gel bead into a lipid bilayer: an optimized method en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we report the development of a device that improves the conventional artificial lipid bilayer method and can measure channel currents more efficiently. Ion channel proteins are an attractive research target in biophysics, because their functions can be measured at the single-molecule level with high time resolution. In addition, they have attracted attention as targets for drug discovery because of their crucial roles in vivo. Although electrophysiological methods are powerful tools for studying channel proteins, they suffer from low measurement efficiency and require considerable skill. In our previous paper, we reported that by immobilizing channel proteins on agarose gel beads and forming an artificial lipid bilayer on the bead surface, we simultaneously solved two problems that had been hindering the efficiency of the artificial bilayer method: the time-consuming formation of artificial lipid bilayers and the time-consuming incorporation of channels into artificial bilayers. Previous studies have utilized crosslinked hard beads; however, here we show that channel current measurement can be achieved more simply and efficiently using non-crosslinked soft beads. In this study, we detailed the process of immobilizing channel proteins on the surface of non-crosslinked beads through chemical modification, allowing us to measure their channel activity. This method enables current measurements without the need for stringent bead size selection or high negative pressure. en-copyright= kn-copyright= en-aut-name=AsakuraMami en-aut-sei=Asakura en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WangShuyan en-aut-sei=Wang en-aut-mei=Shuyan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HiranoMinako en-aut-sei=Hirano en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IdeToru en-aut-sei=Ide en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Ion channel kn-keyword=Ion channel en-keyword=Artificial lipid bilayer kn-keyword=Artificial lipid bilayer en-keyword=Suction fixation kn-keyword=Suction fixation en-keyword=Soft agarose bead kn-keyword=Soft agarose bead en-keyword=Current recording kn-keyword=Current recording END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=100242 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photochemical internalization of mRNA using a photosensitizer and nucleic acid carriers en-subtitle= kn-subtitle= en-abstract= kn-abstract=mRNA has great potential for therapeutic applications because it can encode a variety of proteins and antigens, in addition to advantages over DNA in terms of gene expression without genomic integration, nuclear localization, or transcription. However, therapeutic applications of mRNA require safe and effective delivery into target cells. Therefore, we aimed to investigate photochemical internalization (PCI) as a promising strategy for delivering mRNA to target cells. In this strategy, mRNA is taken up into cells by endocytosis, accumulates in endosomes, and is released in a light-dependent manner from the endosomes using an endosome-accumulating photosensitizer, aluminum phthalocyanine disulfonate (AlPcS2a), in combination with nucleic acid carrier molecules. We compared the efficacy of various nucleic acid carriers, including branched polyethyleneimine (bPEI) and poly{N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide} (PAsp(DET)) under the same conditions for PCI-based mRNA delivery. Our results indicated that bPEI and PAsp(DET) at low N/P ratios exhibited efficient light-enhancement of mRNA expression by PCI with AlPcS2a. Notably, bPEI exhibited the highest light-dependent mRNA delivery among the carriers evaluated (including cationic polymers, cationic peptides, and lipids), whereas PAsp(DET) showed promise for clinical use because of its lower toxicity compared with bPEI. This PCI strategy allows effective cytosolic mRNA delivery at low N/P ratios, thereby reducing cationic carrier molecule-induced cytotoxicity. This method allows spatiotemporal control of protein expression and holds potential for novel light-dependent mRNA therapies. Overall, this study provided valuable insights into optimizing mRNA delivery systems for therapeutic applications. en-copyright= kn-copyright= en-aut-name=MaemotoHayaki en-aut-sei=Maemoto en-aut-mei=Hayaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzakiRyohei en-aut-sei=Suzaki en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeKazunori en-aut-sei=Watanabe en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItakaKeiji en-aut-sei=Itaka en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University kn-affil= affil-num=5 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=mRNA kn-keyword=mRNA en-keyword=Photochemical internalization kn-keyword=Photochemical internalization en-keyword=Photosensitizer kn-keyword=Photosensitizer END start-ver=1.4 cd-journal=joma no-vol=41 cd-vols= no-issue=4 article-no= start-page=329 end-page=334 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241220 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficient single-channel current measurements of the human BK channel using a liposome-immobilized gold probe en-subtitle= kn-subtitle= en-abstract= kn-abstract=The human BK channel (hBK) is an essential membrane protein that regulates various biological functions, and its dysfunction leads to serious diseases. Understanding the biophysical properties of hBK channels is crucial for drug development. Artificial lipid bilayer recording is used to measure biophysical properties at the single-channel level. However, this technique is time-consuming and complicated; thus, its measurement efficiency is very low. Previously, we developed a novel technique to improve the measurement efficiency by rapidly forming lipid bilayer membranes and incorporating ion channels into the membrane using a hydrophilically modified gold probe. To further improve our technique for application to the hBK channel, we combined it using the gold probe with a liposome fusion method. Using a probe on which liposomes containing hBK channels were immobilized, the channels were efficiently incorporated into the lipid bilayer membrane, and the measured channel currents showed the current characteristics of the hBK channel. This technique will be useful for the efficient measurements of the channel properties of hBK and other biologically important channels. en-copyright= kn-copyright= en-aut-name=HiranoMinako en-aut-sei=Hirano en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsakuraMami en-aut-sei=Asakura en-aut-mei=Mami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IdeToru en-aut-sei=Ide en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=Human BK channel kn-keyword=Human BK channel en-keyword=Artificial lipid bilayer recording kn-keyword=Artificial lipid bilayer recording en-keyword=Ion channel current kn-keyword=Ion channel current en-keyword=Single-channel recording kn-keyword=Single-channel recording END start-ver=1.4 cd-journal=joma no-vol=301 cd-vols= no-issue=7 article-no= start-page=110291 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A repertoire of visible light–sensitive opsins in the deep-sea hydrothermal vent shrimp Rimicaris hybisae en-subtitle= kn-subtitle= en-abstract= kn-abstract=Unlike terrestrial environments, where humans reside, there is no sunlight in the deep sea. Instead, dim visible light from black-body radiation and bioluminescence illuminates hydrothermal vent areas in the deep sea. A deep-sea hydrothermal vent shrimp, Rimicaris hybisae, is thought to detect this dim light using its enlarged dorsal eye; however, the molecular basis of its photoreception remains unexplored. Here, we characterized the molecular properties of opsins, universal photoreceptive proteins in animals, found in R. hybisae. Transcriptomic analysis identified six opsins: three Gq-coupled opsins, one Opn3, one Opn5, and one peropsin. Functional analysis revealed that five of these opsins exhibited light-dependent G protein activity, whereas peropsin exhibited the ability to convert all-trans-retinal to 11-cis-retinal like photoisomerases. Notably, all the R. hybisae opsins, including Opn5, convergently show visible light sensitivity (around 457–517 nm), whereas most opsins categorized as Opn5 have been demonstrated to be UV sensitive. Mutational analysis revealed that the unique visible light sensitivity of R. hybisae Opn5 is achieved through the stabilization of a protonated Schiff base by a counterion residue at position 83 (Asp83), which differs from the position identified in other opsins. These findings suggest that the vent shrimp R. hybisae has adapted its photoreceptive devices to dim deep-sea hydrothermal light by selectively maintaining a repertoire of visible light–sensitive opsins, including the uniquely tuned Opn5. en-copyright= kn-copyright= en-aut-name=NagataYuya en-aut-sei=Nagata en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyamotoNorio en-aut-sei=Miyamoto en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoKeita en-aut-sei=Sato en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishimuraYosuke en-aut-sei=Nishimura en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TaniokaYuki en-aut-sei=Tanioka en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamanakaYuji en-aut-sei=Yamanaka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiKuto en-aut-sei=Takahashi en-aut-mei=Kuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ObayashiKohei en-aut-sei=Obayashi en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsukamotoHisao en-aut-sei=Tsukamoto en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakaiKen en-aut-sei=Takai en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=OhuchiHideyo en-aut-sei=Ohuchi en-aut-mei=Hideyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamashitaTakahiro en-aut-sei=Yamashita en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=3 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=5 en-affil=School of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=School of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=8 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Biology, Graduate School of Science, Kobe University kn-affil= affil-num=10 en-affil=Department of Biology, Graduate School of Science, Kobe University kn-affil= affil-num=11 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=12 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=13 en-affil=Department of Biophysics, Graduate School of Science, Kyoto University kn-affil= affil-num=14 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=15 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=rhodopsin kn-keyword=rhodopsin en-keyword=opsin kn-keyword=opsin en-keyword=G protein–coupled receptor kn-keyword=G protein–coupled receptor en-keyword=signal transduction kn-keyword=signal transduction en-keyword=photoreceptor kn-keyword=photoreceptor en-keyword=vision kn-keyword=vision en-keyword=photobiology kn-keyword=photobiology en-keyword=vent shrimp kn-keyword=vent shrimp en-keyword=deep sea kn-keyword=deep sea en-keyword=molecular evolution kn-keyword=molecular evolution END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=3 article-no= start-page=976 end-page=991 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Enhanced estimation method for partial scattering functions in contrast variation small-angle neutron scattering via Gaussian process regression with prior knowledge of smoothness en-subtitle= kn-subtitle= en-abstract= kn-abstract=Contrast variation small-angle neutron scattering (CV-SANS) is a powerful tool for evaluating the structure of multi-component systems. In CV-SANS, the scattering intensities I(Q) measured with different scattering contrasts are de­com­posed into partial scattering functions S(Q) of the self- and cross-correlations between components. Since the measurement has a measurement error, S(Q) must be estimated statistically from I(Q). If no prior knowledge about S(Q) is available, the least-squares method is best, and this is the most popular estimation method. However, if prior knowledge is available, the estimation can be improved using Bayesian inference in a statistically authorized way. In this paper, we propose a novel method to improve the estimation of S(Q), based on Gaussian process regression using prior knowledge about the smoothness and flatness of S(Q). We demonstrate the method using synthetic core–shell and experimental polyrotaxane SANS data. en-copyright= kn-copyright= en-aut-name=ObayashiIppei en-aut-sei=Obayashi en-aut-mei=Ippei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MiyajimaShinya en-aut-sei=Miyajima en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaKazuaki en-aut-sei=Tanaka en-aut-mei=Kazuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MayumiKoichi en-aut-sei=Mayumi en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Center for Artificial Intelligence and Mathematical Data Science, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Science and Engineering, Iwate University kn-affil= affil-num=3 en-affil=Global Center for Science and Engineering, Waseda University kn-affil= affil-num=4 en-affil=Institute for Solid State Physics, University of Tokyo kn-affil= en-keyword=contrast variation small-angle neutron scattering kn-keyword=contrast variation small-angle neutron scattering en-keyword=CV-SANS kn-keyword=CV-SANS en-keyword=partial scattering functions kn-keyword=partial scattering functions en-keyword=multi-component systems kn-keyword=multi-component systems en-keyword=statistical methods kn-keyword=statistical methods en-keyword=Bayesian inference kn-keyword=Bayesian inference en-keyword=contrast variation kn-keyword=contrast variation en-keyword=Gaussian process regression kn-keyword=Gaussian process regression END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=4 article-no= start-page=043024 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of the thorium-229 defect structure in CaF2 crystals en-subtitle= kn-subtitle= en-abstract= kn-abstract=Recent advancements in laser excitation of the low-energy thorium-229 (229Th) nuclear isomeric state in calcium fluoride (CaF2) single crystals render this system a promising candidate for a solid-state nuclear clock. Nonetheless, the precise experimental determination of the microscopic ion configuration surrounding the doped 229Th and its electronic charge state remains a critical challenge. Such characterization is essential for precisely controlling the clock transition and evaluating the performance of this solid-state nuclear clock system. In this study, we use x-ray absorption fine structure spectroscopy of 229Th:CaF2 to investigate the charge state and coordination environment of doped 229Th. The results indicate that 229Th displays a 4+ oxidation state at the substitutional site of a Ca2+ ion, with charge compensated provided by two F− ions positioned at interstitial sites adjacent to 229Th. en-copyright= kn-copyright= en-aut-name=TakatoriS. en-aut-sei=Takatori en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=PimonM. en-aut-sei=Pimon en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PollittS. en-aut-sei=Pollitt en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BartokosM. en-aut-sei=Bartokos en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=BeeksK. en-aut-sei=Beeks en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GrueneisA. en-aut-sei=Grueneis en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirakiT. en-aut-sei=Hiraki en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HonmaT. en-aut-sei=Honma en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HosseiniN. en-aut-sei=Hosseini en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LeitnerA. en-aut-sei=Leitner en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasudaT. en-aut-sei=Masuda en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MorawetzI en-aut-sei=Morawetz en-aut-mei=I kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NittaK. en-aut-sei=Nitta en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkaiK. en-aut-sei=Okai en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=RiebnerT. en-aut-sei=Riebner en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SchadenF. en-aut-sei=Schaden en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SchummT. en-aut-sei=Schumm en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SekizawaO. en-aut-sei=Sekizawa en-aut-mei=O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SikorskyT. en-aut-sei=Sikorsky en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TakahashiY. en-aut-sei=Takahashi en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=De ColCol, L. Toscani en-aut-sei=De Col en-aut-mei=Col, L. Toscani kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=YamamotoR. en-aut-sei=Yamamoto en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=YomogidaT. en-aut-sei=Yomogida en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=YoshimiA. en-aut-sei=Yoshimi en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=YoshimuraK. en-aut-sei=Yoshimura en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=2 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=3 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=4 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=5 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=6 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=8 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=9 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=10 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=12 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=13 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=14 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=15 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=16 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=17 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=18 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=19 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=20 en-affil=Department of Earth and Planetary Science, The University of Tokyo kn-affil= affil-num=21 en-affil=Faculty of Physics, TU Wien kn-affil= affil-num=22 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=23 en-affil=Department of Earth and Planetary Science, The University of Tokyo kn-affil= affil-num=24 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= affil-num=25 en-affil=Research Institute for Interdisciplinary Science (RIIS), Okayama University kn-affil= en-keyword=solid-state nuclear clock kn-keyword=solid-state nuclear clock en-keyword=thorium-229 kn-keyword=thorium-229 en-keyword=XAFS kn-keyword=XAFS END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=1 article-no= start-page=1 end-page=15 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Improved sedimentary layer model including the accretionary prism in the fore-arc region of the Ryukyu arc, Japan kn-title=南西諸島の前弧域における付加体を含む堆積層のモデル化 en-subtitle= kn-subtitle= en-abstract= kn-abstract= We combine the recent seismic reflection profiles to construct a new seismic velocity model of the sedimentary layer incorporating the accretionary prism along the Ryukyu trench. In constructing the new model, we refer to the zoning (ZONE1 to ZONE4) identified by Okamura et al. (2017, Tectonophys.). The construction process consists of the following steps: First, we digitize either unconformities or VP=4 to 5 km/s lines as the seismic basement, whichever is more clearly identifiable. Second, the digitized thickness data of the sedimentary layer from the reflection profiles are geometrically modeled and interpolated to make the three-dimensional structure model. Finally, we supplement the external region of the constructed 3-D sedimentary model using the J-SHIS model provided by the NIED to complete the velocity structure model in the entire Ryukyu arc. The main features of our model are as follows: In ZONE1, off Ishigaki-jima island, the thick sedimentary layer extends about 50 km wide from the Ryukyu trench. In ZONE2, off Miyako-jima island, the thinner layer compared to the other zones is found near the trench, with a thin sedimentary terrace covering the area behind it. In ZONE3, off Okinawa-jima island, the sedimentary layer deepens as it approaches the trench. In ZONE4, off Tokara islands, the deepest layer among all zones is identified. We then conduct 3-D finite-difference simulations of seismic wave propagation using the new and the previous models to confirm the improvement of the new model. In the simulations, the effects of the accretionary prism along the Ryukyu trench on the seismic wave propagation are clearly identified. en-copyright= kn-copyright= en-aut-name=KOMATSUMasanao en-aut-sei=KOMATSU en-aut-mei=Masanao kn-aut-name=小松正直 kn-aut-sei=小松 kn-aut-mei=正直 aut-affil-num=1 ORCID= en-aut-name=URAKAMISohei en-aut-sei=URAKAMI en-aut-mei=Sohei kn-aut-name=浦上想平 kn-aut-sei=浦上 kn-aut-mei=想平 aut-affil-num=2 ORCID= en-aut-name=OKAMOTOTaro en-aut-sei=OKAMOTO en-aut-mei=Taro kn-aut-name=岡元太郎 kn-aut-sei=岡元 kn-aut-mei=太郎 aut-affil-num=3 ORCID= en-aut-name=TAKENAKAHiroshi en-aut-sei=TAKENAKA en-aut-mei=Hiroshi kn-aut-name=竹中博士 kn-aut-sei=竹中 kn-aut-mei=博士 aut-affil-num=4 ORCID= affil-num=1 en-affil=Okayama Gakuin University kn-affil=岡山学院大学 affil-num=2 en-affil=Formerly Department of Earth Sciences, Okayama University kn-affil=元・岡山大学大学院自然科学研究科 affil-num=3 en-affil=Department of Earth and Planetary Sciences, School of Science, Institute of Science Tokyo kn-affil=東京科学大学理学院地球惑星科学系 affil-num=4 en-affil=Department of Earth Sciences, Okayama University kn-affil=岡山大学学術研究院環境生命自然科学学域 en-keyword=Sedimentary layer model kn-keyword=Sedimentary layer model en-keyword=Accretionary prism kn-keyword=Accretionary prism en-keyword=Ryukyu arc kn-keyword=Ryukyu arc END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=1 article-no= start-page=2323 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250308 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism en-subtitle= kn-subtitle= en-abstract= kn-abstract=Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides. en-copyright= kn-copyright= en-aut-name=AndoYushin en-aut-sei=Ando en-aut-mei=Yushin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KoboAkinao en-aut-sei=Kobo en-aut-mei=Akinao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NiwaTatsuya en-aut-sei=Niwa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamakawaAyako en-aut-sei=Yamakawa en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KonomaSuzuna en-aut-sei=Konoma en-aut-mei=Suzuna kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiYuki en-aut-sei=Kobayashi en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NurekiOsamu en-aut-sei=Nureki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TaguchiHideki en-aut-sei=Taguchi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItohYuzuru en-aut-sei=Itoh en-aut-mei=Yuzuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ChadaniYuhei en-aut-sei=Chadani en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=2 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=3 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=4 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=5 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=6 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=7 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=8 en-affil=School of Life Science and Technology, Institute of Science Tokyo kn-affil= affil-num=9 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=10 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=109 end-page=116 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Relationship between Personality Traits and Postpartum Depressive Symptoms in Women who Became Pregnant via Infertility Treatment en-subtitle= kn-subtitle= en-abstract= kn-abstract=The status of postpartum depression was elucidated herein with the use of the Edinburgh Postnatal Depression Scale (EPDS) in women in Shikoku, Japan who became pregnant and gave birth after undergoing infertility treatment, including assisted reproductive technology (ART). The assessment was performed during their children’s 4-month health examination. The relationships between postpartum depression and the mothers’ background factors and scores on the Big Five personality traits scale were also examined. Of the Big Five personality traits, the scores for neuroticism were significantly higher in the ART group (n=71) than in the general infertility treatment (n=118) and natural pregnancy (n=872) groups. No significant differences in EPDS scores were seen among these three groups. A logistic regression analysis showed that neuroticism was associated with an EPDS score ≧9 points, (which is suggestive of postpartum depression, ) in all groups. Moreover, although a long-standing marriage had an inhibitory effect on postpartum depression in the natural pregnancy group, no such trend was seen in the ART group, which included many women with long-standing marriages. Particularly for women who become pregnant by ART, an individualized response that pays close attention to the woman’s personality traits is needed. en-copyright= kn-copyright= en-aut-name=AwaiKyoko en-aut-sei=Awai en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakatsukaMikiya en-aut-sei=Nakatsuka en-aut-mei=Mikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Health Sciences, Okayama University kn-affil= en-keyword=infertility treatment kn-keyword=infertility treatment en-keyword=assisted reproductive technology kn-keyword=assisted reproductive technology en-keyword=postpartum kn-keyword=postpartum en-keyword=postpartum depression kn-keyword=postpartum depression en-keyword=personality trait kn-keyword=personality trait END start-ver=1.4 cd-journal=joma no-vol=79 cd-vols= no-issue=2 article-no= start-page=93 end-page=100 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lower Work Engagement Is Associated with Insomnia, Psychological Distress, and Neck Pain among Junior and Senior High School Teachers in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=School teachers are subject to both physical and mental health problems. We examined cross-sectional relationships between work engagement and major health outcomes among junior and senior high school teachers in Japan via a nationwide survey in 2019-2020. A total of 3,160 respondents were included in the analyses (19.9% response rate). Work engagement was assessed with the Utrecht Work Engagement Scale-9 (UWES-9), and we thus divided the teachers into quartiles according to their UWES-9 scores. Based on validated questionnaires, we assessed insomnia, psychological distress, and neck pain as health outcomes. A binomial logistic regression adjusted for age, gender, school type, teacher’s roles, involvement in club activities, division of duties, employment status, and whether they lived with family demonstrated that the teachers with lower UWES-9 scores had higher burdens of insomnia, psychological distress, and neck pain (odds ratios [95% confidence intervals] in 4th vs. 1st quartile, 2.92 (2.34-3.65), 3.70 (2.81-4.88), and 2.12 (1.68-2.68), respectively; all trend p<0.001). There were no significant differences in these associations between full-time and part-time teachers. Our findings indicate that low work engagement may contribute to physical and mental health issues among junior and senior high school teachers, thus providing insights for preventing health problems in this profession. en-copyright= kn-copyright= en-aut-name=TsuchieRina en-aut-sei=Tsuchie en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukudaMari en-aut-sei=Fukuda en-aut-mei=Mari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsumuraHideki en-aut-sei=Tsumura en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinutaMinako en-aut-sei=Kinuta en-aut-mei=Minako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HisamatsuTakashi en-aut-sei=Hisamatsu en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Psychology, Graduate School of Technology, Industrial and Social Sciences, Tokushima University kn-affil= affil-num=4 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=work engagement kn-keyword=work engagement en-keyword=school teachers kn-keyword=school teachers en-keyword=insomnia kn-keyword=insomnia en-keyword=psychological distress kn-keyword=psychological distress en-keyword=neck pain kn-keyword=neck pain END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=1 article-no= start-page=75 end-page=99 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The best constant of the Sobolev inequality corresponding to a bending problem of a string with a rectangular spring constant en-subtitle= kn-subtitle= en-abstract= kn-abstract=The Sobolev inequality shows that the supremum of a function defined on a whole line is estimated from the above by constant multiples of the potential energy. Among such constants, the smallest constant is the best constant. If we replace a constant by the best constant in the Sobolev inequality, then the equality holds for the best function. The aim of this paper is to find the best constant and the best function. In the background, there is a bending problem of a string with a rectangular spring constant. The Green function is an important function because the best constant and the best function consist of the Green function. en-copyright= kn-copyright= en-aut-name=YamagishiHiroyuki en-aut-sei=Yamagishi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KametakaYoshinori en-aut-sei=Kametaka en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Tokyo Metropolitan College of Industrial Technology kn-affil= affil-num=2 en-affil=Faculty of Engineering Science, Osaka University kn-affil= en-keyword=Sobolev inequality kn-keyword=Sobolev inequality en-keyword=Green function kn-keyword=Green function en-keyword=reproducing kernel kn-keyword=reproducing kernel END start-ver=1.4 cd-journal=joma no-vol=301 cd-vols= no-issue=4 article-no= start-page=108334 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=202504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of basic amino acid residues in substrate binding and transport of the light-driven anion pump Synechocystis halorhodopsin (SyHR) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Microbial rhodopsins are photoreceptive seventransmembrane a-helical proteins, many of which function as ion transporters, primarily for small monovalent ions such as Na+, K+, Cl-, Br-, and I-. Synechocystis halorhodopsin (SyHR), identified from the cyanobacterium Synechocystis sp. PCC 7509, uniquely transports the polyatomic divalent SO42- inward, in addition to monovalent anions (Cl- and Br-). In this study, we conducted alanine-scanning mutagenesis on twelve basic amino acid residues to investigate the anion transport mechanism of SyHR. We quantitatively evaluated the Cl-and SO42- transport activities of the WT SyHR and its mutants. The results showed a strong correlation between the Cl-and SO42- transport activities among them (R = 0.94), suggesting a shared pathway for both anions. Notably, the R71A mutation selectively abolished SO42- transport activity while maintaining Cl- transport, whereas the H167A mutation significantly impaired both Cl-and SO42- transport. Furthermore, spectroscopic analysis revealed that the R71A mutant lost its ability to bind SO42- due to the absence of a positive charge, while the H167A mutant failed to accumulate the O intermediate during the photoreaction cycle (photocycle) due to reduced hydrophilicity. Additionally, computational analysis revealed the SO42- binding modes and clarified the roles of residues involved in its binding around the retinal chromophore. Based on these findings and previous structural information, we propose that the positive charge and hydrophilicity of Arg71 and His167 are crucial for the formation of the characteristic initial and transient anion-binding site of SyHR, enabling its unique ability to bind and transport both Cl-and SO42-. en-copyright= kn-copyright= en-aut-name=NakamaMasaki en-aut-sei=Nakama en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NojiTomoyasu en-aut-sei=Noji en-aut-mei=Tomoyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Applied Chemistry, The University of Tokyo kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Applied Chemistry, The University of Tokyo kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=microbial rhodopsin kn-keyword=microbial rhodopsin en-keyword=anion transport kn-keyword=anion transport en-keyword=retinal kn-keyword=retinal en-keyword=membrane protein kn-keyword=membrane protein en-keyword=photobiology kn-keyword=photobiology END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=8366 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Local-structure insight into the improved superconducting properties of Pb-substituted La(O, F)BiS2: a photoelectron holography study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pb-substituted La(O, F)BiS2 (Pb-LaOFBiS2) exhibits improved superconducting properties and a resistivity anomaly around 100 K that is attributed to a structural transition. We have performed temperature(T)-dependent photoelectron holography (PEH) to study dopant incorporation sites and the local structure change across the anomaly. The PEH study of Pb-LaOFBiS2 provided evidence for the dominant incorporation sites of Pb and F: Pb atoms are incorporated into the Bi sites and F atoms are incorporated into the O site. No remarkable difference in the local structures around Pb and Bi atoms was observed. Across the temperature of the resistivity anomaly (T*), photoelectron holograms of Bi 4f changed. Comparisons of holograms with those of non-substituted LaOFBiS2 sample, as well as simulated holograms, suggested that (1), above T*, the tetragonal structure of Pb-LaOFBiS2 is different from the tetragonal structure of LaOFBiS2 and (2), below T*, the tetragonal structure still remains in Pb-LaOFBiS2. We discuss a possible origin of the difference in the structure above T* and the implication of the result below T*, which are necessary ingredients to understand the physical properties of Pb-LaOFBiS2. en-copyright= kn-copyright= en-aut-name=LiYajun en-aut-sei=Li en-aut-mei=Yajun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HashimotoYusuke en-aut-sei=Hashimoto en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KataokaNoriyuki en-aut-sei=Kataoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SunZexu en-aut-sei=Sun en-aut-mei=Zexu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawamuraSota en-aut-sei=Kawamura en-aut-mei=Sota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomitaHiroto en-aut-sei=Tomita en-aut-mei=Hiroto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SetoguchiTaro en-aut-sei=Setoguchi en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiSoichiro en-aut-sei=Takeuchi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KogaShunjo en-aut-sei=Koga en-aut-mei=Shunjo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamagamiKohei en-aut-sei=Yamagami en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KotaniYoshinori en-aut-sei=Kotani en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DemuraSatoshi en-aut-sei=Demura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NoguchiKanako en-aut-sei=Noguchi en-aut-mei=Kanako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakataHideaki en-aut-sei=Sakata en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatsushitaTomohiro en-aut-sei=Matsushita en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=5 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=6 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=7 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=8 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=9 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=10 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=11 en-affil=Japan Synchrotron Radiation Research Institute (JASRI) kn-affil= affil-num=12 en-affil=Department of Physics, College of Science and Technology(CST), Nihon University kn-affil= affil-num=13 en-affil=Tokyo University of Science kn-affil= affil-num=14 en-affil=Tokyo University of Science kn-affil= affil-num=15 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=16 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=18 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=121 cd-vols= no-issue=35 article-no= start-page=e2320189121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240821 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Somatic mutations in tumor-infiltrating lymphocytes impact on antitumor immunity en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors (ICIs) exert clinical efficacy against various types of cancers by reinvigorating exhausted CD8+ T cells that can expand and directly attack cancer cells (cancer-specific T cells) among tumor-infiltrating lymphocytes (TILs). Although some reports have identified somatic mutations in TILs, their effect on antitumor immunity remains unclear. In this study, we successfully established 18 cancer-specific T cell clones, which have an exhaustion phenotype, from the TILs of four patients with melanoma. We conducted whole-genome sequencing for these T cell clones and identified various somatic mutations in them with high clonality. Among the somatic mutations, an SH2D2A loss-of-function frameshift mutation and TNFAIP3 deletion could activate T cell effector functions in vitro. Furthermore, we generated CD8+ T cell–specific Tnfaip3 knockout mice and showed that Tnfaip3 function loss in CD8+ T cell increased antitumor immunity, leading to remarkable response to PD-1 blockade in vivo. In addition, we analyzed bulk CD3+ T cells from TILs in additional 12 patients and identified an SH2D2A mutation in one patient through amplicon sequencing. These findings suggest that somatic mutations in TILs can affect antitumor immunity and suggest unique biomarkers and therapeutic targets. en-copyright= kn-copyright= en-aut-name=MukoharaFumiaki en-aut-sei=Mukohara en-aut-mei=Fumiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwataKazuma en-aut-sei=Iwata en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SuzawaKen en-aut-sei=Suzawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UenoToshihide en-aut-sei=Ueno en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SaekiYuka en-aut-sei=Saeki en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamashitaKazuo en-aut-sei=Yamashita en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawaharaYu en-aut-sei=Kawahara en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=WatanabeHiroko en-aut-sei=Watanabe en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HondaHiroaki en-aut-sei=Honda en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University kn-affil= affil-num=8 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=9 en-affil=Division of Cell Therapy, Chiba Cancer Research Institute kn-affil= affil-num=10 en-affil=Division of Cell Therapy, Chiba Cancer Research Institute kn-affil= affil-num=11 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=13 en-affil=KOTAI Biotechnologies, Inc. kn-affil= affil-num=14 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=15 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=16 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=17 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=18 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=19 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=20 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa kn-affil= affil-num=21 en-affil=Department of Pathology, Tokyo Women's Medical University kn-affil= affil-num=22 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=23 en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama University kn-affil= affil-num=24 en-affil=Division of Cell Therapy, Chiba Cancer Research Institute kn-affil= affil-num=25 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cancer immunology kn-keyword=cancer immunology en-keyword=somatic mutation kn-keyword=somatic mutation en-keyword=T cell kn-keyword=T cell en-keyword=tumor-infiltrating lymphocytes kn-keyword=tumor-infiltrating lymphocytes END start-ver=1.4 cd-journal=joma no-vol=2025 cd-vols= no-issue=1 article-no= start-page=013C01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241226 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Modification on Thermal Motion in Geant4 for Neutron Capture Simulation in Gadolinium Loaded Water en-subtitle= kn-subtitle= en-abstract= kn-abstract=Neutron tagging is a fundamental technique for electron anti-neutrino detection via the inverse beta decay channel. A reported discrepancy in neutron detection efficiency between observational data and simulation predictions prompted an investigation into neutron capture modeling in Geant4. The study revealed that an overestimation of the thermal motion of hydrogen atoms in Geant4 impacts the fraction of captured nuclei. By manually modifying the Geant4 implementation, the simulation results align with calculations based on evaluated nuclear data and show good agreement with observables derived from the SK-Gd data. en-copyright= kn-copyright= en-aut-name=HinoY. en-aut-sei=Hino en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeK. en-aut-sei=Abe en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsakaR. en-aut-sei=Asaka en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HanS. en-aut-sei=Han en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaM. en-aut-sei=Harada en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshitsukaM. en-aut-sei=Ishitsuka en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoH. en-aut-sei=Ito en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IzumiyamaS. en-aut-sei=Izumiyama en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KanemuraY. en-aut-sei=Kanemura en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KoshioY. en-aut-sei=Koshio en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanishiF. en-aut-sei=Nakanishi en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SekiyaH. en-aut-sei=Sekiya en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YanoT. en-aut-sei=Yano en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=3 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= affil-num=4 en-affil=Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=5 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=6 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= affil-num=7 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= affil-num=8 en-affil=Department of Physics, Tokyo Institute of Technology kn-affil= affil-num=9 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=13 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=234 cd-vols= no-issue= article-no= start-page=120015 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250305 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Reversible chemical modifications of graphene oxide for enhanced viral capture and release in water en-subtitle= kn-subtitle= en-abstract= kn-abstract=Detecting low concentrations of viruses in sewage water is crucial for monitoring the spread of emerging viral diseases. However, current detection methods, which involve concentrating viruses using traditional materials such as gauze or cotton, have limitations in effectively accomplishing this task. This study demonstrates that graphene oxide (GO), a two-dimensional carbon material, possesses strong viral adsorption capabilities. However, it lacks efficiency for effective viral release. Therefore, we designed a series of new GO-based materials, which exhibited a viral adsorption similar to pristine GO, while significantly enhancing their release performance by attaching alkyl chains and hydrophilic functional groups. Among the synthesized materials, 1,8-aminooctanol grafted to GO (GO-NH2C8OH) has emerged as the most promising candidate, achieving a viral release rate higher than 50 %. This superior performance can be attributed to the synergistic effect of the alkyl chain and the terminal OH group, which enhances both its affinity for viruses and water dispersibility. Furthermore, we have successfully applied GO-NH2C8OH in a new protocol for concentrating viruses from sewage wastewater. This approach has demonstrated a 200-fold increase in virus concentration, allowing PCR detection of this type of pathogens present in wastewater below the detection limit by direct analysis, underscoring its significant potential for virus surveillance. en-copyright= kn-copyright= en-aut-name=Ferré-PujolPilar en-aut-sei=Ferré-Pujol en-aut-mei=Pilar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ObataSeiji en-aut-sei=Obata en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RayaJésus en-aut-sei=Raya en-aut-mei=Jésus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=BiancoAlberto en-aut-sei=Bianco en-aut-mei=Alberto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatayamaHiroyuki en-aut-sei=Katayama en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoTakashi en-aut-sei=Kato en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg kn-affil= affil-num=4 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Urban Engineering, School of Engineering, The University of Tokyo kn-affil= affil-num=6 en-affil=Research Center for Water Environment Technology, School of Engineering, The University of Tokyo kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=Carbon nanomaterials kn-keyword=Carbon nanomaterials en-keyword=Functionalization kn-keyword=Functionalization en-keyword=Adsorption kn-keyword=Adsorption en-keyword=Desorption kn-keyword=Desorption en-keyword=Pathogens kn-keyword=Pathogens END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=24 article-no= start-page=4878 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241211 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=An Implementation of Web-Based Answer Platform in the Flutter Programming Learning Assistant System Using Docker Compose en-subtitle= kn-subtitle= en-abstract= kn-abstract=Programming has gained significant importance worldwide as societies increasingly rely on computer application systems. To support novices in learning various programming languages, we have developed the Programming Learning Assistant System (PLAS). It offers several types of exercise problems with different learning goals and levels for step-by-step self-study. As a personal answer platform in PLAS, we have implemented a web application using Node.js and EJS for Java and Python programming. Recently, the Flutter framework with Dart programming has become popular, enabling developers to build applications for mobile, web, and desktop environments from a single codebase. Thus, we have extended PLAS by implementing the Flutter environment with Visual Studio Code to support it. Additionally, we have developed an image-based user interface (UI) testing tool to verify student source code by comparing its generated UI image with the standard one using the ORB and SIFT algorithms in OpenCV. For efficient distribution to students, we have generated Docker images of the answer platform, Flutter environment, and image-based UI testing tool. In this paper, we present the implementation of a web-based answer platform for the Flutter Programming Learning Assistant System (FPLAS) by integrating three Docker images using Docker Compose. Additionally, to capture UI images automatically, an Nginx web application server is adopted with its Docker image. For evaluations, we asked 10 graduate students at Okayama University, Japan, to install the answer platform on their PCs and solve five exercise problems. All the students successfully completed the problems, which confirms the validity and effectiveness of the proposed system. en-copyright= kn-copyright= en-aut-name=AungLynn Htet en-aut-sei=Aung en-aut-mei=Lynn Htet kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AungSoe Thandar en-aut-sei=Aung en-aut-mei=Soe Thandar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FunabikiNobuo en-aut-sei=Funabiki en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KyawHtoo Htoo Sandi en-aut-sei=Kyaw en-aut-mei=Htoo Htoo Sandi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KaoWen-Chung en-aut-sei=Kao en-aut-mei=Wen-Chung kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Information and Communication Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Computer and Information Science, Tokyo University of Agriculture and Technology kn-affil= affil-num=5 en-affil=Department of Electrical Engineering, National Taiwan Normal University kn-affil= en-keyword=Flutter kn-keyword=Flutter en-keyword=Dart kn-keyword=Dart en-keyword=answer platform kn-keyword=answer platform en-keyword=Flutter environment kn-keyword=Flutter environment en-keyword=Nginx kn-keyword=Nginx en-keyword=UI testing tool kn-keyword=UI testing tool en-keyword=Docker Compose kn-keyword=Docker Compose END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=12 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202412 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Multi-dimensional optimisation of the scanning strategy for the LiteBIRD space mission en-subtitle= kn-subtitle= en-abstract= kn-abstract=Large angular scale surveys in the absence of atmosphere are essential for measuring the primordial B-mode power spectrum of the Cosmic Microwave Background (CMB). Since this proposed measurement is about three to four orders of magnitude fainter than the temperature anisotropies of the CMB, in-flight calibration of the instruments and active suppression of systematic effects are crucial. We investigate the effect of changing the parameters of the scanning strategy on the in-flight calibration effectiveness, the suppression of the systematic effects themselves, and the ability to distinguish systematic effects by null-tests. Next-generation missions such as LiteBIRD, modulated by a Half-Wave Plate (HWP), will be able to observe polarisation using a single detector, eliminating the need to combine several detectors to measure polarisation, as done in many previous experiments and hence avoiding the consequent systematic effects. While the HWP is expected to suppress many systematic effects, some of them will remain. We use an analytical approach to comprehensively address the mitigation of these systematic effects and identify the characteristics of scanning strategies that are the most effective for implementing a variety of calibration strategies in the multi-dimensional space of common spacecraft scan parameters. We verify that LiteBIRD's standard configuration yields good performance on the metrics we studied. We also present Falcons.jl, a fast spacecraft scanning simulator that we developed to investigate this scanning parameter space. en-copyright= kn-copyright= en-aut-name=TakaseY. en-aut-sei=Takase en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=VacherL. en-aut-sei=Vacher en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshinoH. en-aut-sei=Ishino en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=PatanchonG. en-aut-sei=Patanchon en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MontierL. en-aut-sei=Montier en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SteverS.L. en-aut-sei=Stever en-aut-mei=S.L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshizakaK. en-aut-sei=Ishizaka en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NaganoY. en-aut-sei=Nagano en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=WangW. en-aut-sei=Wang en-aut-mei=W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AumontJ. en-aut-sei=Aumont en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AizawaK. en-aut-sei=Aizawa en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=AnandA. en-aut-sei=Anand en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=BaccigalupiC. en-aut-sei=Baccigalupi en-aut-mei=C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=BallardiniM. en-aut-sei=Ballardini en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=BandayA.J. en-aut-sei=Banday en-aut-mei=A.J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=BarreiroR.B. en-aut-sei=Barreiro en-aut-mei=R.B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=BartoloN. en-aut-sei=Bartolo en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=BasakS. en-aut-sei=Basak en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=BersanelliM. en-aut-sei=Bersanelli en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=BortolamiM. en-aut-sei=Bortolami en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=BrinckmannT. en-aut-sei=Brinckmann en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=CalabreseE. en-aut-sei=Calabrese en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=CampetiP. en-aut-sei=Campeti en-aut-mei=P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=CarinosE. en-aut-sei=Carinos en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=CaronesA. en-aut-sei=Carones en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=CasasF.J. en-aut-sei=Casas en-aut-mei=F.J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=CheungK. en-aut-sei=Cheung en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=ClermontL. en-aut-sei=Clermont en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=ColumbroF. en-aut-sei=Columbro en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=CoppolecchiaA. en-aut-sei=Coppolecchia en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=CuttaiaF. en-aut-sei=Cuttaia en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=D'AlessandroG. en-aut-sei=D'Alessandro en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=de BernardisP. en-aut-sei=de Bernardis en-aut-mei=P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=de HaanT. en-aut-sei=de Haan en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=de la HozE. en-aut-sei=de la Hoz en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=Della TorreS. en-aut-sei=Della Torre en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=Diego-PalazuelosP. en-aut-sei=Diego-Palazuelos en-aut-mei=P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=EriksenH.K. en-aut-sei=Eriksen en-aut-mei=H.K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=ErrardJ. en-aut-sei=Errard en-aut-mei=J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=FinelliF. en-aut-sei=Finelli en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=FuskelandU. en-aut-sei=Fuskeland en-aut-mei=U. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=GalloniG. en-aut-sei=Galloni en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=GallowayM. en-aut-sei=Galloway en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=GervasiM. en-aut-sei=Gervasi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=GhignaT. en-aut-sei=Ghigna en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=GiardielloS. en-aut-sei=Giardiello en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=Gimeno-AmoC. en-aut-sei=Gimeno-Amo en-aut-mei=C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=GjerløwE. en-aut-sei=Gjerløw en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=González GonzálezR. en-aut-sei=González González en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=GruppusoA. en-aut-sei=Gruppuso en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=HazumiM. en-aut-sei=Hazumi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=Henrot-VersilléS. en-aut-sei=Henrot-Versillé en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=HergtL.T. en-aut-sei=Hergt en-aut-mei=L.T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=IkumaK. en-aut-sei=Ikuma en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=KohriK. en-aut-sei=Kohri en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=LamagnaL. en-aut-sei=Lamagna en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=LattanziM. en-aut-sei=Lattanzi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=LeloupC. en-aut-sei=Leloup en-aut-mei=C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=LemboM. en-aut-sei=Lembo en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=LevrierF. en-aut-sei=Levrier en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=LonappanA.I. en-aut-sei=Lonappan en-aut-mei=A.I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= en-aut-name=López-CaniegoM. en-aut-sei=López-Caniego en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=62 ORCID= en-aut-name=LuzziG. en-aut-sei=Luzzi en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=63 ORCID= en-aut-name=MaffeiB. en-aut-sei=Maffei en-aut-mei=B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=64 ORCID= en-aut-name=Martínez-GonzálezE. en-aut-sei=Martínez-González en-aut-mei=E. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=65 ORCID= en-aut-name=MasiS. en-aut-sei=Masi en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=66 ORCID= en-aut-name=MatarreseS. en-aut-sei=Matarrese en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=67 ORCID= en-aut-name=MatsudaF.T. en-aut-sei=Matsuda en-aut-mei=F.T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=68 ORCID= en-aut-name=MatsumuraT. en-aut-sei=Matsumura en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=69 ORCID= en-aut-name=MicheliS. en-aut-sei=Micheli en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=70 ORCID= en-aut-name=MigliaccioM. en-aut-sei=Migliaccio en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=71 ORCID= en-aut-name=MonelliM. en-aut-sei=Monelli en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=72 ORCID= en-aut-name=MorganteG. en-aut-sei=Morgante en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=73 ORCID= en-aut-name=MotB. en-aut-sei=Mot en-aut-mei=B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=74 ORCID= en-aut-name=NagataR. en-aut-sei=Nagata en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=75 ORCID= en-aut-name=NamikawaT. en-aut-sei=Namikawa en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=76 ORCID= en-aut-name=NovelliA. en-aut-sei=Novelli en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=77 ORCID= en-aut-name=OdagiriK. en-aut-sei=Odagiri en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=78 ORCID= en-aut-name=OguriS. en-aut-sei=Oguri en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=79 ORCID= en-aut-name=OmaeR. en-aut-sei=Omae en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=80 ORCID= en-aut-name=PaganoL. en-aut-sei=Pagano en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=81 ORCID= en-aut-name=PaolettiD. en-aut-sei=Paoletti en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=82 ORCID= en-aut-name=PiacentiniF. en-aut-sei=Piacentini en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=83 ORCID= en-aut-name=PincheraM. en-aut-sei=Pinchera en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=84 ORCID= en-aut-name=PolentaG. en-aut-sei=Polenta en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=85 ORCID= en-aut-name=PorcelliL. en-aut-sei=Porcelli en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=86 ORCID= en-aut-name=RaffuzziN. en-aut-sei=Raffuzzi en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=87 ORCID= en-aut-name=RemazeillesM. en-aut-sei=Remazeilles en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=88 ORCID= en-aut-name=RitaccoA. en-aut-sei=Ritacco en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=89 ORCID= en-aut-name=Ruiz-GrandaM. en-aut-sei=Ruiz-Granda en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=90 ORCID= en-aut-name=SakuraiY. en-aut-sei=Sakurai en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=91 ORCID= en-aut-name=ScottD. en-aut-sei=Scott en-aut-mei=D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=92 ORCID= en-aut-name=SekimotoY. en-aut-sei=Sekimoto en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=93 ORCID= en-aut-name=ShiraishiM. en-aut-sei=Shiraishi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=94 ORCID= en-aut-name=SignorelliG. en-aut-sei=Signorelli en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=95 ORCID= en-aut-name=SullivanR.M. en-aut-sei=Sullivan en-aut-mei=R.M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=96 ORCID= en-aut-name=TakakuraH. en-aut-sei=Takakura en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=97 ORCID= en-aut-name=TerenziL. en-aut-sei=Terenzi en-aut-mei=L. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=98 ORCID= en-aut-name=TomasiM. en-aut-sei=Tomasi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=99 ORCID= en-aut-name=TristramM. en-aut-sei=Tristram en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=100 ORCID= en-aut-name=van TentB. en-aut-sei=van Tent en-aut-mei=B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=101 ORCID= en-aut-name=VielvaP. en-aut-sei=Vielva en-aut-mei=P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=102 ORCID= en-aut-name=WehusI.K. en-aut-sei=Wehus en-aut-mei=I.K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=103 ORCID= en-aut-name=WestbrookB. en-aut-sei=Westbrook en-aut-mei=B. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=104 ORCID= en-aut-name=Weymann-DespresG. en-aut-sei=Weymann-Despres en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=105 ORCID= en-aut-name=WollackE.J. en-aut-sei=Wollack en-aut-mei=E.J. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=106 ORCID= en-aut-name=ZannoniM. en-aut-sei=Zannoni en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=107 ORCID= en-aut-name=ZhouY. en-aut-sei=Zhou en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=108 ORCID= affil-num=1 en-affil=Okayama University, Department of Physics kn-affil= affil-num=2 en-affil=International School for Advanced Studies (SISSA) kn-affil= affil-num=3 en-affil=Okayama University, Department of Physics kn-affil= affil-num=4 en-affil=ILANCE, CNRS, University of Tokyo International Research Laboratory kn-affil= affil-num=5 en-affil=IRAP, Université de Toulouse, CNRS, CNES, UPS kn-affil= affil-num=6 en-affil=Okayama University, Department of Physics kn-affil= affil-num=7 en-affil=Okayama University, Department of Physics kn-affil= affil-num=8 en-affil=Okayama University, Department of Physics kn-affil= affil-num=9 en-affil=Université Paris Cité, CNRS, Astroparticule et Cosmologie kn-affil= affil-num=10 en-affil=IRAP, Université de Toulouse, CNRS, CNES, UPS kn-affil= affil-num=11 en-affil=The University of Tokyo, Department of Physics kn-affil= affil-num=12 en-affil=Dipartimento di Fisica, Università di Roma Tor Vergata kn-affil= affil-num=13 en-affil=International School for Advanced Studies (SISSA) kn-affil= affil-num=14 en-affil=Dipartimento di Fisica e Scienze della Terra, Università di Ferrara kn-affil= affil-num=15 en-affil=IRAP, Université de Toulouse, CNRS, CNES, UPS kn-affil= affil-num=16 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=17 en-affil=Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova kn-affil= affil-num=18 en-affil=School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram kn-affil= affil-num=19 en-affil=Dipartimento di Fisica, Università degli Studi di Milano kn-affil= affil-num=20 en-affil=Dipartimento di Fisica e Scienze della Terra, Università di Ferrara kn-affil= affil-num=21 en-affil=Dipartimento di Fisica e Scienze della Terra, Università di Ferrara kn-affil= affil-num=22 en-affil=School of Physics and Astronomy, Cardiff University kn-affil= affil-num=23 en-affil=INFN Sezione di Ferrara kn-affil= affil-num=24 en-affil=IRAP, Université de Toulouse, CNRS, CNES, UPS kn-affil= affil-num=25 en-affil=International School for Advanced Studies (SISSA) kn-affil= affil-num=26 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=27 en-affil=Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester kn-affil= affil-num=28 en-affil=Centre Spatial de Liège, Université de Liège kn-affil= affil-num=29 en-affil=Dipartimento di Fisica, Università La Sapienza kn-affil= affil-num=30 en-affil=Dipartimento di Fisica, Università La Sapienza kn-affil= affil-num=31 en-affil=INAF, OAS Bologna kn-affil= affil-num=32 en-affil=Dipartimento di Fisica, Università La Sapienza kn-affil= affil-num=33 en-affil=Dipartimento di Fisica, Università La Sapienza kn-affil= affil-num=34 en-affil=Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=35 en-affil=CNRS-UCB International Research Laboratory, Centre Pierre Binétruy, UMI2007 kn-affil= affil-num=36 en-affil=INFN Sezione Milano Bicocca kn-affil= affil-num=37 en-affil=Max Planck Institute for Astrophysics kn-affil= affil-num=38 en-affil=Institute of Theoretical Astrophysics, University of Oslo kn-affil= affil-num=39 en-affil=Université Paris Cité, CNRS, Astroparticule et Cosmologie kn-affil= affil-num=40 en-affil=INAF, OAS Bologna kn-affil= affil-num=41 en-affil=Institute of Theoretical Astrophysics, University of Oslo kn-affil= affil-num=42 en-affil=Dipartimento di Fisica e Scienze della Terra, Università di Ferrara kn-affil= affil-num=43 en-affil=Institute of Theoretical Astrophysics, University of Oslo kn-affil= affil-num=44 en-affil=University of Milano Bicocca, Physics Department kn-affil= affil-num=45 en-affil=International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=46 en-affil=School of Physics and Astronomy, Cardiff University kn-affil= affil-num=47 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=48 en-affil=Institute of Theoretical Astrophysics, University of Oslo kn-affil= affil-num=49 en-affil=Instituto de Astrofísica de Canarias kn-affil= affil-num=50 en-affil=INAF, OAS Bologna kn-affil= affil-num=51 en-affil=International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=52 en-affil=Université Paris-Saclay, CNRS/IN2P3, IJCLab kn-affil= affil-num=53 en-affil=Department of Physics and Astronomy, University of British Columbia kn-affil= affil-num=54 en-affil=Okayama University, Department of Physics kn-affil= affil-num=55 en-affil=Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=56 en-affil=Dipartimento di Fisica, Università La Sapienza kn-affil= affil-num=57 en-affil=INFN Sezione di Ferrara kn-affil= affil-num=58 en-affil=Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo kn-affil= affil-num=59 en-affil=Dipartimento di Fisica e Scienze della Terra, Università di Ferrara kn-affil= affil-num=60 en-affil=Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris kn-affil= affil-num=61 en-affil=University of California, San Diego, Department of Physics kn-affil= affil-num=62 en-affil=Aurora Technology for the European Space Agency kn-affil= affil-num=63 en-affil=Space Science Data Center, Italian Space Agency kn-affil= affil-num=64 en-affil=Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale kn-affil= affil-num=65 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=66 en-affil=Dipartimento di Fisica, Università La Sapienza kn-affil= affil-num=67 en-affil=Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova kn-affil= affil-num=68 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=69 en-affil=Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo kn-affil= affil-num=70 en-affil=Dipartimento di Fisica, Università La Sapienza kn-affil= affil-num=71 en-affil=Dipartimento di Fisica, Università di Roma Tor Vergata kn-affil= affil-num=72 en-affil=Max Planck Institute for Astrophysics kn-affil= affil-num=73 en-affil=INAF, OAS Bologna kn-affil= affil-num=74 en-affil=IRAP, Université de Toulouse, CNRS, CNES, UPS kn-affil= affil-num=75 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=76 en-affil=Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo kn-affil= affil-num=77 en-affil=Dipartimento di Fisica, Università La Sapienza kn-affil= affil-num=78 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=79 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=80 en-affil=Okayama University, Department of Physics kn-affil= affil-num=81 en-affil=Dipartimento di Fisica e Scienze della Terra, Università di Ferrara kn-affil= affil-num=82 en-affil=INAF, OAS Bologna kn-affil= affil-num=83 en-affil=Dipartimento di Fisica, Università La Sapienza kn-affil= affil-num=84 en-affil=INFN Sezione di Pisa kn-affil= affil-num=85 en-affil=Space Science Data Center, Italian Space Agency kn-affil= affil-num=86 en-affil=Istituto Nazionale di Fisica Nucleare-aboratori Nazionali di Frascati (INFN-LNF) kn-affil= affil-num=87 en-affil=Dipartimento di Fisica e Scienze della Terra, Università di Ferrara kn-affil= affil-num=88 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=89 en-affil=Dipartimento di Fisica, Università di Roma Tor Vergata kn-affil= affil-num=90 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=91 en-affil=Suwa University of Science kn-affil= affil-num=92 en-affil=Department of Physics and Astronomy, University of British Columbia kn-affil= affil-num=93 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=94 en-affil=Suwa University of Science kn-affil= affil-num=95 en-affil=Dipartimento di Fisica, Università di Pisa kn-affil= affil-num=96 en-affil=Department of Physics and Astronomy, University of British Columbia kn-affil= affil-num=97 en-affil=Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS) kn-affil= affil-num=98 en-affil=INAF, OAS Bologna kn-affil= affil-num=99 en-affil=Dipartimento di Fisica, Università degli Studi di Milano kn-affil= affil-num=100 en-affil=Université Paris-Saclay, CNRS/IN2P3, IJCLab kn-affil= affil-num=101 en-affil=Université Paris-Saclay, CNRS/IN2P3, IJCLab kn-affil= affil-num=102 en-affil=Instituto de Fisica de Cantabria (IFCA, CSIC-UC) kn-affil= affil-num=103 en-affil=Institute of Theoretical Astrophysics, University of Oslo kn-affil= affil-num=104 en-affil=University of California, Berkeley, Department of Physics, Berkeley kn-affil= affil-num=105 en-affil=Université Paris-Saclay, CNRS/IN2P3, IJCLab kn-affil= affil-num=106 en-affil=NASA Goddard Space Flight Center kn-affil= affil-num=107 en-affil=University of Milano Bicocca, Physics Department kn-affil= affil-num=108 en-affil=International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles (QUP), High Energy Accelerator Research Organization (KEK) kn-affil= en-keyword=CMBR experiments kn-keyword=CMBR experiments en-keyword=CMBR polarisation kn-keyword=CMBR polarisation en-keyword=gravitational waves and CMBR polarization kn-keyword=gravitational waves and CMBR polarization END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=1 article-no= start-page=24 end-page=28 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202407 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Initial trial of three‑lead wearable electrocardiogram monitoring in a full marathon en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sudden cardiac arrest during exercise can occur without prior warning signs at rest, highlighting the importance of monitoring for its prevention. To detect the signs of ischemic heart disease, including coronary artery anomalies, ST changes must be detected using three‑lead electrocardiograms (ECGs) corresponding to each region of the three coronary artery branches. We conducted ECG monitoring of five runners during a marathon using a wearable three‑lead ECG device (e-skin ECG; Xenoma Inc., Tokyo, Japan). Data without noise or artifacts were successfully collected for one of five runners during the entire marathon. Within the initial hour of the marathon, poor electrode adhesion to the skin hindered the data collection for the remaining four runners, which resulted in significantly decreased acquisition rate compared with the first hour (86.7 ± 13.4 % to 37.3 ± 36.9 %, p = 0.028). Couplets of premature ventricular contractions with clear ECG waveforms in the three leads were detected in one runner during the marathon. Further device improvements are necessary to enable marathon runners to obtain ECGs efficiently without affecting their performance. This study also demonstrated the potential applications of three‑lead wearable ECG monitoring for other short-duration sports and remote home-based cardiac rehabilitation. en-copyright= kn-copyright= en-aut-name=HiraiKenta en-aut-sei=Hirai en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakanoNoriko en-aut-sei=Sakano en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OozawaSusumu en-aut-sei=Oozawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OusakaDaiki en-aut-sei=Ousaka en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KurokoYosuke en-aut-sei=Kuroko en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KasaharaShingo en-aut-sei=Kasahara en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Clinical Safety, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science kn-affil= en-keyword=Sudden cardiac arrest kn-keyword=Sudden cardiac arrest en-keyword=Sports cardiology kn-keyword=Sports cardiology en-keyword=Electrocardiogram kn-keyword=Electrocardiogram en-keyword=Wearable device kn-keyword=Wearable device en-keyword=Cardiac rehabilitation kn-keyword=Cardiac rehabilitation en-keyword=Coronary artery anomalies kn-keyword=Coronary artery anomalies END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=2 article-no= start-page=189 end-page=195 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Prosthodontic treatment can improve the ingestible food profile in Japanese adult outpatients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Purpose: To investigate the effect of prosthodontic treatment on the ingestible food profile in adult Japanese outpatients, and to identify the related risk factors that can deteriorate the profile.
Methods: The participants were 277 outpatients who visited university-based specialty clinics in Japan for prosthodontic treatment. The demographic data, number of present teeth assessed via intraoral examination, and oral health-related quality of life assessed by the total Oral Health Impact Profile (OHIP-J54) scores of all participants were recorded before treatment. Ingestible food profile score (IFS) was recorded using a validated food intake questionnaire. Eligible participants who answered the questionnaire before and after treatment were categorized into five groups based on the prosthodontic treatments they received (i.e., crowns, bridges, removable partial dentures, removable complete dentures, and removable complete and partial dentures).
Results: Multivariate analysis of covariance revealed a statistically significant main effect of prosthodontic intervention (time course: before and after treatment) on mean IFS (P=0.035, F=4.526), even after adjusting for covariates (age, number of present teeth, and treatment modality). Multiple linear regression analysis revealed that the low number of present teeth (r=0.427, P<0.001) and a high OHIP-J54 total score (r=-0.519, P<0.001) of the patients at the baseline were significantly associated with their baseline IFSs, even after adjusting for confounding variables.
Conclusions: The findings of this multicenter follow-up study indicate the importance of prosthodontic rehabilitation in improving patients’ ingestible food profiles. en-copyright= kn-copyright= en-aut-name=Kimura-OnoAya en-aut-sei=Kimura-Ono en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MaekawaKenji en-aut-sei=Maekawa en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NawachiKumiko en-aut-sei=Nawachi en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujisawaMasanori en-aut-sei=Fujisawa en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SatoHironobu en-aut-sei=Sato en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AitaHideki en-aut-sei=Aita en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KoyamaShigeto en-aut-sei=Koyama en-aut-mei=Shigeto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HideshimaMasayuki en-aut-sei=Hideshima en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatoYuji en-aut-sei=Sato en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WakeHiroyuki en-aut-sei=Wake en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NagaoKan en-aut-sei=Nagao en-aut-mei=Kan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=Kodaira-UedaYorika en-aut-sei=Kodaira-Ueda en-aut-mei=Yorika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TamakiKatsushi en-aut-sei=Tamaki en-aut-mei=Katsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SadamoriShinsuke en-aut-sei=Sadamori en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TsugaKazuhiro en-aut-sei=Tsuga en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NishiYasuhiro en-aut-sei=Nishi en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=SawaseTakashi en-aut-sei=Sawase en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KoshinoHisashi en-aut-sei=Koshino en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MasumiShin-ichi en-aut-sei=Masumi en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=SakuraiKaoru en-aut-sei=Sakurai en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=IshibashiKanji en-aut-sei=Ishibashi en-aut-mei=Kanji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=OhyamaTakashi en-aut-sei=Ohyama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=AkagawaYasumasa en-aut-sei=Akagawa en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=HiraiToshihiro en-aut-sei=Hirai en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=SasakiKeiichi en-aut-sei=Sasaki en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=KoyanoKiyoshi en-aut-sei=Koyano en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=YataniHirofumi en-aut-sei=Yatani en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=MatsumuraHideo en-aut-sei=Matsumura en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=IchikawaTetsuo en-aut-sei=Ichikawa en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=OhkawaShuji en-aut-sei=Ohkawa en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=BabaKazuyoshi en-aut-sei=Baba en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= affil-num=1 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=2 en-affil=Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Meikai University School of Dentistry kn-affil= affil-num=6 en-affil=Fukuoka Dental College Graduate School of Dental Science kn-affil= affil-num=7 en-affil=Tohoku University Graduate School of Dentistry kn-affil= affil-num=8 en-affil=Tohoku University Graduate School of Dentistry, Japan kn-affil= affil-num=9 en-affil=Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences kn-affil= affil-num=10 en-affil=Showa University School of Dentistry kn-affil= affil-num=11 en-affil=Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences kn-affil= affil-num=12 en-affil=Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=13 en-affil=Tokyo Dental College kn-affil= affil-num=14 en-affil=Kanagawa Dental University Graduate School kn-affil= affil-num=15 en-affil=Ministry of Health, Labour, and Welfare, Chugoku-Shikoku Regional Bureau of Health and Welfare kn-affil= affil-num=16 en-affil=Hiroshima University Graduate School of Biomedical and Health Sciences kn-affil= affil-num=17 en-affil=Kagoshima University Graduate School of Medical and Dental Sciences kn-affil= affil-num=18 en-affil=Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=19 en-affil=Health Sciences University of Hokkaido School of Dentistry kn-affil= affil-num=20 en-affil=Kyushu Dental University kn-affil= affil-num=21 en-affil=Tokyo Dental College kn-affil= affil-num=22 en-affil=Iwate Medical University School of Dentistry kn-affil= affil-num=23 en-affil=Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences kn-affil= affil-num=24 en-affil=Hiroshima University Graduate School of Biomedical and Health Sciences kn-affil= affil-num=25 en-affil=Health Sciences University of Hokkaido School of Dentistry kn-affil= affil-num=26 en-affil=Tohoku University Graduate School of Dentistry kn-affil= affil-num=27 en-affil=Kyushu University Faculty of Dental Science kn-affil= affil-num=28 en-affil=Osaka University Graduate School of Dentistry kn-affil= affil-num=29 en-affil=Nihon University School of Dentistry kn-affil= affil-num=30 en-affil=Tokushima University Graduate School of Biomedical Sciences kn-affil= affil-num=31 en-affil=Meikai University School of Dentistry kn-affil= affil-num=32 en-affil=Showa University School of Dentistry kn-affil= en-keyword=Dietary diversity kn-keyword=Dietary diversity en-keyword=Ingestible foods kn-keyword=Ingestible foods en-keyword=Oral-health quality of life kn-keyword=Oral-health quality of life en-keyword=Prosthodontic rehabilitation kn-keyword=Prosthodontic rehabilitation END start-ver=1.4 cd-journal=joma no-vol=300 cd-vols= no-issue=6 article-no= start-page=107360 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nonspecific N-terminal tetrapeptide insertions disrupt the translation arrest induced by ribosome-arresting peptide sequences en-subtitle= kn-subtitle= en-abstract= kn-abstract=The nascent polypeptide chains passing through the ribosome tunnel not only serve as an intermediate of protein synthesis but also, in some cases, act as dynamic genetic information, controlling translation through interaction with the ribosome. One notable example is Escherichia coli SecM, in which translation of the ribosome arresting peptide (RAP) sequence in SecM leads to robust elongation arrest. Translation regulations, including the SecM-induced translation arrest, play regulatory roles such as gene expression control. Recent investigations have indicated that the insertion of a peptide sequence, SKIK (or MSKIK), into the adjacent N-terminus of the RAP sequence of SecM behaves as an "arrest canceler". As the study did not provide a direct assessment of the strength of translation arrest, we conducted detailed biochemical analyses. The results revealed that the effect of SKIK insertion on weakening SecM-induced translation arrest was not specific to the SKIK sequence, that is, other tetrapeptide sequences inserted just before the RAP sequence also attenuated the arrest. Our data suggest that SKIK or other tetrapeptide insertions disrupt the context of the RAP sequence rather than canceling or preventing the translation arrest. en-copyright= kn-copyright= en-aut-name=KoboAkinao en-aut-sei=Kobo en-aut-mei=Akinao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TaguchiHideki en-aut-sei=Taguchi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChadaniYuhei en-aut-sei=Chadani en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=2 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=171824 end-page=171835 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Passability-Based Local Planner Using Growing Neural Gas for an Autonomous Mobile Robot en-subtitle= kn-subtitle= en-abstract= kn-abstract=3D spatial perception is one of the most important abilities for autonomous mobile robots. In environments with unknown objects, the ability to perform a local planner, which modifies the global path based on the perception results, is also required as an indispensable capability. In this paper, we propose a method based on Growing Neural Gas with Different Topologies (GNG-DT), which can be applied to unknown data, as a method for 3D spatial perception and local planner in unknown environments. First, we propose a method for extracting travelability perceptions from the features estimated by the topological structure of the GNG-DT. Next, we learn the topological structure of passability information based on the size of the robot from the extracted traversability percepts. Furthermore, we propose a local planner that uses the topological structure of traversability and passability learned from the point cloud currently perceived by the robot. In the experiments, we compared the cases where only traversability was used and where passability information was used in actual environments, and showed that the proposed method can plan a route that determines the area that the robot can actually pass through. en-copyright= kn-copyright= en-aut-name=OzasaKoki en-aut-sei=Ozasa en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TodaYuichiro en-aut-sei=Toda en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MasudaToshiki en-aut-sei=Masuda en-aut-mei=Toshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KonishiHirohide en-aut-sei=Konishi en-aut-mei=Hirohide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsunoTakayuki en-aut-sei=Matsuno en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Tokyo Metropolitan Industrial Technology Research Institute kn-affil= affil-num=4 en-affil=Tokyo Metropolitan Industrial Technology Research Institute kn-affil= affil-num=5 en-affil=NSK Ltd. kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Autonomous mobile robot kn-keyword=Autonomous mobile robot en-keyword=growing neural gas kn-keyword=growing neural gas en-keyword=local planner kn-keyword=local planner END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=10 article-no= start-page=e0310962 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Examination of yield, bacteriolytic activity and cold storage of linker deletion mutants based on endolysin S6_ORF93 derived from Staphylococcus giant bacteriophage S6 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Methicillin-resistant Staphylococcus spp. present challenges in clinical and veterinary settings because effective antimicrobial agents are limited. Phage-encoded peptidoglycan-degrading enzyme, endolysin, is expected to be a novel antimicrobial agent. The enzymatic activity has recently been shown to be influenced by the linker between functional domains in the enzyme. S6_ORF93 (ORF93) is one of the endolysins derived from previously isolated Staphylococcus giant phage S6. The ORF93 was speculated to have a catalytic and peptidoglycan-binding domain with a long linker. In this study, we examined the influence of linker shortening on the characteristics of ORF93. We produce wild-type ORF93 and the linker deletion mutants using an Escherichia coli expression system. These mutants were designated as ORF93-Delta 05, ORF93-Delta 10, ORF93-Delta 15, and ORF93-Delta 20, from which 5, 10, 15, and 20 amino acids were removed from the linker, respectively. Except for the ORF93-Delta 20, ORF93 and its mutants were expressed as soluble proteins. Moreover, ORF93-Delta 15 showed the highest yield and bacteriolytic activity, while the antimicrobial spectrum was homologous. The cold storage experiment showed a slight effect by the linker deletion. According to our results and other studies, linker investigations are crucial in endolysin development. en-copyright= kn-copyright= en-aut-name=MunetomoSosuke en-aut-sei=Munetomo en-aut-mei=Sosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WanganuttaraThamonwan en-aut-sei=Wanganuttara en-aut-mei=Thamonwan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoYumiko en-aut-sei=Yamamoto en-aut-mei=Yumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TsukuiToshihiro en-aut-sei=Tsukui en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HagiyaHideharu en-aut-sei=Hagiya en-aut-mei=Hideharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KanamaruShuji en-aut-sei=Kanamaru en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KandaHideyuki en-aut-sei=Kanda en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsushitaOsamu en-aut-sei=Matsushita en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Public Health, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Nippon Zenyaku Kogyo Co. Ltd. kn-affil= affil-num=7 en-affil=Department of Infectious Diseases, Okayama University Hospital kn-affil= affil-num=8 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=9 en-affil=Department of Public Health, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=21 article-no= start-page=11592 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241029 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Epigenetic Regulation of CXC Chemokine Expression by Environmental Electrophiles Through DNA Methyltransferase Inhibition en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ubiquitously distributed environmental electrophiles covalently modify DNA and proteins, potentially leading to adverse health effects. However, the impacts of specific electrophiles on target proteins and their physiological roles remain largely unknown. In the present study, we focused on DNA methylation, which regulates gene expression and physiological responses. A total of 45 environmental electrophiles were screened for inhibitory effects on the activity of DNA methyltransferase 3B (DNMT3B), a key enzyme in DNA methylation, and four compounds were identified. We focused on 1,2-naphthoquinone (1,2-NQ), an air pollutant whose toxicity has been reported previously. Interestingly, we found that 1,2-NQ modified multiple lysine and histidine residues in DNMT3B, one of which was near the active site in DNMT3B. It was found that 1,2-NQ altered gene expression and evoked inflammatory responses in lung adenocarcinoma cell lines. Furthermore, we found that 1,2-NQ upregulated CXCL8 expression through DNA demethylation of the distal enhancer and promoted cancer cell growth. Our study reveals novel mechanisms of epigenetic regulation by environmental electrophiles through the inhibition of DNMT3B activity and suggests their physiological impact. en-copyright= kn-copyright= en-aut-name=TsuchidaTomoki en-aut-sei=Tsuchida en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubotaSho en-aut-sei=Kubota en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KamiuezonoShizuki en-aut-sei=Kamiuezono en-aut-mei=Shizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakasugiNobumasa en-aut-sei=Takasugi en-aut-mei=Nobumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItoAkihiro en-aut-sei=Ito en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KumagaiYoshito en-aut-sei=Kumagai en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UeharaTakashi en-aut-sei=Uehara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Medicinal Pharmacology, Faculty of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=School of Life Sciences, Tokyo University of Pharmacy and Life Sciences kn-affil= affil-num=6 en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University kn-affil= affil-num=7 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=DNA methylation kn-keyword=DNA methylation en-keyword=DNA methyltransferase kn-keyword=DNA methyltransferase en-keyword=chemical modification kn-keyword=chemical modification en-keyword=chemokine kn-keyword=chemokine en-keyword=cell proliferation kn-keyword=cell proliferation en-keyword=toxicology kn-keyword=toxicology en-keyword=exposome kn-keyword=exposome en-keyword=environmental electrophiles kn-keyword=environmental electrophiles END start-ver=1.4 cd-journal=joma no-vol=300 cd-vols= no-issue=3 article-no= start-page=105679 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Methyl vinyl ketone and its analogs covalently modify PI3K and alter physiological functions by inhibiting PI3K signaling en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K- Akt signaling by MVK reversed epidermal growth factor- induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species. en-copyright= kn-copyright= en-aut-name=MorimotoAtsushi en-aut-sei=Morimoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakasugiNobumasa en-aut-sei=Takasugi en-aut-mei=Nobumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=PanYuexuan en-aut-sei=Pan en-aut-mei=Yuexuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KubotaSho en-aut-sei=Kubota en-aut-mei=Sho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AbikoYumi en-aut-sei=Abiko en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UchidaKoji en-aut-sei=Uchida en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KumagaiYoshito en-aut-sei=Kumagai en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UeharaTakashi en-aut-sei=Uehara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Graduate School of Biomedical Science, Nagasaki University kn-affil= affil-num=7 en-affil=Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=8 en-affil=Graduate School of Pharmaceutical Sciences, Kyushu University kn-affil= affil-num=9 en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=phosphatidylinositol 3-kinase (PI 3-kinase) kn-keyword=phosphatidylinositol 3-kinase (PI 3-kinase) en-keyword=cell signaling kn-keyword=cell signaling en-keyword=chemical modification kn-keyword=chemical modification en-keyword=autophagy kn-keyword=autophagy en-keyword=glucose uptake kn-keyword=glucose uptake END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=10 article-no= start-page=103D01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study of the Neutrino–Oxygen Cross Sections of the Charged-Current Reaction 16O(ν̄e, e+)16N(0 MeV, 2–) and the Neutral-Current Reaction 16O(ν, ν′)16O(12.97/12.53 MeV, 2–), Producing High-Energy γ Rays en-subtitle= kn-subtitle= en-abstract= kn-abstract=In our previous work, we discussed the cross section and the detection of 4.4 MeV γ rays produced in the neutrino neutral-current (NC)reaction 16O(ν, ν′)16O(12.97 and 12.53 MeV, 2−) in a water Cherenkov detector at low energy below 100 MeV. In this report, we further investigate both the charged-current reaction 16O(ν¯e, e+)16N(0 MeV, 2−) and the NC reaction16O(ν, ν′)16O(12.97 and 12.53 MeV, 2−), producing high-energy γ rays, in which a more solid identification of the reactions can be applied via the coincidence method. en-copyright= kn-copyright= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiToshio en-aut-sei=Suzuki en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakazatoKen'Ichiro en-aut-sei=Nakazato en-aut-mei=Ken'Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiHideyuki en-aut-sei=Suzuki en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Physics Department, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, College of Humanities and Sciences, Nihon University kn-affil= affil-num=3 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= affil-num=4 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=018003 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240127 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Design and performance of a gain calibration system for the POLARBEAR-2a receiver system at the Simons Array cosmic microwave background experiment en-subtitle= kn-subtitle= en-abstract= kn-abstract=We present an advanced system for calibrating the detector gain responsivity with a chopped thermal source for POLARBEAR-2a, which is the first receiver system of a cosmic microwave background (CMB) polarimetry experiment: the Simons Array. Intensity-to-polarization leakage due to calibration errors between detectors can be a significant source of systematic error for a polarization-sensitive experiment. To suppress this systematic uncertainty, POLARBEAR-2a calibrates the detector gain responsivities by observing a chopped thermal source before and after each period of science observations. The system includes a high-temperature ceramic heater that emits blackbody radiation covering a wide frequency range and an optical chopper to modulate the radiation signal. We discuss the experimental requirements of gain calibration and system design to calibrate POLARBEAR-2a. We evaluate the performance of our system during the early commissioning of the receiver system. This calibration system is promising for the future generation of CMB ground-based polarization observations. en-copyright= kn-copyright= en-aut-name=KanekoDaisuke en-aut-sei=Kaneko en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakatoriSayuri en-aut-sei=Takatori en-aut-mei=Sayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HasegawaMasaya en-aut-sei=Hasegawa en-aut-mei=Masaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HazumiMasashi en-aut-sei=Hazumi en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InoueYuki en-aut-sei=Inoue en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=JeongOliver en-aut-sei=Jeong en-aut-mei=Oliver kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatayamaNobuhiko en-aut-sei=Katayama en-aut-mei=Nobuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=LeeAdrian T. en-aut-sei=Lee en-aut-mei=Adrian T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsudaFrederick en-aut-sei=Matsuda en-aut-mei=Frederick kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishinoHaruki en-aut-sei=Nishino en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SiritanasakPraween en-aut-sei=Siritanasak en-aut-mei=Praween kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SuzukiAritoki en-aut-sei=Suzuki en-aut-mei=Aritoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TakakuraSatoru en-aut-sei=Takakura en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TomaruTakayuki en-aut-sei=Tomaru en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=High Energy Accelerator Research Organization, International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles kn-affil= affil-num=2 en-affil=Okayama University, Research Institute for Interdisciplinary Science kn-affil= affil-num=3 en-affil=High Energy Accelerator Research Organization, International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles kn-affil= affil-num=4 en-affil=High Energy Accelerator Research Organization, International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles kn-affil= affil-num=5 en-affil=National Central University, Center for High Energy and High Field Physics, Department of Physics kn-affil= affil-num=6 en-affil=University of California, Department of Physics kn-affil= affil-num=7 en-affil=University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe kn-affil= affil-num=8 en-affil=University of California, Department of Physics kn-affil= affil-num=9 en-affil=Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science kn-affil= affil-num=10 en-affil=The University of Tokyo, Graduate School of Science, Research Center for the Early Universe kn-affil= affil-num=11 en-affil=National Astronomical Research Institute of Thailand kn-affil= affil-num=12 en-affil=Lawrence Berkeley National Laboratory, Physics Division kn-affil= affil-num=13 en-affil=Kyoto University, Department of Physics, Faculty of Science kn-affil= affil-num=14 en-affil=National Astronomical Observatory of Japan, Gravitational Wave Project Office kn-affil= en-keyword=cosmic microwave background kn-keyword=cosmic microwave background en-keyword=gain calibrator kn-keyword=gain calibrator en-keyword=detector calibration kn-keyword=detector calibration en-keyword=transition edge sensor kn-keyword=transition edge sensor END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=121 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240731 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pure argyrophilic grain disease revisited: independent effects on limbic, neocortical, and striato-pallido-nigral degeneration and the development of dementia in a series with a low to moderate Braak stage en-subtitle= kn-subtitle= en-abstract= kn-abstract=Agyrophilic grains (AGs) are age-related limbic-predominant lesions in which four-repeat tau is selectively accumulated. Because previous methodologically heterogeneous studies have demonstrated inconsistent findings on the relationship between AGs and dementia, whether AGs affect cognitive function remains unclear. To address this question, we first comprehensively evaluated the distribution and quantity of Gallyas-positive AGs and the severity of neuronal loss in the limbic, neocortical, and subcortical regions in 30 cases of pure argyrophilic grain disease (pAGD) in Braak stages I-IV and without other degenerative diseases, and 34 control cases that had only neurofibrillary tangles with Braak stages I-IV and no or minimal A beta deposits. Then, we examined whether AGs have independent effects on neuronal loss and dementia by employing multivariate ordered logistic regression and binomial logistic regression. Of 30 pAGD cases, three were classified in diffuse form pAGD, which had evident neuronal loss not only in the limbic region but also in the neocortex and subcortical nuclei. In all 30 pAGD cases, neuronal loss developed first in the amygdala, followed by temporo-frontal cortex, hippocampal CA1, substantia nigra, and finally, the striatum and globus pallidus with the progression of Saito AG stage. In multivariate analyses of 30 pAGD and 34 control cases, the Saito AG stage affected neuronal loss in the amygdala, hippocampal CA1, temporo-frontal cortex, striatum, globus pallidus, and substantia nigra independent of the age, Braak stage, and limbic-predominant age-related TDP-43 encephalopathy (LATE-NC) stage. In multivariate analyses of 23 pAGD and 28 control cases that lacked two or more lacunae and/or one or more large infarctions, 100 or more AGs per x 400 visual field in the amygdala (OR 10.02, 95% CI 1.12-89.43) and hippocampal CA1 (OR 12.22, 95% CI 1.70-87.81), and the presence of AGs in the inferior temporal cortex (OR 8.18, 95% CI 1.03-65.13) affected dementia independent of age, moderate Braak stages (III-IV), and LATE-NC. Given these findings, the high density of limbic AGs and the increase of AGs in the inferior temporal gyrus may contribute to the occurrence of dementia through neuronal loss, at least in cases in a low to moderate Braak stage. en-copyright= kn-copyright= en-aut-name=YokotaOsamu en-aut-sei=Yokota en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MikiTomoko en-aut-sei=Miki en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Nakashima-YasudaHanae en-aut-sei=Nakashima-Yasuda en-aut-mei=Hanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IshizuHideki en-aut-sei=Ishizu en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaraguchiTakashi en-aut-sei=Haraguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkedaChikako en-aut-sei=Ikeda en-aut-mei=Chikako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HasegawaMasato en-aut-sei=Hasegawa en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyashitaAkinori en-aut-sei=Miyashita en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkeuchiTakeshi en-aut-sei=Ikeuchi en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NishikawaNaoto en-aut-sei=Nishikawa en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakenoshitaShintaro en-aut-sei=Takenoshita en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SudoKoichiro en-aut-sei=Sudo en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TeradaSeishi en-aut-sei=Terada en-aut-mei=Seishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TakakiManabu en-aut-sei=Takaki en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Okayama University Medical School kn-affil= affil-num=4 en-affil=Okayama University Medical School kn-affil= affil-num=5 en-affil=Department of Neurology, National Hospital Organization Minami Okayama Medical Center kn-affil= affil-num=6 en-affil=Okayama University Medical School kn-affil= affil-num=7 en-affil=Dementia Research Project, Tokyo Metropolitan Institute of Medical Science kn-affil= affil-num=8 en-affil=Department of Molecular Genetics, Brain Research Institute, Niigata University kn-affil= affil-num=9 en-affil=Department of Molecular Genetics, Brain Research Institute, Niigata University kn-affil= affil-num=10 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=11 en-affil=Department of Neuropsychiatry, Okayama University Hospital kn-affil= affil-num=12 en-affil=Department of Psychiatry, Tosa Hospital kn-affil= affil-num=13 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Argyrophilic grain kn-keyword=Argyrophilic grain en-keyword=Globus pallidus kn-keyword=Globus pallidus en-keyword=Hippocampal sclerosis kn-keyword=Hippocampal sclerosis en-keyword=Striatum kn-keyword=Striatum en-keyword=Substantia nigra kn-keyword=Substantia nigra en-keyword=Subthalamic nucleus kn-keyword=Subthalamic nucleus END start-ver=1.4 cd-journal=joma no-vol=47 cd-vols= no-issue=2 article-no= start-page=162 end-page=177 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=202406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generalized hypergeometric functions for degree k hypersurface in CPN-1 and intersection numbers of moduli space of quasimaps from CP1 with two marked points to CPN-1 en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we derive the generalized hypergeometric functions used in mirror computation of degree k hypersurface in CPN-1 as generating functions of intersection numbers of the moduli space of quasimaps from CP1 with two marked points to CPN-1. en-copyright= kn-copyright= en-aut-name=JinzenjiMasao en-aut-sei=Jinzenji en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsuzakaKohki en-aut-sei=Matsuzaka en-aut-mei=Kohki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Mathematics, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Integrated Media, Ikueikan University kn-affil= en-keyword=Givental's I-function kn-keyword=Givental's I-function en-keyword=Generalized hypergeometric series kn-keyword=Generalized hypergeometric series en-keyword=Moduli space of quasimaps kn-keyword=Moduli space of quasimaps en-keyword=Intersection number kn-keyword=Intersection number END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=1 article-no= start-page=1 end-page=28 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240724 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Firm Entry and Exit in the First Stage of Regional Vitalization: Revolving Door Economy or Creative Destruction kn-title=地方創生第1期における企業の参入と撤退:回転ドア型経済か創造的破壊か en-subtitle= kn-subtitle= en-abstract= kn-abstract= The growth of the regional economy needs an economic metabolism in which high-productivity firms newly enter the market, while low-productivity firms exit the market, resulting in a shift in labor and other production factors. A“ revolving door” economy is an economy in which firms that enter the market have a short existence period, withdraw and enter the market repeatedly, and new entrants do not contribute to productivity improvement. This means that if new entrants are not sufficiently innovative compared to incumbents, even if the rate of entry into business rises, they will simply be replaced by firms whose productivity level has not changed much, and this will not lead to job creation or improving productivity. A contrasting concept is the replacement of firms by Schumpeter's “creative destruction.” The high level of technology and productivity of new firms entering the market drives inefficient incumbents out of the market. Looking at the statistics, there is a tendency for both large cities to have higher business entry and exit rates, but the difference between the entry and exit rates is greater in metropolitan areas. Although it depends on the regional characteristics, location competitiveness is generally higher in metropolitan areas, and there is a tendency for the turnover rate to be high or the survival period to be short. Before and after regional revitalization, we will examine whether or not there is a departure from the revolving door economy by industry and region, using economic census and TSR (Tokyo Shoko Research) data. en-copyright= kn-copyright= en-aut-name=NakamuraRyohei en-aut-sei=Nakamura en-aut-mei=Ryohei kn-aut-name=中村良平 kn-aut-sei=中村 kn-aut-mei=良平 aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=5938 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240311 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Palaeoproteomic investigation of an ancient human skeleton with abnormal deposition of dental calculus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Detailed investigation of extremely severe pathological conditions in ancient human skeletons is important as it could shed light on the breadth of potential interactions between humans and disease etiologies in the past. Here, we applied palaeoproteomics to investigate an ancient human skeletal individual with severe oral pathology, focusing our research on bacterial pathogenic factors and host defense response. This female skeleton, from the Okhotsk period (i.e., fifth to thirteenth century) of Northern Japan, poses relevant amounts of abnormal dental calculus deposition and exhibits oral dysfunction due to severe periodontal disease. A shotgun mass-spectrometry analysis identified 81 human proteins and 15 bacterial proteins from the calculus of the subject. We identified two pathogenic or bioinvasive proteins originating from two of the three "red complex" bacteria, the core species associated with severe periodontal disease in modern humans, as well as two additional bioinvasive proteins of periodontal-associated bacteria. Moreover, we discovered defense response system-associated human proteins, although their proportion was mostly similar to those reported in ancient and modern human individuals with lower calculus deposition. These results suggest that the bacterial etiology was similar and the host defense response was not necessarily more intense in ancient individuals with significant amounts of abnormal dental calculus deposition. en-copyright= kn-copyright= en-aut-name=Uchida-FukuharaYoko en-aut-sei=Uchida-Fukuhara en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimamuraShigeru en-aut-sei=Shimamura en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SawafujiRikai en-aut-sei=Sawafuji en-aut-mei=Rikai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiuchiTakumi en-aut-sei=Nishiuchi en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonedaMinoru en-aut-sei=Yoneda en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshidaHajime en-aut-sei=Ishida en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumuraHirofumi en-aut-sei=Matsumura en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsutayaTakumi en-aut-sei=Tsutaya en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Oral Morphology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=3 en-affil=Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=4 en-affil=Research Center for Experimental Modeling of Human Disease, Kanazawa University kn-affil= affil-num=5 en-affil=The University Museum, The University of Tokyo kn-affil= affil-num=6 en-affil=Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus kn-affil= affil-num=7 en-affil=School of Health Sciences, Sapporo Medical University kn-affil= affil-num=8 en-affil=Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies (SOKENDAI) kn-affil= END start-ver=1.4 cd-journal=joma no-vol=109 cd-vols= no-issue=20 article-no= start-page=L201103 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240503 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Realization of nodal-ring semimetal in pressurized black phosphorus en-subtitle= kn-subtitle= en-abstract= kn-abstract=Topological semimetals are intriguing targets for exploring unconventional physical properties of massless fermions. Among them, nodal-line or nodal-ring semimetals have attracted attention for their unique one-dimensional band contact in momentum space and resulting nontrivial quantum phenomena. By field angular resolved magnetotransport measurements and theoretical calculations, we show that pressurized black phosphorus (BP) is an ideal nodal-ring semimetal with weak spin-orbit coupling, which has a sole and carrier density-tunable nodal ring isolated from other trivial bands. We also revealed that the large magnetoresistance effect and its field-angular dependence in semimetallic BP are due to highly anisotropic relaxation time. Our results establish pressurized BP as an elemental model material for exploring nontrivial quantum properties unique to the topological nodal ring. en-copyright= kn-copyright= en-aut-name=AkibaKazuto en-aut-sei=Akiba en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkahamaYuichi en-aut-sei=Akahama en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TokunagaMasashi en-aut-sei=Tokunaga en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Science, University of Hyogo kn-affil= affil-num=3 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=1 article-no= start-page=4600 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240530 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials en-subtitle= kn-subtitle= en-abstract= kn-abstract=Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications. en-copyright= kn-copyright= en-aut-name=SaidaYuri en-aut-sei=Saida en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GauthierThomas en-aut-sei=Gauthier en-aut-mei=Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiHiroo en-aut-sei=Suzuki en-aut-mei=Hiroo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OhmuraSatoshi en-aut-sei=Ohmura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShikataRyo en-aut-sei=Shikata en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IwasakiYui en-aut-sei=Iwasaki en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NoyamaGodai en-aut-sei=Noyama en-aut-mei=Godai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KishibuchiMisaki en-aut-sei=Kishibuchi en-aut-mei=Misaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TanakaYuichiro en-aut-sei=Tanaka en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YajimaWataru en-aut-sei=Yajima en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=GodinNicolas en-aut-sei=Godin en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=PrivaultGael en-aut-sei=Privault en-aut-mei=Gael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TokunagaTomoharu en-aut-sei=Tokunaga en-aut-mei=Tomoharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OnoShota en-aut-sei=Ono en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KoshiharaShin-Ya en-aut-sei=Koshihara en-aut-mei=Shin-Ya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=BertoniRoman en-aut-sei=Bertoni en-aut-mei=Roman kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=HadaMasaki en-aut-sei=Hada en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=2 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=3 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Engineering, Hiroshima Institute of Technology kn-affil= affil-num=5 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=6 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=7 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=8 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Science and Technology, University of Tsukuba kn-affil= affil-num=11 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=12 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=13 en-affil=Graduate School of Engineering, Nagoya University kn-affil= affil-num=14 en-affil=Institute for Materials Research, Tohoku University kn-affil= affil-num=15 en-affil=School of Science, Tokyo Institute of Technology kn-affil= affil-num=16 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=17 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=18 en-affil=Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) UMR 6251 kn-affil= affil-num=19 en-affil=Institute of Pure and Applied Science and Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba kn-affil= END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=10 article-no= start-page=5825 end-page=5840 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240425 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The ABCF proteins in Escherichia coli individually cope with 'hard-to-translate' nascent peptide sequences en-subtitle= kn-subtitle= en-abstract= kn-abstract=Organisms possess a wide variety of proteins with diverse amino acid sequences, and their synthesis relies on the ribosome. Empirical observations have led to the misconception that ribosomes are robust protein factories, but in reality, they have several weaknesses. For instance, ribosomes stall during the translation of the proline-rich sequences, but the elongation factor EF-P assists in synthesizing proteins containing the poly-proline sequences. Thus, living organisms have evolved to expand the translation capability of ribosomes through the acquisition of translation elongation factors. In this study, we have revealed that Escherichia coli ATP-Binding Cassette family-F (ABCF) proteins, YheS, YbiT, EttA and Uup, individually cope with various problematic nascent peptide sequences within the exit tunnel. The correspondence between noncanonical translations and ABCFs was YheS for the translational arrest by nascent SecM, YbiT for poly-basic sequence-dependent stalling and poly-acidic sequence-dependent intrinsic ribosome destabilization (IRD), EttA for IRD at the early stage of elongation, and Uup for poly-proline-dependent stalling. Our results suggest that ATP hydrolysis-coupled structural rearrangement and the interdomain linker sequence are pivotal for handling 'hard-to-translate' nascent peptides. Our study highlights a new aspect of ABCF proteins to reduce the potential risks that are encoded within the nascent peptide sequences. Graphical Abstract en-copyright= kn-copyright= en-aut-name=ChadaniYuhei en-aut-sei=Chadani en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamanouchiShun en-aut-sei=Yamanouchi en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemuraEri en-aut-sei=Uemura en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamasakiKohei en-aut-sei=Yamasaki en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NiwaTatsuya en-aut-sei=Niwa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkedaToma en-aut-sei=Ikeda en-aut-mei=Toma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuriharaMiku en-aut-sei=Kurihara en-aut-mei=Miku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwasakiWataru en-aut-sei=Iwasaki en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaguchiHideki en-aut-sei=Taguchi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Biological Sciences, Graduate School of Science, the University of Tokyo kn-affil= affil-num=3 en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= affil-num=4 en-affil=Faculty of Science, Okayama University kn-affil= affil-num=5 en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= affil-num=6 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=7 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=8 en-affil=Department of Biological Sciences, Graduate School of Science, the University of Tokyo kn-affil= affil-num=9 en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=59 cd-vols= no-issue=17 article-no= start-page=2425 end-page=2428 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=2023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Non-enzymatic detection of glucose levels in human blood plasma by a graphene oxide-modified organic transistor sensor en-subtitle= kn-subtitle= en-abstract= kn-abstract=We herein report an organic transistor functionalized with a phenylboronic acid derivative and graphene oxide for the quantification of plasma glucose levels, which has been achieved by the minimization of interferent effects derived from physical protein adsorption on the detection electrode. en-copyright= kn-copyright= en-aut-name=FanHaonan en-aut-sei=Fan en-aut-mei=Haonan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SasakiYui en-aut-sei=Sasaki en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZhouQi en-aut-sei=Zhou en-aut-mei=Qi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TangWei en-aut-sei=Tang en-aut-mei=Wei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishinaYuta en-aut-sei=Nishina en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MinamiTsuyoshi en-aut-sei=Minami en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=2 en-affil=Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=3 en-affil=Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=4 en-affil=Institute of Industrial Science, The University of Tokyo kn-affil= affil-num=5 en-affil=Research Core for Interdisciplinary Sciences, Okayama University kn-affil= affil-num=6 en-affil=Institute of Industrial Science, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=965 cd-vols= no-issue=1 article-no= start-page=91 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240410 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Supernova Burst and Diffuse Supernova Neutrino Background Simulator for Water Cherenkov Detectors en-subtitle= kn-subtitle= en-abstract= kn-abstract=If a Galactic core-collapse supernova explosion occurs in the future, it will be critical to rapidly alert the community to the direction of the supernova by utilizing neutrino signals in order to enable the initiation of follow-up optical observations. In addition, there is anticipation that observation of the diffuse supernova neutrino background will yield discoveries in the near future, given that experimental upper limits are approaching theoretical predictions. We have developed a new supernova event simulator for water Cherenkov neutrino detectors, such as the highly sensitive Super-Kamiokande. This simulator calculates the neutrino interaction in water for two simulation purposes, individual core-collapse supernova bursts and diffuse supernova neutrino background. Based on this simulator, we can evaluate the precision in determining the location of supernovae and estimate the expected number of events related to the diffuse supernova neutrino background in Super-Kamiokande. In this paper, we describe the basic structure of the simulator and its demonstration. en-copyright= kn-copyright= en-aut-name=NakanishiFumi en-aut-sei=Nakanishi en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IzumiyamaShota en-aut-sei=Izumiyama en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HaradaMasayuki en-aut-sei=Harada en-aut-mei=Masayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoshioYusuke en-aut-sei=Koshio en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Tokyo Institute of Technology kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=67 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Transcriptomic comparison between populations selected for higher and lower mobility in the red flour beetle Tribolium castaneum en-subtitle= kn-subtitle= en-abstract= kn-abstract=Movement is an important behavior observed in a wide range of taxa. Previous studies have examined genes controlling movement using wing polymorphic insects and genes controlling wing size. However, few studies have investigated genes controlling movement activity rather than morphological traits. In the present study, we conducted RNA sequencing using populations with higher (WL) and lower (WS) mobility established by artificial selection in the red flour beetle Tribolium castaneum and compared gene expression levels between selected populations with two replicate lines. As a result, we found significant differences between the selected populations in 677 genes expressed in one replicate line and 1198 genes expressed in another replicate line, of which 311 genes were common to the two replicate lines. Furthermore, quantitative PCR focusing on 6 of these genes revealed that neuropeptide F receptor gene (NpF) was significantly more highly expressed in the WL population than in the WS population, which was common to the two replicate lines. We discuss differences in genes controlling movement between walking activity and wing polymorphism. en-copyright= kn-copyright= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OnumaTakafumi en-aut-sei=Onuma en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KondoShinji en-aut-sei=Kondo en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NoguchiHideki en-aut-sei=Noguchi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UchiyamaHironobu en-aut-sei=Uchiyama en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YajimaShunsuke en-aut-sei=Yajima en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SasakiKen en-aut-sei=Sasaki en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Agriculture, Tamagawa University kn-affil= affil-num=3 en-affil=Center for Genome Informatics, Research Organization of Information and Systems, Joint Support-Center for Data Science Research kn-affil= affil-num=4 en-affil=Center for Genome Informatics, Research Organization of Information and Systems, Joint Support-Center for Data Science Research kn-affil= affil-num=5 en-affil=NODAI Genome Research Center, Tokyo University of Agriculture kn-affil= affil-num=6 en-affil=NODAI Genome Research Center, Tokyo University of Agriculture kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Tamagawa University kn-affil= affil-num=8 en-affil=Graduate School of Environment, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=1 article-no= start-page=23-00531 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=2024 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Radiative energy transfer via surface plasmon polaritons around metal–insulator grating: For better understanding of magnetic polariton en-subtitle= kn-subtitle= en-abstract= kn-abstract=A conventional metal–insulator nanograting has the potential to transmit near-infrared thermal radiation because an electromagnetic wave is resonated in the grating structure. Surface plasmon polaritons (SPPs) take place at the interface between the metal and the insulator with boundaries at both ends. Physicists formulated the resonance frequency of the grating from the Fabry–Pérot interference between the grating thickness and the wavelength of SPPs in a short-range coupled mode. On the other hand, engineering researchers often use a lumped-element model assuming a resonant circuit consisting of an inductance of metal and a capacitance of metal-insulator-metal grating structure. Furthermore, they have considered that the resonant circuit excites a strong magnetic field independent of SPPs. This study compares each physical model and numerical simulation results, then clearly shows that all resonance frequencies and features of the circuit resonance can be described by the Fabry–Pérot interference of the SPPs in short-range coupled mode. Moreover, the estimated resonance frequencies obviously correspond to the local maxima of the transmittance of the nanograting with the various thicknesses and pitches. In this case, a strong magnetic field can be observed in the insulator layer as if it might be an isolated magnetic quantum. However, since materials show no magnetism at near-infrared frequencies, the magnetic response appears due to the contribution of SPPs. en-copyright= kn-copyright= en-aut-name=ISOBEKazuma en-aut-sei=ISOBE en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YAMADAYutaka en-aut-sei=YAMADA en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HORIBEAkihiko en-aut-sei=HORIBE en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HANAMURAKatsunori en-aut-sei=HANAMURA en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Advanced Mechanics, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Advanced Mechanics, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Advanced Mechanics, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=School of Engineering, Department of Mechanical Engineering, Tokyo Institute of Technology kn-affil= en-keyword=Surface plasmon polariton kn-keyword=Surface plasmon polariton en-keyword=Circuit resonance kn-keyword=Circuit resonance en-keyword=Magnetic polariton kn-keyword=Magnetic polariton en-keyword=Lumped-element model kn-keyword=Lumped-element model en-keyword=Fabry–Pérot interference kn-keyword=Fabry–Pérot interference END start-ver=1.4 cd-journal=joma no-vol=43 cd-vols= no-issue=2 article-no= start-page=113797 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Stem-like progenitor and terminally differentiated TFH-like CD4+ T cell exhaustion in the tumor microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=Immune checkpoint inhibitors exert clinical efficacy against various types of cancer through reinvigoration of exhausted CD8+ T cells that attack cancer cells directly in the tumor microenvironment (TME). Using single-cell sequencing and mouse models, we show that CXCL13, highly expressed in tumor-infiltrating exhausted CD8+ T cells, induces CD4+ follicular helper T (TFH) cell infiltration, contributing to anti-tumor immunity. Furthermore, a part of the TFH cells in the TME exhibits cytotoxicity and directly attacks major histocompatibility complex-II-expressing tumors. TFH-like cytotoxic CD4+ T cells have high LAG-3/BLIMP1 and low TCF1 expression without self-renewal ability, whereas non-cytotoxic TFH cells express low LAG-3/BLIMP1 and high TCF1 with self-renewal ability, closely resembling the relationship between terminally differentiated and stem-like progenitor exhaustion in CD8+ T cells, respectively. Our findings provide deep insights into TFH-like CD4+ T cell exhaustion with helper progenitor and cytotoxic differentiated functions, mediating anti-tumor immunity orchestrally with CD8+ T cells. en-copyright= kn-copyright= en-aut-name=ZhouWenhao en-aut-sei=Zhou en-aut-mei=Wenhao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawaseKatsushige en-aut-sei=Kawase en-aut-mei=Katsushige kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaKazuo en-aut-sei=Yamashita en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeTomofumi en-aut-sei=Watanabe en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DansakoHiromichi en-aut-sei=Dansako en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NishikawaHiroyoshi en-aut-sei=Nishikawa en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=KOTAI Biotechnologies, Inc. kn-affil= affil-num=7 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Chiba Cancer Center, Research Institute, Division of Cell Therapy kn-affil= affil-num=9 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Department of Immunology, Nagoya University Graduate School of Medicine kn-affil= affil-num=12 en-affil=Department of Dermatology, Chiba University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cancer immunology kn-keyword=cancer immunology en-keyword=follicular helper T cell kn-keyword=follicular helper T cell en-keyword=cytotoxic CD4+ T cell kn-keyword=cytotoxic CD4+ T cell en-keyword=CXCL13 kn-keyword=CXCL13 en-keyword=T cell exhaustion kn-keyword=T cell exhaustion en-keyword=stem-like progenitor exhaustion kn-keyword=stem-like progenitor exhaustion en-keyword=terminally differentiated exhaustion kn-keyword=terminally differentiated exhaustion en-keyword=PD-1 kn-keyword=PD-1 en-keyword=LAG-3 kn-keyword=LAG-3 en-keyword=TCF1 kn-keyword=TCF1 END start-ver=1.4 cd-journal=joma no-vol=113 cd-vols= no-issue= article-no= start-page=41 end-page=48 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Instant estimation of rice yield using ground-based RGB images and its potential applicability to UAV en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to perform a deep learning-based approach for instantaneously estimating rice yield using RGB images. During ripening stage and at harvest, over 22,000 digital images were captured vertically downwards over the rice canopy from a distance of 0.8 to 0.9m at 4,820 harvesting plots having the yield of 0.1 to 16.1 t ha-1 across six countries in Africa and Japan. A convolutional neural network (CNN) applied to these data at harvest predicted 68% variation in yield with a relative root mean square error (rRMSE) of 0.22. Even when the resolution of images was reduced (from 0.2 to 3.2cm pixel-1 of ground sampling distance), the model could predict 57% variation in yield, implying that this approach can be scaled by use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for high throughput phenotyping, and can lead to impact assessment of productivity-enhancing interventions, detection of fields where these are needed to sustainably increase crop production. en-copyright= kn-copyright= en-aut-name=TanakaYu en-aut-sei=Tanaka en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeTomoya en-aut-sei=Watanabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsuraKeisuke en-aut-sei=Katsura en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsujimotoYasuhiro en-aut-sei=Tsujimoto en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaiToshiyuki en-aut-sei=Takai en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaTakashi Sonam Tashi en-aut-sei=Tanaka en-aut-mei=Takashi Sonam Tashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawamuraKensuke en-aut-sei=Kawamura en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaitoHiroki en-aut-sei=Saito en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HommaKoki en-aut-sei=Homma en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MairouaSalifou Goube en-aut-sei=Mairoua en-aut-mei=Salifou Goube kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AhouantonKokou en-aut-sei=Ahouanton en-aut-mei=Kokou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IbrahimAli en-aut-sei=Ibrahim en-aut-mei=Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SenthilkumarKalimuthu en-aut-sei=Senthilkumar en-aut-mei=Kalimuthu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SemwalVimal Kumar en-aut-sei=Semwal en-aut-mei=Vimal Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatuteEduardo Jose Graterol en-aut-sei=Matute en-aut-mei=Eduardo Jose Graterol kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=CorredorEdgar en-aut-sei=Corredor en-aut-mei=Edgar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=El-NamakyRaafat en-aut-sei=El-Namaky en-aut-mei=Raafat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ManigbasNorvie en-aut-sei=Manigbas en-aut-mei=Norvie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=QuilangEduardo Jimmy P. en-aut-sei=Quilang en-aut-mei=Eduardo Jimmy P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IwahashiYu en-aut-sei=Iwahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NakajimaKota en-aut-sei=Nakajima en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=TakeuchiEisuke en-aut-sei=Takeuchi en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SaitoKazuki en-aut-sei=Saito en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Mathematics, Kyushu University kn-affil= affil-num=3 en-affil=Graduate School of Agriculture, Tokyo University of Agriculture and Technology kn-affil= affil-num=4 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=5 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=6 en-affil=Faculty of Biological Sciences, Gifu UniversityFaculty of Biological Sciences, Gifu University kn-affil= affil-num=7 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=8 en-affil=Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences kn-affil= affil-num=9 en-affil=Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=10 en-affil=Africa Rice Center (AfricaRice) kn-affil= affil-num=11 en-affil=Africa Rice Center (AfricaRice) kn-affil= affil-num=12 en-affil=Africa Rice Center (AfricaRice), Regional Station for the Sahel kn-affil= affil-num=13 en-affil=Africa Rice Center (AfricaRice) kn-affil= affil-num=14 en-affil=Africa Rice Center (AfricaRice), Nigeria Station kn-affil= affil-num=15 en-affil=Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT kn-affil= affil-num=16 en-affil=Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT kn-affil= affil-num=17 en-affil=Rice Research and Training Center, Field Crops Research Institute kn-affil= affil-num=18 en-affil=Philippine Rice Research Institute (PhilRice) kn-affil= affil-num=19 en-affil=Philippine Rice Research Institute (PhilRice) kn-affil= affil-num=20 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=21 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=22 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=23 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= en-keyword=Rice (Oryza sativa L.) kn-keyword=Rice (Oryza sativa L.) en-keyword=rough grain yield kn-keyword=rough grain yield en-keyword=convolutional neural network kn-keyword=convolutional neural network en-keyword=RGB images kn-keyword=RGB images en-keyword=UAV kn-keyword=UAV END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=12 article-no= start-page=113569 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231226 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanistic dissection of premature translation termination induced by acidic residues-enriched nascent peptide en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ribosomes polymerize nascent peptides through repeated inter-subunit rearrangements between the classic and hybrid states. The peptidyl-tRNA, the intermediate species during translation elongation, stabi-lizes the translating ribosome to ensure robust continuity of elongation. However, the translation of acidic residue-rich sequences destabilizes the ribosome, leading to a stochastic premature translation cessation termed intrinsic ribosome destabilization (IRD), which is still ill-defined. Here, we dissect the molecular mechanisms underlying IRD in Escherichia coli. Reconstitution of the IRD event reveals that (1) the prolonged ribosome stalling enhances IRD-mediated translation discontinuation, (2) IRD depends on temperature, (3) the destabilized 70S ribosome complex is not necessarily split, and (4) the destabilized ribosome is subjected to peptidyl-tRNA hydrolase-mediated hydrolysis of the peptidyl-tRNA without subunit splitting or recycling factors-mediated subunit splitting. Collectively, our data indicate that the translation of acidic-rich sequences alters the conformation of the 70S ribosome to an aberrant state that allows the noncanonical pre-mature termination. en-copyright= kn-copyright= en-aut-name=ChadaniYuhei en-aut-sei=Chadani en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanamoriTakashi en-aut-sei=Kanamori en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NiwaTatsuya en-aut-sei=Niwa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IchiharaKazuya en-aut-sei=Ichihara en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakayamaKeiichi I. en-aut-sei=Nakayama en-aut-mei=Keiichi I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MatsumotoAkinobu en-aut-sei=Matsumoto en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TaguchiHideki en-aut-sei=Taguchi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=GeneFrontier Corporation kn-affil= affil-num=3 en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= affil-num=4 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=5 en-affil=Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University kn-affil= affil-num=6 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=7 en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=RP88822 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH. en-copyright= kn-copyright= en-aut-name=KatoYusuke en-aut-sei=Kato en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurodaHiroshi en-aut-sei=Kuroda en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OzawaShin-Ichiro en-aut-sei=Ozawa en-aut-mei=Shin-Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SaitoKeisuke en-aut-sei=Saito en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DograVivek en-aut-sei=Dogra en-aut-mei=Vivek kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ScholzMartin en-aut-sei=Scholz en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ZhangGuoxian en-aut-sei=Zhang en-aut-mei=Guoxian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=de VitryCatherine en-aut-sei=de Vitry en-aut-mei=Catherine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KimChanhong en-aut-sei=Kim en-aut-mei=Chanhong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=HipplerMichael en-aut-sei=Hippler en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakahashiYuichiro en-aut-sei=Takahashi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=5 en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=6 en-affil=Institute of Plant Biology and Biotechnology, University of Münster kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=8 en-affil=Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université Pierre et Marie Curie kn-affil= affil-num=9 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=10 en-affil=Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences kn-affil= affil-num=11 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=13 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=post-translational modification kn-keyword=post-translational modification en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana en-keyword=protein degradation kn-keyword=protein degradation en-keyword=photosystem II kn-keyword=photosystem II en-keyword=photo-oxidative damage kn-keyword=photo-oxidative damage en-keyword=tryptophan oxidation kn-keyword=tryptophan oxidation en-keyword=Chlamydomonas reinhardtii kn-keyword=Chlamydomonas reinhardtii END start-ver=1.4 cd-journal=joma no-vol=4 cd-vols= no-issue=10 article-no= start-page=100573 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202310 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immunologic Significance of CD80/CD86 or Major Histocompatibility Complex-II Expression in Thymic Epithelial Tumors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Unresectable or recurrent thymic epithelial tumors (TETs) have a poor prognosis, and treatment options are limited. This study aimed to investigate the immunologic significance of CD80/CD86 or major histocompatibility complex class II (MHC-II) expression in TETs, as potential predictive biomarkers for immune checkpoint inhibitors (ICIs).
Methods: We analyzed CD80, CD86, MHC class I (MHC-I), and MHC-II expression in TETs using immunohistochemistry and investigated their association with T-cell infiltration or ICI efficacy. In addition, we generated CD80- or MHC-II–expressing mouse tumors, evaluated the effects of ICIs, and analyzed tumor-infiltrating lymphocytes. We also performed tumor-rechallenge experiments in vivo.
Results: We found that approximately 50% and 30% of TETs had high expression of CD80/CD86 and MHC-II in tumor cells, respectively, and that this expression was related to T-cell infiltration in clinical samples. In mouse models, both CD80 and MHC-II increase the effects of ICIs. In addition, senescent T cells and long-lived memory precursor effector T cells were significantly decreased and increased, respectively, in tumor-infiltrating lymphocytes from CD80-expressing tumors, and rechallenged tumors were completely rejected after the initial eradication of CD80-expressing tumors by programmed cell death protein 1 blockade. Indeed, patients with CD80-high thymic carcinoma had longer progression-free survival with anti–programmed cell death protein 1 monoclonal antibody.
Conclusions: Half of the TETs had high expression of CD80/CD86 or MHC-II with high T-cell infiltration. These molecules could potentially increase the effects of ICIs, particularly inducing a durable response. CD80/CD86 and MHC-II can be predictive biomarkers of ICIs in TETs, promoting the development of drugs for such TETs. en-copyright= kn-copyright= en-aut-name=IkedaHideki en-aut-sei=Ikeda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimizuDaiki en-aut-sei=Shimizu en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KatsuyaYuki en-aut-sei=Katsuya en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HorinouchiHidehito en-aut-sei=Horinouchi en-aut-mei=Hidehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HosomiYukio en-aut-sei=Hosomi en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanjiEtsuko en-aut-sei=Tanji en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwataTakekazu en-aut-sei=Iwata en-aut-mei=Takekazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItamiMakiko en-aut-sei=Itami en-aut-mei=Makiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OheYuichiro en-aut-sei=Ohe en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SuzukiTakuji en-aut-sei=Suzuki en-aut-mei=Takuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=2 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=3 en-affil=Division of Thoracic Surgery, Chiba Cancer Center kn-affil= affil-num=4 en-affil=Department of Experimental Therapeutics, National Cancer Center Hospital kn-affil= affil-num=5 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=6 en-affil=Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital kn-affil= affil-num=7 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=8 en-affil=Division of Thoracic Surgery, Chiba Cancer Center kn-affil= affil-num=9 en-affil=Department of Surgical Pathology, Chiba Cancer Center kn-affil= affil-num=10 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=11 en-affil=Department of Thoracic Oncology, National Cancer Center Hospital kn-affil= affil-num=12 en-affil=Department of Respirology, Graduate School of Medicine, Chiba University kn-affil= affil-num=13 en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Thymic epithelial tumor kn-keyword=Thymic epithelial tumor en-keyword=Cancer immunotherapy kn-keyword=Cancer immunotherapy en-keyword=CD80/CD86 kn-keyword=CD80/CD86 en-keyword=MHC kn-keyword=MHC en-keyword=Memory precursor effector T cell kn-keyword=Memory precursor effector T cell END start-ver=1.4 cd-journal=joma no-vol=5 cd-vols= no-issue= article-no= start-page=0073 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deep Learning Enables Instant and Versatile Estimation of Rice Yield Using Ground-Based RGB Images en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rice (Oryza sativa L.) is one of the most important cereals, which provides 20% of the world’s food energy. However, its productivity is poorly assessed especially in the global South. Here, we provide a first study to perform a deep-learning-based approach for instantaneously estimating rice yield using red-green-blue images. During ripening stage and at harvest, over 22,000 digital images were captured vertically downward over the rice canopy from a distance of 0.8 to 0.9 m at 4,820 harvesting plots having the yield of 0.1 to 16.1 t·ha−1 across 6 countries in Africa and Japan. A convolutional neural network applied to these data at harvest predicted 68% variation in yield with a relative root mean square error of 0.22. The developed model successfully detected genotypic difference and impact of agronomic interventions on yield in the independent dataset. The model also demonstrated robustness against the images acquired at different shooting angles up to 30° from right angle, diverse light environments, and shooting date during late ripening stage. Even when the resolution of images was reduced (from 0.2 to 3.2 cm·pixel−1 of ground sampling distance), the model could predict 57% variation in yield, implying that this approach can be scaled by the use of unmanned aerial vehicles. Our work offers low-cost, hands-on, and rapid approach for high-throughput phenotyping and can lead to impact assessment of productivity-enhancing interventions, detection of fields where these are needed to sustainably increase crop production, and yield forecast at several weeks before harvesting. en-copyright= kn-copyright= en-aut-name=TanakaYu en-aut-sei=Tanaka en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeTomoya en-aut-sei=Watanabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsuraKeisuke en-aut-sei=Katsura en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsujimotoYasuhiro en-aut-sei=Tsujimoto en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaiToshiyuki en-aut-sei=Takai en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TanakaTakashi Sonam Tashi en-aut-sei=Tanaka en-aut-mei=Takashi Sonam Tashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawamuraKensuke en-aut-sei=Kawamura en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaitoHiroki en-aut-sei=Saito en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HommaKoki en-aut-sei=Homma en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MairouaSalifou Goube en-aut-sei=Mairoua en-aut-mei=Salifou Goube kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AhouantonKokou en-aut-sei=Ahouanton en-aut-mei=Kokou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IbrahimAli en-aut-sei=Ibrahim en-aut-mei=Ali kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=SenthilkumarKalimuthu en-aut-sei=Senthilkumar en-aut-mei=Kalimuthu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SemwalVimal Kumar en-aut-sei=Semwal en-aut-mei=Vimal Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MatuteEduardo Jose Graterol en-aut-sei=Matute en-aut-mei=Eduardo Jose Graterol kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=CorredorEdgar en-aut-sei=Corredor en-aut-mei=Edgar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=El-NamakyRaafat en-aut-sei=El-Namaky en-aut-mei=Raafat kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ManigbasNorvie en-aut-sei=Manigbas en-aut-mei=Norvie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=QuilangEduardo Jimmy P. en-aut-sei=Quilang en-aut-mei=Eduardo Jimmy P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=IwahashiYu en-aut-sei=Iwahashi en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NakajimaKota en-aut-sei=Nakajima en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=TakeuchiEisuke en-aut-sei=Takeuchi en-aut-mei=Eisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SaitoKazuki en-aut-sei=Saito en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Mathematics, Kyushu University kn-affil= affil-num=3 en-affil=Graduate School of Agriculture, Tokyo University of Agriculture and Technology kn-affil= affil-num=4 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=5 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=6 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Japan International Research Center for Agricultural Sciences kn-affil= affil-num=8 en-affil=Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences kn-affil= affil-num=9 en-affil=Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=10 en-affil=Africa Rice Center (AfricaRice) kn-affil= affil-num=11 en-affil=Africa Rice Center (AfricaRice) kn-affil= affil-num=12 en-affil=Africa Rice Center (AfricaRice), Regional Station for the Sahel kn-affil= affil-num=13 en-affil=Africa Rice Center (AfricaRice) kn-affil= affil-num=14 en-affil=Africa Rice Center (AfricaRice), Nigeria Station kn-affil= affil-num=15 en-affil=Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT kn-affil= affil-num=16 en-affil=Latin American Fund for Irrigated Rice - The Alliance of Bioversity International and CIAT kn-affil= affil-num=17 en-affil=Rice Research and Training Center, Field Crops Research Institute, ARC kn-affil= affil-num=18 en-affil=Philippine Rice Research Institute (PhilRice) kn-affil= affil-num=19 en-affil=Philippine Rice Research Institute (PhilRice) kn-affil= affil-num=20 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=21 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=22 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=23 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=6 article-no= start-page=1208 end-page=1219 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nuclear Transformation of the Marine Pennate Diatom Nitzschia sp. Strain NIES-4635 by Multi-Pulse Electroporation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Nitzschia is one of the largest genera of diatoms found in a range of aquatic environments, from freshwater to seawater. This genus contains evolutionarily and ecologically unique species, such as those that have lost photosynthetic capacity or those that live symbiotically in dinoflagellates. Several Nitzschia species have been used as indicators of water pollution. Recently, Nitzschia species have attracted considerable attention in the field of biotechnology. In this study, a transformation method for the marine pennate diatom Nitzschia sp. strain NIES-4635, isolated from the coastal Seto Inland Sea, was established. Plasmids containing the promoter/terminator of the fucoxanthin chlorophyll a/c binding protein gene (fcp, or Lhcf) derived from Nitzschia palea were constructed and introduced into cells by multi-pulse electroporation, resulting in 500 μg/mL nourseothricin-resistant transformants with transformation frequencies of up to 365 colonies per 108 cells. In addition, when transformation was performed using a new plasmid containing a promoter derived from a diatom-infecting virus upstream of the green fluorescent protein gene (gfp), 44% of the nourseothricin-resistant clones exhibited GFP fluorescence. The integration of the genes introduced into the genomes of the transformants was confirmed by Southern blotting. The Nitzschia transformation method established in this study will enable the transformation this species, thus allowing the functional analysis of genes from the genus Nitzschia, which are important species for environmental and biotechnological development. en-copyright= kn-copyright= en-aut-name=OkadaKoki en-aut-sei=Okada en-aut-mei=Koki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MorimotoYu en-aut-sei=Morimoto en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShiraishiYukine en-aut-sei=Shiraishi en-aut-mei=Yukine kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TamuraTakashi en-aut-sei=Tamura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MayamaShigeki en-aut-sei=Mayama en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KadonoTakashi en-aut-sei=Kadono en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AdachiMasao en-aut-sei=Adachi en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IfukuKentaro en-aut-sei=Ifuku en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NemotoMichiko en-aut-sei=Nemoto en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=The Advanced Support Center for Science Teachers, Tokyo Gakugei University kn-affil= affil-num=6 en-affil=Faculty of Agriculture and Marine Science, Kochi University kn-affil= affil-num=7 en-affil=Faculty of Agriculture and Marine Science, Kochi University kn-affil= affil-num=8 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=9 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=Diatom kn-keyword=Diatom en-keyword=Genetic transformation kn-keyword=Genetic transformation en-keyword=Nitzschia kn-keyword=Nitzschia en-keyword=Multi-pulse electroporation kn-keyword=Multi-pulse electroporation END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=12 article-no= start-page=125001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231121 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoelectron holographic evidence for the incorporation site of Se and suppressed atomic displacement of the conducting layer of La(O,F)BiSSe en-subtitle= kn-subtitle= en-abstract= kn-abstract=La(O,F)BiS2-xSex is a layered material that is considered to be a candidate exotic superconductor as well as a promising thermoelectrical material. We performed soft X-ray photoelectron holography to study the Se incorporation site and the local atomic arrangement of the conducting layer. A comparison of the experimental holograms with the simulated holograms indicates that Se atoms preferentially occupy the S sites in the conducting Bi–S plane of La(O,F)BiS2. A comparison between the state-of-the-art holographic reconstructions of La(O,F)BiSSe and La(O,F)BiS2 suggests that Se substitution suppresses the displacement of S atoms in La(O,F)BiS2. These results provide photoelectron holographic evidence for the Se incorporation site and the Se-induced suppression of in-plane disorder. en-copyright= kn-copyright= en-aut-name=LiYaJun en-aut-sei=Li en-aut-mei=YaJun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SunZeXu en-aut-sei=Sun en-aut-mei=ZeXu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KataokaNoriyuki en-aut-sei=Kataoka en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SetoguchiTaro en-aut-sei=Setoguchi en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HashimotoYusuke en-aut-sei=Hashimoto en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakeuchiSoichiro en-aut-sei=Takeuchi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KogaShunjo en-aut-sei=Koga en-aut-mei=Shunjo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HoshiKazuhisa en-aut-sei=Hoshi en-aut-mei=Kazuhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MizuguchiYoshikazu en-aut-sei=Mizuguchi en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MatsushitaTomohiro en-aut-sei=Matsushita en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Engineering Research Center of Integrated Circuit Packaging and Testing, Ministry of Education, Tianshui Normal University kn-affil= affil-num=2 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=6 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=7 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=8 en-affil=Department of Physics, Tokyo Metropolitan University kn-affil= affil-num=9 en-affil=Department of Physics, Tokyo Metropolitan University kn-affil= affil-num=10 en-affil=Nara Institute of Science and Technology (NAIST) kn-affil= affil-num=11 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=13 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=photoelectron holography kn-keyword=photoelectron holography en-keyword=La(O,F)BiS2-x Se x kn-keyword=La(O,F)BiS2-x Se x en-keyword=local structure kn-keyword=local structure en-keyword=dopant site kn-keyword=dopant site END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=10 article-no= start-page=1566 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Numerical Analysis of Various Heat Countermeasures: Effects on Energy Consumption and Indoor Thermal Comfort in Densely Built Wooden House Area en-subtitle= kn-subtitle= en-abstract= kn-abstract=Densely built areas with poor thermal insulation suffer from high thermal environmental risks and generally consume high energy in summer. Determining the relationship between density and energy consumption is necessary, particularly when implementing urban heat island (UHI) countermeasures. This study evaluated the effects of density and UHI countermeasures on the energy consumption and indoor thermal comfort of a detached house in a typical densely built wooden house area in Yokohama City, Japan. Three densities and six countermeasures were considered. Annual hourly simulations based on the SCIENCE-Vent thermal environment simulation model yielded the following results: in densely built wooden house areas, the energy consumption and thermal discomfort increased with density. The green roof yielded the largest energy savings in the cooling and heating seasons, demonstrating the highest annual energy savings with 5.7%. Density had little impact on rooftop countermeasures, but the effect of the high-reflectance walls increased with density, and the reduction in annual energy consumption (air conditioning and lighting) is 2.6%, 3.0%, 3.6% in 37%, 47%, and 59% density cases, respectively. The impact of thermal countermeasures on indoor thermal comfort varied according to the thermal control mechanism. en-copyright= kn-copyright= en-aut-name=LiuShanshan en-aut-sei=Liu en-aut-mei=Shanshan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LevinsonRonnen en-aut-sei=Levinson en-aut-mei=Ronnen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NarumiDaisuke en-aut-sei=Narumi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Architecture and Building Engineering, Tokyo Institute of Technology kn-affil= affil-num=2 en-affil=Heat Island Group, Lawrence Berkeley National Laboratory kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=urban heat island kn-keyword=urban heat island en-keyword=densely built area kn-keyword=densely built area en-keyword=energy saving kn-keyword=energy saving en-keyword=indoor thermal comfort kn-keyword=indoor thermal comfort en-keyword=heat countermeasure kn-keyword=heat countermeasure END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=18 article-no= start-page=13296 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230905 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Relationship between the Evaluation of Public Transport Services and Travel-Based CO2 Emissions from Private Transport Modes in Regional and Metropolitan Areas in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=Promoting public transport use is expected to contribute to reducing CO2 emissions in the transport sector. Using Okayama City and Central Tokyo as representative case studies of regional and metropolitan areas in Japan, this study examines the impact of the evaluation of the 'hard' and 'soft' attributes of rail and bus services on the overall evaluation. This study then explores the relationship between the overall evaluation and usage frequency of rail and bus services, as well as the relationship between the usage frequency and travel-based CO2 emissions from private transport modes. Furthermore, this study investigates whether the emissions cause differences in the evaluation of the 'hard' and 'soft' attributes of public transport services. The findings suggest prioritising an improvement in 'hard' rather than 'soft' attributes in order to reduce emissions through the use of public transport in regional areas. However, in metropolitan areas, no relationship was found between the evaluation of public transport services and emissions, presumably because of the lower ownership rate of private cars that residents can use freely and the markedly higher level of rail and bus services. This study provides a methodological reference for analysing the potential to reduce travel-based emissions from private transport modes by enhancing public transport service contents. en-copyright= kn-copyright= en-aut-name=PradhanShreyas en-aut-sei=Pradhan en-aut-mei=Shreyas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UjiharaTakehito en-aut-sei=Ujihara en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HashimotoSeiji en-aut-sei=Hashimoto en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= en-keyword=CO2 emissions kn-keyword=CO2 emissions en-keyword=public transport kn-keyword=public transport en-keyword=evaluation kn-keyword=evaluation en-keyword='hard' and 'soft' attributes kn-keyword='hard' and 'soft' attributes en-keyword=usage frequency kn-keyword=usage frequency en-keyword=private transport modes kn-keyword=private transport modes END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=2 article-no= start-page=154 end-page=164 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of a Functionally Efficient and Thermally Stable Outward Sodium-Pumping Rhodopsin (BeNaR) from a Thermophilic Bacterium en-subtitle= kn-subtitle= en-abstract= kn-abstract=Rhodopsins are transmembrane proteins with retinal chromophores that are involved in photo-energy conversion and photo-signal transduction in diverse organisms. In this study, we newly identified and characterized a rhodopsin from a thermophilic bacterium, Bellilinea sp. Recombinant Escherichia coli cells expressing the rhodopsin showed light-induced alkalization of the medium only in the presence of sodium ions (Na+), and the alkalization signal was enhanced by addition of a protonophore, indicating an outward Na+ pump function across the cellular membrane. Thus, we named the protein Bellilinea Na+-pumping rhodopsin, BeNaR. Of note, its Na+-pumping activity is significantly greater than that of the known Na+-pumping rhodopsin, KR2. We further characterized its photochemical properties as follows: (i) Visible spectroscopy and HPLC revealed that BeNaR has an absorption maximum at 524 nm with predominantly (>96%) the all-trans retinal conformer. (ii) Time-dependent thermal denaturation experiments revealed that BeNaR showed high thermal stability. (iii) The time-resolved flash-photolysis in the nanosecond to millisecond time domains revealed the presence of four kinetically distinctive photointermediates, K, L, M and O. (iv) Mutational analysis revealed that Asp101, which acts as a counterion, and Asp230 around the retinal were essential for the Na+-pumping activity. From the results, we propose a model for the outward Na+-pumping mechanism of BeNaR. The efficient Na+-pumping activity of BeNaR and its high stability make it a useful model both for ion transporters and optogenetics tools. en-copyright= kn-copyright= en-aut-name=KuriharaMarie en-aut-sei=Kurihara en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ThielVera en-aut-sei=Thiel en-aut-mei=Vera kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakahashiHirona en-aut-sei=Takahashi en-aut-mei=Hirona kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WardDavid M. en-aut-sei=Ward en-aut-mei=David M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=BryantDonald A. en-aut-sei=Bryant en-aut-mei=Donald A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakaiMakoto en-aut-sei=Sakai en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Biological Sciences, Tokyo Metropolitan University kn-affil= affil-num=3 en-affil=Department of Chemistry, Graduate School of Science, Okayama University of Science kn-affil= affil-num=4 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Land Resources and Environmental Sciences, Montana State University kn-affil= affil-num=6 en-affil=Department of Biochemistry and Molecular Biology, The Pennsylvania State University kn-affil= affil-num=7 en-affil=Department of Chemistry, Graduate School of Science, Okayama University of Science kn-affil= affil-num=8 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=9 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=rhodopsin kn-keyword=rhodopsin en-keyword=ion transport kn-keyword=ion transport en-keyword=retinal kn-keyword=retinal en-keyword=isomerization kn-keyword=isomerization en-keyword=optogenetics kn-keyword=optogenetics END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=12 article-no= start-page=eabm2225 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220325 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tubulins are critical for the internal organization of eukaryotic cells, and understanding their emergence is an important question in eukaryogenesis. Asgard archaea are the closest known prokaryotic relatives to eukaryotes. Here, we elucidated the apo and nucleotide-bound x-ray structures of an Asgard tubulin from hydrothermal living Odinarchaeota (OdinTubulin). The guanosine 5′-triphosphate (GTP)–bound structure resembles a microtubule protofilament, with GTP bound between subunits, coordinating the “+” end subunit through a network of water molecules and unexpectedly by two cations. A water molecule is located suitable for GTP hydrolysis. Time course crystallography and electron microscopy revealed conformational changes on GTP hydrolysis. OdinTubulin forms tubules at high temperatures, with short curved protofilaments coiling around the tubule circumference, more similar to FtsZ, rather than running parallel to its length, as in microtubules. Thus, OdinTubulin represents an evolutionary stage intermediate between prokaryotic FtsZ and eukaryotic microtubule-forming tubulins. en-copyright= kn-copyright= en-aut-name=AkılCaner en-aut-sei=Akıl en-aut-mei=Caner kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AliSamson en-aut-sei=Ali en-aut-mei=Samson kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TranLinh T. en-aut-sei=Tran en-aut-mei=Linh T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GaillardJérémie en-aut-sei=Gaillard en-aut-mei=Jérémie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LiWenfei en-aut-sei=Li en-aut-mei=Wenfei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HayashidaKenichi en-aut-sei=Hayashida en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HiroseMika en-aut-sei=Hirose en-aut-mei=Mika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KatoTakayuki en-aut-sei=Kato en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OshimaAtsunori en-aut-sei=Oshima en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujishimaKosuke en-aut-sei=Fujishima en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=BlanchoinLaurent en-aut-sei=Blanchoin en-aut-mei=Laurent kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NaritaAkihiro en-aut-sei=Narita en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=4 en-affil=University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab kn-affil= affil-num=5 en-affil=National Laboratory of Solid State Microstructure, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University kn-affil= affil-num=6 en-affil=Cellular and Structural Physiology Institute (CeSPI), Nagoya University kn-affil= affil-num=7 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=8 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=9 en-affil=Cellular and Structural Physiology Institute (CeSPI), Nagoya University kn-affil= affil-num=10 en-affil=Tokyo Institute of Technology, Earth-Life Science Institute (ELSI) kn-affil= affil-num=11 en-affil=University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab kn-affil= affil-num=12 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=13 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue=7 article-no= start-page=739 end-page=753 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220728 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mixed Response to Cancer Immunotherapy is Driven by Intratumor Heterogeneity and Differential Interlesion Immune Infiltration en-subtitle= kn-subtitle= en-abstract= kn-abstract=Some patients experience mixed response to immunotherapy, whose biological mechanisms and clinical impact have been obscure. We obtained two tumor samples from lymph node (LN) metastatic lesions in a same patient. Whole exome sequencing for the both tumors and single-cell sequencing for the both tumor-infiltrating lymphocytes (TIL) demonstrated a significant difference in tumor clonality and TILs' characteristics, especially exhausted T-cell clonotypes, although a close relationship between the tumor cell and T-cell clones were observed as a response of an overlapped exhausted T-cell clone to an overlapped neoantigen. To mimic the clinical setting, we generated a mouse model of several clones from a same tumor cell line. Similarly, differential tumor clones harbored distinct TILs, and one responded to programmed cell death protein 1 (PD-1) blockade but the other did not in this model. We further conducted cohort study (n = 503) treated with PD-1 blockade monotherapies to investigate the outcome of mixed response. Patients with mixed responses to PD-1 blockade had a poor prognosis in our cohort. Particularly, there were significant differences in both tumor and T-cell clones between the primary and LN lesions in a patient who experienced tumor response to anti-PD-1 mAb followed by disease progression in only LN metastasis. Our results underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome.
Significance: Several patients experience mixed responses to immunotherapies, but the biological mechanisms and clinical significance remain unclear. Our results from clinical and mouse studies underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome. en-copyright= kn-copyright= en-aut-name=MorinagaTakao en-aut-sei=Morinaga en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=InozumeTakashi en-aut-sei=Inozume en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SaxNicolas en-aut-sei=Sax en-aut-mei=Nicolas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamashitaKazuo en-aut-sei=Yamashita en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UenoToshihide en-aut-sei=Ueno en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LinJason en-aut-sei=Lin en-aut-mei=Jason kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OharaYuuki en-aut-sei=Ohara en-aut-mei=Yuuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KuwataTakeshi en-aut-sei=Kuwata en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YukamiHiroki en-aut-sei=Yukami en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawazoeAkihito en-aut-sei=Kawazoe en-aut-mei=Akihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShitaraKohei en-aut-sei=Shitara en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=Honobe-TabuchiAkiko en-aut-sei=Honobe-Tabuchi en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OhnumaTakehiro en-aut-sei=Ohnuma en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KawamuraTatsuyoshi en-aut-sei=Kawamura en-aut-mei=Tatsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=UmedaYoshiyasu en-aut-sei=Umeda en-aut-mei=Yoshiyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KawaharaYu en-aut-sei=Kawahara en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NakamuraYasuhiro en-aut-sei=Nakamura en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KiniwaYukiko en-aut-sei=Kiniwa en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=MoritaAyako en-aut-sei=Morita en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=IchiharaEiki en-aut-sei=Ichihara en-aut-mei=Eiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KiuraKatsuyuki en-aut-sei=Kiura en-aut-mei=Katsuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=EnokidaTomohiro en-aut-sei=Enokida en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=TaharaMakoto en-aut-sei=Tahara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=HasegawaYoshinori en-aut-sei=Hasegawa en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=NishikawaHiroyoshi en-aut-sei=Nishikawa en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= affil-num=1 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=2 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=3 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=4 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=KOTAI Biotechnologies Inc kn-affil= affil-num=6 en-affil=KOTAI Biotechnologies Inc kn-affil= affil-num=7 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=8 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=10 en-affil=Chiba Cancer Center, Research Institute kn-affil= affil-num=11 en-affil=Department of Pathology, National Cancer Center Hospital East kn-affil= affil-num=12 en-affil=Department of Genetic Medicineand Services, National Cancer Center Hospital East kn-affil= affil-num=13 en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East kn-affil= affil-num=14 en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East kn-affil= affil-num=15 en-affil=Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East kn-affil= affil-num=16 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=17 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=18 en-affil=Department of Dermatology, University of Yamanashi kn-affil= affil-num=19 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=20 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=21 en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center kn-affil= affil-num=22 en-affil=Department of Dermatology, Shinshu University School of Medicine kn-affil= affil-num=23 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=24 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=25 en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital kn-affil= affil-num=26 en-affil=Department of Head and Neck Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=27 en-affil=Department of Head and Neck Medical Oncology, National Cancer Center Hospital East kn-affil= affil-num=28 en-affil=Department of Applied Genomics, Kazusa DNA Research Institute kn-affil= affil-num=29 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=30 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=31 en-affil=Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center kn-affil= affil-num=32 en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=951 cd-vols= no-issue=2 article-no= start-page=L27 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Search for Astrophysical Electron Antineutrinos in Super-Kamiokande with 0.01% Gadolinium-loaded Water en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In 2020 June, gadolinium was introduced to the ultrapure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay with efficient background rejection thanks to the high efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd, during 2020 August 26, and 2022 June 1 with a 22.5 x 552 kton center dot day exposure at 0.01% Gd mass concentration. No significant excess over the expected background in the observed events is found for the neutrino energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are already comparable with the previous SK result with pure water (22.5 x 2970 kton center dot day) owing to the enhanced neutron tagging. Operation with Gd increased to 0.03% started in 2022 June. en-copyright= kn-copyright= en-aut-name=HaradaM. en-aut-sei=Harada en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=7 article-no= start-page=e0288175 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Augmented reality-based affective training for improving care communication skill and empathy en-subtitle= kn-subtitle= en-abstract= kn-abstract=It is important for caregivers of people with dementia (PwD) to have good patient communication skills as it has been known to reduce the behavioral and psychological symptoms of dementia (BPSD) of PwD as well as caregiver burnout. However, acquiring such skills often requires one-on-one affective training, which can be costly. In this study, we propose affective training using augmented reality (AR) for supporting the acquisition of such skills. The system uses see-through AR glasses and a nursing training doll to train the user in both practical nursing skills and affective skills such as eye contact and patient communication. The experiment was conducted with 38 nursing students. The participants were assigned to either the Doll group, which only used a doll for training, or the AR group, which used both a doll and the AR system. The results showed that eye contact significantly increased and the face-to-face distance and angle decreased in the AR group, while the Doll group had no significant difference. In addition, the empathy score of the AR group significantly increased after the training. Upon analyzing the correlation between personality and changes of physical skills, we found a significant positive correlation between the improvement rate of eye contact and extraversion in the AR group. These results demonstrated that affective training using AR is effective for improving caregivers' physical skills and their empathy for their patients. We believe that this system will be beneficial not only for dementia caregivers but for anyone looking to improve their general communication skills. en-copyright= kn-copyright= en-aut-name=NakazawaAtsushi en-aut-sei=Nakazawa en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwamotoMiyuki en-aut-sei=Iwamoto en-aut-mei=Miyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KurazumeRyo en-aut-sei=Kurazume en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NunoiMasato en-aut-sei=Nunoi en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiMasaki en-aut-sei=Kobayashi en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HondaMiwako en-aut-sei=Honda en-aut-mei=Miwako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Advanced Fibro-Science, Kyoto Institute of Technology kn-affil= affil-num=3 en-affil=Faculty of Information Science and Electrical Engineering, Kyushu University kn-affil= affil-num=4 en-affil=School of Human Sciences, Sugiyama Jogakuen University kn-affil= affil-num=5 en-affil=Division of geriatric medicine, Rochester Regional Health System kn-affil= affil-num=6 en-affil=Division of Geriatric Research, National Hospital Organization Tokyo Medical Center kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=5756 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230408 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Social aspects of collision avoidance: a detailed analysis of two-person groups and individual pedestrians en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pedestrian groups are commonly found in crowds but research on their social aspects is comparatively lacking. To fill that void in literature, we study the dynamics of collision avoidance between pedestrian groups (in particular dyads) and individual pedestrians in an ecological environment, focusing in particular on (i) how such avoidance depends on the group's social relation (e.g. colleagues, couples, friends or families) and (ii) its intensity of social interaction (indicated by conversation, gaze exchange, gestures etc). By analyzing relative collision avoidance in the "center of mass" frame, we were able to quantify how much groups and individuals avoid each other with respect to the aforementioned properties of the group. A mathematical representation using a potential energy function is proposed to model avoidance and it is shown to provide a fair approximation to the empirical observations. We also studied the probability that the individuals disrupt the group by "passing through it" (termed as intrusion). We analyzed the dependence of the parameters of the avoidance model and of the probability of intrusion on groups' social relation and intensity of interaction. We confirmed that the stronger social bonding or interaction intensity is, the more prominent collision avoidance turns out. We also confirmed that the probability of intrusion is a decreasing function of interaction intensity and strength of social bonding. Our results suggest that such variability should be accounted for in models and crowd management in general. Namely, public spaces with strongly bonded groups (e.g. a family-oriented amusement park) may require a different approach compared to public spaces with loosely bonded groups (e.g. a business-oriented trade fair). en-copyright= kn-copyright= en-aut-name=GregorjAdrien en-aut-sei=Gregorj en-aut-mei=Adrien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YucelZeynep en-aut-sei=Yucel en-aut-mei=Zeynep kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZanlungoFrancesco en-aut-sei=Zanlungo en-aut-mei=Francesco kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FelicianiClaudio en-aut-sei=Feliciani en-aut-mei=Claudio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KandaTakayuki en-aut-sei=Kanda en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Okayama University kn-affil= affil-num=2 en-affil=Okayama University kn-affil= affil-num=3 en-affil=Okayama University kn-affil= affil-num=4 en-affil=The University of Tokyo kn-affil= affil-num=5 en-affil=ATR International kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=1730 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230403 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and mechanism of oxalate transporter OxlT in an oxalate-degrading bacterium in the gut microbiota en-subtitle= kn-subtitle= en-abstract= kn-abstract=An oxalate-degrading bacterium in the gut microbiota absorbs food-derived oxalate to use this as a carbon and energy source, thereby reducing the risk of kidney stone formation in host animals. The bacterial oxalate transporter OxlT selectively uptakes oxalate from the gut to bacterial cells with a strict discrimination from other nutrient carboxylates. Here, we present crystal structures of oxalate-bound and ligand-free OxlT in two distinct conformations, occluded and outward-facing states. The ligand-binding pocket contains basic residues that form salt bridges with oxalate while preventing the conformational switch to the occluded state without an acidic substrate. The occluded pocket can accommodate oxalate but not larger dicarboxylates, such as metabolic intermediates. The permeation pathways from the pocket are completely blocked by extensive interdomain interactions, which can be opened solely by a flip of a single side chain neighbouring the substrate. This study shows the structural basis underlying metabolic interactions enabling favourable symbiosis. en-copyright= kn-copyright= en-aut-name=Jaunet-LaharyTitouan en-aut-sei=Jaunet-Lahary en-aut-mei=Titouan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimamuraTatsuro en-aut-sei=Shimamura en-aut-mei=Tatsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HayashiMasahiro en-aut-sei=Hayashi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NomuraNorimichi en-aut-sei=Nomura en-aut-mei=Norimichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HirasawaKouta en-aut-sei=Hirasawa en-aut-mei=Kouta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimizuTetsuya en-aut-sei=Shimizu en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamashitaMasao en-aut-sei=Yamashita en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsutsumiNaotaka en-aut-sei=Tsutsumi en-aut-mei=Naotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SuehiroYuta en-aut-sei=Suehiro en-aut-mei=Yuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TamuraTakashi en-aut-sei=Tamura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=IwanariHiroko en-aut-sei=Iwanari en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HamakuboTakao en-aut-sei=Hamakubo en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=OkazakiKei-Ichi en-aut-sei=Okazaki en-aut-mei=Kei-Ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=HiraiTeruhisa en-aut-sei=Hirai en-aut-mei=Teruhisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YamashitaAtsuko en-aut-sei=Yamashita en-aut-mei=Atsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Kyoto University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Kyoto University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Kyoto University kn-affil= affil-num=6 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=7 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=8 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=School of Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=13 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=14 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=15 en-affil=Graduate School of Medicine, Kyoto University kn-affil= affil-num=16 en-affil=Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences kn-affil= affil-num=17 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=18 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=1 article-no= start-page=920 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230217 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure of a monomeric photosystem I core associated with iron-stress-induced-A proteins from Anabaena sp. PCC 7120 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Iron-stress-induced-A proteins (IsiAs) are expressed in cyanobacteria under iron-deficient conditions. The cyanobacterium Anabaena sp. PCC 7120 has four isiA genes; however, their binding property and functional roles in PSI are still missing. We analyzed a cryo-electron microscopy structure of a PSI-IsiA supercomplex isolated from Anabaena grown under an iron-deficient condition. The PSI-IsiA structure contains six IsiA subunits associated with the PsaA side of a PSI core monomer. Three of the six IsiA subunits were identified as IsiA1 and IsiA2. The PSI-IsiA structure lacks a PsaL subunit; instead, a C-terminal domain of IsiA2 occupies the position of PsaL, which inhibits the oligomerization of PSI, leading to the formation of a PSI monomer. Furthermore, excitation-energy transfer from IsiAs to PSI appeared with a time constant of 55 ps. These findings provide insights into both the molecular assembly of the Anabaena IsiA family and the functional roles of IsiAs. en-copyright= kn-copyright= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamaguchiTasuku en-aut-sei=Hamaguchi en-aut-mei=Tasuku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UenoYoshifumi en-aut-sei=Ueno en-aut-mei=Yoshifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsuboshitaNaoki en-aut-sei=Tsuboshita en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShimizuShota en-aut-sei=Shimizu en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FurutaniMiyu en-aut-sei=Furutani en-aut-mei=Miyu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EhiraShigeki en-aut-sei=Ehira en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawakamiKeisuke en-aut-sei=Kawakami en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AkimotoSeiji en-aut-sei=Akimoto en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YonekuraKoji en-aut-sei=Yonekura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Biostructural Mechanism Laboratory, RIKEN SPring-8 Center kn-affil= affil-num=4 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=8 en-affil=Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Biostructural Mechanism Laboratory, RIKEN SPring-8 Center kn-affil= affil-num=11 en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=12 en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=13 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=14 en-affil= Biostructural Mechanism Laboratory, RIKEN SPring-8 Center kn-affil= affil-num=15 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue=1 article-no= start-page=6974 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230428 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A blue-shifted anion channelrhodopsin from the Colpodellida alga Vitrella brassicaformis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Microbial rhodopsins, a family of photoreceptive membrane proteins containing the chromophore retinal, show a variety of light-dependent molecular functions. Channelrhodopsins work as light-gated ion channels and are widely utilized for optogenetics, which is a method for controlling neural activities by light. Since two cation channelrhodopsins were identified from the chlorophyte alga Chlamydomonas reinhardtii, recent advances in genomic research have revealed a wide variety of channelrhodopsins including anion channelrhodopsins (ACRs), describing their highly diversified molecular properties (e.g., spectral sensitivity, kinetics and ion selectivity). Here, we report two channelrhodopsin-like rhodopsins from the Colpodellida alga Vitrella brassicaformis, which are phylogenetically distinct from the known channelrhodopsins. Spectroscopic and electrophysiological analyses indicated that these rhodopsins are green- and blue-sensitive pigments (lambda(max) = similar to 550 and similar to 440 nm) that exhibit light-dependent ion channeling activities. Detailed electrophysiological analysis revealed that one of them works as a monovalent anion (Cl-, Br- and NO3-) channel and we named it V. brassicaformis anion channelrhodopsin-2, VbACR2. Importantly, the absorption maximum of VbACR2 (similar to 440 nm) is blue-shifted among the known ACRs. Thus, we identified the new blue-shifted ACR, which leads to the expansion of the molecular diversity of ACRs. en-copyright= kn-copyright= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawanishiShiho en-aut-sei=Kawanishi en-aut-mei=Shiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishimuraYosuke en-aut-sei=Nishimura en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HasegawaMasumi en-aut-sei=Hasegawa en-aut-mei=Masumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakaoShin en-aut-sei=Nakao en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NagataYuya en-aut-sei=Nagata en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) kn-affil= affil-num=4 en-affil=Institute for Extra‑Cutting‑Edge Science and Technology Avant‑Garde Research (X‑Star) kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=8 en-affil=Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=1 article-no= start-page=65 end-page=66 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=ERRATA: FDM simulation of long-period ground motions around Oita Prefecture, Japan, using a land-ocean unified 3D structure model kn-title=訂正:地形を考慮した陸海統合3次元地震波速度構造モデルを用いた大分県周辺の長周期地震動シミュレーション en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=OKUNAKATatsuya en-aut-sei=OKUNAKA en-aut-mei=Tatsuya kn-aut-name=奥仲達也 kn-aut-sei=奥仲 kn-aut-mei=達也 aut-affil-num=1 ORCID= en-aut-name=KOMATSUMasanao en-aut-sei=KOMATSU en-aut-mei=Masanao kn-aut-name=小松正直 kn-aut-sei=小松 kn-aut-mei=正直 aut-affil-num=2 ORCID= en-aut-name=TAKENAKAHiroshi en-aut-sei=TAKENAKA en-aut-mei=Hiroshi kn-aut-name=竹中博士 kn-aut-sei=竹中 kn-aut-mei=博士 aut-affil-num=3 ORCID= en-aut-name=YOSHIMIMasayuki en-aut-sei=YOSHIMI en-aut-mei=Masayuki kn-aut-name=吉見雅行 kn-aut-sei=吉見 kn-aut-mei=雅行 aut-affil-num=4 ORCID= en-aut-name=NAKAMURATakeshi en-aut-sei=NAKAMURA en-aut-mei=Takeshi kn-aut-name=中村武史 kn-aut-sei=中村 kn-aut-mei=武史 aut-affil-num=5 ORCID= en-aut-name=OKAMOTOTaro en-aut-sei=OKAMOTO en-aut-mei=Taro kn-aut-name=岡元太郎 kn-aut-sei=岡元 kn-aut-mei=太郎 aut-affil-num=6 ORCID= affil-num=1 en-affil=Formerly Department of Earth Sciences, Okayama University kn-affil=元・岡山大学理学部地球科学科 affil-num=2 en-affil=Department of Earth Sciences, Okayama University kn-affil=岡山大学大学院自然科学研究科 affil-num=3 en-affil=Department of Earth Sciences, Okayama University kn-affil=岡山大学学術研究院自然科学学域 affil-num=4 en-affil=Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology kn-affil=国立研究開発法人産業技術総合研究所 活断層・火山研究部門 affil-num=5 en-affil=Formerly Japan Agency for Marine-Earth Science and Technology kn-affil=元・国立研究開発法人海洋研究開発機構 affil-num=6 en-affil=Department of Earth and Planetary Sciences, School of Science, Tokyo Institute of Technology kn-affil=東京工業大学理学院地球惑星科学系 END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230513 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Biomass estimation of World rice (Oryza sativa L.) core collection based on the convolutional neural network and digital images of canopy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Above-ground biomass (AGB) is an important indicator of crop productivity. Destructive measurements of AGB incur huge costs, and most non-destructive estimations cannot be applied to diverse cultivars having different canopy architectures. This insufficient access to AGB data has potentially limited improvements in crop productivity. Recently, a deep learning technique called convolutional neural network (CNN) has been applied to estimate crop AGB due to its high capacity for digital image recognition. However, the versatility of the CNN-based AGB estimation for diverse cultivars is still unclear. We established and evaluated a CNN-based estimation method for rice AGB using digital images with 59 diverse cultivars which were mostly in World Rice Core Collection. Across two years at two locations, we took 12,183 images of 59 cultivars with commercial digital cameras and manually obtained their corresponding AGB. The CNN model was established by using 28 cultivars and showed high accuracy (R-2 = 0.95) to the test dataset. We further evaluated the performance of the CNN model by using 31 cultivars, which were not in the model establishment. The CNN model successfully estimated AGB when the observed AGB was lesser than 924 g m(-2) (R-2 = 0.87), whereas it underestimated AGB when the observed AGB was greater than 924 g m(-2) (R-2 = 0.02). This underestimation might be improved by adding training data with a greater AGB in further study. The present study indicates that this CNN-based estimation method is highly versatile and could be a practical tool for monitoring crop AGB in diverse cultivars. en-copyright= kn-copyright= en-aut-name=NakajimaKota en-aut-sei=Nakajima en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TanakaYu en-aut-sei=Tanaka en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KatsuraKeisuke en-aut-sei=Katsura en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaguchiTomoaki en-aut-sei=Yamaguchi en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeTomoya en-aut-sei=Watanabe en-aut-mei=Tomoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShiraiwaTatsuhiko en-aut-sei=Shiraiwa en-aut-mei=Tatsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=2 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=United Graduate School of Agriculture Science, Tokyo University of Agriculture and Technology kn-affil= affil-num=4 en-affil=United Graduate School of Agriculture Science, Tokyo University of Agriculture and Technology kn-affil= affil-num=5 en-affil=Independent researcher kn-affil= affil-num=6 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= en-keyword=Above-ground biomass kn-keyword=Above-ground biomass en-keyword=Biomass estimation kn-keyword=Biomass estimation en-keyword=Convolutional neural network kn-keyword=Convolutional neural network en-keyword=Digital image kn-keyword=Digital image en-keyword=Rice kn-keyword=Rice en-keyword=World rice core collection kn-keyword=World rice core collection END start-ver=1.4 cd-journal=joma no-vol=48 cd-vols= no-issue= article-no= start-page=109071 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202306 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The dataset of de novo assembly and inferred functional annotation of the transcriptome of Heterosigma akashiwo, a bloom-forming, cosmopolitan raphidophyte en-subtitle= kn-subtitle= en-abstract= kn-abstract=Heterosigma akashiwo is a eukaryotic, cosmopolitan, and uni-cellular alga (class: Raphidophyceae), and produces fish -killing blooms. There is a substantial scientific and practical interest in its ecophysiological characteristics that determine bloom dynamics and its adaptation to broad climate zones. A well-annotated genomic/genetic sequence information en-ables researchers to characterize organisms using modern molecular technology. In the present study, we conducted H. akashiwo RNA sequencing, a de novo transcriptome assem-bly of 84,693,530 high-quality deduplicated short-read se-quences.
Obtained RNA reads were assembled by Trinity assembler and 144,777 contigs were identified with N 50 values of 1085. Total 60,877 open reading frames with the length of 150 bp or greater were predicted. For further analy-ses, top Gene Ontology terms, pfam hits, and blast hits were annotated for all the predicted genes. The raw data were deposited in the NCBI SRA database (BioProject PR - JDB6241 and PRJDB15108), and the assemblies are available in NCBI TSA database (ICRV01). The annotation information can be obtained in Dryad and can be accessed via doi: 10.5061/dryad.m0cfxpp56. en-copyright= kn-copyright= en-aut-name=SatoMasanao en-aut-sei=Sato en-aut-mei=Masanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SekiMasahide en-aut-sei=Seki en-aut-mei=Masahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiYutaka en-aut-sei=Suzuki en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UekiShoko en-aut-sei=Ueki en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University kn-affil= affil-num=2 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=3 en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Harmful alga kn-keyword=Harmful alga en-keyword=Nuclear gene kn-keyword=Nuclear gene en-keyword=Gene prediction kn-keyword=Gene prediction en-keyword=Gene ontology kn-keyword=Gene ontology en-keyword=Stramenopile kn-keyword=Stramenopile en-keyword=Heterokont kn-keyword=Heterokont END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=5 article-no= start-page=2221 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230224 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Technology Trend Analysis of Japanese Green Vehicle Powertrains Technology Using Patent Citation Data en-subtitle= kn-subtitle= en-abstract= kn-abstract=As automobiles are major contributors to greenhouse gas emissions, the technological shift towards vehicle powertrain systems is an attempt to lower problems such as emissions of carbon dioxide and nitrogen oxides. Patent data are the most reliable measure of business performance for applied research and development activities when investigating knowledge domains or technology evolution. This is the first study on Japanese patent citation data of the green vehicle powertrains technology industry, using the social network analysis method, which emphasizes centrality estimates and community detection. This study not only elucidates the knowledge by visualizing flow patterns but also provides a precious and congregative method for verifying important patents under the International Patent Classification system and grasping the trend of the new technology industry. This study detects leading companies, not only in terms of the number of patents but also the importance of the patents. The empirical result shows that the International Patent Classification (IPC) class that starts with "B60K", which includes hybrid electric vehicle (HEV) and battery electric vehicle (BEV), is more likely to be the technology trend in the green vehicle powertrains industry. en-copyright= kn-copyright= en-aut-name=JiangJiaming en-aut-sei=Jiang en-aut-mei=Jiaming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhaoYu en-aut-sei=Zhao en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Center for Artificial Intelligence and Mathematical Data Science, Okayama University kn-affil= affil-num=2 en-affil=School of Management, Department of Management, Tokyo University of Science kn-affil= en-keyword=patents kn-keyword=patents en-keyword=green innovation kn-keyword=green innovation en-keyword=social network analysis kn-keyword=social network analysis en-keyword=carbon reduction kn-keyword=carbon reduction en-keyword=transportation management kn-keyword=transportation management END start-ver=1.4 cd-journal=joma no-vol=2023 cd-vols= no-issue=1 article-no= start-page=013D02 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Detection of the 4.4-MeV gamma rays from 16O(ν, ν′)16O(12.97 MeV, 2−) with a water Cherenkov detector in supernova neutrino bursts en-subtitle= kn-subtitle= en-abstract= kn-abstract=We first discuss and determine the isospin mixing of the two 2− states (12.53 MeV and 12.97 MeV) of the16O nucleus using inelastic electron scattering data. We then evaluate the cross section of 4.4-MeV γ rays produced in the neutrino neutral-current (NC) reaction 16O(ν, ν′)16O(12.97 MeV, 2−) in a water Cherenkov detector at a low energy, below 100 MeV. The detection of γ rays for Eγ > 5 MeV from the NC reaction 16O(ν, ν′)16O(Ex > 16 MeV, T = 1) with a water Cherenkov detector in supernova neutrino bursts has been proposed and discussed by several authors previously. In this article, we discuss a new NC reaction channel from 16O(12.97 MeV, 2−) producing a 4.4-MeV γ ray, the cross section of which is more robust and even larger at low energy (Eν < 25 MeV) than the NC cross section from 16O(Ex > 16 MeV, T = 1). We also evaluate the number of such events induced by neutrinos from supernova explosion which can be observed by the Super-Kamiokande, an Earth-based 32-kton water Cherenkov detector. en-copyright= kn-copyright= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiToshio en-aut-sei=Suzuki en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ReenMandeep Singh en-aut-sei=Reen en-aut-mei=Mandeep Singh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakazatoKen'Ichiro en-aut-sei=Nakazato en-aut-mei=Ken'Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiHideyuki en-aut-sei=Suzuki en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Physics Department, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, College of Humanities and Sciences, Nihon University kn-affil= affil-num=3 en-affil=Department of Physics, Akal University kn-affil= affil-num=4 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= affil-num=5 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Somatic mutations can induce a noninflamed tumour microenvironment via their original gene functions, despite deriving neoantigens en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Identifying biomarkers to predict immune checkpoint inhibitor (ICI) efficacy is warranted. Considering that somatic mutation-derived neoantigens induce strong immune responses, patients with a high tumour mutational burden reportedly tend to respond to ICIs. However, there are several conflicting data. Therefore, we focused on the original function of neoantigenic mutations and their impact on the tumour microenvironment (TME).

Methods
We evaluated 88 high-frequency microsatellite instability (MSI-H) colorectal cancers and analysed the function of the identified neoantigenic mutations and their influence on programmed cell death 1 (PD-1) blockade efficacy. The results were validated using The Cancer Genome Atlas (TCGA) datasets.

Results
We identified frameshift mutations in RNF43 as a common neoantigenic gene mutation in MSI-H tumours. However, loss-of-function RNF43 mutations induced noninflamed TME by activating the WNT/β-catenin signalling pathway. In addition, loss of RNF43 function induced resistance to PD-1 blockade even in neoantigen-rich tumours. TCGA dataset analyses demonstrated that passenger rather than driver gene mutations were related to the inflamed TME in diverse cancer types.

Conclusions
We propose a novel concept of “paradoxical neoantigenic mutations” that can induce noninflamed TME through their original gene functions, despite deriving neoantigens, suggesting the significance of qualities as well as quantities in neoantigenic mutations. en-copyright= kn-copyright= en-aut-name=IshinoTakamasa en-aut-sei=Ishino en-aut-mei=Takamasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawashimaShusuke en-aut-sei=Kawashima en-aut-mei=Shusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanjiEtsuko en-aut-sei=Tanji en-aut-mei=Etsuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=UenoToshihide en-aut-sei=Ueno en-aut-mei=Toshihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UedaYouki en-aut-sei=Ueda en-aut-mei=Youki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OgasawaraSadahisa en-aut-sei=Ogasawara en-aut-mei=Sadahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatoKazuhito en-aut-sei=Sato en-aut-mei=Kazuhito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ManoHiroyuki en-aut-sei=Mano en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IshiharaSoichiro en-aut-sei=Ishihara en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatoNaoya en-aut-sei=Kato en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KawazuMasahito en-aut-sei=Kawazu en-aut-mei=Masahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=3 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=4 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=5 en-affil=Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterology, Graduate School of Medicine, Chiba University kn-affil= affil-num=7 en-affil=Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=8 en-affil=Division of Cellular Signaling, National Cancer Center Research Institute kn-affil= affil-num=9 en-affil=Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=10 en-affil=Department of Gastroenterology, Graduate School of Medicine, Chiba University kn-affil= affil-num=11 en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute kn-affil= affil-num=12 en-affil=Department of Tumor Microenvironment, Okayama University, Graduate School of Medicine Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=12 article-no= start-page=e0277968 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221207 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Behavioural osmoregulation during land invasion in fish: Prandial drinking and wetting of the dry skin en-subtitle= kn-subtitle= en-abstract= kn-abstract=Osmoregulatory behaviours should have evolutionarily modified for terrestrialisation of vertebrates. In mammals, sensations of buccal food and drying have immediate effects on postprandial thirst to prevent future systemic dehydration, and is thereby considered to be 'anticipatory thirst'. However, it remains unclear whether such an anticipatory response has been acquired in the non-tetrapod lineage. Using the mudskipper goby (Periophthalmus modestus) as a semi-terrestrial ray-finned fish, we herein investigated postprandial drinking and other unique features like full-body 'rolling' over on the back although these behaviours had not been considered to have osmoregulatory functions. In our observations on tidal flats, mudskippers migrated into water areas within a minute after terrestrial eating, and exhibited rolling behaviour with accompanying pectoral-fin movements. In aquarium experiments, frequency of migration into a water area for drinking increased within a few minutes after eating onset, without systemic dehydration. During their low humidity exposure, frequency of the rolling behaviour and pectoral-fin movements increased by more than five times to moisten the skin before systemic dehydration. These findings suggest anticipatory responses which arise from oral/gastrointestinal and cutaneous sensation in the goby. These sensation and motivation seem to have evolved in distantly related species in order to solve osmoregulatory challenges during terrestrialisation. en-copyright= kn-copyright= en-aut-name=KatayamaYukitoshi en-aut-sei=Katayama en-aut-mei=Yukitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsukadaTakehiro en-aut-sei=Tsukada en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HyodoSusumu en-aut-sei=Hyodo en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SakamotoHirotaka en-aut-sei=Sakamoto en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SakamotoTatsuya en-aut-sei=Sakamoto en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Ushimado Marine Institute, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Biomolecular Science, Toho University kn-affil= affil-num=3 en-affil=Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo kn-affil= affil-num=4 en-affil=Ushimado Marine Institute, Faculty of Science, Okayama University kn-affil= affil-num=5 en-affil=Ushimado Marine Institute, Faculty of Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue= article-no= start-page=960607 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A method for reconstruction of interpretable brain networks from transient synchronization in resting-state BOLD fluctuations en-subtitle= kn-subtitle= en-abstract= kn-abstract=Resting-state (rs) fMRI has been widely used to examine brain-wide large-scale spatiotemporal architectures, known as resting-state networks (RSNs). Recent studies have focused on the temporally evolving characteristics of RSNs, but it is unclear what temporal characteristics are reflected in the networks. To address this issue, we devised a novel method for voxel-based visualization of spatiotemporal characteristics of rs-fMRI with a time scale of tens of seconds. We first extracted clusters of dominant activity-patterns using a region-of-interest approach and then used these temporal patterns of the clusters to obtain voxel-based activation patterns related to the clusters. We found that activation patterns related to the clusters temporally evolved with a characteristic temporal structure and showed mutual temporal alternations over minutes. The voxel-based representation allowed the decoding of activation patterns of the clusters in rs-fMRI using a meta-analysis of functional activations. The activation patterns of the clusters were correlated with behavioral measures. Taken together, our analysis highlights a novel approach to examine brain activity dynamics during rest. en-copyright= kn-copyright= en-aut-name=NoroYusuke en-aut-sei=Noro en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiRuixiang en-aut-sei=Li en-aut-mei=Ruixiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuiTeppei en-aut-sei=Matsui en-aut-mei=Teppei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=JimuraKoji en-aut-sei=Jimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Biosciences and Informatics, Keio University kn-affil= affil-num=2 en-affil=Department of Physiology, The University of Tokyo School of Medicine kn-affil= affil-num=3 en-affil=Department of Biology, Okayama University kn-affil= affil-num=4 en-affil=Department of Informatics, Gunma University kn-affil= en-keyword=resting-state fMRI kn-keyword=resting-state fMRI en-keyword=task fMRI kn-keyword=task fMRI en-keyword=temporal dynamics kn-keyword=temporal dynamics en-keyword=individual difference kn-keyword=individual difference en-keyword=Human Connectome Project kn-keyword=Human Connectome Project END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=1 article-no= start-page=2153182 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of quantitative trait loci associated with sorghum susceptibility to Asian stem borer damage en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sorghum (Sorghum bicolor (L.) Moench) is an important crop originated in Africa that shows susceptibility to herbivores. In this study, we identified two sorghum genotypes with highly contrasting levels of stem damage caused by the caterpillars of Asian stem borer (Ostrinia furnacalis Guenee). Recombinant inbred lines (RILs) from genetic cross between resistant (BTx623) and susceptible (NOG) sorghum were used to perform a quantitative trait locus (QTL) analysis in the field. Two major QTLs responsible for higher NOG infestation by stem borer in three independent field seasons were detected on chromosomes 7 and 9, interestingly in positions that overlapped with two major QTLs for plant height. As plant height and stem borer damage were highly correlated, we propose that sorghum height-associated morphological or physiological traits could be important for stem borer establishment and/or damage in sorghum. en-copyright= kn-copyright= en-aut-name=OsindeCyprian en-aut-sei=Osinde en-aut-mei=Cyprian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Kajiya-KanegaeHiromi en-aut-sei=Kajiya-Kanegae en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SobhyIslam S. en-aut-sei=Sobhy en-aut-mei=Islam S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TugumeArthur K. en-aut-sei=Tugume en-aut-mei=Arthur K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NsubugaAnthony M. en-aut-sei=Nsubuga en-aut-mei=Anthony M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GalisIvan en-aut-sei=Galis en-aut-mei=Ivan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Department of Plant Science, Microbiology and Biotechnology Makerere University kn-affil= affil-num=6 en-affil=Department of Plant Science, Microbiology and Biotechnology Makerere University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Quantitative trait locus (QTL) kn-keyword=Quantitative trait locus (QTL) en-keyword=stem borer kn-keyword=stem borer en-keyword=herbivory kn-keyword=herbivory en-keyword=BTx623 and NOG kn-keyword=BTx623 and NOG en-keyword=recombinant inbred lines (RILs) kn-keyword=recombinant inbred lines (RILs) en-keyword=sorghum kn-keyword=sorghum END start-ver=1.4 cd-journal=joma no-vol=298 cd-vols= no-issue=12 article-no= start-page=102668 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structures of photosystem II from a cyanobacterium expressing psbA2 in comparison to psbA3 reveal differences in the D1 subunit en-subtitle= kn-subtitle= en-abstract= kn-abstract=Three psbA genes (psbA1, psbA2, and psbA3) encoding the D1 subunit of photosystem II (PSII) are present in the ther-mophilic cyanobacterium Thermosynechococcus elongatus and are expressed differently in response to changes in the growth environment. To clarify the functional differences of the D1 protein expressed from these psbA genes, PSII dimers from two strains, each expressing only one psbA gene (psbA2 or psbA3), were crystallized, and we analyzed their structures at resolu-tions comparable to previously studied PsbA1-PSII. Our results showed that the hydrogen bond between pheophytin/D1 (PheoD1) and D1-130 became stronger in PsbA2-and PsbA3-PSII due to change of Gln to Glu, which partially explains the increase in the redox potential of PheoD1 observed in PsbA3. In PsbA2, one hydrogen bond was lost in PheoD1 due to the change of D1-Y147F, which may explain the decrease in stability of PheoD1 in PsbA2. Two water molecules in the Cl-1 channel were lost in PsbA2 due to the change of D1-P173M, leading to the narrowing of the channel, which may explain the lower efficiency of the S-state transition beyond S2 in PsbA2-PSII. In PsbA3-PSII, a hydrogen bond between D1-Ser270 and a sulfoquinovosyl-diacylglycerol molecule near QB dis-appeared due to the change of D1-Ser270 in PsbA1 and PsbA2 to D1-Ala270. This may result in an easier exchange of bound QB with free plastoquinone, hence an enhancement of oxygen evolution in PsbA3-PSII due to its high QB exchange efficiency. These results provide a structural basis for further functional examination of the three PsbA variants. en-copyright= kn-copyright= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Ugai-AmoNatsumi en-aut-sei=Ugai-Amo en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ToneNaoki en-aut-sei=Tone en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakagawaAkiko en-aut-sei=Nakagawa en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IwaiMasako en-aut-sei=Iwai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkeuchiMasahiko en-aut-sei=Ikeuchi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugiuraMiwa en-aut-sei=Sugiura en-aut-mei=Miwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Jian-RenShen en-aut-sei=Jian-Ren en-aut-mei=Shen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Proteo-Science Research Center, Ehime University kn-affil= affil-num=5 en-affil=Graduate School and College of Arts and Sciences, The University of Tokyo kn-affil= affil-num=6 en-affil=Graduate School and College of Arts and Sciences, The University of Tokyo kn-affil= affil-num=7 en-affil=Proteo-Science Research Center, Ehime University kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=44 cd-vols= no-issue= article-no= start-page=108524 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202210 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The dataset of Japanese patents and patents' holding firms in green vehicle powertrains field en-subtitle= kn-subtitle= en-abstract= kn-abstract=In 2020, the Government of Japan declared "2050 carbon neutral" and launched a long-term strategy to create a "virtuous cycle of economy and environment".(1) Japanese firms possess many technologies that contribute to decarbonization, which is important to expand investment for Green Technology (environmental technology) development. As automobiles are major contributors to greenhouse gas emissions [1], the technological shift towards vehicle powertrain systems is an attempt to lower problems like emissions of carbon dioxide, nitrogen oxides [2]. On the other hand, patent data are the most reliable business performance for applied research and development activities when investigating the knowledge domains or the technology evolution (Wand, 1997). Our paper describes a Japanese patents dataset of the vehicle powertrain systems for hybrid electric vehicle (HEV), battery electric vehicle (BEV) and fuel cell electric vehicles (FCEV). In this paper we create a method of bombinating international patent classification (IPC) and keywords to define "green" patents in vehicle powertrains field, using patent data which were applied to Japan Patent Office recorded on EPO's PATSTAT database during 2010 similar to 2019 year. When analyze patents, it is necessary to consider the social situation of each country including language background, we collect patents description documents (abstracts and titles) not only written in English but also in Japanese. Finally, we build a database includes 6025 green patents' description documents and 266 patents' holding firms. With which we then identify 3756 HEV patents, 1716 BEV patents, and 553 FCEV patents. Data about patent holding firms is also appended. The full dataset may be useful to researchers who would like to do further search like natural language processing and machine learning on patent description documents, statistical data analysis for empirical economics. en-copyright= kn-copyright= en-aut-name=JiangJiaming en-aut-sei=Jiang en-aut-mei=Jiaming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=BabaKensuke en-aut-sei=Baba en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ZhaoYu en-aut-sei=Zhao en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FengJunshi en-aut-sei=Feng en-aut-mei=Junshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KumagaiSou en-aut-sei=Kumagai en-aut-mei=Sou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Graduate School of Humanities and Social Science, Okayama University kn-affil= affil-num=2 en-affil=Cyber-Physical Engineering Informatics Research Core, Okayama University kn-affil= affil-num=3 en-affil=School of Management, Department of Management, Tokyo University of Science kn-affil= affil-num=4 en-affil=Graduate School of Humanities and Social Science, Okayama University kn-affil= affil-num=5 en-affil=Department of Electrical and Communication Engineering, Faculty of Engineering, Okayama University kn-affil= en-keyword=Patents kn-keyword=Patents en-keyword=Green innovation kn-keyword=Green innovation en-keyword=Vehicle powertrain kn-keyword=Vehicle powertrain en-keyword=Hybrid electric vehicle kn-keyword=Hybrid electric vehicle en-keyword=Battery electric vehicle kn-keyword=Battery electric vehicle en-keyword=Fuel cell electric vehicles kn-keyword=Fuel cell electric vehicles END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=18787 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Generative adversarial network-created brain SPECTs of cerebral ischemia are indistinguishable to scans from real patients en-subtitle= kn-subtitle= en-abstract= kn-abstract=Deep convolutional generative adversarial networks (GAN) allow for creating images from existing databases. We applied a modified light-weight GAN (FastGAN) algorithm to cerebral blood flow SPECTs and aimed to evaluate whether this technology can generate created images close to real patients. Investigating three anatomical levels (cerebellum, CER; basal ganglia, BG; cortex, COR), 551 normal (248 CER, 174 BG, 129 COR) and 387 pathological brain SPECTs using N-isopropyl p-I-123-iodoamphetamine (I-123-IMP) were included. For the latter scans, cerebral ischemic disease comprised 291 uni- (66 CER, 116 BG, 109 COR) and 96 bilateral defect patterns (44 BG, 52 COR). Our model was trained using a three-compartment anatomical input (dataset 'A'; including CER, BG, and COR), while for dataset 'B', only one anatomical region (COR) was included. Quantitative analyses provided mean counts (MC) and left/right (LR) hemisphere ratios, which were then compared to quantification from real images. For MC, 'B' was significantly different for normal and bilateral defect patterns (P < 0.0001, respectively), but not for unilateral ischemia (P = 0.77). Comparable results were recorded for LR, as normal and ischemia scans were significantly different relative to images acquired from real patients (P <= 0.01, respectively). Images provided by 'A', however, revealed comparable quantitative results when compared to real images, including normal (P = 0.8) and pathological scans (unilateral, P = 0.99; bilateral, P = 0.68) for MC. For LR, only uni- (P = 0.03), but not normal or bilateral defect scans (P >= 0.08) reached significance relative to images of real patients. With a minimum of only three anatomical compartments serving as stimuli, created cerebral SPECTs are indistinguishable to images from real patients. The applied FastGAN algorithm may allow to provide sufficient scan numbers in various clinical scenarios, e.g., for "data-hungry" deep learning technologies or in the context of orphan diseases. en-copyright= kn-copyright= en-aut-name=WernerRudolf A. en-aut-sei=Werner en-aut-mei=Rudolf A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiguchiTakahiro en-aut-sei=Higuchi en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NoseNaoko en-aut-sei=Nose en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ToriumiFujio en-aut-sei=Toriumi en-aut-mei=Fujio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsusakaYohji en-aut-sei=Matsusaka en-aut-mei=Yohji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KujiIchiei en-aut-sei=Kuji en-aut-mei=Ichiei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KazuhiroKoshino en-aut-sei=Kazuhiro en-aut-mei=Koshino kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Nuclear Medicine, University Hospital Würzburg kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo kn-affil= affil-num=5 en-affil=Department of Nuclear Medicine, University Hospital Würzburg kn-affil= affil-num=6 en-affil=Department of Nuclear Medicine, Saitama Medical University International Medical Center kn-affil= affil-num=7 en-affil=Department of Systems and Informatics, Hokkaido Information University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=6 article-no= start-page=731 end-page=736 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Rare Case of Idiopathic Spinal Cord Herniation Treated by DuraGen® Collagen Matrix Graft en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report a rare case of idiopathic spinal cord herniation (ISCH) with a history of cerebrospinal fluid (CSF) leakage. ISCH is a protrusion of the spinal cord through a dural defect. Thin constructive interference in steady-state (CISS) images clearly demonstrated the herniated cord in the present case. The myelopathy worsened and the patient underwent surgery for reduction of herniated spinal cord; the dural defect was filled by placing collagen matrix graft (DuraGen®) between the inner and outer dural layers. The patient’s symptoms have improved without relapse for 8 months since surgery. This method may be a good surgical option for cases of spinal cord herniation. en-copyright= kn-copyright= en-aut-name=KamamuraMaho en-aut-sei=Kamamura en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HigakiFumiyo en-aut-sei=Higaki en-aut-mei=Fumiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SasadaSusumu en-aut-sei=Sasada en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsushitaToshi en-aut-sei=Matsushita en-aut-mei=Toshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YasuharaTakao en-aut-sei=Yasuhara en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DateIsao en-aut-sei=Date en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HirakiTakao en-aut-sei=Hiraki en-aut-mei=Takao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Division of Radiological Technology, Okayama University Hospital kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Radiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cerebrospinal fluid leakage kn-keyword=cerebrospinal fluid leakage en-keyword=constructive interference in steady state kn-keyword=constructive interference in steady state en-keyword=collagen matrix graft kn-keyword=collagen matrix graft en-keyword=magnetic resonance image kn-keyword=magnetic resonance image en-keyword=spinal cord herniation kn-keyword=spinal cord herniation END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=134 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221026 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The enzymatic recycling of polyethylene terephthalate (PET) can be a promising approach to tackle the problem of plastic waste. The thermostability and activity of PET-hydrolyzing enzymes are still insufficient for practical application. Pretreatment of PET waste is needed for bio-recycling. Here, we analyzed the degradation of PET films, packages, and bottles using the newly engineered cutinase Cut190. Using gel permeation chromatography and high-performance liquid chromatography, the degradation of PET films by the Cut190 variant was shown to proceed via a repeating two-step hydrolysis process; initial endo-type scission of a surface polymer chain, followed by exo-type hydrolysis to produce mono/bis(2-hydroxyethyl) terephthalate and terephthalate from the ends of fragmented polymer molecules. Amorphous PET powders were degraded more than twofold higher than amorphous PET film with the same weight. Moreover, homogenization of post-consumer PET products, such as packages and bottles, increased their degradability, indicating the importance of surface area for the enzymatic hydrolysis of PET. In addition, it was required to maintain an alkaline pH to enable continuous enzymatic hydrolysis, by increasing the buffer concentration (HEPES, pH 9.0) depending on the level of the acidic products formed. The cationic surfactant dodecyltrimethylammonium chloride promoted PET degradation via adsorption on the PET surface and binding to the anionic surface of the Cut190 variant. The Cut190 variant also hydrolyzed polyethylene furanoate. Using the best performing Cut190 variant (L136F/Q138A/S226P/R228S/D250C-E296C/Q123H/N202H/K305del/L306del/N307del) and amorphous PET powders, more than 90 mM degradation products were obtained in 3 days and approximately 80 mM in 1 day. en-copyright= kn-copyright= en-aut-name=KawaiFusako en-aut-sei=Kawai en-aut-mei=Fusako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurushimaYoshitomo en-aut-sei=Furushima en-aut-mei=Yoshitomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MochizukiNorihiro en-aut-sei=Mochizuki en-aut-mei=Norihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurakiNaoki en-aut-sei=Muraki en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamashitaMitsuaki en-aut-sei=Yamashita en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IidaAkira en-aut-sei=Iida en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MamotoRie en-aut-sei=Mamoto en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ToshaTakehiko en-aut-sei=Tosha en-aut-mei=Takehiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IizukaRyo en-aut-sei=Iizuka en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KitajimaSakihito en-aut-sei=Kitajima en-aut-mei=Sakihito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Sciences, Okayama University kn-affil= affil-num=2 en-affil=Toray Research Center, Inc kn-affil= affil-num=3 en-affil=Toray Research Center, Inc kn-affil= affil-num=4 en-affil=Toray Research Center, Inc kn-affil= affil-num=5 en-affil=Faculty of Agriculture, Kindai University kn-affil= affil-num=6 en-affil=Faculty of Agriculture, Kindai University kn-affil= affil-num=7 en-affil=Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University kn-affil= affil-num=8 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=9 en-affil=Graduate School of Science, The University of Tokyo kn-affil= affil-num=10 en-affil=Graduate School of Science and Technology, Kyoto Institute of Technology kn-affil= en-keyword=Cut190 variant kn-keyword=Cut190 variant en-keyword=PET hydrolase kn-keyword=PET hydrolase en-keyword=Micronization kn-keyword=Micronization en-keyword=Milling kn-keyword=Milling en-keyword=PET package kn-keyword=PET package en-keyword=PET bottle kn-keyword=PET bottle END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=1 article-no= start-page=145 end-page=173 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=202301 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Positivity and Hierarchical Structure of four Green Functions Corresponding to a Bending Problem of a Beam on a half line en-subtitle= kn-subtitle= en-abstract= kn-abstract=We consider the boundary value problem for fourth order linear ordinary differential equation in a half line (0,∞), which represents bending of a beam on an elastic foundation under a tension. A tension is relatively stronger than a spring constant of elastic foundation. We here treat four self-adjoint boundary conditions, clamped, Dirichlet, Neumann and free edges, at x = 0. We show the positivity and the hierarchical structure of four Green functions. en-copyright= kn-copyright= en-aut-name=KametakaYoshinori en-aut-sei=Kametaka en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeKohtaro en-aut-sei=Watanabe en-aut-mei=Kohtaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaiAtsushi en-aut-sei=Nagai en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakemuraKazuo en-aut-sei=Takemura en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamagishiHiroyuki en-aut-sei=Yamagishi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Faculty of Engineering Science, Osaka University kn-affil= affil-num=2 en-affil=Department of Computer Science, National Defense Academy kn-affil= affil-num=3 en-affil=Department of Computer Sciences, College of Liberal Arts, Tsuda University kn-affil= affil-num=4 en-affil=College of Science and Technology, Nihon University kn-affil= affil-num=5 en-affil=Tokyo Metropolitan College of Industrial Technology kn-affil= en-keyword=Green function kn-keyword=Green function en-keyword=boundary value problem kn-keyword=boundary value problem en-keyword=positivity kn-keyword=positivity en-keyword=hierarchical structure kn-keyword=hierarchical structure END start-ver=1.4 cd-journal=joma no-vol=23 cd-vols= no-issue=19 article-no= start-page=11035 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220920 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Immune State Conversion of the Mesenteric Lymph Node in a Mouse Breast Cancer Model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Secondary lymphoid tissues, such as the spleen and lymph nodes (LNs), contribute to breast cancer development and metastasis in both anti- and pro-tumoral directions. Although secondary lymphoid tissues have been extensively studied, very little is known about the immune conversion in mesenteric LNs (mLNs) during breast cancer development. Here, we demonstrate inflammatory immune conversion of mLNs in a metastatic 4T1 breast cancer model. Splenic T cells were significantly decreased and continuously suppressed IFN-gamma production during tumor development, while myeloid-derived suppressor cells (MDSCs) were dramatically enriched. However, T cell numbers in the mLN did not decrease, and the MDSCs only moderately increased. T cells in the mLN exhibited conversion from a pro-inflammatory state with high IFN-gamma expression to an anti-inflammatory state with high expression of IL-4 and IL-10 in early- to late-stages of breast cancer development. Interestingly, increased migration of CD103(+)CD11b(+) dendritic cells (DCs) into the mLN, along with increased (1 -> 3)-beta-D-glucan levels in serum, was observed even in late-stage breast cancer. This suggests that CD103(+)CD11b(+) DCs could prime cancer-reactive T cells. Together, the data indicate that the mLN is an important lymphoid tissue contributing to breast cancer development. en-copyright= kn-copyright= en-aut-name=ShigehiroTsukasa en-aut-sei=Shigehiro en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UenoMaho en-aut-sei=Ueno en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KijihiraMayumi en-aut-sei=Kijihira en-aut-mei=Mayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiRyotaro en-aut-sei=Takahashi en-aut-mei=Ryotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UmemuraChiho en-aut-sei=Umemura en-aut-mei=Chiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TahaEman A. en-aut-sei=Taha en-aut-mei=Eman A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurosakaChisaki en-aut-sei=Kurosaka en-aut-mei=Chisaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AsayamaMegumi en-aut-sei=Asayama en-aut-mei=Megumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MurakamiHiroshi en-aut-sei=Murakami en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatohAyano en-aut-sei=Satoh en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MasudaJunko en-aut-sei=Masuda en-aut-mei=Junko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Research Institute for Biomedical Sciences, Tokyo University of Science kn-affil= affil-num=2 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=3 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=8 en-affil=Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=10 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=13 en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=breast cancer cells kn-keyword=breast cancer cells en-keyword=dendritic cells kn-keyword=dendritic cells en-keyword=mesenteric lymph node kn-keyword=mesenteric lymph node en-keyword=myeloid-derived suppressor cells kn-keyword=myeloid-derived suppressor cells END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue=6 article-no= start-page=1607 end-page=1616 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Characterization of the oral and fecal microbiota associated with atopic dermatitis in dogs selected from a purebred Shiba Inu colony en-subtitle= kn-subtitle= en-abstract= kn-abstract=Atopic dermatitis (AD) is a chronic and relapsing multifactorial inflammatory skin disease that also affects dogs. The oral and gut microbiota are associated with many disorders, including allergy. Few studies have addressed the oral and gut microbiota in dogs, although the skin microbiota has been studied relatively well in these animals. Here, we studied the AD-associated oral and gut microbiota in 16 healthy and nine AD dogs from a purebred Shiba Inu colony. We found that the diversity of the oral microbiota was significantly different among the dogs, whereas no significant difference was observed in the gut microbiota. Moreover, a differential abundance analysis detected the Family_XIII_AD3011_group (Anaerovoracaceae) in the gut microbiota of AD dogs; however, no bacterial taxa were detected in the oral microbiota. Third, the comparison of the microbial co-occurrence patterns between AD and healthy dogs identified differential networks in which the bacteria in the oral microbiota that were most strongly associated with AD were related with human periodontitis, whereas those in the gut microbiota were related with dysbiosis and gut inflammation. These results suggest that AD can alter the oral and gut microbiota in dogs. en-copyright= kn-copyright= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OsumiTakafumi en-aut-sei=Osumi en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MizukamiKeijiro en-aut-sei=Mizukami en-aut-mei=Keijiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukuyamaTomoki en-aut-sei=Fukuyama en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShimaAyaka en-aut-sei=Shima en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UnnoAsaka en-aut-sei=Unno en-aut-mei=Asaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Takemura‐UchiyamaIyo en-aut-sei=Takemura‐Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UneYumi en-aut-sei=Une en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SakaguchiMasahiro en-aut-sei=Sakaguchi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Laboratory of Veterinary Internal Medicine, Division of Animal Life Science, Graduate School, Tokyo University of Agriculture and Technology kn-affil= affil-num=3 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=4 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=5 en-affil=Anicom Specialty Medical Institute Inc. kn-affil= affil-num=6 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=7 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Faculty of Veterinary Medicine, Okayama University of Science kn-affil= affil-num=9 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=10 en-affil=School of Veterinary Medicine, Azabu University kn-affil= en-keyword=oral kn-keyword=oral en-keyword=gut kn-keyword=gut en-keyword=microbiota kn-keyword=microbiota en-keyword=atopic dermatitis kn-keyword=atopic dermatitis en-keyword=Shiba Inu kn-keyword=Shiba Inu en-keyword=dog colony kn-keyword=dog colony en-keyword=canine kn-keyword=canine END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=15 article-no= start-page=9582 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220804 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=University-Industry Technology Transfer: Empirical Findings from Chinese Industrial Firms en-subtitle= kn-subtitle= en-abstract= kn-abstract=The knowledge and innovation generated by researchers at universities is transferred to industries through patent licensing, leading to the commercialization of academic output. In order to investigate the development of Chinese university-industry technology transfer and whether this kind of collaboration may affect a firm's innovation output, we collected approximately 6400 license contracts made between more than 4000 Chinese firms and 300 Chinese universities for the period between 2009 and 2014. This is the first study on Chinese university-industry knowledge transfer using a bipartite social network analysis (SNA) method, which emphasizes centrality estimates. We are able to investigate empirically how patent license transfer behavior may affect each firm's innovative output by allocating a centrality score to each firm in the university-firm technology transfer network. We elucidate the academic-industry knowledge by visualizing flow patterns for different regions with the SNA tool, Gephi. We find that innovation capabilities, R&D resources, and technology transfer performance all vary across China, and that patent licensing networks present clear small-world phenomena. We also highlight the Bipartite Graph Reinforcement Model (BGRM) and BiRank centrality in the bipartite network. Our empirical results reveal that firms with high BGRM and BiRank centrality scores, long history, and fewer employees have greater innovative output. en-copyright= kn-copyright= en-aut-name=JiangJiaming en-aut-sei=Jiang en-aut-mei=Jiaming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZhaoYu en-aut-sei=Zhao en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FengJunshi en-aut-sei=Feng en-aut-mei=Junshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Humanities and Social Science, Okayama University kn-affil= affil-num=2 en-affil=School of Management, Department of Management, Tokyo University of Science kn-affil= affil-num=3 en-affil=Graduate School of Humanities and Social Science, Okayama University kn-affil= en-keyword=collaborative networks kn-keyword=collaborative networks en-keyword=technology transfer kn-keyword=technology transfer en-keyword=China kn-keyword=China en-keyword=university-firm collaboration kn-keyword=university-firm collaboration en-keyword=social network analysis kn-keyword=social network analysis en-keyword=economic policy kn-keyword=economic policy en-keyword=economic statistics kn-keyword=economic statistics END start-ver=1.4 cd-journal=joma no-vol=98 cd-vols= no-issue=6 article-no= start-page=227 end-page=282 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220610 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective en-subtitle= kn-subtitle= en-abstract= kn-abstract=Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation. en-copyright= kn-copyright= en-aut-name=NAKAMURAEizo en-aut-sei=NAKAMURA en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KOBAYASHIKatsura en-aut-sei=KOBAYASHI en-aut-mei=Katsura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TANAKARyoji en-aut-sei=TANAKA en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KUNIHIROTak en-aut-sei=KUNIHIRO en-aut-mei=Tak kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KITAGAWAHiroshi en-aut-sei=KITAGAWA en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=POTISZILChristian en-aut-sei=POTISZIL en-aut-mei=Christian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OTATsutomu en-aut-sei=OTA en-aut-mei=Tsutomu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SAKAGUCHIChie en-aut-sei=SAKAGUCHI en-aut-mei=Chie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YAMANAKAMasahiro en-aut-sei=YAMANAKA en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=RATNAYAKEDilan M. en-aut-sei=RATNAYAKE en-aut-mei=Dilan M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TRIPATHIHavishk en-aut-sei=TRIPATHI en-aut-mei=Havishk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KUMARRahul en-aut-sei=KUMAR en-aut-mei=Rahul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AVRAMESCUMaya-Liliana en-aut-sei=AVRAMESCU en-aut-mei=Maya-Liliana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TSUCHIDAHidehisa en-aut-sei=TSUCHIDA en-aut-mei=Hidehisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YACHIYusuke en-aut-sei=YACHI en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MIURAHitoshi en-aut-sei=MIURA en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ABEMasanao en-aut-sei=ABE en-aut-mei=Masanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FUKAIRyota en-aut-sei=FUKAI en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FURUYAShizuho en-aut-sei=FURUYA en-aut-mei=Shizuho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=HATAKEDAKentaro en-aut-sei=HATAKEDA en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HAYASHITasuku en-aut-sei=HAYASHI en-aut-mei=Tasuku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=HITOMIYuya en-aut-sei=HITOMI en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=KUMAGAIKazuya en-aut-sei=KUMAGAI en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=MIYAZAKIAkiko en-aut-sei=MIYAZAKI en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=NAKATOAiko en-aut-sei=NAKATO en-aut-mei=Aiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=NISHIMURAMasahiro en-aut-sei=NISHIMURA en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=OKADATatsuaki en-aut-sei=OKADA en-aut-mei=Tatsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=SOEJIMAHiromichi en-aut-sei=SOEJIMA en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=SUGITASeiji en-aut-sei=SUGITA en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=SUZUKIAyako en-aut-sei=SUZUKI en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=USUITomohiro en-aut-sei=USUI en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=YADAToru en-aut-sei=YADA en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=YAMAMOTODaiki en-aut-sei=YAMAMOTO en-aut-mei=Daiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=YOGATAKasumi en-aut-sei=YOGATA en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=YOSHITAKEMiwa en-aut-sei=YOSHITAKE en-aut-mei=Miwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=ARAKAWAMasahiko en-aut-sei=ARAKAWA en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=FUJIIAtsushi en-aut-sei=FUJII en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=HAYAKAWAMasahiko en-aut-sei=HAYAKAWA en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= en-aut-name=HIRATANaoyuki en-aut-sei=HIRATA en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=39 ORCID= en-aut-name=HIRATANaru en-aut-sei=HIRATA en-aut-mei=Naru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=40 ORCID= en-aut-name=HONDARie en-aut-sei=HONDA en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=41 ORCID= en-aut-name=HONDAChikatoshi en-aut-sei=HONDA en-aut-mei=Chikatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=42 ORCID= en-aut-name=HOSODASatoshi en-aut-sei=HOSODA en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=43 ORCID= en-aut-name=IIJIMAYu-ichi en-aut-sei=IIJIMA en-aut-mei=Yu-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=44 ORCID= en-aut-name=IKEDAHitoshi en-aut-sei=IKEDA en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=45 ORCID= en-aut-name=ISHIGUROMasateru en-aut-sei=ISHIGURO en-aut-mei=Masateru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=46 ORCID= en-aut-name=ISHIHARAYoshiaki en-aut-sei=ISHIHARA en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=47 ORCID= en-aut-name=IWATATakahiro en-aut-sei=IWATA en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=48 ORCID= en-aut-name=KAWAHARAKosuke en-aut-sei=KAWAHARA en-aut-mei=Kosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=49 ORCID= en-aut-name=KIKUCHIShota en-aut-sei=KIKUCHI en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=50 ORCID= en-aut-name=KITAZATOKohei en-aut-sei=KITAZATO en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=51 ORCID= en-aut-name=MATSUMOTOKoji en-aut-sei=MATSUMOTO en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=52 ORCID= en-aut-name=MATSUOKAMoe en-aut-sei=MATSUOKA en-aut-mei=Moe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=53 ORCID= en-aut-name=MICHIKAMITatsuhiro en-aut-sei=MICHIKAMI en-aut-mei=Tatsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=54 ORCID= en-aut-name=MIMASUYuya en-aut-sei=MIMASU en-aut-mei=Yuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=55 ORCID= en-aut-name=MIURAAkira en-aut-sei=MIURA en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=56 ORCID= en-aut-name=MOROTATomokatsu en-aut-sei=MOROTA en-aut-mei=Tomokatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=57 ORCID= en-aut-name=NAKAZAWASatoru en-aut-sei=NAKAZAWA en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=58 ORCID= en-aut-name=NAMIKINoriyuki en-aut-sei=NAMIKI en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=59 ORCID= en-aut-name=NODAHirotomo en-aut-sei=NODA en-aut-mei=Hirotomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=60 ORCID= en-aut-name=NOGUCHIRina en-aut-sei=NOGUCHI en-aut-mei=Rina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=61 ORCID= en-aut-name=OGAWANaoko en-aut-sei=OGAWA en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=62 ORCID= en-aut-name=OGAWAKazunori en-aut-sei=OGAWA en-aut-mei=Kazunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=63 ORCID= en-aut-name=OKAMOTOChisato en-aut-sei=OKAMOTO en-aut-mei=Chisato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=64 ORCID= en-aut-name=ONOGo en-aut-sei=ONO en-aut-mei=Go kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=65 ORCID= en-aut-name=OZAKIMasanobu en-aut-sei=OZAKI en-aut-mei=Masanobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=66 ORCID= en-aut-name=SAIKITakanao en-aut-sei=SAIKI en-aut-mei=Takanao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=67 ORCID= en-aut-name=SAKATANINaoya en-aut-sei=SAKATANI en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=68 ORCID= en-aut-name=SAWADAHirotaka en-aut-sei=SAWADA en-aut-mei=Hirotaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=69 ORCID= en-aut-name=SENSHUHiroki en-aut-sei=SENSHU en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=70 ORCID= en-aut-name=SHIMAKIYuri en-aut-sei=SHIMAKI en-aut-mei=Yuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=71 ORCID= en-aut-name=SHIRAIKei en-aut-sei=SHIRAI en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=72 ORCID= en-aut-name=TAKEIYuto en-aut-sei=TAKEI en-aut-mei=Yuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=73 ORCID= en-aut-name=TAKEUCHIHiroshi en-aut-sei=TAKEUCHI en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=74 ORCID= en-aut-name=TANAKASatoshi en-aut-sei=TANAKA en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=75 ORCID= en-aut-name=TATSUMIEri en-aut-sei=TATSUMI en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=76 ORCID= en-aut-name=TERUIFuyuto en-aut-sei=TERUI en-aut-mei=Fuyuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=77 ORCID= en-aut-name=TSUKIZAKIRyudo en-aut-sei=TSUKIZAKI en-aut-mei=Ryudo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=78 ORCID= en-aut-name=WADAKoji en-aut-sei=WADA en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=79 ORCID= en-aut-name=YAMADAManabu en-aut-sei=YAMADA en-aut-mei=Manabu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=80 ORCID= en-aut-name=YAMADATetsuya en-aut-sei=YAMADA en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=81 ORCID= en-aut-name=YAMAMOTOYukio en-aut-sei=YAMAMOTO en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=82 ORCID= en-aut-name=YANOHajime en-aut-sei=YANO en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=83 ORCID= en-aut-name=YOKOTAYasuhiro en-aut-sei=YOKOTA en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=84 ORCID= en-aut-name=YOSHIHARAKeisuke en-aut-sei=YOSHIHARA en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=85 ORCID= en-aut-name=YOSHIKAWAMakoto en-aut-sei=YOSHIKAWA en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=86 ORCID= en-aut-name=YOSHIKAWAKent en-aut-sei=YOSHIKAWA en-aut-mei=Kent kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=87 ORCID= en-aut-name=FUJIMOTOMasaki en-aut-sei=FUJIMOTO en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=88 ORCID= en-aut-name=WATANABESei-ichiro en-aut-sei=WATANABE en-aut-mei=Sei-ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=89 ORCID= en-aut-name=TSUDAYuichi en-aut-sei=TSUDA en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=90 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=5 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=6 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=7 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=8 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=9 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=10 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=11 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=12 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=13 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=14 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=15 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=16 en-affil=Department of Information and Basic Science, Nagoya City University kn-affil= affil-num=17 en-affil=The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=18 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=19 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=20 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=21 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=22 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=23 en-affil=Marine Works Japan, Ltd. kn-affil= affil-num=24 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=25 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=26 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=27 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=28 en-affil=Marine Works Japan, Ltd. kn-affil= affil-num=29 en-affil=Graduate School of Science, The University of Tokyo kn-affil= affil-num=30 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=31 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=32 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=33 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=34 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=35 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=36 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=37 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=38 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=39 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=40 en-affil=Faculty of Computer Science and Engineering, The University of Aizu kn-affil= affil-num=41 en-affil=Faculty of Science and Technology, Kochi University kn-affil= affil-num=42 en-affil=Faculty of Computer Science and Engineering, The University of Aizu kn-affil= affil-num=43 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=44 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=45 en-affil=Research and Development Directorate, JAXA kn-affil= affil-num=46 en-affil=Department of Physics and Astronomy, Seoul National University kn-affil= affil-num=47 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=48 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=49 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=50 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=51 en-affil=Faculty of Computer Science and Engineering, The University of Aizu kn-affil= affil-num=52 en-affil=National Astronomical Observatory of Japan kn-affil= affil-num=53 en-affil=Observatoire de Paris kn-affil= affil-num=54 en-affil=Faculty of Engineering, Kindai University kn-affil= affil-num=55 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=56 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=57 en-affil=Graduate School of Environmental Studies, Nagoya University kn-affil= affil-num=58 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=59 en-affil=National Astronomical Observatory of Japan kn-affil= affil-num=60 en-affil=National Astronomical Observatory of Japan kn-affil= affil-num=61 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=62 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=63 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=64 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=65 en-affil=Research and Development Directorate, JAXA kn-affil= affil-num=66 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=67 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=68 en-affil=College of Science, Rikkyo University kn-affil= affil-num=69 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=70 en-affil=Planetary Exploration Research Center (PERC), Chiba Institute of Technology kn-affil= affil-num=71 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=72 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=73 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=74 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=75 en-affil=The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=76 en-affil=Graduate School of Science, The University of Tokyo kn-affil= affil-num=77 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=78 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=79 en-affil=Planetary Exploration Research Center (PERC), Chiba Institute of Technology kn-affil= affil-num=80 en-affil=Planetary Exploration Research Center (PERC), Chiba Institute of Technology kn-affil= affil-num=81 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=82 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=83 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=84 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=85 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=86 en-affil=The Graduate University for Advanced Studies (SOKENDAI) kn-affil= affil-num=87 en-affil=Research and Development Directorate, JAXA kn-affil= affil-num=88 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= affil-num=89 en-affil=Graduate School of Environmental Studies, Nagoya University kn-affil= affil-num=90 en-affil=Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency kn-affil= END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=5 article-no= start-page=713 end-page=728 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022321 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sorghum Ionomics Reveals the Functional SbHMA3a Allele that Limits Excess Cadmium Accumulation in Grains en-subtitle= kn-subtitle= en-abstract= kn-abstract=Understanding uptake and redistribution of essential minerals or sequestering of toxic elements is important for optimized crop production. Although the mechanisms controlling mineral transport have been elucidated in rice and other species, little is understood in sorghum—an important C4 cereal crop. Here, we assessed the genetic factors that govern grain ionome profiles in sorghum using recombinant inbred lines (RILs) derived from a cross between BTx623 and NOG (Takakibi). Pairwise correlation and clustering analysis of 22 elements, measured in sorghum grains harvested under greenhouse conditions, indicated that the parental lines, as well as the RILs, show different ionomes. In particular, BTx623 accumulated significantly higher levels of cadmium (Cd) than NOG, because of differential root-to-shoot translocation factors between the two lines. Quantitative trait locus (QTL) analysis revealed a prominent QTL for grain Cd concentration on chromosome 2. Detailed analysis identified SbHMA3a, encoding a P1B-type ATPase heavy metal transporter, as responsible for low Cd accumulation in grains; the NOG allele encoded a functional HMA3 transporter (SbHMA3a-NOG) whose Cd-transporting activity was confirmed by heterologous expression in yeast. BTx623 possessed a truncated, loss-of-function SbHMA3a allele. The functionality of SbHMA3a in NOG was confirmed by Cd concentrations of F2 grains derived from the reciprocal cross, in which the NOG allele behaved in a dominant manner. We concluded that SbHMA3a-NOG is a Cd transporter that sequesters excess Cd in root tissues, as shown in other HMA3s. Our findings will facilitate the isolation of breeding cultivars with low Cd in grains or in exploiting high-Cd cultivars for phytoremediation. en-copyright= kn-copyright= en-aut-name=WahinyaFiona Wacera en-aut-sei=Wahinya en-aut-mei=Fiona Wacera kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamazakiKiyoshi en-aut-sei=Yamazaki en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=JingZihuan en-aut-sei=Jing en-aut-mei=Zihuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakamiTsuneaki en-aut-sei=Takami en-aut-mei=Tsuneaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KamiyaTakehiro en-aut-sei=Kamiya en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Kajiya-KanegaeHiromi en-aut-sei=Kajiya-Kanegae en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakanashiHideki en-aut-sei=Takanashi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwataHiroyoshi en-aut-sei=Iwata en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsutsumiNobuhiro en-aut-sei=Tsutsumi en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujiwaraToru en-aut-sei=Fujiwara en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University, kn-affil= affil-num=2 en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=6 en-affil=Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization kn-affil= affil-num=7 en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=8 en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=9 en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=10 en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue= article-no= start-page=869393 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220504 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Engineering Cancer/Testis Antigens With Reversible S-Cationization to Evaluate Antigen Spreading en-subtitle= kn-subtitle= en-abstract= kn-abstract=Serum autoantibody to cancer/testis antigens (CTAs) is a critical biomarker that reflects the antitumor immune response. Quantitative and multiplexed anti-CTA detection arrays can assess the immune status in tumors and monitor therapy-induced antitumor immune reactions. Most full-length recombinant CTA proteins tend to aggregate. Cysteine residue-specific S-cationization techniques facilitate the preparation of water-soluble and full-length CTAs. Combined with Luminex technology, we designed a multiple S-cationized antigen-immobilized bead array (MUSCAT) assay system to evaluate multiple serum antibodies to CTAs. Reducible S-alkyl-disulfide-cationized antigens in cytosolic conditions were employed to develop rabbit polyclonal antibodies as positive controls. These control antibodies sensitively detected immobilized antigens on beads and endogenous antigens in human lung cancer-derived cell lines. Rabbit polyclonal antibodies successfully confirmed the dynamic ranges and quantitative MUSCAT assay results. An immune monitoring study was conducted using the serum samples on an adenovirus-mediated REIC/Dkk-3 gene therapy clinical trial that showed a successful clinical response in metastatic castration-resistant prostate cancer. Autoantibody responses were closely related to clinical outcomes. Notably, upregulation of anti-CTA responses was monitored before tumor regression. Thus, quantitative monitoring of anti-CTA antibody biomarkers can be used to evaluate the cancer-immunity cycle. A quality-certified serum autoantibody monitoring system is a powerful tool for developing and evaluating cancer immunotherapy. en-copyright= kn-copyright= en-aut-name=MiyamotoAi en-aut-sei=Miyamoto en-aut-mei=Ai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MasuiMirei en-aut-sei=Masui en-aut-mei=Mirei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KumonHiromi en-aut-sei=Kumon en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KakimiKazuhiro en-aut-sei=Kakimi en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=3 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University kn-affil= affil-num=6 en-affil=Department of Immunotherapeutics, The University of Tokyo Hospital kn-affil= affil-num=7 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= en-keyword=autoantibody kn-keyword=autoantibody en-keyword=biomarker kn-keyword=biomarker en-keyword=protein engineering kn-keyword=protein engineering en-keyword=cancer-immunity cycle kn-keyword=cancer-immunity cycle en-keyword=immune monitoring kn-keyword=immune monitoring en-keyword=cancer kn-keyword=cancer en-keyword=testis antigens kn-keyword=testis antigens END start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=1 article-no= start-page=27 end-page=103 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220331 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=FDM simulation of long-period ground motions around Oita Prefecture, Japan, using a land-ocean unified 3D structure model kn-title=地形を考慮した陸海統合3次元地震波速度構造モデルを用いた大分県周辺の長周期地震動シミュレーション en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oita prefecture is located in northeastern part of Kyushu Island which is characterized by active subduction of the Philippine Sea plate (PHS) beneath the Eurasian plate and several active volcanoes along with the volcanic front. Oita area has frequently been damaged by large earthquakes and tsunamis since ancient times. From the point of view of disaster prevention, it is important to investigate the feasibility of strong ground motion prediction using realistic structural models. In this paper we use a land-ocean unified 3D (three-dimensional) structure model around Oita prefecture, which includes land and sea-floor topography and a seawater layer as well as subsurface structures of the arc side and the PHS slab to conduct the FDM (finite-difference method) simulations of strong ground motion in land and ocean areas for the 2015 Southern Oita, Japan, earthquake (MJMA5.7) whose hypocenter is located in the PHS slab. The simulated long-period (2–20 s) ground motions reproducing observed records demonstrate substantial contributions of thick low-velocity sediment layers in and around Beppu Bay and Oita basin to development of the motions. We also examine the topographic effects on the seismic motion by analyzing the simulation results to show the strong enhancement of the later phases. en-copyright= kn-copyright= en-aut-name=OkunakaTatsuya en-aut-sei=Okunaka en-aut-mei=Tatsuya kn-aut-name=奥仲達也 kn-aut-sei=奥仲 kn-aut-mei=達也 aut-affil-num=1 ORCID= en-aut-name=KomatsuMasanao en-aut-sei=Komatsu en-aut-mei=Masanao kn-aut-name=小松正直 kn-aut-sei=小松 kn-aut-mei=正直 aut-affil-num=2 ORCID= en-aut-name=TakenakaHiroshi en-aut-sei=Takenaka en-aut-mei=Hiroshi kn-aut-name=竹中博士 kn-aut-sei=竹中 kn-aut-mei=博士 aut-affil-num=3 ORCID= en-aut-name=YoshimiMasayuki en-aut-sei=Yoshimi en-aut-mei=Masayuki kn-aut-name=吉見雅行 kn-aut-sei=吉見 kn-aut-mei=雅行 aut-affil-num=4 ORCID= en-aut-name=NakamuraTakeshi en-aut-sei=Nakamura en-aut-mei=Takeshi kn-aut-name=中村武史 kn-aut-sei=中村 kn-aut-mei=武史 aut-affil-num=5 ORCID= en-aut-name=OkamotoTaro en-aut-sei=Okamoto en-aut-mei=Taro kn-aut-name=岡元太郎 kn-aut-sei=岡元 kn-aut-mei=太郎 aut-affil-num=6 ORCID= affil-num=1 en-affil=Formerly Department of Earth Sciences, Okayama University kn-affil=元・岡山大学理学部地球科学科 affil-num=2 en-affil=Department of Earth Sciences, Okayama University kn-affil=岡山大学大学院自然科学研究科 affil-num=3 en-affil=Department of Earth Sciences, Okayama University kn-affil=岡山大学学術研究院自然科学学域 affil-num=4 en-affil=Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology kn-affil=国立研究開発法人産業技術総合研究所 活断層・火山研究部門 affil-num=5 en-affil=Formerly Japan Agency for Marine-Earth Science and Technology kn-affil=元・国立研究開発法人海洋研究開発機構 affil-num=6 en-affil=Department of Earth and Planetary Sciences, School of Science, Tokyo Institute of Technology kn-affil=東京工業大学理学院地球惑星科学系 en-keyword=strong motion kn-keyword=strong motion en-keyword=Oita kn-keyword=Oita en-keyword=the 2015 Southern Oita earthquake kn-keyword=the 2015 Southern Oita earthquake en-keyword=long-period ground motion kn-keyword=long-period ground motion en-keyword=simulation kn-keyword=simulation en-keyword=finite-difference method kn-keyword=finite-difference method en-keyword=topography kn-keyword=topography END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=4 article-no= start-page=045006 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220425 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Resonance modes of a metal-semiconductor-metal multilayer mediated by electric charge en-subtitle= kn-subtitle= en-abstract= kn-abstract=Electromagnetic fields around metal-semiconductor-metal (MSM) multilayers with square island top layers were numerically simulated to elucidate the difference in physics between the circuit resonance and Fabry-Perot interference mediated by the surface plasmon polaritons (SPP). In the current study, the top and bottom metal layers were made of gold, and the intermediate semiconductor layer was a gallium antimony (GaSb). The lumped-element and Fabry-Perot interference models showed less accuracy when the island width of the MSM multilayer was comparatively smaller. Since the capacitor and SPP could not be supported between the top and bottom gold layers, the anti-reflection mode of the gold-GaSb bilayer mainly affected the absorptance. However, when the width of the island was sufficiently large, the time-lapse development of the electromagnetic fields at resonant wavelengths showed strong electric and magnetic responses relating to the circuit resonance. Simultaneously, the electric fields depicted the movement of the electric charge, which coupled to the short-range surface plasmon polariton (SRSP) existing at the thin GaSb layer sandwiched by two gold layers. The wavelength of the SRSP approximately corresponded to that of the Fabry-Perot interference. It was revealed that the lumped-element and Fabry-Perot interference models indicated the same resonant mode from two different perspectives in physics. en-copyright= kn-copyright= en-aut-name=IsobeKazuma en-aut-sei=Isobe en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HanamuraKatsunori en-aut-sei=Hanamura en-aut-mei=Katsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Advanced Mechanics, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=School of Engineering, Department of Mechanical Engineering, Tokyo Institute of Technology kn-affil= en-keyword=resonance modes kn-keyword=resonance modes en-keyword=finite difference time domain method kn-keyword=finite difference time domain method en-keyword=metal-semiconductor-metal multilayer kn-keyword=metal-semiconductor-metal multilayer en-keyword=lumped-element model kn-keyword=lumped-element model en-keyword=Fabry-Perot interference kn-keyword=Fabry-Perot interference en-keyword=surface plasmon polariton kn-keyword=surface plasmon polariton en-keyword=electric charge kn-keyword=electric charge END start-ver=1.4 cd-journal=joma no-vol=369 cd-vols= no-issue=1 article-no= start-page=fnac019 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Heterogeneous IgE reactivities to Staphylococcus pseudintermedius strains in dogs with atopic dermatitis, and the identification of DM13-domain-containing protein as a bacterial IgE-reactive molecule en-subtitle= kn-subtitle= en-abstract= kn-abstract=Staphylococcus pseudintermedius is one of the major pathogens causing canine skin infection. In canine atopic dermatitis (AD), heterogeneous strains of S. pseudintermedius reside on the affected skin site. Because an increase in specific IgE to this bacterium has been reported, S. pseudintermedius is likely to exacerbate the severity of canine AD. In this study, the IgE reactivities to various S. pseudintermedius strains and the IgE-reactive molecules of S. pseudintermedius were investigated. First, examining the IgE reactivities to eight strains of S. pseudintermedius using 141 sera of AD dogs, strain variation of S. pseudintermedius showed 10–63% of the IgE reactivities. This is different from the expected result based on the concept of Staphylococcus aureus clonality in AD patients. Moreover, according to the western blot analysis, there were more than four proteins reactive to IgE. Subsequently, the analysis of the common IgE-reactive protein at ∼15 kDa confirmed that the DM13-domain-containing protein was reactive in AD dogs, which is not coincident with any S. aureus IgE-reactive molecules. Considering these, S. pseudintermedius is likely to exacerbate AD severity in dogs, slightly different from the case of S. aureus in human AD. en-copyright= kn-copyright= en-aut-name=Takemura-UchiyamaIyo en-aut-sei=Takemura-Uchiyama en-aut-mei=Iyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TsuruiHiroki en-aut-sei=Tsurui en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimakuraHidekatsu en-aut-sei=Shimakura en-aut-mei=Hidekatsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NasukawaTadahiro en-aut-sei=Nasukawa en-aut-mei=Tadahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ImanishiIchiro en-aut-sei=Imanishi en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchiyamaJumpei en-aut-sei=Uchiyama en-aut-mei=Jumpei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FukuyamaTomoki en-aut-sei=Fukuyama en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakamotoShuji en-aut-sei=Sakamoto en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MorisawaKeiko en-aut-sei=Morisawa en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=FujimuraMasato en-aut-sei=Fujimura en-aut-mei=Masato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MurakamiHironobu en-aut-sei=Murakami en-aut-mei=Hironobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KanamaruShuji en-aut-sei=Kanamaru en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KurokawaKenji en-aut-sei=Kurokawa en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KawamotoKeiko en-aut-sei=Kawamoto en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=IyoriKeita en-aut-sei=Iyori en-aut-mei=Keita kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SakaguchiMasahiro en-aut-sei=Sakaguchi en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=School of Veterinary Medicine, Azabu University, Fuchinobe 1-17-71 kn-affil= affil-num=3 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=4 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=5 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=6 en-affil=Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama Universty kn-affil= affil-num=7 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=8 en-affil=Science Research Center, Kochi Medical School kn-affil= affil-num=9 en-affil=Science Research Center, Kochi Medical School kn-affil= affil-num=10 en-affil=Fujimura Animal Hospital kn-affil= affil-num=11 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=12 en-affil=Department of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=13 en-affil=Faculty of Pharmaceutical Sciences, Nagasaki International University kn-affil= affil-num=14 en-affil=School of Veterinary Medicine, Azabu University kn-affil= affil-num=15 en-affil=Vet Derm Tokyo, Dermatological and Laboratory Service for Animals kn-affil= affil-num=16 en-affil=School of Veterinary Medicine, Azabu University kn-affil= en-keyword=Staphylococcus pseudintermedius kn-keyword=Staphylococcus pseudintermedius en-keyword=atopic dermatitis kn-keyword=atopic dermatitis en-keyword= IgE kn-keyword= IgE en-keyword=dogs kn-keyword=dogs en-keyword=DM13-domain-containing protein kn-keyword=DM13-domain-containing protein en-keyword=exacerbation factor kn-keyword=exacerbation factor END start-ver=1.4 cd-journal=joma no-vol=88 cd-vols= no-issue=2 article-no= start-page=105 end-page=127 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220117 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Plant viruses and viroids in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=An increasing number of plant viruses and viroids have been reported from all over the world due largely to metavirogenomics approaches with technological innovation. Herein, the official changes of virus taxonomy, including the establishment of megataxonomy and amendments of the codes of virus classification and nomenclature, recently made by the International Committee on Taxonomy of Viruses were summarized. The continued efforts of the plant virology community of Japan to index all plant viruses and viroids occurring in Japan, which represent 407 viruses, including 303 virus species and 104 unclassified viruses, and 25 viroids, including 20 species and 5 unclassified viroids, as of October 2021, were also introduced. These viruses and viroids are collectively classified into 81 genera within 26 families of 3 kingdoms (Shotokuvirae, Orthornavirae, Pararnavirae) across 2 realms (Monodnaviria and Riboviria). This review also overviewed how Japan’s plant virus/viroid studies have contributed to advance virus/viroid taxonomy. en-copyright= kn-copyright= en-aut-name=FujiShin-ichi en-aut-sei=Fuji en-aut-mei=Shin-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MochizukiTomofumi en-aut-sei=Mochizuki en-aut-mei=Tomofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkudaMitsuru en-aut-sei=Okuda en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TsudaShinya en-aut-sei=Tsuda en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KagiwadaSatoshi en-aut-sei=Kagiwada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SekineKen-Taro en-aut-sei=Sekine en-aut-mei=Ken-Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UgakiMasashi en-aut-sei=Ugaki en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NatsuakiKeiko T. en-aut-sei=Natsuaki en-aut-mei=Keiko T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IsogaiMasamichi en-aut-sei=Isogai en-aut-mei=Masamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaokaTetsuo en-aut-sei=Maoka en-aut-mei=Tetsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TakeshitaMinoru en-aut-sei=Takeshita en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshikawaNobuyuki en-aut-sei=Yoshikawa en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MiseKazuyuki en-aut-sei=Mise en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SasayaTakahide en-aut-sei=Sasaya en-aut-mei=Takahide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KubotaKenji en-aut-sei=Kubota en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YamajiYasuyuki en-aut-sei=Yamaji en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=IwanamiToru en-aut-sei=Iwanami en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=OhshimaKazusato en-aut-sei=Ohshima en-aut-mei=Kazusato kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=KobayashiKappei en-aut-sei=Kobayashi en-aut-mei=Kappei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=HatayaTatsuji en-aut-sei=Hataya en-aut-mei=Tatsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=SanoTeruo en-aut-sei=Sano en-aut-mei=Teruo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Faculty of Bioresource Sciences, Akita Prefectural University kn-affil= affil-num=2 en-affil=Graduate School of Life and Environmental Sciences, Osaka Prefecture University kn-affil= affil-num=3 en-affil=Office of the President, National Agriculture and Food Research Organization (NARO) kn-affil= affil-num=4 en-affil=Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry kn-affil= affil-num=5 en-affil=Department of Clinical Plant Science, Faculty of Bioscience and Applied Chemistry, Hosei University kn-affil= affil-num=6 en-affil=Faculty of Agriculture, University of the Ryukyus kn-affil= affil-num=7 en-affil=Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo kn-affil= affil-num=8 en-affil=Tokyo University of Agriculture kn-affil= affil-num=9 en-affil=Faculty of Agriculture, Iwate University kn-affil= affil-num=10 en-affil=Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO) kn-affil= affil-num=11 en-affil=Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazak kn-affil= affil-num=12 en-affil=Agri-Innovation Center, Iwate University kn-affil= affil-num=13 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=14 en-affil=3 Department of Research Promotion, Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO) kn-affil= affil-num=15 en-affil=Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=16 en-affil=Division of Core Technology for Pest Control Research, Institute for Plant Protection, National Agriculture and Food Research Organization (NIPP, NARO) kn-affil= affil-num=17 en-affil=Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=18 en-affil=Faculty of Agriculture, Tokyo University of Agriculture kn-affil= affil-num=19 en-affil=Department of Biological Resource Science, Faculty of Agriculture, Saga University kn-affil= affil-num=20 en-affil=Faculty of Agriculture, Ehime University kn-affil= affil-num=21 en-affil=Research Faculty of Agriculture, Hokkaido University kn-affil= affil-num=22 en-affil=Hirosaki University kn-affil= affil-num=23 en-affil=Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=170 cd-vols= no-issue=3 article-no= start-page=435 end-page=443 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021710 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Unusual aggregation property of recombinantly expressed cancer-testis antigens in mammalian cells en-subtitle= kn-subtitle= en-abstract= kn-abstract=Transient expression of human intracellular proteins in human embryonic kidney (HEK) 293 cells is a reliable system for obtaining soluble proteins with biologically active conformations. Contrary to conventional concepts, we found that recombinantly expressed intracellular cancer-testis antigens (CTAs) showed frequent aggregation in HEK293 cells. Although experimental subcellular localization of recombinant CTAs displayed proper cytosolic or nuclear localization, some proteins showed aggregated particles in the cell. This aggregative property was not observed in recombinant housekeeping proteins. No significant correlation was found between the aggregative and biophysical properties, such as hydrophobicity, contents of intrinsically disordered regions and expression levels, of CTAs. These results can be explained in terms of structural instability of CTAs, which are specifically expressed in the testis and aberrantly expressed in cancer cells and function as a hub in the protein–protein network using intrinsically disordered regions. Hence, we speculate that recombinantly expressed CTAs failed to form this protein complex. Thus, unfolded CTAs formed aggregated particles in the cell. en-copyright= kn-copyright= en-aut-name=AhmadiHannaneh en-aut-sei=Ahmadi en-aut-mei=Hannaneh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShogenKohei en-aut-sei=Shogen en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujitaKana en-aut-sei=Fujita en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HonjoTomoko en-aut-sei=Honjo en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KakimiKazuhiro en-aut-sei=Kakimi en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=2 en-affil=Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=5 en-affil=Department of Immunotherapeutics, The University of Tokyo Hospital kn-affil= affil-num=6 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=12 cd-vols= no-issue=1 article-no= start-page=6236 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211029 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for high selectivity of a rice silicon channel Lsi1 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Silicon (Si), the most abundant mineral element in the earth’s crust, is taken up by plant roots in the form of silicic acid through Low silicon rice 1 (Lsi1). Lsi1 belongs to the Nodulin 26-like intrinsic protein subfamily in aquaporin and shows high selectivity for silicic acid. To uncover the structural basis for this high selectivity, here we show the crystal structure of the rice Lsi1 at a resolution of 1.8 Å. The structure reveals transmembrane helical orientations different from other aquaporins, characterized by a unique, widely opened, and hydrophilic selectivity filter (SF) composed of five residues. Our structural, functional, and theoretical investigations provide a solid structural basis for the Si uptake mechanism in plants, which will contribute to secure and sustainable rice production by manipulating Lsi1 selectivity for different metalloids. en-copyright= kn-copyright= en-aut-name=SaitohYasunori en-aut-sei=Saitoh en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Mitani-UenoNamiki en-aut-sei=Mitani-Ueno en-aut-mei=Namiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SaitoKeisuke en-aut-sei=Saito en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MatsukiKengo en-aut-sei=Matsuki en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HuangSheng en-aut-sei=Huang en-aut-mei=Sheng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YangLingli en-aut-sei=Yang en-aut-mei=Lingli kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamajiNaoki en-aut-sei=Yamaji en-aut-mei=Naoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshikitaHiroshi en-aut-sei=Ishikita en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MaJian Feng en-aut-sei=Ma en-aut-mei=Jian Feng kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Research Center for Advanced Science and Technology, The University of Tokyo kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=1 article-no= start-page=339 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211031 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The effects of inhaling hydrogen gas on macrophage polarization, fibrosis, and lung function in mice with bleomycin-induced lung injury en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background : Acute respiratory distress syndrome, which is caused by acute lung injury, is a destructive respiratory disorder caused by a systemic inflammatory response. Persistent inflammation results in irreversible alveolar fibrosis. Because hydrogen gas possesses anti-inflammatory properties, we hypothesized that daily repeated inhalation of hydrogen gas could suppress persistent lung inflammation by inducing functional changes in macrophages, and consequently inhibit lung fibrosis during late-phase lung injury.
Methods : To test this hypothesis, lung injury was induced in mice by intratracheal administration of bleomycin (1.0 mg/kg). Mice were exposed to control gas (air) or hydrogen (3.2% in air) for 6 h every day for 7 or 21 days. Respiratory physiology, tissue pathology, markers of inflammation, and macrophage phenotypes were examined.
Results : Mice with bleomycin-induced lung injury that received daily hydrogen therapy for 21 days (BH group) exhibited higher static compliance (0.056 mL/cmH(2)O, 95% CI 0.047-0.064) than mice with bleomycin-induced lung injury exposed only to air (BA group; 0.042 mL/cmH(2)O, 95% CI 0.031-0.053, p = 0.02) and lower static elastance (BH 18.8 cmH(2)O/mL, [95% CI 15.4-22.2] vs. BA 26.7 cmH(2)O/mL [95% CI 19.6-33.8], p = 0.02). When the mRNA levels of pro-inflammatory cytokines were examined 7 days after bleomycin administration, interleukin (IL)-6, IL-4 and IL-13 were significantly lower in the BH group than in the BA group. There were significantly fewer M2-biased macrophages in the alveolar interstitium of the BH group than in the BA group (3.1% [95% CI 1.6-4.5%] vs. 1.1% [95% CI 0.3-1.8%], p = 0.008).
Conclusions The results suggest that hydrogen inhalation inhibits the deterioration of respiratory physiological function and alveolar fibrosis in this model of lung injury. en-copyright= kn-copyright= en-aut-name=AokageToshiyuki en-aut-sei=Aokage en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SeyaMizuki en-aut-sei=Seya en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirayamaTakahiro en-aut-sei=Hirayama en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NojimaTsuyoshi en-aut-sei=Nojima en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IketaniMasumi en-aut-sei=Iketani en-aut-mei=Masumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshikawaMichiko en-aut-sei=Ishikawa en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TerasakiYasuhiro en-aut-sei=Terasaki en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TaniguchiAkihiko en-aut-sei=Taniguchi en-aut-mei=Akihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MiyaharaNobuaki en-aut-sei=Miyahara en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NakaoAtsunori en-aut-sei=Nakao en-aut-mei=Atsunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OhsawaIkuroh en-aut-sei=Ohsawa en-aut-mei=Ikuroh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NaitoHiromichi en-aut-sei=Naito en-aut-mei=Hiromichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Disaster Medicine and Management, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Primary Care and Medical Education, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology kn-affil= affil-num=6 en-affil=Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine kn-affil= affil-num=7 en-affil=Department of Analytic Human Pathology, Nippon Medical School kn-affil= affil-num=8 en-affil=Department of Hematology, Oncology, and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Medical Technology, Okayama University Graduate School of Health Sciences kn-affil= affil-num=10 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology kn-affil= affil-num=12 en-affil=Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Acute respiratory distress syndrome kn-keyword=Acute respiratory distress syndrome en-keyword=Bleomycin-induced lung injury kn-keyword=Bleomycin-induced lung injury en-keyword=Macrophage kn-keyword=Macrophage en-keyword=Molecular hydrogen kn-keyword=Molecular hydrogen en-keyword=Lung fibrosis kn-keyword=Lung fibrosis END start-ver=1.4 cd-journal=joma no-vol=64 cd-vols= no-issue=1 article-no= start-page=31 end-page=45 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=202201 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The best constant of the discrete Sobolev inequalities on the complete bipartite graph en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have the best constants of three kinds of discrete Sobolev inequalities on the complete bipartite graph with 2N vertices, that is, KN,N. We introduce a discrete Laplacian A on KN,N. A is a 2N ×2N real symmetric positive-semidefinite matrix whose eigenvector corresponding to zero eigenvalue is 1 = t(1, 1, … , 1)∈ C2N. A discrete heat kernel, a Green’s matrix and a pseudo Green’s matrix play important roles in giving the best constants. en-copyright= kn-copyright= en-aut-name=YamagishiHiroyuki en-aut-sei=Yamagishi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Tokyo Metropolitan College of Industrial Technology kn-affil= en-keyword=Discrete Sobolev inequality kn-keyword=Discrete Sobolev inequality en-keyword=Discrete Laplacian kn-keyword=Discrete Laplacian en-keyword=Green’s matrix kn-keyword=Green’s matrix en-keyword=Reproducing relation kn-keyword=Reproducing relation END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=19828 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20211006 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NB-LRR-encoding genes conferring susceptibility to organophosphate pesticides in sorghum en-subtitle= kn-subtitle= en-abstract= kn-abstract=Organophosphate is the commonly used pesticide to control pest outbreak, such as those by aphids in many crops. Despite its wide use, however, necrotic lesion and/or cell death following the application of organophosphate pesticides has been reported to occur in several species. To understand this phenomenon, called organophosphate pesticide sensitivity (OPS) in sorghum, we conducted QTL analysis in a recombinant inbred line derived from the Japanese cultivar NOG, which exhibits OPS. Mapping OPS in this population identified a prominent QTL on chromosome 5, which corresponded to Organophosphate-Sensitive Reaction (OSR) reported previously in other mapping populations. The OSR locus included a cluster of three genes potentially encoding nucleotide-binding leucine-rich repeat (NB-LRR, NLR) proteins, among which NLR-C was considered to be responsible for OPS in a dominant fashion. NLR-C was functional in NOG, whereas the other resistant parent, BTx623, had a null mutation caused by the deletion of promoter sequences. Our finding of OSR as a dominant trait is important not only in understanding the diversified role of NB-LRR proteins in cereals but also in securing sorghum breeding free from OPS. en-copyright= kn-copyright= en-aut-name=JingZihuan en-aut-sei=Jing en-aut-mei=Zihuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WaceraFiona W. en-aut-sei=Wacera en-aut-mei=Fiona W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakamiTsuneaki en-aut-sei=Takami en-aut-mei=Tsuneaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakanashiHideki en-aut-sei=Takanashi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukadaFumi en-aut-sei=Fukada en-aut-mei=Fumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawanoYoji en-aut-sei=Kawano en-aut-mei=Yoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=Kajiya-KanegaeHiromi en-aut-sei=Kajiya-Kanegae en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwataHiroyoshi en-aut-sei=Iwata en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsutsumiNobuhiro en-aut-sei=Tsutsumi en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SakamotoWataru en-aut-sei=Sakamoto en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization kn-affil= affil-num=8 en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=9 en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=104 cd-vols= no-issue=14 article-no= start-page=L140402 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Spin-gap formation due to spin-Peierls instability in π-orbital-ordered NaO2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have investigated the low-temperature magnetism of sodium superoxide (NaO2), in which spin, orbital, and lattice degrees of freedom are closely entangled. The magnetic susceptibility shows anomalies at T1 = 220 K and T2 = 190 K, which correspond well to the structural phase transition temperatures, and a sudden decrease below T3 = 34 K. At 4.2 K, the magnetization shows a clear stepwise anomaly around 30 T with a large hysteresis. In addition, the muon spin relaxation experiments indicate no magnetic phase transition down to T = 0.3 K. The inelastic neutron scattering spectrum exhibits magnetic excitation with a finite energy gap. These results confirm that the ground state of NaO2 is a spin-singlet state. To understand this ground state in NaO2, we performed Raman scattering experiments. All the Raman-active libration modes expected for the marcasite phase below T2 are observed. Furthermore, we find that several new peaks appear below T3. This directly evidences the low crystal symmetry, namely, the presence of the phase transition at T3.We conclude that the singlet ground state of NaO2 is due to the spin-Peierls instability. en-copyright= kn-copyright= en-aut-name=MiyajimaMizuki en-aut-sei=Miyajima en-aut-mei=Mizuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AstutiFahmi en-aut-sei=Astuti en-aut-mei=Fahmi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukudaTakahito en-aut-sei=Fukuda en-aut-mei=Takahito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KodaniMasashi en-aut-sei=Kodani en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IidaShinsuke en-aut-sei=Iida en-aut-mei=Shinsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AsaiShinichiro en-aut-sei=Asai en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuoAkira en-aut-sei=Matsuo en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MasudaTakatsugu en-aut-sei=Masuda en-aut-mei=Takatsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KindoKoichi en-aut-sei=Kindo en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HasegawaTakumi en-aut-sei=Hasegawa en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=NakanoTakehito en-aut-sei=Nakano en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WatanabeIsao en-aut-sei=Watanabe en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KambeTakashi en-aut-sei=Kambe en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Advanced Meson Science Laboratory, RIKEN Nishina Center kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Institute for Solid State Physics, University of Tokyo kn-affil= affil-num=6 en-affil=Institute for Solid State Physics, University of Tokyo kn-affil= affil-num=7 en-affil=Institute for Solid State Physics, University of Tokyo kn-affil= affil-num=8 en-affil=Institute for Solid State Physics, University of Tokyo kn-affil= affil-num=9 en-affil=Institute for Solid State Physics, University of Tokyo kn-affil= affil-num=10 en-affil=Graduate School of Advanced Science and Engineering, Hiroshima University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=Institute of Quantum Beam Science, Ibaraki University kn-affil= affil-num=13 en-affil=Advanced Meson Science Laboratory, RIKEN Nishina Center kn-affil= affil-num=14 en-affil=Department of Physics, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=86 cd-vols= no-issue=14 article-no= start-page=9802 end-page=9810 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202177 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Toward the Synthesis of Paspaline-Type Indole-Terpenes: Stereoselective Construction of Core Scaffold with Contiguous Asymmetric Quaternary Carbon Centers en-subtitle= kn-subtitle= en-abstract= kn-abstract=The core scaffold of paspaline-type indole-terpenes was synthesized by using the House–Meinwald rearrangement as a key step. Rearrangement of the epoxide methyl group in the precursor with MABR (methylaluminum bis(4-bromo-2,6-di-tert-butylphenoxide)) as a Lewis acid proceeded smoothly to construct contiguous asymmetric quaternary carbon centers by a 1,2-chirality transfer. en-copyright= kn-copyright= en-aut-name=HayakawaIchiro en-aut-sei=Hayakawa en-aut-mei=Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsumaruNaochika en-aut-sei=Matsumaru en-aut-mei=Naochika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakakuraAkira en-aut-sei=Sakakura en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan kn-affil= END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=6 article-no= start-page=591 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021621 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Photoelectric Dye, NK-5962, as a Potential Drug for Preventing Retinal Neurons from Apoptosis: Pharmacokinetic Studies Based on Review of the Evidence en-subtitle= kn-subtitle= en-abstract= kn-abstract=NK-5962 is a key component of photoelectric dye-based retinal prosthesis (OUReP). In testing the safety and efficacy, NK-5962 was safe in all tests for the biological evaluation of medical devices (ISO 10993) and effective in preventing retinal cells from death even under dark conditions. The long-term implantation of the photoelectric dye-coupled polyethylene film in the subretinal space of hereditary retinal dystrophic (RCS) rats prevented neurons from apoptosis in the adjacent retinal tissue. The intravitreous injection of NK-5962 in the eyes of RCS rats, indeed, reduced the number of apoptotic cells in the retinal outer nuclear layer irrespective of light or dark conditions. In this study, we reviewed the in vitro and in vivo evidence of neuroprotective effect of NK-5962 and designed pharmacokinetic experiments. The in vitro IC50 of 1.7 μM, based on the protective effect on retinal cells in culture, could explain the in vivo EC50 of 3 μM that is calculated from concentrations of intravitreous injection to prevent retinal neurons from apoptosis. Pharmacokinetics of NK-5962 showed that intravenous administration, but not oral administration, led to the effective concentration in the eye of rats. NK-5962 would be a candidate drug for delaying the deterioration of retinal dystrophy, such as retinitis pigmentosa. en-copyright= kn-copyright= en-aut-name=MatsuoToshihiko en-aut-sei=Matsuo en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=LiuShihui en-aut-sei=Liu en-aut-mei=Shihui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UchidaTetsuya en-aut-sei=Uchida en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoueSatomi en-aut-sei=Onoue en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakagawaShinsaku en-aut-sei=Nakagawa en-aut-mei=Shinsaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshiiMayumi en-aut-sei=Ishii en-aut-mei=Mayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanamitsuKayoko en-aut-sei=Kanamitsu en-aut-mei=Kayoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Ophthalmology, Okayama University Hospital kn-affil= affil-num=2 en-affil=Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems kn-affil= affil-num=3 en-affil=Polymer Materials Science, Okayama University Graduate School of Natural Science and Technology kn-affil= affil-num=4 en-affil=Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka kn-affil= affil-num=5 en-affil=Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University kn-affil= affil-num=6 en-affil=Drug Discovery Initiative, The University of Tokyo kn-affil= affil-num=7 en-affil=Drug Discovery Initiative, The University of Tokyo kn-affil= en-keyword=NK-5962 kn-keyword=NK-5962 en-keyword=photoelectric dye kn-keyword=photoelectric dye en-keyword=apoptosis kn-keyword=apoptosis en-keyword=retinal neuron kn-keyword=retinal neuron en-keyword=neuroprotection kn-keyword=neuroprotection en-keyword=pharmacokinetics kn-keyword=pharmacokinetics en-keyword=ADME kn-keyword=ADME en-keyword=phototoxic/photosensitive assay kn-keyword=phototoxic/photosensitive assay en-keyword=reactive oxygen species assay kn-keyword=reactive oxygen species assay en-keyword=photosafety kn-keyword=photosafety END start-ver=1.4 cd-journal=joma no-vol=133 cd-vols= no-issue=1 article-no= start-page=62 end-page=67 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title=Know the facts of COVID-19 kn-title=新型コロナウイルスを正しく知る en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=MizutaniTetsuya en-aut-sei=Mizutani en-aut-mei=Tetsuya kn-aut-name=水谷哲也 kn-aut-sei=水谷 kn-aut-mei=哲也 aut-affil-num=1 ORCID= affil-num=1 en-affil=Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology kn-affil=東京農工大学 農学部附属国際家畜感染症防疫研究教育センター en-keyword=ARS-CoV-2 kn-keyword=ARS-CoV-2 en-keyword=COVID-19 kn-keyword=COVID-19 en-keyword=SARS kn-keyword=SARS en-keyword=変異 kn-keyword=変異 END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue= article-no= start-page=431 end-page=443 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202105 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Capturing structural changes of the S-1 to S-2 transition of photosystem II using time-resolved serial femtosecond crystallography en-subtitle= kn-subtitle= en-abstract= kn-abstract=Photosystem II (PSII) catalyzes light-induced water oxidation through an S-i-state cycle, leading to the generation of di-oxygen, protons and electrons. Pumpprobe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S-1-to-S-2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S-2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S-1-to-S-2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed. en-copyright= kn-copyright= en-aut-name=LiHongjie en-aut-sei=Li en-aut-mei=Hongjie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NomuraTakashi en-aut-sei=Nomura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SugaharaMichihiro en-aut-sei=Sugahara en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YonekuraShinichiro en-aut-sei=Yonekura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChanSiu Kit en-aut-sei=Chan en-aut-mei=Siu Kit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakaneTakanori en-aut-sei=Nakane en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SuzukiMamoru en-aut-sei=Suzuki en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MasudaTetsuya en-aut-sei=Masuda en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MotomuraTaiki en-aut-sei=Motomura en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NaitowHisashi en-aut-sei=Naitow en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatsuuraYoshinori en-aut-sei=Matsuura en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraTetsunari en-aut-sei=Kimura en-aut-mei=Tetsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=TonoKensuke en-aut-sei=Tono en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=OwadaShigeki en-aut-sei=Owada en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=JotiYasumasa en-aut-sei=Joti en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=TanakaRie en-aut-sei=Tanaka en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NangoEriko en-aut-sei=Nango en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KuboMinoru en-aut-sei=Kubo en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Life Science, University of Hyogo kn-affil= affil-num=4 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Biological Science, Graduate School of Science, The University of Tokyo kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=11 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=13 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=14 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=15 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=16 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=17 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=18 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=19 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=20 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=21 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=22 en-affil=Graduate School of Life Science, University of Hyogo kn-affil= affil-num=23 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=24 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=25 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=time-resolved serial crystallography kn-keyword=time-resolved serial crystallography en-keyword=X-ray free-electron lasers kn-keyword=X-ray free-electron lasers en-keyword=membrane proteins kn-keyword=membrane proteins en-keyword=photosystem II kn-keyword=photosystem II en-keyword=serial crystallography kn-keyword=serial crystallography en-keyword=molecular movies kn-keyword=molecular movies en-keyword=protein structures kn-keyword=protein structures END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=8 article-no= start-page=1876 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210409 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Assessment of Demineralization Inhibition Effects of Dentin Desensitizers Using Swept-Source Optical Coherence Tomography en-subtitle= kn-subtitle= en-abstract= kn-abstract=The purpose of this study was to evaluate the mechanism of action and the inhibiting effects of two types of desensitizers against dentin demineralization using pre-demineralized hypersensitivity tooth model in vitro. In this study, we confirmed that a hypersensitivity tooth model from our preliminary experiment could be prepared by immersing dentin discs in an acetic acid-based solution with pH 5.0 for three days. Dentin discs with three days of demineralization were prepared and applied by one of the desensitizers containing calcium fluoro-alumino-silicate glass (Nanoseal, NS) or fluoro-zinc-silicate glass (Caredyne Shield, CS), followed by an additional three days of demineralization. Dentin discs for three days of demineralization (de3) and six days of demineralization (de6) without the desensitizers were also prepared. The dentin discs after the experimental protocol were scanned using swept-source optical coherence tomography (SS-OCT) to image the cross-sectional (2D) view of the samples and evaluate the SS-OCT signal. The signal intensity profiles of SS-OCT from the region of interest of 300, 500, and 700 mu m in depth were obtained to calculate the integrated signal intensity and signal attenuation coefficient. The morphological differences and remaining chemical elements of the dentin discs were also analyzed using scanning electron microscopy and energy-dispersive X-ray spectroscopy. SS-OCT images of CS and NS groups showed no obvious differences between the groups. However, SS-OCT signal profiles for both the CS and NS groups showed smaller attenuation coefficients and larger integrated signal intensities than those of the de6 group. Reactional deposits of the desensitizers even after the additional three days of demineralization were observed on the dentin surface in NS group, whereas remnants containing Zn were detected within the dentinal tubules in CS group. Consequently, both CS and NS groups showed inhibition effects against the additional three days of demineralization in this study. Our findings demonstrate that SS-OCT signal analysis can be used to monitor the dentin demineralization and inhibition effects of desensitizers against dentin demineralization in vitro. en-copyright= kn-copyright= en-aut-name=MatsuzakiKumiko en-aut-sei=Matsuzaki en-aut-mei=Kumiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimadaYasushi en-aut-sei=Shimada en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShinnoYasuo en-aut-sei=Shinno en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoSerina en-aut-sei=Ono en-aut-mei=Serina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamajiKozo en-aut-sei=Yamaji en-aut-mei=Kozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OharaNaoko en-aut-sei=Ohara en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SadrAlireza en-aut-sei=Sadr en-aut-mei=Alireza kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SumiYasunori en-aut-sei=Sumi en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TagamiJunji en-aut-sei=Tagami en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoshiyamaMasahiro en-aut-sei=Yoshiyama en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Biomimetics Biomaterials Biophotonics Biomechanics & Technology Laboratory, Department of Restorative Dentistry, University of Washington kn-affil= affil-num=8 en-affil=Center of Advanced Medicine for Dental and Oral Diseases, Department for Advanced Dental Research, National Center for Geriatrics and Ger Ontology kn-affil= affil-num=9 en-affil=Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University kn-affil= affil-num=10 en-affil=Department of Operative Dentistry, Field of Study of Biofunctional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=SS-OCT kn-keyword=SS-OCT en-keyword=dentin desensitizer kn-keyword=dentin desensitizer en-keyword=dentin demineralization kn-keyword=dentin demineralization END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=2 article-no= start-page=e042099 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Protocol for a multicentre, prospective, cohort study to investigate patient satisfaction and quality of life after immediate breast reconstruction in Japan: the SAQLA study en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction The aim of breast reconstruction (BR) is to improve patients' health-related quality of life (HRQOL). Therefore, measuring patient-reported outcomes (PROs) would clarify the value and impact of BR on a patient's life and thus would provide evidence-based information to help decision-making. The Satisfaction and Quality of Life After Immediate Breast Reconstruction study aimed to investigate satisfaction and HRQOL in Japanese patients with breast cancer who undergo immediate breast reconstruction (IBR). Methods and analysis This ongoing prospective, observational multicentre study will assess 406 patients who had unilateral breast cancer and underwent mastectomy and IBR, and were recruited from April 2018 to July 2019. All participants were recruited from seven hospitals: Okayama University Hospital, Iwate Medical University Hospital, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Showa University Hospital, University of Tsukuba Hospital, Osaka University Hospital and Yokohama City University Medical Center. The patients will be followed up for 36 months postoperatively. The primary endpoint of this study will be the time-dependent changes in BREAST-Q satisfaction with breast subscale scores for 12 months after reconstructive surgery, which will be collected via an electronic PRO system. Ethics and dissemination This study will be performed in accordance with the Ethical Guidelines for Medical and Health Research Involving Human Subjects published by Japan's Ministry of Education, Science and Technology and the Ministry of Health, Labour and Welfare, the modified Act on the Protection of Personal Information and the Declaration of Helsinki. This study protocol was approved by the institutional ethics committee at the Okayama University Graduate School of Medicine, Dentistry, on 2 February 2018 (1801-039) and all other participating sites. The findings of this trial will be submitted to an international peer-reviewed journal. en-copyright= kn-copyright= en-aut-name=SaigaMiho en-aut-sei=Saiga en-aut-mei=Miho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HosoyaYuko en-aut-sei=Hosoya en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UtsunomiyaHiroki en-aut-sei=Utsunomiya en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuramotoYukiko en-aut-sei=Kuramoto en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeSatoko en-aut-sei=Watanabe en-aut-mei=Satoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TomitaKoichi en-aut-sei=Tomita en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AiharaYukiko en-aut-sei=Aihara en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MutoMayu en-aut-sei=Muto en-aut-mei=Mayu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HikosakaMakoto en-aut-sei=Hikosaka en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KawaguchiTakashi en-aut-sei=Kawaguchi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MiyajiTempei en-aut-sei=Miyaji en-aut-mei=Tempei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YamaguchiTakuhiro en-aut-sei=Yamaguchi en-aut-mei=Takuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ZendaSadamoto en-aut-sei=Zenda en-aut-mei=Sadamoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=GotoAya en-aut-sei=Goto en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SakurabaMinoru en-aut-sei=Sakuraba en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=KusanoTaro en-aut-sei=Kusano en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MiyabeKenta en-aut-sei=Miyabe en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KurokiTomoaki en-aut-sei=Kuroki en-aut-mei=Tomoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=YanoTomoyuki en-aut-sei=Yano en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=TaminatoMifue en-aut-sei=Taminato en-aut-mei=Mifue kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=SekidoMitsuru en-aut-sei=Sekido en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=TsunodaYui en-aut-sei=Tsunoda en-aut-mei=Yui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=SatakeToshihiko en-aut-sei=Satake en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=DoiharaHiroyoshi en-aut-sei=Doihara en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KimataYoshihiro en-aut-sei=Kimata en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= affil-num=1 en-affil=Department of Plastic and Reconstructive Surgery, Okayama University Hospital kn-affil= affil-num=2 en-affil=Department of Plastic and Reconstructive Surgery, Iwate Medical University kn-affil= affil-num=3 en-affil=Department of Surgery and Plastic Surgery, Showa University Koto Toyosu Hospital kn-affil= affil-num=4 en-affil=Department of Plastic and Reconstructive Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research kn-affil= affil-num=5 en-affil=Department of Plastic and Reconstructive Surgery, Okayama University Hospital kn-affil= affil-num=6 en-affil=Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Osaka University kn-affil= affil-num=7 en-affil=Department of Plastic and Reconstructive Surgery, Faculty of Medicine, University of Tsukuba kn-affil= affil-num=8 en-affil=Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center kn-affil= affil-num=9 en-affil=Department of Plastic and Reconstructive Surgery, National Center for Child Health and Development kn-affil= affil-num=10 en-affil=Department of Practical Pharmacy, Tokyo University of Pharmacy and Life Sciences kn-affil= affil-num=11 en-affil=Department of Clinical Trial Data Management, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=12 en-affil=Division of Biostatistics, Tohoku University Graduate School of Medicine kn-affil= affil-num=13 en-affil=Division of Radiation Oncology, National Cancer Center Hospital East kn-affil= affil-num=14 en-affil=Department of Plastic and Reconstructive Surgery, Iwate Medical University kn-affil= affil-num=15 en-affil=Department of Plastic and Reconstructive Surgery, Iwate Medical University kn-affil= affil-num=16 en-affil=Kusano Taro Clinic kn-affil= affil-num=17 en-affil=Department of Plastic and Reconstructive Surgery, Showa University Hospital kn-affil= affil-num=18 en-affil=Department of Plastic and Reconstructive Surgery, Showa University Hospital kn-affil= affil-num=19 en-affil=Department of Plastic and Reconstructive Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research kn-affil= affil-num=20 en-affil=Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Osaka University kn-affil= affil-num=21 en-affil=Department of Plastic and Reconstructive Surgery, Faculty of Medicine, University of Tsukuba kn-affil= affil-num=22 en-affil=Department of Plastic and Reconstructive Surgery, Yokohama City University Medical Center kn-affil= affil-num=23 en-affil=Department of Plastic and Reconstructive Surgery, Toyama University Hospital kn-affil= affil-num=24 en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital kn-affil= affil-num=25 en-affil=Department of Plastic and Reconstructive Surgery, Okayama University Hospital kn-affil= en-keyword=plastic & reconstructive surgery kn-keyword=plastic & reconstructive surgery en-keyword=breast surgery kn-keyword=breast surgery en-keyword=breast tumours kn-keyword=breast tumours END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=4277 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=2021219 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Direct evidence of electronic ferroelectricity in YbFe2O4 using neutron diffraction and nonlinear spectroscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract=We report the first observation of room temperature spontaneous electric polarization in an electronic ferroelectric material, a YbFe2O4 single crystal. The observation was based on second harmonic generation (SHG), a nonlinear optical process. Tensor analysis of the SHG signal revealed that this material has a polar charge superstructure with Cm symmetry. This result settles the long-term discussion on the uncertainty about electronic ferroelectric properties, including the charge order structure. We present a complete picture of the polar charge ordering of this material via consistent results from two different characterization methods. The SHG signal shows the same temperature dependence as the superlattice signal observed in neutron diffraction experiments. These results prove ferroelectric coupling to electron ordering in YbFe2O4, which results in electronic ferroelectricity which is enabled by the real space ordering of iron cations with different valences. The existence of electronic ferroelectricity holds promise for future electronics technologies where devices run a thousand times faster than frequency of the present CPU (a few gigahertz) embedded in smartphones, etc. en-copyright= kn-copyright= en-aut-name=FujiwaraK. en-aut-sei=Fujiwara en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FukadaY. en-aut-sei=Fukada en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkudaY. en-aut-sei=Okuda en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SeimiyaR. en-aut-sei=Seimiya en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkedaN. en-aut-sei=Ikeda en-aut-mei=N. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokoyamaK. en-aut-sei=Yokoyama en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YuH. en-aut-sei=Yu en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KoshiharaS. en-aut-sei=Koshihara en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkimotoY. en-aut-sei=Okimoto en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Chemistry, Tokyo Institute of Technology kn-affil= affil-num=7 en-affil=Department of Chemistry, Tokyo Institute of Technology kn-affil= affil-num=8 en-affil=Department of Chemistry, Tokyo Institute of Technology kn-affil= affil-num=9 en-affil=Department of Chemistry, Tokyo Institute of Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=20857 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201130 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Lokiarchaeota archaeon schizorhodopsin-2 (LaSzR2) is an inward proton pump displaying a characteristic feature of acid-induced spectral blue-shift en-subtitle= kn-subtitle= en-abstract= kn-abstract=The photoreactive protein rhodopsin is widespread in microorganisms and has a variety of photobiological functions. Recently, a novel phylogenetically distinctive group named 'schizorhodopsin (SzR)' has been identified as an inward proton pump. We performed functional and spectroscopic studies on an uncharacterised schizorhodopsin from the phylum Lokiarchaeota archaeon. The protein, LaSzR2, having an all-trans-retinal chromophore, showed inward proton pump activity with an absorption maximum at 549 nm. The pH titration experiments revealed that the protonated Schiff base of the retinal chromophore (Lys188, pK(a)=12.3) is stabilised by the deprotonated counterion (presumably Asp184, pK(a)=3.7). The flash-photolysis experiments revealed the presence of two photointermediates, K and M. A proton was released and uptaken from bulk solution upon the formation and decay of the M intermediate. During the M-decay, the Schiff base was reprotonated by the proton from a proton donating residue (presumably Asp172). These properties were compared with other inward (SzRs and xenorhodopsins, XeRs) and outward proton pumps. Notably, LaSzR2 showed acid-induced spectral 'blue-shift' due to the protonation of the counterion, whereas outward proton pumps showed opposite shifts (red-shifts). Thus, we can distinguish between inward and outward proton pumps by the direction of the acid-induced spectral shift. en-copyright= kn-copyright= en-aut-name=KojimaKeiichi en-aut-sei=Kojima en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YoshizawaSusumu en-aut-sei=Yoshizawa en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HasegawaMasumi en-aut-sei=Hasegawa en-aut-mei=Masumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakamaMasaki en-aut-sei=Nakama en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KuriharaMarie en-aut-sei=Kurihara en-aut-mei=Marie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KikukawaTakashi en-aut-sei=Kikukawa en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SudoYuki en-aut-sei=Sudo en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=3 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=4 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Faculty of Advanced Life Science, Hokkaido University kn-affil= affil-num=7 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=63 cd-vols= no-issue=1 article-no= start-page=61 end-page=86 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Defining relations of 3-dimensional quadratic AS-regular algebras en-subtitle= kn-subtitle= en-abstract= kn-abstract=Classification of AS-regular algebras is one of the main interests in non-commutative algebraic geometry. Recently, a complete list of superpotentials (defining relations) of all 3-dimensional AS-regular algebras which are Calabi-Yau was given by Mori-Smith (the quadratic case) and Mori-Ueyama (the cubic case), however, no complete list of defining relations of all 3-dimensional AS-regular algebras has not appeared in the literature. In this paper, we give all possible defining relations of 3-dimensional quadratic AS-regular algebras. Moreover, we classify them up to isomorphism and up to graded Morita equivalence in terms of their defining relations in the case that their point schemes are not elliptic curves. In the case that their point schemes are elliptic curves, we give conditions for isomorphism and graded Morita equivalence in terms of geometric data. en-copyright= kn-copyright= en-aut-name=ItabaAyako en-aut-sei=Itaba en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsunoMasaki en-aut-sei=Matsuno en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Mathematics, faculty of Science, Tokyo University of Science kn-affil= affil-num=2 en-affil=Graduate School of Science and Technology, Shizuoka University kn-affil= en-keyword=AS-regular algebras kn-keyword=AS-regular algebras en-keyword=geometric algebras kn-keyword=geometric algebras en-keyword=quadratic algebras kn-keyword=quadratic algebras en-keyword=nodal cubic curves kn-keyword=nodal cubic curves en-keyword=elliptic curves kn-keyword=elliptic curves en-keyword=Hesse form kn-keyword=Hesse form en-keyword=Sklyanin algebras kn-keyword=Sklyanin algebras END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=1 article-no= start-page=236 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20201012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Treatment-related damage in elderly-onset ANCA-associated vasculitis: safety outcome analysis of two nationwide prospective cohort studies en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
It is not elucidated that there is treatment-related damage in elderly patients with antineutrophil cytoplasmic antibody (ANCA)–associated vasculitis (AAV).
Methods
Elderly (≥ 75 years of age) patients were enrolled from two nationwide prospective inception cohort studies. The primary outcome was 12-month treatment-related Vasculitis Damage Index (VDI) score. Secondary outcomes included serious infections within 6 months, total VDI score, remission, and relapse. Patient characteristics and outcomes were compared across three different initial glucocorticoid (GC) dose groups: high-dose, prednisolone (PSL) ≥ 0.8 mg/kg/day; medium-dose, 0.6 ≤ PSL < 0.8 mg/kg/day; and low-dose, PSL < 0.6 mg/kg/day.
Results
Of the 179 eligible patients, the mean age was 80.0 years; 111 (62%) were female. The mean Birmingham Vasculitis Activity Score was 16.1. Myeloperoxidase-ANCA findings were positive in 168 (94%) patients, while proteinase 3-ANCA findings were positive in 11 (6%). The low-dose group was older and had higher serum creatinine levels than the other groups. There were no statistically significant intergroup differences in remission or relapse, whereas serious infection developed more frequently in the high-dose (29 patients [43%]) than the low-dose (13 patients [22%]) or medium-dose (10 patients [19%]) groups (p = 0.0007). Frequent VDI items at 12 months included hypertension (19%), diabetes (13%), atrophy and weakness (13%), osteoporosis (8%), and cataracts (8%). Logistic regression analysis revealed that GC dose at 12 months (odds ratio, 1.14; 95% confidence interval, 1.00–1.35) was a predictor for diabetes.
Conclusion
A reduced initial GC dose with rapid reduction might be required to ensure the safe treatment of elderly AAV patients. en-copyright= kn-copyright= en-aut-name=SadaKen-Ei en-aut-sei=Sada en-aut-mei=Ken-Ei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OhashiKeiji en-aut-sei=Ohashi en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AsanoYosuke en-aut-sei=Asano en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HayashiKeigo en-aut-sei=Hayashi en-aut-mei=Keigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MorishitaMichiko en-aut-sei=Morishita en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanabeHaruki en-aut-sei=Watanabe en-aut-mei=Haruki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoYoshinori en-aut-sei=Matsumoto en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=FujimotoShouichi en-aut-sei=Fujimoto en-aut-mei=Shouichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakasakiYoshinari en-aut-sei=Takasaki en-aut-mei=Yoshinari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamagataKunihiro en-aut-sei=Yamagata en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=BannoShogo en-aut-sei=Banno en-aut-mei=Shogo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DobashiHiroaki en-aut-sei=Dobashi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AmanoKoichi en-aut-sei=Amano en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HarigaiMasayoshi en-aut-sei=Harigai en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ArimuraYoshihiro en-aut-sei=Arimura en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MakinoHirofumi en-aut-sei=Makino en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=the Japan Research Committee of the Ministry of Health, Labour, and Welfare for Intractable Vasculitis (JPVAS) and the Research Committee of Intractable Renal Disease of the Ministry of Health, Labour, and Welfare of Japan en-aut-sei=the Japan Research Committee of the Ministry of Health, Labour, and Welfare for Intractable Vasculitis (JPVAS) and the Research Committee of Intractable Renal Disease of the Ministry of Health, Labour, and Welfare of Japan en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil=Department of Nephrology, Rheumatology, Endocrinology, and Metabolism, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Clinical Epidemiology, Kochi Medical School, Kochi University kn-affil= affil-num=3 en-affil=Department of Clinical Epidemiology, Kochi Medical School, Kochi University kn-affil= affil-num=4 en-affil=Department of Clinical Epidemiology, Kochi Medical School, Kochi University kn-affil= affil-num=5 en-affil=Department of Clinical Epidemiology, Kochi Medical School, Kochi University kn-affil= affil-num=6 en-affil=Department of Clinical Epidemiology, Kochi Medical School, Kochi University kn-affil= affil-num=7 en-affil=Department of Clinical Epidemiology, Kochi Medical School, Kochi University kn-affil= affil-num=8 en-affil=Department of Hemovascular Medicine and Artificial Organs, Faculty of Medicine, University of Miyazaki kn-affil= affil-num=9 en-affil=Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine kn-affil= affil-num=10 en-affil=Department of Nephrology, Faculty of Medicine, University of Tsukuba kn-affil= affil-num=11 en-affil=Department of Nephrology and Rheumatology, Aichi Medical University kn-affil= affil-num=12 en-affil=Division of Hematology, Rheumatology and Respiratory Medicine, Department of Internal Medicine, Faculty of Medicine, Kagawa University kn-affil= affil-num=13 en-affil=Department of Rheumatology and Clinical Immunology, Saitama Medical Center, Saitama Medical University kn-affil= affil-num=14 en-affil=Department of Rheumatology, Tokyo Women’s Medical University School of Medicine kn-affil= affil-num=15 en-affil=Department of Nephrology and Rheumatology, Kyorin University School of Medicine kn-affil= affil-num=16 en-affil=Okayama University kn-affil= affil-num=17 en-affil= kn-affil= en-keyword=ANCA-associated vasculitis kn-keyword=ANCA-associated vasculitis en-keyword=Chronic damage kn-keyword=Chronic damage en-keyword=Elderly patients kn-keyword=Elderly patients en-keyword=Glucocorticoids kn-keyword=Glucocorticoids END start-ver=1.4 cd-journal=joma no-vol=2020 cd-vols= no-issue=4 article-no= start-page=043D02 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200413 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium en-subtitle= kn-subtitle= en-abstract= kn-abstract=Natural gadolinium is widely used for its excellent thermal neutron capture cross section, because of its two major isotopes: Gd-155 and Gd-157. We measured the gamma-ray spectra produced from the thermal neutron capture on targets comprising a natural gadolinium film and enriched Gd-155 (in Gd2O3 powder) in the energy range from 0.11 MeV to 8.0 MeV, using the ANNRI germanium spectrometer at MLF, J-PARC. The freshly analyzed data of the Gd-155(n,gamma) reaction are used to improve our previously developed model (ANNRI-Gd model) for the Gd-157(n,gamma) reaction [K. Hagiwara et al. [ANNRI-Gd Collaboration], Prog. Theor. Exp. Phys. 2019, 023D01 (2019)], and its performance confirmed with the independent data from the Gd-nat(n,gamma) reaction. This article completes the development of an efficient Monte Carlo model required to simulate and analyze particle interactions involving the thermal neutron captures on gadolinium in any relevant future experiments. en-copyright= kn-copyright= en-aut-name=TanakaTomoyuki en-aut-sei=Tanaka en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiwaraKaito en-aut-sei=Hagiwara en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GazzolaEnrico en-aut-sei=Gazzola en-aut-mei=Enrico kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AliAjmi en-aut-sei=Ali en-aut-mei=Ajmi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OuIwa en-aut-sei=Ou en-aut-mei=Iwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SudoTakashi en-aut-sei=Sudo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DasPretam Kumar en-aut-sei=Das en-aut-mei=Pretam Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ReenMandeep Singh en-aut-sei=Reen en-aut-mei=Mandeep Singh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DhirRohit en-aut-sei=Dhir en-aut-mei=Rohit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KoshioYusuke en-aut-sei=Koshio en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KimuraAtsushi en-aut-sei=Kimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakamuraShoji en-aut-sei=Nakamura en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IwamotoNobuyuki en-aut-sei=Iwamoto en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HaradaHideo en-aut-sei=Harada en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=CollazuolGianmaria en-aut-sei=Collazuol en-aut-mei=Gianmaria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=LorenzSebastian en-aut-sei=Lorenz en-aut-mei=Sebastian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=WurmMichael en-aut-sei=Wurm en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FocillonWilliam en-aut-sei=Focillon en-aut-mei=William kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=GoninMichel en-aut-sei=Gonin en-aut-mei=Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YanoTakatomi en-aut-sei=Yano en-aut-mei=Takatomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Universitá di Padova and INFN, Dipartimento di Fisica kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Department of Physics, Okayama University kn-affil= affil-num=6 en-affil=Department of Physics, Okayama University kn-affil= affil-num=7 en-affil=Department of Physics, Okayama University kn-affil= affil-num=8 en-affil=Department of Physics, Okayama University kn-affil= affil-num=9 en-affil=Department of Physics, Okayama University kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=13 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=14 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=15 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=16 en-affil=Universitá di Padova and INFN, Dipartimento di Fisica kn-affil= affil-num=17 en-affil=Institut für Physik, Johannes Gutenberg-Universität Mainz kn-affil= affil-num=18 en-affil=Institut für Physik, Johannes Gutenberg-Universität Mainz kn-affil= affil-num=19 en-affil=Département de Physique, École Polytechnique kn-affil= affil-num=20 en-affil=Département de Physique, École Polytechnique kn-affil= affil-num=21 en-affil=Kamioka Observatory, ICRR, University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=1 cd-vols= no-issue= article-no= start-page=100001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200720 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Dicer monitoring in a model filamentous fungus host, Cryphonectria parasitica en-subtitle= kn-subtitle= en-abstract= kn-abstract=The ascomycete Cryphonectria parasitica has served as a model filamentous fungus for studying virus host interactions because of its susceptibility to diverse viruses, its genetic manipulability and the availability of many biological and molecular tools. Cryphonectria prasitica is known to activate antiviral RNA silencing upon infection by some viruses via transcriptional up-regulation of key RNA silencing genes. Here, utilizing a newly developed GFP-based reporter system to monitor dicer-like 2 (dcl2) transcript levels, we show different levels of antiviral RNA silencing activation by different viruses. Some viruses such as mycoreovirus 1, a suppressor-lacking mutant of Cryphonectria hypovirus 1 (CHV1-Δp69) and Rosellinia necatrix partitivirus 11 (RnPV11) highly induced RNA silencing, while others such as CHV3, Rosellinia necatrix victorivirus 1 and RnPV19 did not. There was considerable variation in dcl2 induction by different members within the family Hypoviridae with positive-sense single-stranded RNA genomes or Partitiviridae with double-stranded RNA genomes. Northern blotting and an in vitro Dicer assay developed recently by us using mycelial homogenates validated the reporter assay results for several representative virus strains. Taken together, this study represents a development in the monitoring of Dicer activity in virus-infected C. parasitica. en-copyright= kn-copyright= en-aut-name=AuliaAnnisa en-aut-sei=Aulia en-aut-mei=Annisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TabaraMidori en-aut-sei=Tabara en-aut-mei=Midori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TelengechPaul en-aut-sei=Telengech en-aut-mei=Paul kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukuharaToshiyuki en-aut-sei=Fukuhara en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Tokyo University of Agriculture and Technology, Department of Applied Biological Sciences kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Tokyo University of Agriculture and Technology, Department of Applied Biological Sciences kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Dicer kn-keyword=Dicer en-keyword=RNA silencing kn-keyword=RNA silencing en-keyword=Fungal virus kn-keyword=Fungal virus en-keyword=RNA virus kn-keyword=RNA virus en-keyword=Antiviral defense kn-keyword=Antiviral defense END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue=1 article-no= start-page=6 end-page=21 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200119 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Tree of motility : A proposed history of motility systems in the tree of life en-subtitle= kn-subtitle= en-abstract= kn-abstract=Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement‐producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility. en-copyright= kn-copyright= en-aut-name=MiyataMakoto en-aut-sei=Miyata en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RobinsonRobert C. en-aut-sei=Robinson en-aut-mei=Robert C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UyedaTaro Q. P. en-aut-sei=Uyeda en-aut-mei=Taro Q. P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FukumoriYoshihiro en-aut-sei=Fukumori en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukushimaShun‐ichi en-aut-sei=Fukushima en-aut-mei=Shun‐ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HarutaShin en-aut-sei=Haruta en-aut-mei=Shin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HommaMichio en-aut-sei=Homma en-aut-mei=Michio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=InabaKazuo en-aut-sei=Inaba en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ItoMasahiro en-aut-sei=Ito en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KaitoChikara en-aut-sei=Kaito en-aut-mei=Chikara kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KatoKentaro en-aut-sei=Kato en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KenriTsuyoshi en-aut-sei=Kenri en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KinositaYoshiaki en-aut-sei=Kinosita en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KojimaSeiji en-aut-sei=Kojima en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MinaminoTohru en-aut-sei=Minamino en-aut-mei=Tohru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MoriHiroyuki en-aut-sei=Mori en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NakamuraShuichi en-aut-sei=Nakamura en-aut-mei=Shuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakaneDaisuke en-aut-sei=Nakane en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NakayamaKoji en-aut-sei=Nakayama en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NishiyamaMasayoshi en-aut-sei=Nishiyama en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ShibataSatoshi en-aut-sei=Shibata en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ShimabukuroKatsuya en-aut-sei=Shimabukuro en-aut-mei=Katsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=TamakoshiMasatada en-aut-sei=Tamakoshi en-aut-mei=Masatada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TaokaAzuma en-aut-sei=Taoka en-aut-mei=Azuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=TashiroYosuke en-aut-sei=Tashiro en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=TulumIsil en-aut-sei=Tulum en-aut-mei=Isil kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=WadaHirofumi en-aut-sei=Wada en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=WakabayashiKen‐ichi en-aut-sei=Wakabayashi en-aut-mei=Ken‐ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= affil-num=1 en-affil=Department of Biology, Graduate School of Science, Osaka City University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Faculty of Science and Technology, Waseda University kn-affil= affil-num=4 en-affil=Faculty of Natural System, Institute of Science and Engineering, Kanazawa University kn-affil= affil-num=5 en-affil=Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University kn-affil= affil-num=6 en-affil=Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University kn-affil= affil-num=7 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=8 en-affil=Shimoda Marine Research Center, University of Tsukuba kn-affil= affil-num=9 en-affil=Graduate School of Life Sciences, Toyo University kn-affil= affil-num=10 en-affil=Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo kn-affil= affil-num=11 en-affil=Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University kn-affil= affil-num=12 en-affil=Laboratory of Mycoplasmas and Haemophilus, Department of Bacteriology II, National Institute of Infectious Diseases kn-affil= affil-num=13 en-affil=Department of Physics, Oxford University kn-affil= affil-num=14 en-affil=Division of Biological Science, Graduate School of Science, Nagoya University kn-affil= affil-num=15 en-affil=Graduate School of Frontier Biosciences, Osaka University kn-affil= affil-num=16 en-affil=Institute for Frontier Life and Medical Sciences, Kyoto University kn-affil= affil-num=17 en-affil=Department of Applied Physics, Graduate School of Engineering, Tohoku University kn-affil= affil-num=18 en-affil=Department of Physics, Gakushuin University kn-affil= affil-num=19 en-affil=Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University kn-affil= affil-num=20 en-affil=Department of Physics, Faculty of Science and Engineering, Kindai University kn-affil= affil-num=21 en-affil=Molecular Cryo‐Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University kn-affil= affil-num=22 en-affil=Department of Chemical and Biological Engineering, National Institute of Technology, Ube College kn-affil= affil-num=23 en-affil=Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences kn-affil= affil-num=24 en-affil=Faculty of Natural System, Institute of Science and Engineering, Kanazawa University kn-affil= affil-num=25 en-affil=Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University kn-affil= affil-num=26 en-affil=Department of Botany, Faculty of Science, Istanbul University kn-affil= affil-num=27 en-affil=Department of Physics, Graduate School of Science and Engineering, Ritsumeikan University kn-affil= affil-num=28 en-affil=Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= en-keyword=appendage kn-keyword=appendage en-keyword=cytoskeleton kn-keyword=cytoskeleton en-keyword=flagella kn-keyword=flagella en-keyword=membrane remodeling kn-keyword=membrane remodeling en-keyword=Mollicutes kn-keyword=Mollicutes en-keyword=motor protein kn-keyword=motor protein en-keyword=peptidoglycan kn-keyword=peptidoglycan en-keyword=three domains kn-keyword=three domains END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue=1 article-no= start-page=10702 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200701 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Skewed electronic band structure induced by electric polarization in ferroelectric BaTiO3 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Skewed band structures have been empirically described in ferroelectric materials to explain the functioning of recently developed ferroelectric tunneling junction (FTJs). Nonvolatile ferroelectric random access memory (FeRAM) and the artificial neural network device based on the FTJ system are rapidly developing. However, because the actual ferroelectric band structure has not been elucidated, precise designing of devices has to be advanced through appropriate heuristics. Here, we perform angle-resolved hard X-ray photoemission spectroscopy of ferroelectric BaTiO3 thin films for the direct observation of ferroelectric band skewing structure as the depth profiles of atomic orbitals. The depth-resolved electronic band structure consists of three depth regions: a potential slope along the electric polarization in the core, the surface and interface exhibiting slight changes. We also demonstrate that the direction of the energy shift is controlled by the polarization reversal. In the ferroelectric skewed band structure, we found that the difference in energy shifts of the atomic orbitals is correlated with the atomic configuration of the soft phonon mode reflecting the Born effective charges. These findings lead to a better understanding of the origin of electric polarization. en-copyright= kn-copyright= en-aut-name=OshimeNorihiro en-aut-sei=Oshime en-aut-mei=Norihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KanoJun en-aut-sei=Kano en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IkenagaEiji en-aut-sei=Ikenaga en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YasuiShintaro en-aut-sei=Yasui en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HamasakiYosuke en-aut-sei=Hamasaki en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YasuharaSou en-aut-sei=Yasuhara en-aut-mei=Sou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HinokumaSatoshi en-aut-sei=Hinokuma en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IkedaNaoshi en-aut-sei=Ikeda en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=JanolinPierre-Eymeric en-aut-sei=Janolin en-aut-mei=Pierre-Eymeric kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KiatJean-Michel en-aut-sei=Kiat en-aut-mei=Jean-Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ItohMitsuru en-aut-sei=Itoh en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=FujiiTatsuo en-aut-sei=Fujii en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=YasuiAkira en-aut-sei=Yasui en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=OsawaHitoshi en-aut-sei=Osawa en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Japan Synchrotron Radiation Research Institute, JASRI kn-affil= affil-num=4 en-affil=Laboratory for Materials and Structures, Tokyo Institute of Technology kn-affil= affil-num=5 en-affil=Laboratory for Materials and Structures, Tokyo Institute of Technology kn-affil= affil-num=6 en-affil=Laboratory for Materials and Structures, Tokyo Institute of Technology kn-affil= affil-num=7 en-affil=Innovative Oxidation Team, Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Université Paris-Saclay,CentraleSupélec, CNRS, Laboratoire SPMS kn-affil= affil-num=10 en-affil=Université Paris-Saclay,CentraleSupélec, CNRS, Laboratoire SPMS kn-affil= affil-num=11 en-affil=Laboratory for Materials and Structures, Tokyo Institute of Technology kn-affil= affil-num=12 en-affil=GResearch Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=13 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=14 en-affil=Japan Synchrotron Radiation Research Institute, JASRI kn-affil= affil-num=15 en-affil=Japan Synchrotron Radiation Research Institute, JASRI kn-affil= END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue= article-no= start-page=307 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=In vitroNeo-Genesis of Tendon/Ligament-Like Tissue by Combination of Mohawk and a Three-Dimensional Cyclic Mechanical Stretch Culture System en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tendons and ligaments are pivotal connective tissues that tightly connect muscle and bone. In this study, we developed a novel approach to generate tendon/ligament-like tissues with a hierarchical structure, by introducing the tendon/ligament-specific transcription factor Mohawk (MKX) into the mesenchymal stem cell (MSC) line C3H10T1/2 cells, and by applying an improved three-dimensional (3D) cyclic mechanical stretch culture system. In our developed protocol, a combination of stableMkxexpression and cyclic mechanical stretch synergistically affects the structural tendon/ligament-like tissue generation and tendon related gene expression. In a histological analysis of these tendon/ligament-like tissues, an organized extracellular matrix (ECM), containing collagen type III and elastin, was observed. Moreover, we confirmed thatMkxexpression and cyclic mechanical stretch, induced the alignment of structural collagen fibril bundles that were deposited in a fibripositor-like manner during the generation of our tendon/ligament-like tissues. Our findings provide new insights for the tendon/ligament biomaterial fields. en-copyright= kn-copyright= en-aut-name=KataokaKensuke en-aut-sei=Kataoka en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KurimotoRyota en-aut-sei=Kurimoto en-aut-mei=Ryota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsutsumiHiroki en-aut-sei=Tsutsumi en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ChibaTomoki en-aut-sei=Chiba en-aut-mei=Tomoki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatoTomomi en-aut-sei=Kato en-aut-mei=Tomomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ShishidoKana en-aut-sei=Shishido en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KatoMariko en-aut-sei=Kato en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ItoYoshiaki en-aut-sei=Ito en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ChoYuichiro en-aut-sei=Cho en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HoshiOsamu en-aut-sei=Hoshi en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MimataAyako en-aut-sei=Mimata en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SakamakiYuriko en-aut-sei=Sakamaki en-aut-mei=Yuriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakamichiRyo en-aut-sei=Nakamichi en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=LotzMartin K. en-aut-sei=Lotz en-aut-mei=Martin K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NaruseKeiji en-aut-sei=Naruse en-aut-mei=Keiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=AsaharaHiroshi en-aut-sei=Asahara en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= affil-num=1 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=2 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=3 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=4 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=5 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=6 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=7 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=8 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=9 en-affil=Anatomy and Physiological Science, Tokyo Medical and Dental University kn-affil= affil-num=10 en-affil=Anatomy and Physiological Science, Tokyo Medical and Dental University kn-affil= affil-num=11 en-affil=Research Core, Tokyo Medical and Dental University kn-affil= affil-num=12 en-affil=Research Core, Tokyo Medical and Dental University kn-affil= affil-num=13 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= affil-num=14 en-affil=Department of Molecular Medicine, The Scripps Research Institute kn-affil= affil-num=15 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=16 en-affil=Department of Systems BioMedicine, Tokyo Medical and Dental University kn-affil= en-keyword=Mohawk kn-keyword=Mohawk en-keyword=tendon kn-keyword=tendon en-keyword=ligament kn-keyword=ligament en-keyword=tissue engineering kn-keyword=tissue engineering en-keyword=mechanical-stress kn-keyword=mechanical-stress END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=22 article-no= start-page=5669 end-page=5675 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200518 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Aluminum porphyrins with quaternary ammonium halides as catalysts for copolymerization of cyclohexene oxide and CO2: metal–ligand cooperative catalysis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bifunctional AlIII porphyrins with quaternary ammonium halides, 2-Cl and 2-Br, worked as excellent catalysts for the copolymerization of cyclohexene oxide (CHO) and CO2 at 120 °C. Turnover frequency (TOF) and turnover number (TON) reached 10 000 h−1 and 55 000, respectively, and poly(cyclohexene carbonate) (PCHC) with molecular weight of up to 281 000 was obtained with a catalyst loading of 0.001 mol%. In contrast, bifunctional MgII and ZnII counterparts, 3-Cl and 4-Cl, as well as a binary catalyst system, 1-Cl with bis(triphenylphosphine)iminium chloride (PPNCl), showed poor catalytic performances. Kinetic studies revealed that the reaction rate was first-order in [CHO] and [2-Br] and zero-order in [CO2], and the activation parameters were determined: ΔH‡ = 12.4 kcal mol−1, ΔS‡ = −26.1 cal mol−1 K−1, and ΔG‡ = 21.6 kcal mol−1 at 80 °C. Comparative DFT calculations on two model catalysts, AlIII complex 2′ and MgII complex 3′, allowed us to extract key factors in the catalytic behavior of the bifunctional AlIII catalyst. The high polymerization activity and carbonate-linkage selectivity originate from the cooperative actions of the metal center and the quaternary ammonium cation, both of which facilitate the epoxide-ring opening by the carbonate anion to form the carbonate linkage in the key transition state such as TS3b (ΔH‡ = 13.3 kcal mol−1, ΔS‡ = −3.1 cal mol−1 K−1, and ΔG‡ = 14.4 kcal mol−1 at 80 °C). en-copyright= kn-copyright= en-aut-name=DengJingyuan en-aut-sei=Deng en-aut-mei=Jingyuan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=RatanasakManussada en-aut-sei=Ratanasak en-aut-mei=Manussada kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SakoYuma en-aut-sei=Sako en-aut-mei=Yuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokudaHideki en-aut-sei=Tokuda en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MaedaChihiro en-aut-sei=Maeda en-aut-mei=Chihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HasegawaJun-ya en-aut-sei=Hasegawa en-aut-mei=Jun-ya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NozakiKyoko en-aut-sei=Nozaki en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EmaTadashi en-aut-sei=Ema en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo kn-affil= affil-num=2 en-affil=Institute for Catalysis, Hokkaido University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Institute for Catalysis, Hokkaido University kn-affil= affil-num=7 en-affil=Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200603 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparative Gene Analysis Focused on Silica Cell Wall Formation: Identification of Diatom-Specific SET Domain Protein Methyltransferases en-subtitle= kn-subtitle= en-abstract= kn-abstract=Silica cell walls of diatoms have attracted attention as a source of nanostructured functional materials and have immense potential for a variety of applications. Previous studies of silica cell wall formation have identified numerous involved proteins, but most of these proteins are species-specific and are not conserved among diatoms. However, because the basic process of diatom cell wall formation is common to all diatom species, ubiquitous proteins and molecules will reveal the mechanisms of cell wall formation. In this study, we assembled de novo transcriptomes of three diatom species, Nitzschia palea, Achnanthes kuwaitensis, and Pseudoleyanella lunata, and compared protein-coding genes of five genome-sequenced diatom species. These analyses revealed a number of diatom-specific genes that encode putative endoplasmic reticulum-targeting proteins. Significant numbers of these proteins showed homology to silicanin-1, which is a conserved diatom protein that reportedly contributes to cell wall formation. These proteins also included a previously unrecognized SET domain protein methyltransferase family that may regulate functions of cell wall formation-related proteins and long-chain polyamines. Proteomic analysis of cell wall-associated proteins in N. palea identified a protein that is also encoded by one of the diatom-specific genes. Expression analysis showed that candidate genes were upregulated in response to silicon, suggesting that these genes play roles in silica cell wall formation. These candidate genes can facilitate further investigations of silica cell wall formation in diatoms. en-copyright= kn-copyright= en-aut-name=NemotoMichiko en-aut-sei=Nemoto en-aut-mei=Michiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwakiSayako en-aut-sei=Iwaki en-aut-mei=Sayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MoriyaHisao en-aut-sei=Moriya en-aut-mei=Hisao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MondenYuki en-aut-sei=Monden en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TamuraTakashi en-aut-sei=Tamura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InagakiKenji en-aut-sei=Inagaki en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MayamaShigeki en-aut-sei=Mayama en-aut-mei=Shigeki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ObuseKiori en-aut-sei=Obuse en-aut-mei=Kiori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Biology, Tokyo Gakugei University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Biomineralization kn-keyword=Biomineralization en-keyword=Diatom kn-keyword=Diatom en-keyword=Silica kn-keyword=Silica en-keyword=Transcriptome kn-keyword=Transcriptome en-keyword=Proteome kn-keyword=Proteome END start-ver=1.4 cd-journal=joma no-vol=230 cd-vols= no-issue= article-no= start-page=109 end-page=115 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160528 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Increased fibrosis and impaired intratumoral accumulation of macromolecules in a murine model of pancreatic cancer co-administered with FGF-2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=Pancreatic cancer is notorious for its poor prognosis. The histopathologic characteristic of pancreatic ductal adenocarcinoma (PDAC), which is the most common type of pancreatic cancer, is fibrosis within tumor tissue. Although fibrosis within tumor tissue is thought to impede drug therapy by interfering with the intratumoral accumulation of anti-tumor drugs, this hypothesis has yet to be proven directly in preclinical models. Here, we evaluated the effect of enhanced fibrosis on intratumoral accumulation of macromolecular drugs by increasing fibrosis in a murine tumor model of subcutaneously xenografted BxPC-3, a human PDAC cell line. When fibroblast growth factor-2 (FGF-2) was co-administered upon BxPC-3 inoculation, stromal fibrotic area was increased and was characterized by augmented murine collagen accumulation compared to inoculation of BxPC-3 alone, which correlated with increased monocyte/macrophage contents in the tumor tissues. We further discovered that the intratumoral accumulation of intravenously administrated fluorescein isothiocyanate-dextran of 2,000,000 Da (2 MDa) was significantly reduced in the FGF-2 co-administered tumors despite unaltered hyaluronan accumulation and pericyte coverage of the tumor neovasculature and increased lymphangiogenesis. Finally, we found that FGF-2 co-administered tumors are more refractory to macromolecular drug therapy using nab-paclitaxel (Abraxane). The model established and analyzed in this study, characterized by increased fibrotic component, provides a preclinical animal model suited to predict the intratumoral accumulation of macromolecular drugs and to evaluate the efficacy of drugs targeting the tumor stroma. en-copyright= kn-copyright= en-aut-name=SakaiSatoshi en-aut-sei=Sakai en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwataCaname en-aut-sei=Iwata en-aut-mei=Caname kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaHiroyoshi Y. en-aut-sei=Tanaka en-aut-mei=Hiroyoshi Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=CabralHoracio en-aut-sei=Cabral en-aut-mei=Horacio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MorishitaYasuyuki en-aut-sei=Morishita en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyazonKohei en-aut-sei=Miyazon en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KanoMitsunobu R. en-aut-sei=Kano en-aut-mei=Mitsunobu R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=2 en-affil=Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=3 en-affil= Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Engineering, The University of Tokyo kn-affil= affil-num=5 en-affil=Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=6 en-affil=Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=7 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Macromolecular drugs kn-keyword=Macromolecular drugs en-keyword=Drug distribution kn-keyword=Drug distribution en-keyword=Pancreatic ductal adenocarcinoma kn-keyword=Pancreatic ductal adenocarcinoma en-keyword=Fibrosis kn-keyword=Fibrosis en-keyword=FGF-2 kn-keyword=FGF-2 END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=10 article-no= start-page=e0223656 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191017 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Identification of social relation within pedestrian dyads en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study focuses on social pedestrian groups in public spaces and makes an effort to identify the type of social relation between the group members. As a first step for this identification problem, we focus on dyads (i.e. 2 people groups). Moreover, as a mutually exclusive categorization of social relations, we consider the domain-based approach of Bugental, which precisely corresponds to social relations of colleagues, couples, friends and families, and identify each dyad with one of those relations. For this purpose, we use anonymized trajectory data and derive a set of observables thereof, namely, inter-personal distance, group velocity, velocity difference and height difference. Subsequently, we use the probability density functions (pdf) of these observables as a tool to understand the nature of the relation between pedestrians. To that end, we propose different ways of using the pdfs. Namely, we introduce a probabilistic Bayesian approach and contrast it to a functional metric one and evaluate the performance of both methods with appropriate assessment measures. This study stands out as the first attempt to automatically recognize social relation between pedestrian groups. Additionally, in doing that it uses completely anonymous data and proves that social relation is still possible to recognize with a good accuracy without invading privacy. In particular, our findings indicate that significant recognition rates can be attained for certain categories and with certain methods. Specifically, we show that a very good recognition rate is achieved in distinguishing colleagues from leisure-oriented dyads (families, couples and friends), whereas the distinction between the leisure-oriented dyads results to be inherently harder, but still possible at reasonable rates, in particular if families are restricted to parent-child groups. In general, we establish that the Bayesian method outperforms the functional metric one due, probably, to the difficulty of the latter to learn observable pdfs from individual trajectories. en-copyright= kn-copyright= en-aut-name=YucelZeynep en-aut-sei=Yucel en-aut-mei=Zeynep kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ZanlungoFrancesco en-aut-sei=Zanlungo en-aut-mei=Francesco kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FelicianiClaudio en-aut-sei=Feliciani en-aut-mei=Claudio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=GregorjAdrien en-aut-sei=Gregorj en-aut-mei=Adrien kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KandaTakayuki en-aut-sei=Kanda en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Computer Science, Okayama University kn-affil= affil-num=2 en-affil=Intelligent Robotics and Communication Laboratory, ATR kn-affil= affil-num=3 en-affil=Research Center for Advanced Science and Technology,The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Computer Science, Okayama University kn-affil= affil-num=5 en-affil=Intelligent Robotics and Communication Laboratory, ATR kn-affil= END start-ver=1.4 cd-journal=joma no-vol=101 cd-vols= no-issue=24 article-no= start-page=245111 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Magnetotransport properties of tellurium under extreme conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=This study investigates the transport properties of a chiral elemental semiconductor tellurium (Te) under magnetic fields and pressure. Application of hydrostatic pressure reduces the resistivity of Te, while its temperature dependence remains semiconducting up to 4 GPa, contrary to recent theoretical and experimental studies. Application of higher pressure causes structural as well as semiconductor-metal transitions. The resulting metallic phase above 4 GPa exhibits superconductivity at 2 K along with a noticeable linear magnetoresistance effect. On the other hand, at ambient pressure, we identified metallic surface states on the as-cleaved (10¯10) surfaces of Te. The nature of these metallic surface states has been systematically studied by analyzing quantum oscillations observed in high magnetic fields. We clarify that a well-defined metallic surface state exists not only on chemically etched samples that were previously reported, but also on as-cleaved ones. en-copyright= kn-copyright= en-aut-name=AkibaKazuto en-aut-sei=Akiba en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KobayashiKaya en-aut-sei=Kobayashi en-aut-mei=Kaya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiTatsuo C. en-aut-sei=Kobayashi en-aut-mei=Tatsuo C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KoezukaRyo en-aut-sei=Koezuka en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MiyakeAtsushi en-aut-sei=Miyake en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GouchiJun en-aut-sei=Gouchi en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UwatokoYoshiya en-aut-sei=Uwatoko en-aut-mei=Yoshiya kn-aut-name= Yosh kn-aut-sei= Yosh kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TokunagaMasashi en-aut-sei=Tokunaga en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=5 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=6 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=7 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= affil-num=8 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=G3: Genes Genomes Genetics cd-vols= no-issue=1 article-no= start-page=217 end-page=228 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201901 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Medaka Population Genome Structure and Demographic History Described via Genotyping-by-Sequencing en-subtitle= kn-subtitle= en-abstract= kn-abstract=Medaka is a model organism in medicine, genetics, developmental biology and population genetics. Lab stocks composed of more than 100 local wild populations are available for research in these fields. Thus, medaka represents a potentially excellent bioresource for screening disease-risk- and adaptation-related genes in genome-wide association studies. Although the genetic population structure should be known before performing such an analysis, a comprehensive study on the genome-wide diversity of wild medaka populations has not been performed. Here, we performed genotyping-by-sequencing (GBS) for 81 and 12 medakas captured from a bioresource and the wild, respectively. Based on the GBS data, we evaluated the genetic population structure and estimated the demographic parameters using an approximate Bayesian computation (ABC) framework. The genome-wide data confirmed that there were substantial differences between local populations and supported our previously proposed hypothesis on medaka dispersal based on mitochondrial genome (mtDNA) data. A new finding was that a local group that was thought to be a hybrid between the northern and the southern Japanese groups was actually an origin of the northern Japanese group. Thus, this paper presents the first population-genomic study of medaka and reveals its population structure and history based on chromosomal genetic diversity. en-copyright= kn-copyright= en-aut-name=KatsumuraTakafumi en-aut-sei=Katsumura en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OdaShoji en-aut-sei=Oda en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitaniHiroshi en-aut-sei=Mitani en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OotaHiroki en-aut-sei=Oota en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo kn-affil= affil-num=3 en-affil=Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo kn-affil= affil-num=4 en-affil=Department of Anatomy, Kitasato University School of Medicine kn-affil= en-keyword=local population kn-keyword=local population en-keyword=freshwater fish kn-keyword=freshwater fish en-keyword=demography kn-keyword=demography en-keyword=RAD-seq kn-keyword=RAD-seq en-keyword=bioresource kn-keyword=bioresource END start-ver=1.4 cd-journal=joma no-vol=530 cd-vols= no-issue= article-no= start-page=115887 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Grain boundary diffusion of W in lower mantle phase with implications for isotopic heterogeneity in oceanic island basalts by core-mantle interactions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Tungsten isotopes provide important constraints on the ocean-island basalt (OIB) source regions. Recent analyses of μ182W in modern basalts with high 3He/4He originating from the core-mantle boundary region reveal two distinct features: positive μ182W in Phanerozoic flood basalts indicating the presence of primordial reservoir, and negative μ182W in modern OIBs. One possibility to produce large variations in μ182W is interaction between the mantle and outer core. Here, we report grain boundary diffusion of W in lower mantle phases. High pressure experimental results show that grain boundary diffusion of W is fast and strongly temperature dependent. Over Earth's history, diffusive transport of W from the core to the lowermost mantle may have led to significant modification of the W isotopic composition of the lower mantle at length scales exceeding one kilometer. Such grain boundary diffusion can lead to large variations in μ182W in modern basalts as a function of the distance of their source regions from the core mantle boundary. Modern oceanic island basalts from Hawaii, Samoa and Iceland exhibit negative μ182W and likely originated from the modified isotope region just above the core-mantle boundary, whereas those with positive μ182W could be derived from the thick Large Low Shear Velocity Provinces (LLSVPs) far from the core-mantle boundary (CMB). When highly-oxidized slabs accumulate at the CMB oxidizing the outer core at the interface, a large W flux with negative μ182W can be added to the silicate mantle. As a result, the source region of the OIB would be effectively modified to a negative μ182W. en-copyright= kn-copyright= en-aut-name=YoshinoTakashi en-aut-sei=Yoshino en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakinoYoshiki en-aut-sei=Makino en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SuzukiToshihiro en-aut-sei=Suzuki en-aut-mei=Toshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HirataTakafumi en-aut-sei=Hirata en-aut-mei=Takafumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Geochemical Research Center, The University of Tokyo kn-affil= affil-num=3 en-affil=Geochemical Research Center, The University of Tokyo kn-affil= affil-num=4 en-affil=Geochemical Research Center, The University of Tokyo kn-affil= en-keyword=core mantle interaction kn-keyword=core mantle interaction en-keyword=grain boundary diffusion kn-keyword=grain boundary diffusion en-keyword=high pressure experiment kn-keyword=high pressure experiment en-keyword=postspinel kn-keyword=postspinel en-keyword=W isotope kn-keyword=W isotope en-keyword=core mantle boundary kn-keyword=core mantle boundary END start-ver=1.4 cd-journal=joma no-vol=524 cd-vols= no-issue=4 article-no= start-page=910 end-page=915 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200416 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=S-Nitrosylation at the active site decreases the ubiquitin-conjugating activity of ubiquitin-conjugating enzyme E2 D1 (UBE2D1), an ERAD-associated protein en-subtitle= kn-subtitle= en-abstract= kn-abstract=S-Nitrosylation of protein cysteine thiol is a post-translational modification mediated by nitric oxide (NO). The overproduction of NO causes nitrosative stress, which is known to induce endoplasmic reticulum (ER) stress. We previously reported that S-nitrosylation of protein disulfide isomerase (PDI) and the ER stress sensor inositol-requiring enzyme 1 (IRE1) decreases their enzymatic activities. However, it remains unclear whether nitrosative stress affects ER-associated degradation (ERAD), a separate ER stress regulatory system responsible for the degradation of substrates via the ubiquitin-proteasomal pathway. In the present study, we found that the ubiquitination of a known ERAD substrate, serine/threonine-protein kinase 1 (SGK1), is attenuated by nitrosative stress. C-terminus of Hsc70-interacting protein (CHIP) together with ubiquitin-conjugating enzyme E2 D1 (UBE2D1) are involved in this modification. We detected that UBE2D1 is S-nitrosylated at its active site, Cys85 by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Furthermore, in vitro and cell-based experiments revealed that S-nitrosylated UBE2D1 has decreased ubiquitin-conjugating activity. Our results suggested that nitrosative stress interferes with ERAD, leading to prolongation of ER stress by co-disruption of various pathways, including the molecular chaperone and ER stress sensor pathways. Given that nitrosative stress and ER stress are upregulated in the brains of patient with Parkinson’s disease (PD) and of those with Alzheimer’s disease (AD), our findings may provide further insights into the pathogenesis of these neurodegenerative disorders. en-copyright= kn-copyright= en-aut-name=FujikawaKana en-aut-sei=Fujikawa en-aut-mei=Kana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakaharaKengo en-aut-sei=Nakahara en-aut-mei=Kengo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakasugiNobumasa en-aut-sei=Takasugi en-aut-mei=Nobumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NishiyaTadashi en-aut-sei=Nishiya en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ItoAkihiro en-aut-sei=Ito en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UchidaKoji en-aut-sei=Uchida en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UeharaTakashi en-aut-sei=Uehara en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=School of Pharmaceutical Sciences, Ohu University kn-affil= affil-num=5 en-affil=School of Life Sciences, Tokyo University of Pharmacy and Life Sciences kn-affil= affil-num=6 en-affil=Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo kn-affil= affil-num=7 en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=Nitric oxide kn-keyword=Nitric oxide en-keyword=Redox kn-keyword=Redox en-keyword=Endoplasmic reticulum (ER) stress kn-keyword=Endoplasmic reticulum (ER) stress en-keyword=ER-Associated degradation kn-keyword=ER-Associated degradation en-keyword=Ubiquitin proteasome system kn-keyword=Ubiquitin proteasome system en-keyword=Ubiquitin-conjugating enzyme E2 kn-keyword=Ubiquitin-conjugating enzyme E2 END start-ver=1.4 cd-journal=joma no-vol=125 cd-vols= no-issue=1-2 article-no= start-page=174 end-page=180 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180717 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Pyridoxal 5′-phosphate and related metabolites in hypophosphatasia: Effects of enzyme replacement therapy en-subtitle= kn-subtitle= en-abstract= kn-abstract=Objective To investigate the utility of serum pyridoxal 5′-phosphate (PLP), pyridoxal (PL), and 4-pyridoxic acid (PA) as a diagnostic marker of hypophosphatasia (HPP) and an indicator of the effect of, and patient compliance with, enzyme replacement therapy (ERT), we measured PLP, PL, and PA concentrations in serum samples from HPP patients with and without ERT. Methods Blood samples were collected from HPP patients and serum was frozen as soon as possible (mostly within one hour). PLP, PL, and PA concentrations were analyzed using high-performance liquid chromatography with fluorescence detection after pre-column derivatization by semicarbazide. We investigated which metabolites are associated with clinical phenotypes and how these metabolites change with ERT. Results Serum samples from 20 HPP patients were analyzed. The PLP-to-PL ratio and PLP concentration were elevated in all HPP patients. They correlated negatively with serum alkaline phosphatase (ALP) activity and showed higher values in more severe phenotypes (perinatal severe and infantile HPP) compared with other phenotypes. PL concentration was reduced only in perinatal severe HPP. ERT reduced the PLP-to-PL ratio to mildly reduced or low-normal levels and the PLP concentration was reduced to normal or mildly elevated levels. Urine phosphoethanolamine (PEA) concentration did not return to normal levels with ERT in most patients. Conclusions The serum PLP-to-PL ratio is a better indicator of the effect of ERT for HPP than serum PLP and urine PEA concentrations, and a PLP-to-PL ratio of <4.0 is a good indicator of the effect of, and patient compliance with, ERT. en-copyright= kn-copyright= en-aut-name=AkiyamaTomoyuki en-aut-sei=Akiyama en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubotaTakuo en-aut-sei=Kubota en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OzonoKeiichi en-aut-sei=Ozono en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MichigamiToshimi en-aut-sei=Michigami en-aut-mei=Toshimi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KobayashiDaisuke en-aut-sei=Kobayashi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakeyariShinji en-aut-sei=Takeyari en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SugiyamaYuichiro en-aut-sei=Sugiyama en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NodaMasahiro en-aut-sei=Noda en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HaradaDaisuke en-aut-sei=Harada en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NambaNoriyuki en-aut-sei=Namba en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SuzukiAtsushi en-aut-sei=Suzuki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=UtoyamaMaiko en-aut-sei=Utoyama en-aut-mei=Maiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KitanakaSachiko en-aut-sei=Kitanaka en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=UematsuMitsugu en-aut-sei=Uematsu en-aut-mei=Mitsugu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MitaniYusuke en-aut-sei=Mitani en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MatsunamiKunihiro en-aut-sei=Matsunami en-aut-mei=Kunihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=TakishimaShigeru en-aut-sei=Takishima en-aut-mei=Shigeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=OgawaErika en-aut-sei=Ogawa en-aut-mei=Erika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KobayashiKatsuhiro en-aut-sei=Kobayashi en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pediatrics, Osaka University Graduate School of Medicine kn-affil= affil-num=3 en-affil=Department of Pediatrics, Osaka University Graduate School of Medicine kn-affil= affil-num=4 en-affil=Department of Bone and Mineral Research, Osaka Women's and Children's Hospital kn-affil= affil-num=5 en-affil=Department of Food and Chemical Toxicology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido kn-affil= affil-num=6 en-affil=Department of Pediatrics, Osaka University Graduate School of Medicine kn-affil= affil-num=7 en-affil=Department of Pediatrics, Nagoya University Graduate School of Medicine kn-affil= affil-num=8 en-affil=Department of Pediatrics, Showa General Hospital kn-affil= affil-num=9 en-affil=Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization kn-affil= affil-num=10 en-affil=Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization kn-affil= affil-num=11 en-affil=Department of Neonatology and Pediatrics, Nagoya City University Graduate School of Medical Sciences kn-affil= affil-num=12 en-affil=Department of Pediatrics, Faculty of Medicine, University of Miyazaki kn-affil= affil-num=13 en-affil=Department of Pediatrics, Graduate School of Medicine, University of Tokyo kn-affil= affil-num=14 en-affil=Department of Pediatrics, Tohoku University Graduate School of Medicine kn-affil= affil-num=15 en-affil=Department of Pediatrics, Kanazawa University Hospital kn-affil= affil-num=16 en-affil=Department of Pediatrics, Gifu Prefectural General Medical Center kn-affil= affil-num=17 en-affil=Department of Pediatrics, Soka Municipal Hospital kn-affil= affil-num=18 en-affil=Department of Pediatrics and Child Health, Nihon University School of Medicine kn-affil= affil-num=19 en-affil=Department of Child Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Asfotase alfa kn-keyword=Asfotase alfa en-keyword=Liquid chromatography kn-keyword=Liquid chromatography en-keyword=Vitamin B6 kn-keyword=Vitamin B6 en-keyword=Diagnostic marker kn-keyword=Diagnostic marker en-keyword=Therapeutic monitoring kn-keyword=Therapeutic monitoring END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=4 article-no= start-page=153 end-page=162 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200405 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Causal Diagrams: Pitfalls and Tips en-subtitle= kn-subtitle= en-abstract= kn-abstract=Graphical models are useful tools in causal inference, and causal directed acyclic graphs (DAGs) are used extensively to determine the variables for which it is sufficient to control for confounding to estimate causal effects. We discuss the following ten pitfalls and tips that are easily overlooked when using DAGs: 1) Each node on DAGs corresponds to a random variable and not its realized values; 2) The presence or absence of arrows in DAGs corresponds to the presence or absence of individual causal effect in the population; 3) "Non-manipulable" variables and their arrows should be drawn with care; 4) It is preferable to draw DAGs for the total population, rather than for the exposed or unexposed groups; 5) DAGs are primarily useful to examine the presence of confounding in distribution in the notion of confounding in expectation; 6) Although DAGs provide qualitative differences of causal structures, they cannot describe details of how to adjust for confounding; 7) DAGs can be used to illustrate the consequences of matching and the appropriate handling of matched variables in cohort and case-control studies; 8) When explicitly accounting for temporal order in DAGs, it is necessary to use separate nodes for each timing; 9) In certain cases, DAGs with signed edges can be used in drawing conclusions about the direction of bias; and 10) DAGs can be (and should be) used to describe not only confounding bias but also other forms of bias. We also discuss recent developments of graphical models and their future directions. en-copyright= kn-copyright= en-aut-name=SuzukiEtsuji en-aut-sei=Suzuki en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShinozakiTomohiro en-aut-sei=Shinozaki en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamamotoEiji en-aut-sei=Yamamoto en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Department of Epidemiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science kn-affil= affil-num=3 en-affil=Okayama University of Science kn-affil= en-keyword=bias kn-keyword=bias en-keyword=causal inference kn-keyword=causal inference en-keyword=causality kn-keyword=causality en-keyword=confounding kn-keyword=confounding en-keyword=directed acyclic graphs kn-keyword=directed acyclic graphs END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue= article-no= start-page=143 end-page=153 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191023 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Effect of CYP3A5*3 genetic variant on the metabolism of direct-acting antivirals in vitro : a different effect on asunaprevir versus daclatasvir and beclabuvir en-subtitle= kn-subtitle= en-abstract= kn-abstract=Direct-acting antivirals, asunaprevir (ASV), daclatasvir (DCV), and beclabuvir (BCV) are known to be mainly metabolized by CYP3A enzymes; however, the differences in the detailed metabolic activities of CYP3A4 and CYP3A5 on these drugs are not well clarified. The aim of the present study was to elucidate the relative contributions of CYP3A4 and CYP3A5 to the metabolism of ASV, DCV, and BCV, as well as the effect of CYP3A5*3 genetic variant in vitro. The amount of each drug and their major metabolites were determined using LC-MS/MS. Recombinant CYP3As and CYP3A5*3-genotyped human liver microsomes (CYP3A5 expressers or non-expressers) were used for the determination of their metabolic activities. The contribution of CYP3A5 to ASV metabolism was considerable compared to that of CYP3A4. Consistently, ASV metabolic activity in CYP3A5 expressers was higher than those in CYP3A5 non-expresser. Moreover, CYP3A5 expression level was significantly correlated with ASV metabolism. In contrast, these observations were not found in DCV and BCV metabolism. To our knowledge, this is the first study to directly demonstrate the effect of CYP3A5*3 genetic variants on the metabolism of ASV. The findings of the present study may provide basic information on ASV, DCV, and BCV metabolisms. en-copyright= kn-copyright= en-aut-name=MatsumotoJun en-aut-sei=Matsumoto en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SanSu Nwe en-aut-sei=San en-aut-mei=Su Nwe kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FujiyoshiMasachika en-aut-sei=Fujiyoshi en-aut-mei=Masachika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawauchiAyano en-aut-sei=Kawauchi en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ChibaNatsumi en-aut-sei=Chiba en-aut-mei=Natsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TagaiRan en-aut-sei=Tagai en-aut-mei=Ran kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SanbeRyoko en-aut-sei=Sanbe en-aut-mei=Ryoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YanakaShiho en-aut-sei=Yanaka en-aut-mei=Shiho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SakaueHiroaki en-aut-sei=Sakaue en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KatoYoshinori en-aut-sei=Kato en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakamuraHiroyoshi en-aut-sei=Nakamura en-aut-mei=Hiroyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YamadaHarumi en-aut-sei=Yamada en-aut-mei=Harumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=AriyoshiNoritaka en-aut-sei=Ariyoshi en-aut-mei=Noritaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate kn-affil= affil-num=2 en-affil=Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare kn-affil= affil-num=3 en-affil=Department of Personalized Medicine and Preventive Healthcare Sciences, Graduate kn-affil= affil-num=4 en-affil=Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare kn-affil= affil-num=5 en-affil=Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare kn-affil= affil-num=6 en-affil=Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare kn-affil= affil-num=7 en-affil=Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare kn-affil= affil-num=8 en-affil=Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare kn-affil= affil-num=9 en-affil=Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences kn-affil= affil-num=10 en-affil=Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare kn-affil= affil-num=11 en-affil=Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare kn-affil= affil-num=12 en-affil=Department of Pharmacokinetics, Pharmaceutical Sciences, International University of Health and Welfare kn-affil= affil-num=13 en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama University kn-affil= en-keyword=Genetic markers kn-keyword=Genetic markers en-keyword=Haplotypes kn-keyword=Haplotypes END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=1 article-no= start-page=238 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural basis for the adaptation and function of chlorophyll f in photosystem I en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chlorophylls (Chl) play pivotal roles in energy capture, transfer and charge separation in photosynthesis. Among Chls functioning in oxygenic photosynthesis, Chl f is the most red-shifted type first found in a cyanobacterium Halomicronema hongdechloris. The location and function of Chl f in photosystems are not clear. Here we analyzed the high-resolution structures of photosystem I (PSI) core from H. hongdechloris grown under white or far-red light by cryo-electron microscopy. The structure showed that, far-red PSI binds 83 Chl a and 7 Chl f, and Chl f are associated at the periphery of PSI but not in the electron transfer chain. The appearance of Chl f is well correlated with the expression of PSI genes induced under far-red light. These results indicate that Chl f functions to harvest the far-red light and enhance uphill energy transfer, and changes in the gene sequences are essential for the binding of Chl f. en-copyright= kn-copyright= en-aut-name=KatoKoji en-aut-sei=Kato en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShinodaToshiyuki en-aut-sei=Shinoda en-aut-mei=Toshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkimotoSeiji en-aut-sei=Akimoto en-aut-mei=Seiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=DohmaeNaoshi en-aut-sei=Dohmae en-aut-mei=Naoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ChenMin en-aut-sei=Chen en-aut-mei=Min kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=AllakhverdievSuleyman I. en-aut-sei=Allakhverdiev en-aut-mei=Suleyman I. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MiyazakiNaoyuki en-aut-sei=Miyazaki en-aut-mei=Naoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TomoTatsuya en-aut-sei=Tomo en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Science, Tokyo University of Science kn-affil= affil-num=3 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Science, Kobe University kn-affil= affil-num=5 en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=School of Life and Environmental Sciences, University of Sydney kn-affil= affil-num=8 en-affil=K.A. Timiryazev Institute of Plant Physiology RAS kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Institute for Protein Research, Laboratory of Protein Synthesis and Expression, Osaka University kn-affil= affil-num=12 en-affil=Faculty of Science, Tokyo University of Science kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue=2 article-no= start-page=023D01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gamma-ray spectrum from thermal neutron capture on gadolinium-157 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have measured the -ray energy spectrum from the thermal neutron capture, Gd, on an enriched Gd target (GdO) in the energy range from 0.11 MeV up to about 8 MeV. The target was placed inside the germanium spectrometer of the ANNRI detector at J-PARC and exposed to a neutron beam from the Japan Spallation Neutron Source (JSNS). Radioactive sources (Co, Cs, and Eu) and the Cl(,) reaction were used to determine the spectrometers detection efficiency for rays at energies from 0.3 to 8.5 MeV. Using a Geant4-based Monte Carlo simulation of the detector and based on our data, we have developed a model to describe the -ray spectrum from the thermal Gd(,) reaction. While we include the strength information of 15 prominent peaks above 5 MeV and associated peaks below 1.6 MeV from our data directly into the model, we rely on the theoretical inputs of nuclear level density and the photon strength function of Gd to describe the continuum -ray spectrum from the Gd(,) reaction. Our model combines these two components. The results of the comparison between the observed -ray spectra from the reaction and the model are reported in detail. en-copyright= kn-copyright= en-aut-name=HagiwaraKaito en-aut-sei=Hagiwara en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YanoTakatomi en-aut-sei=Yano en-aut-mei=Takatomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTomoyuki en-aut-sei=Tanaka en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ReenMandeep Singh en-aut-sei=Reen en-aut-mei=Mandeep Singh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DasPretam Kumar en-aut-sei=Das en-aut-mei=Pretam Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LorenzSebastian en-aut-sei=Lorenz en-aut-mei=Sebastian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OuIwa en-aut-sei=Ou en-aut-mei=Iwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SudoTakashi en-aut-sei=Sudo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamadaYoshiyuki en-aut-sei=Yamada en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MoriTakaaki en-aut-sei=Mori en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KayanoTsubasa en-aut-sei=Kayano en-aut-mei=Tsubasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DhirRohit en-aut-sei=Dhir en-aut-mei=Rohit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KoshioYusuke en-aut-sei=Koshio en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraAtsushi en-aut-sei=Kimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraShoji en-aut-sei=Nakamura en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=IwamotoNobuyuki en-aut-sei=Iwamoto en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=HaradaHideo en-aut-sei=Harada en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=WurmMichael en-aut-sei=Wurm en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FocillonWilliam en-aut-sei=Focillon en-aut-mei=William kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=GoninMichel en-aut-sei=Gonin en-aut-mei=Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=AliAjmi en-aut-sei=Ali en-aut-mei=Ajmi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=CollazuolGianmaria en-aut-sei=Collazuol en-aut-mei=Gianmaria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Department of Physics, Okayama University kn-affil= affil-num=6 en-affil=Department of Physics, Okayama University kn-affil= affil-num=7 en-affil=Department of Physics, Okayama University kn-affil= affil-num=8 en-affil=Department of Physics, Okayama University kn-affil= affil-num=9 en-affil=Department of Physics, Okayama University kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=Department of Physics, Okayama University kn-affil= affil-num=13 en-affil=Department of Physics, Okayama University kn-affil= affil-num=14 en-affil=Department of Physics, Okayama University kn-affil= affil-num=15 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=16 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=17 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=18 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=19 en-affil=Institut für Physik, Johannes Gutenberg-Universität Mainz kn-affil= affil-num=20 en-affil=Département de Physique, École Polytechnique kn-affil= affil-num=21 en-affil=Département de Physique, École Polytechnique kn-affil= affil-num=22 en-affil=Department of Physics, Okayama University kn-affil= affil-num=23 en-affil=Universitá di Padova and INFN, Dipartimento di Fisica kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue=6 article-no= start-page=063H03 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a method for measuring rare earth elements in the environment for future experiments with gadolinium-loaded detectors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Demand to use gadolinium (Gd) in detectors is increasing in the field of elementary particle physics, especially in neutrino measurements and dark matter searches. Large amounts of Gd are used in these experiments. To assess the impact of Gd on the environment it is becoming important to measure the baseline concentrations of Gd. Such measurement, however, is not easy due to interference by other elements. In this paper a method for measuring the concentrations of rare earth elements, including Gd, is proposed. In the method, inductively coupled plasma-mass spectrometry is utilized after collecting the dissolved elements in chelating resin. Results of the ability to detect anomalous concentrations of rare earth elements in river water samples in the Kamioka and Toyama areas are also reported. en-copyright= kn-copyright= en-aut-name=ItoS. en-aut-sei=Ito en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaT. en-aut-sei=Okada en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakuY. en-aut-sei=Takaku en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaradaM. en-aut-sei=Harada en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkedaM. en-aut-sei=Ikeda en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KishimotoY. en-aut-sei=Kishimoto en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KoshioY. en-aut-sei=Koshio en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakahataM. en-aut-sei=Nakahata en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakajimaY. en-aut-sei=Nakajima en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SekiyaH. en-aut-sei=Sekiya en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Okayama University, Faculty of Science kn-affil= affil-num=2 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=3 en-affil=Institute for Environmental Sciences, Department of Radioecology kn-affil= affil-num=4 en-affil=Okayama University, Faculty of Science kn-affil= affil-num=5 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=6 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=7 en-affil=Okayama University, Faculty of Science kn-affil= affil-num=8 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=9 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=10 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=4159 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190913 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules en-subtitle= kn-subtitle= en-abstract= kn-abstract=The photoisomerization of molecules is widely used to control the structure of soft matter in both natural and synthetic systems. However, the structural dynamics of the molecules during isomerization and their subsequent response are difficult to elucidate due to their complex and ultrafast nature. Herein, we describe the ultrafast formation of higherorientation of liquid-crystalline (LC) azobenzene molecules via linearly polarized ultraviolet light (UV) using ultrafast time-resolved electron diffraction. The ultrafast orientation is caused by the trans-to-cis isomerization of the azobenzene molecules. Our observations are consistent with simplified molecular dynamics calculations that revealed that the molecules are aligned with the laser polarization axis by their cooperative motion after photoisomerization. This insight advances the fundamental chemistry of photoresponsive molecules in soft matter as well as their ultrafast photomechanical applications. en-copyright= kn-copyright= en-aut-name=HadaMasaki en-aut-sei=Hada en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamaguchiDaisuke en-aut-sei=Yamaguchi en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshikawaTadahiko en-aut-sei=Ishikawa en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SawaTakayoshi en-aut-sei=Sawa en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsurutaKenji en-aut-sei=Tsuruta en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IshikawaKen en-aut-sei=Ishikawa en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KoshiharaShin-Ya en-aut-sei=Koshihara en-aut-mei=Shin-Ya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HayashiYasuhiko en-aut-sei=Hayashi en-aut-mei=Yasuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatoTakashi en-aut-sei=Kato en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo kn-affil= affil-num=3 en-affil=School of Science,Tokyo Institute of Technology kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=School of Materials and Chemical Technology, Tokyo Institute of Technology kn-affil= affil-num=7 en-affil=School of Science,Tokyo Institute of Technology kn-affil= affil-num=8 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue=385 article-no= start-page=798 end-page=805 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190927 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Effect of Flowable Composite Lining and Dentin Location on Microtensile Bond Strength and Internal Fracture Formation en-subtitle= kn-subtitle= en-abstract= kn-abstract=The objective of this study was to determine the effect of flowable composite lining and dentin location on internal dentin fracture formation in the microtensile bond strength (MTBS) test using swept-source optical coherence tomography (SS-OCT). MTBS test beams (1.0×1.0 mm) were prepared from human superficial and deep dentin, which was bonded with a self-etch adhesive (Clearfil SE Bond) and hybrid composite resin (Clearfil AP-X), with or without flowable lining (Clearfil Majesty ES-Flow). We tested 4 groups according to placement technique (with vs. without flowable liner) and dentin (superficial vs. deep) locations. Cross-sectional 2D images of the bonded interface were obtained before and after the MTBS test. Internal dentin fracture after MTBT was observed as a bright zone in SS-OCT. Flowable lining significantly reduced internal fracture formation in dentin (p<0.05). Dentin location significantly influenced MTBS (p<0.05), and this was reduced by flowable lining usage. en-copyright= kn-copyright= en-aut-name=KominamiNao en-aut-sei=Kominami en-aut-mei=Nao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimadaYasushi en-aut-sei=Shimada en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HosakaKeiichi en-aut-sei=Hosaka en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Minh Nguyet Luong en-aut-sei=Minh Nguyet Luong en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshiyamaMasahiro en-aut-sei=Yoshiyama en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SadrAlireza en-aut-sei=Sadr en-aut-mei=Alireza kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SumiYasunori en-aut-sei=Sumi en-aut-mei=Yasunori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TagamiJunji en-aut-sei=Tagami en-aut-mei=Junji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University kn-affil= affil-num=2 en-affil=Department of Operative Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University. kn-affil= affil-num=3 en-affil=Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University kn-affil= affil-num=4 en-affil=Department of Restorative Dentistry and Endodontics, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City kn-affil= affil-num=5 en-affil=Department of Operative Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University. kn-affil= affil-num=6 en-affil=Biomimetics Biomaterials Biophotonics & Technology Laboratory, Department of Restorative Dentistry, University of Washington School of Dentistry kn-affil= affil-num=7 en-affil=National Center for Geriatrics and Gerontology, Department of Advanced Dental Research, Center of Advanced Medicine for Dental and Oral Disease kn-affil= affil-num=8 en-affil= kn-affil= en-keyword=Dentin kn-keyword=Dentin en-keyword=Internal fracture kn-keyword=Internal fracture en-keyword=Microtensile bond strength test kn-keyword=Microtensile bond strength test en-keyword= SS-OCT kn-keyword= SS-OCT END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=1 article-no= start-page=179 end-page=195 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analytic extension of exceptional constant mean curvature one catenoids in de Sitter 3-space en-subtitle= kn-subtitle= en-abstract= kn-abstract= Catenoids in de Sitter 3-space S31 belong to a certain class of space-like constant mean curvature one surfaces. In a previous work, the authors classified such catenoids, and found that two different classes of countably many exceptional elliptic catenoids are not realized as closed subsets in S31 . Here we show that such exceptional catenoids have closed analytic extensions in S31 with interesting properties. en-copyright= kn-copyright= en-aut-name=FujimoriShoichi en-aut-sei=Fujimori en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KawakamiYu en-aut-sei=Kawakami en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KokubuMasatoshi en-aut-sei=Kokubu en-aut-mei=Masatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RossmanWayne en-aut-sei=Rossman en-aut-mei=Wayne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UmeharaMasaaki en-aut-sei=Umehara en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamadaKotaro en-aut-sei=Yamada en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Department of Mathematics, Hiroshima University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Kanazawa University kn-affil= affil-num=3 en-affil=Department of Mathematics, School of Engineering, Tokyo Denki University kn-affil= affil-num=4 en-affil=Department of Mathematics, Faculty of Science, Kobe University kn-affil= affil-num=5 en-affil=Department of Mathematical and Computing Sciences, Tokyo Institute of Technology kn-affil= affil-num=6 en-affil=Department of Mathematics, Tokyo Institute of Technology kn-affil= en-keyword=constant mean curvature kn-keyword=constant mean curvature en-keyword=de Sitter space kn-keyword=de Sitter space en-keyword=analytic extension kn-keyword=analytic extension END start-ver=1.4 cd-journal=joma no-vol=14 cd-vols= no-issue=12 article-no= start-page=2071 end-page=2083 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Serum Antibody Against NY-ESO-1 and XAGE1 Antigens Potentially Predicts Clinical Responses to Anti–Programmed Cell Death-1 Therapy in NSCLC en-subtitle= kn-subtitle= en-abstract= kn-abstract=Introduction: Programmed cell death-1 (PD-1) inhibitors effectively treat NSCLC and prolong survival. Robust biomarkers for predicting clinical benefits of good response and long survival with anti-PD-1 therapy have yet to be identified; therefore, predictive biomarkers are needed to select patients with benefits.
Methods: We conducted a prospective study to explore whether serum antibody against NY-ESO-1 and/or XAGE1 cancer-testis antigens predicted primarily good clinical response and secondarily long survival with anti-PD-1 therapy for NSCLC. The serum antibody was detected by enzyme-linked immunosorbent assay, and tumor immune microenvironment and mutation burden were analyzed by immunohistochemistry and next-generation sequencing.
Results: In the discovery cohort (n = 13), six antibody-positive NSCLC cases responded to anti-PD-1 therapy (two complete and four partial responses), whereas seven antibody-negative NSCLC cases did not. Antibody positivity was associated with good response and survival, regardless of tumor programmed death ligand 1 (PD-L1) expression, mutation burden, and CD8+ T-cell infiltration. In the validation cohort (n = 75), 17 antibody-positive NSCLC cases responded well to anti-PD-1 therapy as compared with 58 negative NSCLC cases (objective response rate 65% versus 19%, p = 0.0006) and showed significantly prolonged progression-free survival and overall survival. Antibody titers highly correlated with tumor reduction rates. In the multivariate analysis, response biomarkers were tumor programmed death ligand 1 expression and antibody positivity, and only antibody positivity was a significantly better predictive biomarker of progression-free survival (hazard ratio = 0.4, p = 0.01) and overall survival (hazard ratio = 0.2, p = 0.004).
Conclusions: Our results suggest that NY-ESO-1 and/or XAGE1 serum antibodies are useful biomarkers for predicting clinical benefits in anti-PD-1 therapy for NSCLC and probably for other cancers. en-copyright= kn-copyright= en-aut-name=OhueYoshihiro en-aut-sei=Ohue en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuroseKoji en-aut-sei=Kurose en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KarasakiTakahiro en-aut-sei=Karasaki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=IsobeMidori en-aut-sei=Isobe en-aut-mei=Midori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamaokaTakaaki en-aut-sei=Yamaoka en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IreiIsao en-aut-sei=Irei en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MasudaTakeshi en-aut-sei=Masuda en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FukudaMasaaki en-aut-sei=Fukuda en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KinoshitaAkitoshi en-aut-sei=Kinoshita en-aut-mei=Akitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MatsushitaHirokazu en-aut-sei=Matsushita en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShimizuKatsuhiko en-aut-sei=Shimizu en-aut-mei=Katsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakataMasao en-aut-sei=Nakata en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HattoriNoboru en-aut-sei=Hattori en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=YamaguchiHiroyuki en-aut-sei=Yamaguchi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=FukudaMinoru en-aut-sei=Fukuda en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NozawaRyohei en-aut-sei=Nozawa en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=KakimiKazuhiro en-aut-sei=Kakimi en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=OkaMikio en-aut-sei=Oka en-aut-mei=Mikio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Respiratory Medicine, Kawasaki Medical School kn-affil= affil-num=2 en-affil=Department of Respiratory Medicine, Kawasaki Medical School kn-affil= affil-num=3 en-affil=Department of Thoracic Surgery, The University of Tokyo kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, Kawasaki Medical School kn-affil= affil-num=5 en-affil=Department of Respiratory Medicine, Kawasaki Medical School kn-affil= affil-num=6 en-affil=Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=7 en-affil=Department of Pathology, Kawasaki Medical School kn-affil= affil-num=8 en-affil=Department of Respiratory Internal Medicine, Hiroshima University Hospital kn-affil= affil-num=9 en-affil=Department of Respiratory Medicine, The Japanese Red Cross Nagasaki Genbaku Hospital kn-affil= affil-num=10 en-affil=Department of Respiratory Medicine, Nagasaki Prefecture Shimabara Hospital kn-affil= affil-num=11 en-affil=Department of Immunotherapeutics, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=12 en-affil=Department of General Thoracic Surgery, Kawasaki Medical School kn-affil= affil-num=13 en-affil=Department of General Thoracic Surgery, Kawasaki Medical School kn-affil= affil-num=14 en-affil=Department of Respiratory Internal Medicine, Hiroshima University Hospital kn-affil= affil-num=15 en-affil=Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=16 en-affil=Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences kn-affil= affil-num=17 en-affil=Faculty of Health and Welfare Services Administration, Kawasaki University of Medical Welfare kn-affil= affil-num=18 en-affil=Department of Immunotherapeutics, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=19 en-affil=Department of Immuno-Oncology, Kawasaki Medical School kn-affil= en-keyword=Biomarker kn-keyword=Biomarker en-keyword=Anti-programmed death 1 therapy kn-keyword=Anti-programmed death 1 therapy en-keyword=NSCLC kn-keyword=NSCLC en-keyword=Cancer-testis antigen kn-keyword=Cancer-testis antigen en-keyword=Serum antibody kn-keyword=Serum antibody END start-ver=1.4 cd-journal=joma no-vol=109 cd-vols= no-issue= article-no= start-page=106604 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191231 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The effects of BaTiO3 nanodots density support on epitaxial LiCoO2 thin-film for high-speed rechargeability en-subtitle= kn-subtitle= en-abstract= kn-abstract=LiCoO2 (LCO) is one of the most promising cathode materials for Li ion batteries (LIBs). However, LCO shows a rate-limiting step of Li+ migration between electrode and electrolyte interfaces, requiring LIBs to be charged under low-current conditions. For next generation batteries, it will be necessary to meet the demand for a shorter charging-time. We investigated a support method for the LCO surface to improve high C-rate performance, and revealed that the Li+ intercalation/de-intercalation reaction into/from LCO was accelerated by the introduction of a BaTiO3-LCO-electrolyte interface (triple-phase interface; TPI), due to the electric field concentration near the TPI. In this report, we investigate the dependence of high C-rate performance on the density of surface BaTiO3 nanodots using epitaxial LiCoO2 thin films created via pulsed laser deposition (PLD). As the number of nanodots increased, so did discharge capacity at 50C, becoming saturated at surface coverage over 22%. However, at 100C, the discharge capacity decreased at surface coverage over 40%. These results indicate that coalescence of nanodots reduces not only the TPI length but also the electrochemically active range at quite high C-rate. Therefore, we infer that optimal surface coverage should be varied depending on the C-rate. en-copyright= kn-copyright= en-aut-name=YasuharaSou en-aut-sei=Yasuhara en-aut-mei=Sou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YasuiShintaro en-aut-sei=Yasui en-aut-mei=Shintaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeranishiTakashi en-aut-sei=Teranishi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshikawaYumi en-aut-sei=Yoshikawa en-aut-mei=Yumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TaniyamaTomoyasu en-aut-sei=Taniyama en-aut-mei=Tomoyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ItohMitsuru en-aut-sei=Itoh en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Laboratory for Materials and Structures, Tokyo Institute of Technology kn-affil= affil-num=2 en-affil=Laboratory for Materials and Structures, Tokyo Institute of Technology kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Laboratory for Materials and Structures, Tokyo Institute of Technology kn-affil= affil-num=6 en-affil=Laboratory for Materials and Structures, Tokyo Institute of Technology kn-affil= en-keyword=High speed chargeability kn-keyword=High speed chargeability en-keyword=Nanodots kn-keyword=Nanodots en-keyword=Density kn-keyword=Density en-keyword=Dielectrics kn-keyword=Dielectrics en-keyword=LiCoO2 kn-keyword=LiCoO2 END start-ver=1.4 cd-journal=joma no-vol=375 cd-vols= no-issue=3 article-no= start-page=743 end-page=754 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20181030 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Runx3 regulates folliculogenesis and steroidogenesis in granulosa cells of immature mice en-subtitle= kn-subtitle= en-abstract= kn-abstract= We previously demonstrated that female Runx3 knockout (Runx3-/-) mice were anovulatory and their uteri were atrophic and that Runx3 mRNA was expressed in granulosa cells. To clarify how Runx3 regulates folliculogenesis and ovulation, we examine the effects of Runx3 knockout on the gene expression of growth factors associated with folliculogenesis and enzymes associated with steroidogenesis. In Runx3-/- mouse ovaries, the numbers of primary and antral follicles were lower than those in wild-type (wt) mice at 3 weeks of age, indicating that the loss of Runx3 affects folliculogenesis. The expression of genes encoding activin and inhibin subunits (Inha, Inhba and Inhbb) was also decreased in ovaries from the Runx3-/- mice compared with that in wt mice. Moreover, the expression of the genes Cyp11a1 and Cyp19a1 encoding steroidogenic enzymes was also decreased. In cultured granulosa cells from 3-week-old mouse ovaries, Cyp19a1 mRNA levels were lower in Runx3-/- mice than those in wt mice. Follicle-stimulating hormone (FSH) treatment increased Cyp19a1 mRNA levels in both wt and Runx3-/- granulosa cells in culture but the mRNA level in Runx3-/- granulosa cells was lower than that in wt ones, indicating that granulosa cells could not fully function in the absence of Runx3. At 3 weeks of age, gonadotropin α subunit, FSHβ subunit and luteinizing hormone (LH) β subunit mRNA levels were decreased in Runx3-/- mice. These findings suggest that Runx3 plays a key role in female reproduction by regulating folliculogenesis and steroidogenesis in granulosa cells. en-copyright= kn-copyright= en-aut-name=OjimaFumiya en-aut-sei=Ojima en-aut-mei=Fumiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaitoYuka en-aut-sei=Saito en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsuchiyaYukiko en-aut-sei=Tsuchiya en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OgoshiMaho en-aut-sei=Ogoshi en-aut-mei=Maho kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FukamachiHiroshi en-aut-sei=Fukamachi en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=InagakiKenichi en-aut-sei=Inagaki en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OtsukaFumio en-aut-sei=Otsuka en-aut-mei=Fumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiSumio en-aut-sei=Takahashi en-aut-mei=Sumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Biology, The Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Biology, The Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Department of Biology, The Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Department of Biology, The Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=The Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University kn-affil= affil-num=6 en-affil=The Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=The Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Biology, The Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Department of Biology, The Graduate School of Natural Science and Technology, Okayama University kn-affil= en-keyword=Estrogen kn-keyword=Estrogen en-keyword=Follicle kn-keyword=Follicle en-keyword=Mouse kn-keyword=Mouse en-keyword=Ovary kn-keyword=Ovary en-keyword=Runx3 kn-keyword=Runx3 END start-ver=1.4 cd-journal=joma no-vol=11 cd-vols= no-issue=2 article-no= start-page=177 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190203 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A Novel Combination Cancer Therapy with Iron Chelator Targeting Cancer Stem Cells via Suppressing Stemness en-subtitle= kn-subtitle= en-abstract= kn-abstract= Excess iron causes cancer and is thought to be related to carcinogenesis and cancer progression including stemness, but the details remain unclear. Here, we hypothesized that stemness in cancer is related to iron metabolism and that regulating iron metabolism in cancer stem cells (CSCs) may be a novel therapy. In this study, we used murine induced pluripotent stem cells that expressed specific stem cell genes such as Nanog, Oct3/4, Sox2, Klf4, and c-Myc, and two human cancer cell lines with similar stem cell gene expression. Deferasirox, an orally available iron chelator, suppressed expression of stemness markers and spherogenesis of cells with high stemness status in vitro. Combination therapy had a marked antitumor effect compared with deferasirox or cisplatin alone. Iron metabolism appears important for maintenance of stemness in CSCs. An iron chelator combined with chemotherapy may be a novel approach via suppressing stemness for CSC targeted therapy. en-copyright= kn-copyright= en-aut-name=KatsuraYuki en-aut-sei=Katsura en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OharaToshiaki en-aut-sei=Ohara en-aut-mei=Toshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NinomiyaTakayuki en-aut-sei=Ninomiya en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KashimaHajime en-aut-sei=Kashima en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatoTakuya en-aut-sei=Kato en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SatoHiroaki en-aut-sei=Sato en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KomotoSatoshi en-aut-sei=Komoto en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NarusakaToru en-aut-sei=Narusaka en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TomonoYasuko en-aut-sei=Tomono en-aut-mei=Yasuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=XingBoyi en-aut-sei=Xing en-aut-mei=Boyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ChenYuehua en-aut-sei=Chen en-aut-mei=Yuehua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=TazawaHiroshi en-aut-sei=Tazawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShirakawaYasuhiro en-aut-sei=Shirakawa en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=Kasai Tomonari en-aut-sei=Kasai en-aut-mei=Tomonari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SenoMasaharu en-aut-sei=Seno en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MatsukawaAkihiro en-aut-sei=Matsukawa en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Pathology and Experimental MedicineOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil= Shigei Medical Research Institute kn-affil= affil-num=11 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil= Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=School of Bioscience and Biotechnology, Tokyo University of Technology kn-affil= affil-num=17 en-affil= Laboratory of Nano-Biotechnology, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems kn-affil= affil-num=18 en-affil= Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=19 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=cancer stem cells kn-keyword=cancer stem cells en-keyword=combination therapy kn-keyword=combination therapy en-keyword=iron kn-keyword=iron en-keyword=stemness kn-keyword=stemness END start-ver=1.4 cd-journal=joma no-vol=25 cd-vols= no-issue= article-no= start-page=154 end-page=164 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=20171016 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Attenuation of CD4+ CD25+ Regulatory T Cells in the Tumor Microenvironment by Metformin, a Type 2 Diabetes Drug en-subtitle= kn-subtitle= en-abstract= kn-abstract= CD4+CD25+ regulatory T cells (Treg), an essential subset for preventing autoimmune diseases, is implicated as a negative regulator in anti-tumor immunity. We found that metformin (Met) reduced tumor-infiltrating Treg (Ti-Treg), particularly the terminally-differentiated CD103+KLRG1+ population, and also decreased effector molecules such as CTLA4 and IL-10. Met inhibits the differentiation of naïve CD4+ T cells into inducible Treg (iTreg) by reducing forkhead box P3 (Foxp3) protein, caused by mTORC1 activation that was determined by the elevation of phosphorylated S6 (pS6), a downstream molecule of mTORC1. Rapamycin and compound C, an inhibitor of AMP-activated protein kinase (AMPK) restored the iTreg generation, further indicating the involvement of mTORC1 and AMPK. The metabolic profile of iTreg, increased Glut1-expression, and reduced mitochondrial membrane-potential and ROS production of Ti-Treg aided in identifying enhanced glycolysis upon Met-treatment. The negative impact of Met on Ti-Treg may help generation of the sustained antitumor immunity. en-copyright= kn-copyright= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=EikawaShingo en-aut-sei=Eikawa en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DomaeShohei en-aut-sei=Domae en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UeharaTakenori en-aut-sei=Uehara en-aut-mei=Takenori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HoriShohei en-aut-sei=Hori en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FurusawaYukihiro en-aut-sei=Furusawa en-aut-mei=Yukihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HaseKoji en-aut-sei=Hase en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SasakiAkira en-aut-sei=Sasaki en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo kn-affil= affil-num=7 en-affil=Division of Biochemistry, Keio University Graduate School of Pharmaceutical Science kn-affil= affil-num=8 en-affil=Division of Biochemistry, Keio University Graduate School of Pharmaceutical Science kn-affil= affil-num=9 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=Glycolysis kn-keyword=Glycolysis en-keyword=Regulatory T cell (Treg) kn-keyword=Regulatory T cell (Treg) en-keyword=Tumor immunity kn-keyword=Tumor immunity en-keyword=Tumor microenvironment kn-keyword=Tumor microenvironment en-keyword=mTOR kn-keyword=mTOR END start-ver=1.4 cd-journal=joma no-vol=213 cd-vols= no-issue= article-no= start-page=353 end-page=364 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201602 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi en-subtitle= kn-subtitle= en-abstract= kn-abstract= The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field. en-copyright= kn-copyright= en-aut-name=KondoHideki en-aut-sei=Kondo en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HisanoSakae en-aut-sei=Hisano en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ChibaSotaro en-aut-sei=Chiba en-aut-mei=Sotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaruyamaKazuyuki en-aut-sei=Maruyama en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=AndikaIda Bagus en-aut-sei=Andika en-aut-mei=Ida Bagus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ToyodaKazuhiro en-aut-sei=Toyoda en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FujimoriFumihiro en-aut-sei=Fujimori en-aut-mei=Fumihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuzukiNobuhiro en-aut-sei=Suzuki en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Department of Environmental Education, Tokyo Kasei University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources (IPSR), Okayama University kn-affil= en-keyword=Deep sequencing kn-keyword=Deep sequencing en-keyword=Double stranded RNA virus kn-keyword=Double stranded RNA virus en-keyword= Powdery mildew kn-keyword= Powdery mildew en-keyword=Saccharomyces cerevisiae virus L-A kn-keyword=Saccharomyces cerevisiae virus L-A en-keyword=Totivirus kn-keyword=Totivirus en-keyword=Ustilago maydis virus H1 kn-keyword=Ustilago maydis virus H1 END start-ver=1.4 cd-journal=joma no-vol=21 cd-vols= no-issue=7 article-no= start-page=627 end-page=640 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201907 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Critical role of the MCAM-ETV4 axis triggered by extracellular S100A8/A9 in breast cancer aggressiveness en-subtitle= kn-subtitle= en-abstract= kn-abstract=Metastatic breast cancer is the leading cause of cancer-associated death in women. The progression of this fatal disease is associated with inflammatory responses that promote cancer cell growth and dissemination, eventually leading to a reduction of overall survival. However, the mechanism(s) of the inflammation-boosted cancer progression remains unclear. In this study, we found for the first time that an extracellular cytokine, S100A8/A9, accelerates breast cancer growth and metastasis upon binding to a cell surface receptor, melanoma cell adhesion molecule (MCAM). Our molecular analyses revealed an important role of ETS translocation variant 4 (ETV4), which is significantly activated in the region downstream of MCAM upon S100A8/A9 stimulation, in breast cancer progression in vitro as well as in vivo. The MCAM-mediated activation of ETV4 induced a mobile phenotype called epithelial-mesenchymal transition (EMT) in cells, since we found that ETV4 transcriptionally upregulates ZEB1, a strong EMT inducer, at a very high level. In contrast, downregulation of either MCAM or ETV4 repressed EMT, resulting in greatly weakened tumor growth and lung metastasis. Overall, our results revealed that ETV4 is a novel transcription factor regulated by the S100A8/A9-MCAM axis, which leads to EMT through ZEB1 and thereby to metastasis in breast cancer cells. Thus, therapeutic strategies based on our findings might improve patient outcomes. en-copyright= kn-copyright= en-aut-name=ChenYouyi en-aut-sei=Chen en-aut-mei=Youyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SumardikaI Wayan en-aut-sei=Sumardika en-aut-mei=I Wayan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomonobuNahoko en-aut-sei=Tomonobu en-aut-mei=Nahoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaRie en-aut-sei=Kinoshita en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=InoueYusuke en-aut-sei=Inoue en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IiokaHidekazu en-aut-sei=Iioka en-aut-mei=Hidekazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MitsuiYosuke en-aut-sei=Mitsui en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SaitoKen en-aut-sei=Saito en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=RumaI Made Winarsa en-aut-sei=Ruma en-aut-mei=I Made Winarsa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SatoHiroki en-aut-sei=Sato en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamauchiAkira en-aut-sei=Yamauchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MurataHitoshi en-aut-sei=Murata en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=YamamotoKen-ichi en-aut-sei=Yamamoto en-aut-mei=Ken-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TomidaShuta en-aut-sei=Tomida en-aut-mei=Shuta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=ShienKazuhiko en-aut-sei=Shien en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamamotoHiromasa en-aut-sei=Yamamoto en-aut-mei=Hiromasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=SohJunichi en-aut-sei=Soh en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=FutamiJunichiro en-aut-sei=Futami en-aut-mei=Junichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=KuboMiyoko en-aut-sei=Kubo en-aut-mei=Miyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=PutrantoEndy Widya en-aut-sei=Putranto en-aut-mei=Endy Widya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=MurakamiTakashi en-aut-sei=Murakami en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=LiuMing en-aut-sei=Liu en-aut-mei=Ming kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=HibinoToshihiko en-aut-sei=Hibino en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=NishiboriMasahiro en-aut-sei=Nishibori en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=KondoEisaku en-aut-sei=Kondo en-aut-mei=Eisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=ToyookaShinichi en-aut-sei=Toyooka en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=SakaguchiMasakiyo en-aut-sei=Sakaguchi en-aut-mei=Masakiyo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= affil-num=1 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University kn-affil= affil-num=6 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=7 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=9 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Biochemistry, Kawasaki Medical School kn-affil= affil-num=12 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=13 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=14 en-affil=Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=15 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=16 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=17 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=18 en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University kn-affil= affil-num=19 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=20 en-affil=Department of Pediatrics, Dr. Sardjito Hospital/Faculty of Medicine, Universitas Gadjah Mada kn-affil= affil-num=21 en-affil=Department of Microbiology, Faculty of Medicine, Saitama Medical University kn-affil= affil-num=22 en-affil=Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University kn-affil= affil-num=23 en-affil=Department of Dermatology, Tokyo Medical University kn-affil= affil-num=24 en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=25 en-affil=Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences kn-affil= affil-num=26 en-affil=Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=27 en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=1 article-no= start-page=17906 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=201812 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fermi surface topology in a metallic phase of VO2 thin films grown on TiO2(001) substrates en-subtitle= kn-subtitle= en-abstract= kn-abstract= Since the first observation of the metal-to-insulator transition (MIT), VO2 has attracted substantial attention in terms of whether this transition is impelled by electron-phonon interaction (Peierls transition) or electron-electron interaction. Regarding Peierls transition, it has been theoretically predicted that the Fermi surface (FS) cross-section exhibits certain nesting features for a metallic phase of VO2. Various experimental studies related to the nesting feature have been reported. Nevertheless, there is no experimental result on FS topology. In this work, we determine the FS topology of the metallic phase of VO2 through studies of VO2 epitaxial thin films on TiO2(001) substrates, using synchrotron radiation angle-resolved photoemission spectroscopy (ARPES). Three electron pockets around Γ are observed in band structures along the Γ-X direction. These three bands form electron surfaces around Γ in the ΓXRZ plane. Furthermore, the lowest energy band FS exhibits the nesting feature corresponding to a nesting vector [Formula: see text] = ΓR, as predicted by the calculation. Our results strongly indicate the formation of the charge-density wave with [Formula: see text] = ΓR and thus, the importance of Peierls transition for the mechanism of the MIT in VO2. en-copyright= kn-copyright= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NagaoHiroki en-aut-sei=Nagao en-aut-mei=Hiroki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YaoYuichiro en-aut-sei=Yao en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TerashimaKensei en-aut-sei=Terashima en-aut-mei=Kensei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KumigashiraHiroshi en-aut-sei=Kumigashira en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=Oshima Masaharu en-aut-sei=Oshima en-aut-mei=Masaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil= Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=5 en-affil= Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil= Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil= High Energy Accelerator Research Organization (KEK), Photon Factory kn-affil= affil-num=8 en-affil=The Institute for Solid State Physics, The University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=1 article-no= start-page=85 end-page=89 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Conventional-dose Versus Half-dose Sulfamethoxazole-trimethoprim for the Prophylaxis of Pneumocystis Pneumonia in Patients with Systemic Rheumatic Disease: A Non-blind, Randomized Controlled Trial en-subtitle= kn-subtitle= en-abstract= kn-abstract= Pneumocystis pneumonia (PCP) due to Pneumocystis jirovecii infection is the leading cause of fatal opportunistic infections in immunocompromised patients. We will determine whether a daily sulfamethoxazole-trimethoprim (SMX/TMP) dose of 200/40 mg was non-inferior to 400/80 mg for PCP prevention in patients with systemic rheumatic disease under immunosuppressive therapy. This is a randomized, open-label, multicenter controlled trial. The primary outcome is the rate of PCP prevention at 52 weeks. The secondary outcome is the discontinuation rate of SMX/TMP. The trial will evaluate the optimal dose of SMX/TMP for PCP prevention in patients with systemic rheumatic disease under immunosuppressive therapy. en-copyright= kn-copyright= en-aut-name=AbeYoshiyuki en-aut-sei=Abe en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FujibayashiKazutoshi en-aut-sei=Fujibayashi en-aut-mei=Kazutoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishizakiYuji en-aut-sei=Nishizaki en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YanagisawaNaotake en-aut-sei=Yanagisawa en-aut-mei=Naotake kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NojiriShuko en-aut-sei=Nojiri en-aut-mei=Shuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakanoSoichiro en-aut-sei=Nakano en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TadaKurisu en-aut-sei=Tada en-aut-mei=Kurisu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YamajiKen en-aut-sei=Yamaji en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TamuraNaoto en-aut-sei=Tamura en-aut-mei=Naoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine kn-affil= affil-num=2 en-affil=Medical Technology Innovation Center, Juntendo University kn-affil= affil-num=3 en-affil=Medical Technology Innovation Center, Juntendo University kn-affil= affil-num=4 en-affil=Medical Technology Innovation Center, Juntendo University kn-affil= affil-num=5 en-affil=Clinical Research and Trial Center, Juntendo University Hospital kn-affil= affil-num=6 en-affil=Geriatric General Medicine, Juntendo Tokyo Koto Geriatric Medical Center kn-affil= affil-num=7 en-affil=Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine kn-affil= affil-num=8 en-affil=Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine kn-affil= affil-num=9 en-affil=Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine kn-affil= en-keyword=pneumocystis pneumonia kn-keyword=pneumocystis pneumonia en-keyword=prophylaxis kn-keyword=prophylaxis en-keyword=systemic rheumatic disease kn-keyword=systemic rheumatic disease en-keyword=sulfamethoxazole-trimethoprim kn-keyword=sulfamethoxazole-trimethoprim en-keyword=conventional-dose versus half-dose kn-keyword=conventional-dose versus half-dose END start-ver=1.4 cd-journal=joma no-vol=73 cd-vols= no-issue=1 article-no= start-page=29 end-page=39 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201902 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Histidine-rich Glycoprotein Could Be an Early Predictor of Vasospasm after Aneurysmal Subarachnoid Hemorrhage en-subtitle= kn-subtitle= en-abstract= kn-abstract= Cerebral vasospasm (CVS) is a major contributor to the high morbidity and mortality of aneurysmal subarachnoid hemorrhage (aSAH) patients. We measured histidine-rich glycoprotein (HRG), a new biomarker of aSAH, in cerebrospinal fluid (CSF) to investigate whether HRG might be an early predictor of CVS. A total of seven controls and 14 aSAH patients (8 males, 6 females aged 53.4±15.4 years) were enrolled, and serial CSF and serum samples were taken. We allocated these samples to three phases (T1-T3) and measured HRG, interleukin (IL)-6, fibrinopeptide A (FpA), and 8-hydroxy-2’-deoxyguanosine (8OHdG) in the CSF, and the HRG in serum. We also examined the release of HRG in rat blood incubated in artificial CSF. In contrast to the other biomarkers examined, the change in the CSF HRG concentration was significantly different between the nonspasm and spasm groups (p<0.01). The rat blood/CSF model revealed a time course similar to that of the human CSF samples in the non-spasm group. HRG thus appears to have the potential to become an early predictor of CVS. In addition, the interaction of HRG with IL-6, FpA, and 8OHdG may form the pathology of CVS. en-copyright= kn-copyright= en-aut-name=MatsumotoAtsushi en-aut-sei=Matsumoto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraTakehiro en-aut-sei=Nakamura en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShinomiyaAya en-aut-sei=Shinomiya en-aut-mei=Aya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawakitaKenya en-aut-sei=Kawakita en-aut-mei=Kenya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KawanishiMasahiko en-aut-sei=Kawanishi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyakeKeisuke en-aut-sei=Miyake en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KurodaYasuhiro en-aut-sei=Kuroda en-aut-mei=Yasuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KeepRichard F. en-aut-sei=Keep en-aut-mei=Richard F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TamiyaTakashi en-aut-sei=Tamiya en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Neurological Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=2 en-affil=Department of Medical Technology, Kagawa Prefectural University of Health Sciences kn-affil= affil-num=3 en-affil=Department of Neurological Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=4 en-affil=Emergency Medical Center, Kagawa University Hospital kn-affil= affil-num=5 en-affil=Department of Neurological Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=6 en-affil=Department of Neurological Surgery, Kagawa University Faculty of Medicine kn-affil= affil-num=7 en-affil=Emergency Medical Center, Kagawa University Hospital kn-affil= affil-num=8 en-affil=Department of Neurosurgery, University of Michigan kn-affil= affil-num=9 en-affil=Department of Neurological Surgery, Kagawa University Faculty of Medicine kn-affil= en-keyword=biomarker kn-keyword=biomarker en-keyword=histidine-rich glycoprotein kn-keyword=histidine-rich glycoprotein en-keyword=predictor kn-keyword=predictor en-keyword=subarachnoid hemorrhage kn-keyword=subarachnoid hemorrhage en-keyword=vasospasm kn-keyword=vasospasm END start-ver=1.4 cd-journal=joma no-vol=235 cd-vols= no-issue= article-no= start-page=76 end-page=88 dt-received= dt-revised= dt-accepted= dt-pub-year=2018 dt-pub=20180815 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A simple role of coral-algal symbiosis in coral calcification based on multiple geochemical tracers en-subtitle= kn-subtitle= en-abstract= kn-abstract= Light-enhanced calcification of reef-building corals, which eventually create vast coral reefs, is well known and based on coral-algal symbiosis. Several controversial hypotheses have been proposed as possible mechanisms for connecting symbiont photosynthesis and coral calcification, including pH rise in the internal pool, role of organic matrix secretion, and enzyme activities. Here, based on the skeletal chemical and isotopic compositions of symbiotic and asymbiotic primary polyps of Acropora digitifera corals, we show a simple pH increase in the calcification medium as the predominant contribution of symbionts to calcification of host corals. We used the symbiotic and asymbiotic primary polyps reared for 10 days at four temperatures (27, 29, 31, and 33 °C), five salinities (34, 32, 30, 28, and 26), and four pCO2 levels (<300, 400, 800, and 1000 µatm). As a result of analyzing multiple geochemical tracers (U/Ca, Mg/Ca, Sr/Ca, δ18O, δ13C, and δ44Ca), a clear and systematic decrease in skeletal U/Ca ratio (used as a proxy for calcification fluid pH) was observed, indicating a higher pH of the fluid in symbiotic compared to asymbiotic polyps. In contrast, Mg/Ca ratios (used as a tentative proxy for organic matrix secretion) and δ44Ca (used as an indicator of Ca2+ pathway to the fluid) did not differ between symbiotic and asymbiotic polyps. This suggests that organic matrix secretion related to coral calcification is controlled mainly by the coral host itself, and a transmembrane transport of Ca2+ does not vary according to symbiosis relationship. Skeletal δ18O values of both symbiotic and asymbiotic polyps showed offsets between them with identical temperature dependence. Based on a newly proposed model, behavior of δ18O in the present study seems to reflect the rate of CO2 hydration in the calcifying fluid. Since CO2 hydration is promoted by enzyme carbonic anhydrase, the offset of δ18O values between symbiotic and asymbiotic polyps is attributed to the differences of enzyme activity, although the enzyme is functional even in the asymbiotic polyp. Symbiotic δ13C values in the temperature and salinity experiments were higher compared to those in the asymbiotic polyps due to photosynthesis, although photosynthetic δ13C signals in the pCO2 experiment were masked by the dominant δ13C gradient in dissolved inorganic carbon in seawater caused by 13C-depletd CO2 gas addition in the higher pCO2 treatments. Sr/Ca ratios showed a negligible relationship according to variation of temperature, salinity, and pCO2, although it might be attributed to relatively large deviations of replicates of Sr/Ca ratios in the present study. Overall, only the U/Ca ratio showed a significant difference between symbiotic and asymbiotic polyps throughout all experiments, indicating that the critical effect on coral calcification caused by symbiotic algae is the increase of pH of the calcifying fluid by photosynthesis. en-copyright= kn-copyright= en-aut-name=InoueMayuri en-aut-sei=Inoue en-aut-mei=Mayuri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraTakashi en-aut-sei=Nakamura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaYasuaki en-aut-sei=Tanaka en-aut-mei=Yasuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiAtsushi en-aut-sei=Suzuki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YokoyamaYusuke en-aut-sei=Yokoyama en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawahataHodaka en-aut-sei=Kawahata en-aut-mei=Hodaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SakaiKazuhiko en-aut-sei=Sakai en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GussoneNikolaus en-aut-sei=Gussone en-aut-mei=Nikolaus kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Earth Science, Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Science, University of the Ryukyus kn-affil= affil-num=3 en-affil=Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam kn-affil= affil-num=4 en-affil=Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology kn-affil= affil-num=5 en-affil=Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus kn-affil= affil-num=6 en-affil=Atmosphere and Ocean Research Institute, The University of Tokyo kn-affil= affil-num=7 en-affil=Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus kn-affil= affil-num=8 en-affil=Institut für Mineralogie, Universität Münster kn-affil= en-keyword=Coral symbiosis kn-keyword=Coral symbiosis en-keyword=calcification kn-keyword=calcification en-keyword=pH kn-keyword=pH en-keyword=geochemical tracers kn-keyword=geochemical tracers END start-ver=1.4 cd-journal=joma no-vol=95 cd-vols= no-issue=8 article-no= start-page=085109 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201702 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ce 4f electronic states of CeO1-xFxBiS2 studied by soft x-ray photoemission spectroscopy en-subtitle= kn-subtitle= en-abstract= kn-abstract= We use soft x-ray photoemission spectroscopy (SXPES) to investigate Ce 4f electronic states of a new BiS2 layered superconductor CeO1-xFxBiS2, for polycrystalline and single-crystal samples. The Ce 3d spectrum of the single crystal of nominal composition x = 0.7 has no f(0) component and the spectral shape closely resembles the ones observed for Ce trivalent insulating compounds, strongly implying that the CeO layer is still in an insulating state even after the F doping. The Ce 3d-4f resonant SXPES for both polycrystalline and single-crystal samples shows that the prominent peak is located around 1 eV below the Fermi level (E-F) with negligible spectral intensity at EF. The F-concentration dependence of the valence band spectra for single crystals shows the increases of the degeneracy in energy levels and of the interaction between Ce 4f and S 3p states. These results give insight into the nature of the CeO1-xFx layer and the microscopic coexistence of magnetism and superconductivity in CeO1-xFxBiS2. en-copyright= kn-copyright= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TerashimaKensei en-aut-sei=Terashima en-aut-mei=Kensei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HamadaTakahiro en-aut-sei=Hamada en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiwaraHirokazu en-aut-sei=Fujiwara en-aut-mei=Hirokazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MinoharaMakoto en-aut-sei=Minohara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KobayashiMasaki en-aut-sei=Kobayashi en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HoribaKoji en-aut-sei=Horiba en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KumigashiraHiroshi en-aut-sei=Kumigashira en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KutlukGalif en-aut-sei=Kutluk en-aut-mei=Galif kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=NagaoMasanori en-aut-sei=Nagao en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WatauchiSatoshi en-aut-sei=Watauchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TanakaIsao en-aut-sei=Tanaka en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=DemuraSatoshi en-aut-sei=Demura en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MizuguchiYoshikazu en-aut-sei=Mizuguchi en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=MiuraOsuke en-aut-sei=Miura en-aut-mei=Osuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=OkadaKozo en-aut-sei=Okada en-aut-mei=Kozo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= affil-num=1 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=4 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=5 en-affil=Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=6 en-affil=Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=7 en-affil= kn-affil= affil-num=8 en-affil=Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) kn-affil= affil-num=9 en-affil=Synchrotron Radiation Center, Hiroshima University kn-affil= affil-num=10 en-affil=Center for Crystal Science and Technology, University of Yamanashi kn-affil= affil-num=11 en-affil=Center for Crystal Science and Technology, University of Yamanashi kn-affil= affil-num=12 en-affil=Center for Crystal Science and Technology, University of Yamanashi kn-affil= affil-num=13 en-affil=National Institute for Materials Science kn-affil= affil-num=14 en-affil=National Institute for Materials Science kn-affil= affil-num=15 en-affil=National Institute for Materials Science kn-affil= affil-num=16 en-affil=Department of Electrical and Electronic Engineering, Tokyo Metropolitan University kn-affil= affil-num=17 en-affil=Department of Electrical and Electronic Engineering, Tokyo Metropolitan University kn-affil= affil-num=18 en-affil=Department of Physics and the Graduate school of Natural Science and Technology, Okayama University kn-affil= affil-num=19 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=20 en-affil=Research Laboratory for Surface Science and the Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=539 cd-vols= no-issue=7627 article-no= start-page=81 end-page=84 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201611 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite en-subtitle= kn-subtitle= en-abstract= kn-abstract= Seismic shear wave anisotropy is observed in Earth's uppermost lower mantle around several subducted slabs. The anisotropy caused by the deformation-induced crystallographic preferred orientation (CPO) of bridgmanite (perovskite-structured (Mg,Fe)SiO3) is the most plausible explanation for these seismic observations. However, the rheological properties of bridgmanite are largely unknown. Uniaxial deformation experiments have been carried out to determine the deformation texture of bridgmanite, but the dominant slip system (the slip direction and plane) has not been determined. Here we report the CPO pattern and dominant slip system of bridgmanite under conditions that correspond to the uppermost lower mantle (25 gigapascals and 1,873 kelvin) obtained through simple shear deformation experiments using the Kawai-type deformation-DIA apparatus. The fabrics obtained are characterized by [100] perpendicular to the shear plane and [001] parallel to the shear direction, implying that the dominant slip system of bridgmanite is [001](100). The observed seismic shear- wave anisotropies near several subducted slabs (Tonga-Kermadec, Kurile, Peru and Java) can be explained in terms of the CPO of bridgmanite as induced by mantle flow parallel to the direction of subduction. en-copyright= kn-copyright= en-aut-name=TsujinoNoriyoshi en-aut-sei=Tsujino en-aut-mei=Noriyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiharaYu en-aut-sei=Nishihara en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YamazakiDaisuke en-aut-sei=Yamazaki en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SetoYusuke en-aut-sei=Seto en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HigoYuji en-aut-sei=Higo en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakahashiEiichi en-aut-sei=Takahashi en-aut-mei=Eiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil= Geodynamics Research Center, Ehime-University kn-affil= affil-num=3 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=Department of Planetology, Kobe University kn-affil= affil-num=5 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=6 en-affil=Department of Earth and Planetary Sciences, Tokyo Institute of Technology kn-affil= en-keyword=Geophysics kn-keyword=Geophysics en-keyword=Geodynamics kn-keyword=Geodynamics en-keyword=Mineralogy kn-keyword=Mineralogy END start-ver=1.4 cd-journal=joma no-vol=24 cd-vols= no-issue=4 article-no= start-page=593 end-page=600 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Accuracy assessment methods of tissue marker clip placement after 11-gauge vacuum-assisted stereotactic breast biopsy: comparison of measurements using direct and conventional methods en-subtitle= kn-subtitle= en-abstract= kn-abstract=BACKGROUND:  The objective of the study was to compare direct measurement with a conventional method for evaluation of clip placement in stereotactic vacuum-assisted breast biopsy (ST-VAB) and to evaluate the accuracy of clip placement using the direct method.  METHODS:  Accuracy of clip placement was assessed by measuring the distance from a residual calcification of a targeted calcification clustered to a clip on a mammogram after ST-VAB. Distances in the craniocaudal (CC) and mediolateral oblique (MLO) views were measured in 28 subjects with mammograms recorded twice or more after ST-VAB. The difference in the distance between the first and second measurements was defined as the reproducibility and was compared with that from a conventional method using a mask system with overlap of transparent film on the mammogram. The 3D clip-to-calcification distance was measured using the direct method in 71 subjects.  RESULTS:  The reproducibility of the direct method was higher than that of the conventional method in CC and MLO views (P = 0.002, P < 0.001). The median 3D clip-to-calcification distance was 2.8 mm, with an interquartile range of 2.0-4.8 mm and a range of 1.1-36.3 mm.  CONCLUSION:  The direct method used in this study was more accurate than the conventional method, and gave a median 3D distance of 2.8 mm between the calcification and clip. en-copyright= kn-copyright= en-aut-name=YatakeHidetoshi en-aut-sei=Yatake en-aut-mei=Hidetoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SawaiYuka en-aut-sei=Sawai en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishiToshio en-aut-sei=Nishi en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakanoYoshiaki en-aut-sei=Nakano en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NishimaeAyaka en-aut-sei=Nishimae en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KatsudaToshizo en-aut-sei=Katsuda en-aut-mei=Toshizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YabunakaKoichi en-aut-sei=Yabunaka en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakedaYoshihiro en-aut-sei=Takeda en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=InajiHideo en-aut-sei=Inaji en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Department of Radiology, Breast Cancer Center, Kaizuka City Hospital kn-affil= affil-num=2 en-affil= Department of Radiology, Breast Cancer Center, Kaizuka City Hospital kn-affil= affil-num=3 en-affil= Department of Breast Surgery, Breast Cancer Center, Kaizuka City Hospital kn-affil= affil-num=4 en-affil=Department of Breast Surgery, Breast Cancer Center, Kaizuka City Hospital kn-affil= affil-num=5 en-affil=Department of Breast Surgery, Breast Cancer Center, Kaizuka City Hospital kn-affil= affil-num=6 en-affil=Department of Health Science, Osaka Butsuryo University kn-affil= affil-num=7 en-affil=Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, University of Tokyo kn-affil= affil-num=8 en-affil= Graduate School of Health Science, Okayama University kn-affil= affil-num=9 en-affil= Department of Breast Surgery, Breast Cancer Center, Kaizuka City Hospital kn-affil= en-keyword=Breast cancer kn-keyword=Breast cancer en-keyword=Direct methods kn-keyword=Direct methods en-keyword=Mammography kn-keyword=Mammography en-keyword=Mask methods kn-keyword=Mask methods en-keyword=Stereotactic vacuum assisted biopsy kn-keyword=Stereotactic vacuum assisted biopsy END start-ver=1.4 cd-journal=joma no-vol=543 cd-vols= no-issue=7643 article-no= start-page=131 end-page=135 dt-received= dt-revised= dt-accepted= dt-pub-year=2017 dt-pub=201703 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL en-subtitle= kn-subtitle= en-abstract= kn-abstract= Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn4CaO5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the QB/non-haem iron and the Mn4CaO5 cluster. The changes around the QB/non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn4CaO5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ4-oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously en-copyright= kn-copyright= en-aut-name=SugaMichihiro en-aut-sei=Suga en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkitaFusamichi en-aut-sei=Akita en-aut-mei=Fusamichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SugaharaMichihiro en-aut-sei=Sugahara en-aut-mei=Michihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuboMinoru en-aut-sei=Kubo en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakajimaYoshiki en-aut-sei=Nakajima en-aut-mei=Yoshiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakaneTakanori en-aut-sei=Nakane en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamashitaKeitaro en-aut-sei=Yamashita en-aut-mei=Keitaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakabayashiMakoto en-aut-sei=Nakabayashi en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamaneTakahiro en-aut-sei=Yamane en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakanoTakamitsu en-aut-sei=Nakano en-aut-mei=Takamitsu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SuzukiMamoru en-aut-sei=Suzuki en-aut-mei=Mamoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MasudaTetsuya en-aut-sei=Masuda en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=InoueShigeyuki en-aut-sei=Inoue en-aut-mei=Shigeyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraTetsunari en-aut-sei=Kimura en-aut-mei=Tetsunari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NomuraTakashi en-aut-sei=Nomura en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YonekuraShinichiro en-aut-sei=Yonekura en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YuLong-Jiang en-aut-sei=Yu en-aut-mei=Long-Jiang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SakamotoTomohiro en-aut-sei=Sakamoto en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=MotomuraTaiki en-aut-sei=Motomura en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=ChenJing-Hua en-aut-sei=Chen en-aut-mei=Jing-Hua kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=KatoYuki en-aut-sei=Kato en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=NoguchiTakumi en-aut-sei=Noguchi en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=TonoKensuke en-aut-sei=Tono en-aut-mei=Kensuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=JotiYasumasa en-aut-sei=Joti en-aut-mei=Yasumasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=KameshimaTakashi en-aut-sei=Kameshima en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=HatsuiTakaki en-aut-sei=Hatsui en-aut-mei=Takaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=NangoEriko en-aut-sei=Nango en-aut-mei=Eriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=TanakaRie en-aut-sei=Tanaka en-aut-mei=Rie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=NaitowHisashi en-aut-sei=Naitow en-aut-mei=Hisashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=MatsuuraYoshinori en-aut-sei=Matsuura en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=YamashitaAyumi en-aut-sei=Yamashita en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=YamamotoMasaki en-aut-sei=Yamamoto en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= en-aut-name=NurekiOsamu en-aut-sei=Nureki en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=34 ORCID= en-aut-name=YabashiMakina en-aut-sei=Yabashi en-aut-mei=Makina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=35 ORCID= en-aut-name=IshikawaTetsuya en-aut-sei=Ishikawa en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=36 ORCID= en-aut-name=IwataSo en-aut-sei=Iwata en-aut-mei=So kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=37 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=38 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=4 en-affil=Japan Science and Technology Agency, PRESTO kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=7 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=11 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=12 en-affil=Institute for Protein Research, Osaka University kn-affil= affil-num=13 en-affil=Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University kn-affil= affil-num=14 en-affil=Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo kn-affil= affil-num=15 en-affil=Department of Chemistry, Graduate School of Science, Kobe University kn-affil= affil-num=16 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=17 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=18 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=19 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=20 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=21 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=22 en-affil=Division of Material Science, Graduate School of Science, Nagoya University kn-affil= affil-num=23 en-affil=Division of Material Science, Graduate School of Science, Nagoya University kn-affil= affil-num=24 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=25 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=26 en-affil=Japan Synchrotron Radiation Research Institute46 kn-affil= affil-num=27 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=28 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=29 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=30 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=31 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=32 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=33 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=34 en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo kn-affil= affil-num=35 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=36 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=37 en-affil=RIKEN SPring-8 Center kn-affil= affil-num=38 en-affil=Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=58 cd-vols= no-issue=1 article-no= start-page=159 end-page=167 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=201601 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Restriction on Galois groups by prime inert condition en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we study number fields K with the property that every prime factor of the degree of K remains prime in K. We determine all types of Galois groups of such K up to degree nine and find that Wang's non-existence in cyclic octic case is exceptionally undetermined by our group-theoretic criterion. en-copyright= kn-copyright= en-aut-name=KomatsuToru en-aut-sei=Komatsu en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics Faculty of Science and Technology Tokyo University of Science en-keyword=Inverse Galois theory kn-keyword=Inverse Galois theory en-keyword=prime factorization kn-keyword=prime factorization END start-ver=1.4 cd-journal=joma no-vol=90 cd-vols= no-issue=22 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20141222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Proximity to Fermi-surface topological change in superconducting LaO0.54F0.46BiS2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The electronic structure of nearly optimally doped novel superconductor LaO1−xFxBiS2(x = 0.46) was investigated using angle-resolved photoemission spectroscopy (ARPES). We clearly observed band dispersions from 2 to 6 eV binding energy and near the Fermi level (EF), which are well reproduced by first-principles calculations when the spin-orbit coupling is taken into account. The ARPES intensity map near EF shows a squarelike distribution around the (Z) point in addition to electronlike Fermi-surface (FS) sheets around the X(R) point, indicating that FS of LaO0.54F0.46BiS2 is in close proximity to the theoretically predicted topological change. en-copyright= kn-copyright= en-aut-name=TerashimaKensei en-aut-sei=Terashima en-aut-mei=Kensei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SonoyamaJunki en-aut-sei=Sonoyama en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SunagawaMasanori en-aut-sei=Sunagawa en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OnoKanta en-aut-sei=Ono en-aut-mei=Kanta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KumigashiraHiroshi en-aut-sei=Kumigashira en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MuroTakayuki en-aut-sei=Muro en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NagaoMasanori en-aut-sei=Nagao en-aut-mei=Masanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=WatauchiSatoshi en-aut-sei=Watauchi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TanakaIsao en-aut-sei=Tanaka en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=MiuraOsuke en-aut-sei=Miura en-aut-mei=Osuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MizuguchiYoshikazu en-aut-sei=Mizuguchi en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=UsuiHidetomo en-aut-sei=Usui en-aut-mei=Hidetomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SuzukiKatsuhiro en-aut-sei=Suzuki en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=KurokiKazuhiko en-aut-sei=Kuroki en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science and Technology and Research Laboratory for Surface Science, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Natural Science and Technology and Research Laboratory for Surface Science, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Natural Science and Technology and Research Laboratory for Surface Science, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Natural Science and Technology and Research Laboratory for Surface Science, Okayama University affil-num=5 en-affil= kn-affil=High Energy Accelerator Research Organization (KEK), Photon Factory affil-num=6 en-affil= kn-affil=High Energy Accelerator Research Organization (KEK), Photon Factory affil-num=7 en-affil= kn-affil=Japan Synchrtron Radiation Research Institute (JASRI)/SPring-8 affil-num=8 en-affil= kn-affil=Center for Crystal Science and Technology, University of Yamanashi affil-num=9 en-affil= kn-affil=Center for Crystal Science and Technology, University of Yamanashi affil-num=10 en-affil= kn-affil=Center for Crystal Science and Technology, University of Yamanashi affil-num=11 en-affil= kn-affil=National Institute for Materials Science affil-num=12 en-affil= kn-affil=National Institute for Materials Science affil-num=13 en-affil= kn-affil=Department of Electrical and Electronic Engineering, Tokyo Metropolitan University affil-num=14 en-affil= kn-affil=Department of Electrical and Electronic Engineering, Tokyo Metropolitan University affil-num=15 en-affil= kn-affil=Department of Physics, Osaka University affil-num=16 en-affil= kn-affil=Department of Physics, Osaka University affil-num=17 en-affil= kn-affil=Department of Physics, Osaka University affil-num=18 en-affil= kn-affil=Graduate School of Natural Science and Technology and Research Laboratory for Surface Science, Okayama University affil-num=19 en-affil= kn-affil=1Graduate School of Natural Science and Technology and Research Laboratory for Surface Science END start-ver=1.4 cd-journal=joma no-vol=57 cd-vols= no-issue=1 article-no= start-page=173 end-page=200 dt-received= dt-revised= dt-accepted= dt-pub-year=2015 dt-pub=201501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ZERO MEAN CURVATURE SURFACES IN LORENTZ-MINKOWSKI 3-SPACE AND 2-DIMENSIONAL FLUID MECHANICS en-subtitle= kn-subtitle= en-abstract= kn-abstract=Space-like maximal surfaces and time-like minimal surfaces in Lorentz-Minkowski 3-space R31 are both characterized as zero mean curvature surfaces. We are interested in the case where the zero mean curvature surface changes type from space-like to time-like at a given non-degenerate null curve. We consider this phenomenon and its interesting connection to 2-dimensional fluid mechanics in this expository article. en-copyright= kn-copyright= en-aut-name=FujimoriShoichi en-aut-sei=Fujimori en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KimYoung Wook en-aut-sei=Kim en-aut-mei=Young Wook kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KohSung-Eun en-aut-sei=Koh en-aut-mei=Sung-Eun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=RossmanWayne en-aut-sei=Rossman en-aut-mei=Wayne kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShinHeayong en-aut-sei=Shin en-aut-mei=Heayong kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UmeharaMasaaki en-aut-sei=Umehara en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamadaKotaro en-aut-sei=Yamada en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=YangSeong-Deog en-aut-sei=Yang en-aut-mei=Seong-Deog kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Department of Mathematics, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Mathematics, Korea University affil-num=3 en-affil= kn-affil=Department of Mathematics, Konkuk University affil-num=4 en-affil= kn-affil=Department of Mathematics, Faculty of Science, Kobe University affil-num=5 en-affil= kn-affil=Department of Mathematics, Chung-Ang University affil-num=6 en-affil= kn-affil=Department of Mathematical and Computing Sciences, Tokyo Institute of Technology affil-num=7 en-affil= kn-affil=Department of Mathematics, Tokyo Institute of Technology affil-num=8 en-affil= kn-affil=Department of Mathematics, Korea University en-keyword=maximal surface kn-keyword=maximal surface en-keyword=type change kn-keyword=type change en-keyword=zero mean curvature kn-keyword=zero mean curvature en-keyword=subsonic flow kn-keyword=subsonic flow en-keyword=supersonic flow kn-keyword=supersonic flow en-keyword=stream function kn-keyword=stream function END start-ver=1.4 cd-journal=joma no-vol=56 cd-vols= no-issue=1 article-no= start-page=145 end-page=155 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=201401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=THE BEST CONSTANT OF Lp SOBOLEV INEQUALITY CORRESPONDING TO DIRICHLET-NEUMANN BOUNDARY VALUE PROBLEM en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have obtained the best constant of the following Lp Sobolev inequality sup 0≤y≤1| u(j)(y)| ≤C (∫ 01 | u(M)(x)| p dx)1/p , where u is a function satisfying u(M) ∈ Lp(0, 1), u(2i)(0) = 0 (0 ≤i ≤ [(M − 1)/2]) and u(2i+1)(1) = 0 (0 ≤ i ≤ [(M − 2)/2]), where u(i) is the abbreviation of (d/dx)iu(x). In [9], the best constant of the above inequality was obtained for the case of p = 2 and j = 0. This paper extends the result of [9] under the conditions p > 1 and 0 ≤ j ≤ M −1. The best constant is expressed by Bernoulli polynomials. en-copyright= kn-copyright= en-aut-name=YamagishiHiroyuki en-aut-sei=Yamagishi en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeKohtaro en-aut-sei=Watanabe en-aut-mei=Kohtaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KametakaYoshinori en-aut-sei=Kametaka en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Tokyo Metropolitan College of Industrial Technology affil-num=2 en-affil= kn-affil=Department of Computer Science, National Defense Academy affil-num=3 en-affil= kn-affil=Faculty of Engineering Science, Osaka University en-keyword=Lp Sobolev inequality kn-keyword=Lp Sobolev inequality en-keyword=Best constant kn-keyword=Best constant en-keyword=Green function kn-keyword=Green function en-keyword=Reproducing kernel kn-keyword=Reproducing kernel en-keyword=Bernoulli polynomial kn-keyword=Bernoulli polynomial en-keyword=Hölder inequality kn-keyword=Hölder inequality END start-ver=1.4 cd-journal=joma no-vol=225 cd-vols= no-issue= article-no= start-page=137 end-page=140 dt-received= dt-revised= dt-accepted= dt-pub-year=2013 dt-pub=201303 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery en-subtitle= kn-subtitle= en-abstract= kn-abstract=The state of sodium inserted in the hard carbon electrode of a sodium ion battery having practical cyclability was investigated using solid state 23Na NMR. The spectra of carbon samples charged (reduced) above 50 mAh g−1 showed clear three components. Two peaks at 9.9 ppm and 5.2 ppm were ascribed to reversible sodium stored between disordered graphene sheets in hard carbon because the shift of the peaks was invariable with changing strength of external magnetic field. One broad signal at about −9 to −16 ppm was assigned to sodium in heterogeneously distributed closed nanopores in hard carbon. Low temperature 23Na static and magic angle spinning NMR spectra didn't split or shift whereas the spectral pattern of 7Li NMR for lithium-inserted hard carbon changes depending on the temperature. This strongly suggests that the exchange of sodium atoms between different sites in hard carbon is slow. These studies show that sodium doesn't form quasi-metallic clusters in closed nanopores of hard carbon although sodium assembles at nanopores while the cell is electrochemically charged. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshikawaToru en-aut-sei=Ishikawa en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShimadzuSaori en-aut-sei=Shimadzu en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YabuuchiNaoaki en-aut-sei=Yabuuchi en-aut-mei=Naoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KomabaShinichi en-aut-sei=Komaba en-aut-mei=Shinichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakedaKazuyuki en-aut-sei=Takeda en-aut-mei=Kazuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=GotoAtsushi en-aut-sei=Goto en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=DeguchiKenzo en-aut-sei=Deguchi en-aut-mei=Kenzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OhkiShinobu en-aut-sei=Ohki en-aut-mei=Shinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HashiKenjiro en-aut-sei=Hashi en-aut-mei=Kenjiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=ShimizuTadashi en-aut-sei=Shimizu en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Natural Science & Technology, Okayama University affil-num=2 en-affil= kn-affil=Department of Applied Chemistry, Tokyo University of Science affil-num=3 en-affil= kn-affil=Department of Applied Chemistry, Tokyo University of Science affil-num=4 en-affil= kn-affil=Department of Applied Chemistry, Tokyo University of Science affil-num=5 en-affil= kn-affil=Department of Applied Chemistry, Tokyo University of Science affil-num=6 en-affil= kn-affil=Division of Chemistry, Graduate School of Science, Kyoto University affil-num=7 en-affil= kn-affil=National Institute for Materials Science affil-num=8 en-affil= kn-affil=National Institute for Materials Science affil-num=9 en-affil= kn-affil=National Institute for Materials Science affil-num=10 en-affil= kn-affil=National Institute for Materials Science affil-num=11 en-affil= kn-affil=National Institute for Materials Science affil-num=12 en-affil= kn-affil=Graduate School of Natural Science & Technology, Okayama University en-keyword=Sodium ion battery kn-keyword=Sodium ion battery en-keyword=Anode kn-keyword=Anode en-keyword=Hard carbon kn-keyword=Hard carbon en-keyword=23Na kn-keyword=23Na en-keyword=Solid state NMR kn-keyword=Solid state NMR END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=5 article-no= start-page=580 end-page=581 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=20110501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ultrahigh-resolution laser photoemission study of URu2Si2 across the hidden-order transition en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have studied the electronic structures of URu2Si2 employing ultrahigh-resolutionlaser angle-resolved photoemission spectroscopy. The change of photoemission spectra is investigated across the hidden-ordertransition, and the emergence of a narrow band is clearly observed near the Fermi level for both (π,0) and (π,π) directions. In addition, it is shown that tuning of light's polarization allows the signal of a hole-like dispersive feature to enhance. These observations prove that laser angle-resolved photoemission spectroscopy is an effective tool for studying the evolution of electronic structures across the hidden-ordertransition in URu2Si2. en-copyright= kn-copyright= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraYoshiaki en-aut-sei=Nakamura en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuiMasaki en-aut-sei=Fukui en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HagaYoshinori en-aut-sei=Haga en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoEtsuji en-aut-sei=Yamamoto en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ŌnukiYoshichika en-aut-sei=Ōnuki en-aut-mei=Yoshichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkawaMario en-aut-sei=Okawa en-aut-mei=Mario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinShik en-aut-sei=Shin en-aut-mei=Shik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=5 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=6 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=7 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=8 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=9 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=11 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University en-keyword=Electronic structure kn-keyword=Electronic structure en-keyword=Laser angle-resolved photoemission spectroscopy kn-keyword=Laser angle-resolved photoemission spectroscopy en-keyword=URu2Si2 kn-keyword=URu2Si2 en-keyword=Hidden order kn-keyword=Hidden order END start-ver=1.4 cd-journal=joma no-vol=470 cd-vols= no-issue=S1 article-no= start-page=S389 end-page=S390 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201012 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis on photoemission spectrum of superconducting FeSe en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this paper, we present the result of soft X-ray photoemission spectroscopy and its comparison with the density functional calculation. Although local density approximation seems to be a good starting point for describing the electronic structure of FeSe, the simulated spectrum poorly reproduced the structure around E(B) = 2 eV. This result suggests the necessity of theoretical treatment beyond local density approximation. en-copyright= kn-copyright= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WakitaTakanori en-aut-sei=Wakita en-aut-mei=Takanori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MizuguchiYoshikazu en-aut-sei=Mizuguchi en-aut-mei=Yoshikazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TsudaShunsuke en-aut-sei=Tsuda en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakanoYoshihiko en-aut-sei=Takano en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeyaHiroyuki en-aut-sei=Takeya en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirataKazuto en-aut-sei=Hirata en-aut-mei=Kazuto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KatoYukako en-aut-sei=Kato en-aut-mei=Yukako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MuroTakayuki en-aut-sei=Muro en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OkawaMario en-aut-sei=Okawa en-aut-mei=Mario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IshizakaKyoko en-aut-sei=Ishizaka en-aut-mei=Kyoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShinShik en-aut-sei=Shin en-aut-mei=Shik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=HarimaHisatomo en-aut-sei=Harima en-aut-mei=Hisatomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=Research Laboratory for Surface Science (RLSS), Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=JST, Transformative Research-Project on Iron Pnictides (TRIP) affil-num=5 en-affil= kn-affil=JST, Transformative Research-Project on Iron Pnictides (TRIP) affil-num=6 en-affil= kn-affil=JST, Transformative Research-Project on Iron Pnictides (TRIP) affil-num=7 en-affil= kn-affil=National Institute for Material Science affil-num=8 en-affil= kn-affil=National Institute for Material Science affil-num=9 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=10 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8 affil-num=11 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=12 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=13 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=14 en-affil= kn-affil=JST, Transformative Research-Project on Iron Pnictides (TRIP) affil-num=15 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=16 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=17 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University en-keyword=Iron chalcogenide superconductor kn-keyword=Iron chalcogenide superconductor en-keyword=FeSe kn-keyword=FeSe en-keyword=Photoemission spectroscopy kn-keyword=Photoemission spectroscopy en-keyword=Band calculation kn-keyword=Band calculation END start-ver=1.4 cd-journal=joma no-vol=82 cd-vols= no-issue=20 article-no= start-page=205108-1 end-page=205108-6 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20101108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Signature of hidden order and evidence for periodicity modification in URu2Si2 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The detail of electronic structures near the Fermi level in URu2Si2 has been investigated employing state-of-art laser angle-resolved photoemission spectroscopy. The observation of a narrow dispersive band near the Fermi level in the ordered state as well as its absence in a Rh-substituted sample strongly suggest that the emergence of the narrow band is a clear signature of the hidden-order transition. The temperature dependence of the narrow band, which appears at the onset of the hidden-order transition, invokes the occurrence of periodicity modification in the ordered state, which is shown for the first time by any spectroscopic probe. We compare our data to other previous studies and discuss possible implications. en-copyright= kn-copyright= en-aut-name=YoshidaRikiya en-aut-sei=Yoshida en-aut-mei=Rikiya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NakamuraYoshiaki en-aut-sei=Nakamura en-aut-mei=Yoshiaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukuiMasaki en-aut-sei=Fukui en-aut-mei=Masaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HagaYoshinori en-aut-sei=Haga en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoEtsuji en-aut-sei=Yamamoto en-aut-mei=Etsuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OnukiYoshichika en-aut-sei=Onuki en-aut-mei=Yoshichika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkawaMario en-aut-sei=Okawa en-aut-mei=Mario kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinShik en-aut-sei=Shin en-aut-mei=Shik kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HiraiMasaaki en-aut-sei=Hirai en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MuraokaYuji en-aut-sei=Muraoka en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=4 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=5 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=6 en-affil= kn-affil=Advanced Science Research Center, Japan Atomic Energy Agency affil-num=7 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=8 en-affil= kn-affil=Institute for Solid State Physics, The University of Tokyo affil-num=9 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=11 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=81 cd-vols= no-issue=18 article-no= start-page=180509-1 end-page=180509-4 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100517 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Angle-resolved photoemission observation of the superconducting-gap minimum and its relation to the nesting vector in the phonon-mediated superconductor YNi2B2C en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have performed ultrahigh-resolution angle-resolved photoemission spectroscopy to directly study the large superconducting (SC) gap anisotropy of YNi2B2C. We succeed in measuring momentum (k) dependence of SC gap for individual Fermi surface (FS) sheets, which demonstrates complexity of SC gap in a phonon-mediated superconductor. Within measured k regions on FS sheets, we find a pointlike minimum of SC gap, whose k positions can be connected by the known nesting vector. This shows close correlation between the nesting vector and node formation. en-copyright= kn-copyright= en-aut-name=BabaT en-aut-sei=Baba en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokoyaT en-aut-sei=Yokoya en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TsudaS en-aut-sei=Tsuda en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=WatanabeT en-aut-sei=Watanabe en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NoharaM en-aut-sei=Nohara en-aut-mei=M kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakagiH en-aut-sei=Takagi en-aut-mei=H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OguchiT en-aut-sei=Oguchi en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ShinS en-aut-sei=Shin en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Institute for Solid State Physics, University of Tokyo affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Institute for Solid State Physics, University of Tokyo affil-num=4 en-affil= kn-affil=Institute for Solid State Physics, University of Tokyo affil-num=5 en-affil= kn-affil=Department of Advanced Materials Science, University of Tokyo affil-num=6 en-affil= kn-affil=Department of Advanced Materials Science, University of Tokyo affil-num=7 en-affil= kn-affil=Department of Quantum Matter, Graduate school of Advanced Sciences of Matter (ADSM), Hiroshima University affil-num=8 en-affil= kn-affil=Institute for Solid State Physics, University of Tokyo END start-ver=1.4 cd-journal=joma no-vol=46 cd-vols= no-issue=1 article-no= start-page=21 end-page=24 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20050401 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Elevation of p53 Protein Level and SOD Activity in the Resident Blood of the Misasa Radon Hot Spring District en-subtitle= kn-subtitle= en-abstract= kn-abstract=To clarify the mechanism by which radon hot springs prevent cancer or not, in this study, blood was collected from residents in the Misasa hot spring district and in a control district. The level of a representative cancer-suppressive gene, p53, and the activity of a representative antioxidant enzyme, superoxide dismutase (SOD), were analyzed as indices. The level of serum p53 protein in the males in the Misasa hot spring district was found to be 2-fold higher than that in the control district, which is a significant difference. In the females in the Misasa hot spring district, SOD activity was approximately 15% higher than that in the control district, which is also statistically significant, and exceeded the reference range of SOD activity despite advanced age. These results suggested that routine exposure of the residents in the Misasa hot spring district to radon at a concentration about 3 times higher than the national mean induces trace active oxygen in vivo, potentiating products of cancer-suppressive gene and antioxidant function. As the p53 protein level was high in the residents in the Misasa hot spring district, apoptosis of cancer cells may readily occur. en-copyright= kn-copyright= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MitsunobuFumihiro en-aut-sei=Mitsunobu en-aut-mei=Fumihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KojimaShuji en-aut-sei=Kojima en-aut-mei=Shuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShibakuraMisako en-aut-sei=Shibakura en-aut-mei=Misako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HanamotoKatsumi en-aut-sei=Hanamoto en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanizakiYoshiro en-aut-sei=Tanizaki en-aut-mei=Yoshiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Departments of Radiological Technology, Okayama University Medical School affil-num=2 en-affil= kn-affil=Misasa Medical Center, Okayama University Medical School affil-num=3 en-affil= kn-affil=Faculty of Pharmaceutical Sciences, Science University of Tokyo affil-num=4 en-affil= kn-affil=Departments of Medical Technology, Okayama University Medical School affil-num=5 en-affil= kn-affil=Departments of Radiological Technology, Okayama University Medical School affil-num=6 en-affil= kn-affil=Departments of Radiological Technology, Okayama University Medical School affil-num=7 en-affil= kn-affil=Misasa Medical Center, Okayama University Medical School en-keyword=Radon hot spring kn-keyword=Radon hot spring en-keyword=Misasa kn-keyword=Misasa en-keyword=Cancer-related mortality rate kn-keyword=Cancer-related mortality rate en-keyword=p53 protein level kn-keyword=p53 protein level en-keyword=Superoxide dismutase activity kn-keyword=Superoxide dismutase activity END start-ver=1.4 cd-journal=joma no-vol=1797 cd-vols= no-issue=2 article-no= start-page=278 end-page=284 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201002 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structural and functional studies on Ycf12 (Psb30) and PsbZ-deletion mutants from a thermophilic cyanobacterium en-subtitle= kn-subtitle= en-abstract= kn-abstract=Ycf12 (Psb30) and PsbZ are two low molecular weight subunits of photosystem II (PSII), with one and two trans-membrane helices, respectively. In order to study the functions of these two subunits from a structural point of view, we constructed deletion mutants lacking either Ycf12 or PsbZ from Thermosynechococcus elongatus, and purified, crystallized and analyzed the structure of PSII dimer from the two mutants. Our results showed that Ycf12 is located in the periphery of PSII, close to PsbK, PsbZ and PsbJ, and corresponded to the unassigned helix X1 reported previously, in agreement with the recent structure at 2.9 Å resolution (A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Cyanobacterial photosystem II at 2.9 Å resolution: role of quinones, lipids, channels and chloride, Nat. Struct. Mol. Biol. 16 (2009) 334–342). On the other hand, crystals of PsbZ-deleted PSII showed a remarkably different unit cell constants from those of wild-type PSII, indicating a role of PsbZ in the interactions between PSII dimers within the crystal. This is the first example for a different arrangement of PSII dimers within the cyanobacterial PSII crystals. PSII dimers had a lower oxygen-evolving activity from both mutants than that from the wild type. In consistent with this, the relative content of PSII in the thylakoid membranes was lower in the two mutants than that in the wild type. These results suggested that deletion of both subunits affected the PSII activity, thereby destabilized PSII, leading to a decrease in the PSII content in vivo. While PsbZ was present in PSII purified from the Ycf12-deletion mutant, Ycf12 was present in crude PSII but absent in the finally purified PSII from the PsbZ-deletion mutant, indicating a preferential, stabilizing role of PsbZ for the binding of Ycf12 to PSII. These results were discussed in terms of the PSII crystal structure currently available en-copyright= kn-copyright= en-aut-name=TakasakaKenji en-aut-sei=Takasaka en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwaiMasako en-aut-sei=Iwai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawakamiKeisuke en-aut-sei=Kawakami en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OhmoriYukari en-aut-sei=Ohmori en-aut-mei=Yukari kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkeuchiMasahiko en-aut-sei=Ikeuchi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiYuichiro en-aut-sei=Takahashi en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KamiyaNobuo en-aut-sei=Kamiya en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=2 en-affil= kn-affil=Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science affil-num=3 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University affil-num=4 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=5 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=6 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Arts and Science, The University of Tokyo affil-num=7 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University affil-num=8 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University affil-num=9 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science; Okayama University en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=Mutant kn-keyword=Mutant en-keyword=Crystal structure kn-keyword=Crystal structure en-keyword=Ycf12 kn-keyword=Ycf12 en-keyword=PsbZ kn-keyword=PsbZ en-keyword=Oxygen evolution kn-keyword=Oxygen evolution END start-ver=1.4 cd-journal=joma no-vol=285 cd-vols= no-issue=38 article-no= start-page=29191 end-page=29199 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=20100917 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Binding and Functional Properties of Five Extrinsic Proteins in Oxygen-evolving Photosystem II from a Marine Centric Diatom, Chaetoceros gracilis en-subtitle= kn-subtitle= en-abstract= kn-abstract=Oxygen-evolving photosystem II (PSII) isolated from a marine centric diatom, Chaetoceros gracilis, contains a novel extrinsic protein (Psb31) in addition to four red algal type extrinsic proteins of PsbO, PsbQ′, PsbV, and PsbU. In this study, the five extrinsic proteins were purified from alkaline Tris extracts of the diatom PSII by anion and cation exchange chromatographic columns at different pH values. Reconstitution experiments in various combinations with the purified extrinsic proteins showed that PsbO, PsbQ′, and Psb31 rebound directly to PSII in the absence of other extrinsic proteins, indicating that these extrinsic proteins have their own binding sites in PSII intrinsic proteins. On the other hand, PsbV and PsbU scarcely rebound to PSII alone, and their effective bindings required the presence of all of the other extrinsic proteins. Interestingly, PSII reconstituted with Psb31 alone considerably restored the oxygen evolving activity in the absence of PsbO, indicating that Psb31 serves as a substitute in part for PsbO in supporting oxygen evolution. A significant difference found between PSIIs reconstituted with Psb31 and with PsbO is that the oxygen evolving activity of the former is scarcely stimulated by Cl− and Ca2+ ions but that of the latter is largely stimulated by these ions, although rebinding of PsbV and PsbU activated oxygen evolution in the absence of Cl− and Ca2+ ions in both the former and latter PSIIs. Based on these results, we proposed a model for the association of the five extrinsic proteins with intrinsic proteins in diatom PSII and compared it with those in PSIIs from the other organisms. en-copyright= kn-copyright= en-aut-name=NagaoRyo en-aut-sei=Nagao en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriguchiAkira en-aut-sei=Moriguchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TomoTatsuya en-aut-sei=Tomo en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NiikuraAyako en-aut-sei=Niikura en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakajimaSaori en-aut-sei=Nakajima en-aut-mei=Saori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SuzukiTakehiro en-aut-sei=Suzuki en-aut-mei=Takehiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkumuraAkinori en-aut-sei=Okumura en-aut-mei=Akinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwaiMasako en-aut-sei=Iwai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=IkeuchiMasahiko en-aut-sei=Ikeuchi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=EnamiIsao en-aut-sei=Enami en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo affil-num=2 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=3 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=4 en-affil= kn-affil=Division of Biosciences, Graduate School of Natural Science and Technology, Okayama University affil-num=5 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=6 en-affil= kn-affil=Biomolecular Characterization Team, Discovery Research Institute, RIKEN affil-num=7 en-affil= kn-affil=Department of Integrated Sciences in Physics and Biology, College of Humanities and Sciences, Nihon University affil-num=8 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo affil-num=9 en-affil= kn-affil=Division of Biosciences, Graduate School of Natural Science and Technology, Okayama University affil-num=10 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Art and Sciences, University of Tokyo affil-num=11 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science END start-ver=1.4 cd-journal=joma no-vol=13 cd-vols= no-issue= article-no= start-page=373 end-page=389 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=2010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Mechanisms of Acido-Tolerance and Characteristics of Photosystems in an Acidophilic and Thermophilic Red Alga, Cyanidium Caldarium en-subtitle= kn-subtitle= en-abstract= kn-abstract=In this chapter, we describe the mechanisms of acido-tolerance in an acidophilic- and thermophilic red alga, Cyanidium caldarium. In spite of the extremely acidic environments it inhabits, the intracellular pH of Cyanidium cells is kept neutral by pumping out the protons previously leaked into the cells according to the steep pH gradient. The H+ pump is driven by the plasma membrane ATPase, utilizing intracellular ATP produced by both oxidative phosphorylation and cyclic photophosphorylation via photosystem I. We also describe the characteristics and function of the two photosystems, Photosystem I (PSI) and II (PSII), in Cyanidium caldarium in comparison with those of cyanobacteria, other eukaryotic algae, and higher plants, based on the crystal structures of the two complexes reported so far. en-copyright= kn-copyright= en-aut-name=EnamiIsao en-aut-sei=Enami en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AdachiHideyuki en-aut-sei=Adachi en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Department of Biology, Faculty of Science, Tokyo University of Science affil-num=2 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University affil-num=3 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University END start-ver=1.4 cd-journal=joma no-vol=66 cd-vols= no-issue=1 article-no= start-page=31 end-page=40 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201202 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Quantitative Assessment of Gait Bradykinesia in Parkinson’s Disease Using a Portable Gait Rhythmogram en-subtitle= kn-subtitle= en-abstract= kn-abstract=To quantify gait bradykinesia during daily activity in patients with Parkinson's disease (PD), we measured movement-induced accelerations over more than 24h in 50 patients with PD and 17 age-matched normal controls, using a new device, the portable gait rhythmogram. Acceleration values induced by various movements, averaged each 10 min, exhibited a gamma distribution. The mean value of the distribution curve was used as an index of the "amount of overall movement per 24h". Characteristic changes were observed in both the gait cycle and gait acceleration. During hypokinesia, the gait cycle became either faster or slower. A number of patients with marked akinesia/bradykinesia showed a reduced and narrow range of gait acceleration, i.e., a range of floor reaction forces. The results suggest that assessment of the combination of changes in gait cycle and gait acceleration can quantitatively define the severity of gait bradykinesia. en-copyright= kn-copyright= en-aut-name=UtsumiHiroya en-aut-sei=Utsumi en-aut-mei=Hiroya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TerashiHiroo en-aut-sei=Terashi en-aut-mei=Hiroo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshimuraYohei en-aut-sei=Ishimura en-aut-mei=Yohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakazawaTomoko en-aut-sei=Takazawa en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HayashiAkito en-aut-sei=Hayashi en-aut-mei=Akito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MochizukiHideki en-aut-sei=Mochizuki en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OkumaYasuyuki en-aut-sei=Okuma en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=OrimoSatoshi en-aut-sei=Orimo en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiKazushi en-aut-sei=Takahashi en-aut-mei=Kazushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YoneyamaMitsuru en-aut-sei=Yoneyama en-aut-mei=Mitsuru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MitomaHiroshi en-aut-sei=Mitoma en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Department of Neurology, Tokyo Medical University affil-num=2 en-affil= kn-affil=Department of Neurology, Tokyo Medical University affil-num=3 en-affil= kn-affil=Department of Neurology, Tokyo Medical University affil-num=4 en-affil= kn-affil=Department of Neurology, Tokyo Medical University affil-num=5 en-affil= kn-affil=Department of Rehabilitation, Juntendo University, Urayasu Hospital affil-num=6 en-affil= kn-affil=Department of Neurology, Kitasato University affil-num=7 en-affil= kn-affil=Department of Neurology, Juntendo University, Shizuoka Hospital affil-num=8 en-affil= kn-affil=Department of Neurology, Kanto Chuo Hospital affil-num=9 en-affil= kn-affil=Department of Neurology, Keio University affil-num=10 en-affil= kn-affil=Mitsubishi Chemical Group Science and Technology Research Center, Inc. affil-num=11 en-affil= kn-affil=Department of Medical Education, Tokyo Medical University en-keyword=Parkinson's disease kn-keyword=Parkinson's disease en-keyword=gait disorders kn-keyword=gait disorders en-keyword=portable gait rhythmogram kn-keyword=portable gait rhythmogram END start-ver=1.4 cd-journal=joma no-vol=22 cd-vols= no-issue=9 article-no= start-page=1011 end-page=1021 dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=200509 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Organ-Specific and Age-Dependent Expression of Insulin-like Growth Factor-I (IGF-I) mRNA Variants: IGF-IA and IB mRNAs in the Mouse en-subtitle= kn-subtitle= en-abstract= kn-abstract=Insulin-like growth factor-I (IGF-I) gene generates several IGF-I mRNA variants by alternative splicing. Two promoters are present in mouse IGF-I gene. Each promoter encodes two IGF-I mRNA variants (IGF-IA and IGF-IB mRNAs). Variants differ by the presence (IGF-IB) or absence (IGF-IA) of a 52-bp insert in the E domain-coding region. Functional differences among IGF-I mRNAs, and regulatory mechanisms for alternative splicing of IGF-I mRNA are not yet known. We analyzed the expression of mouse IGF-IA and IGF-IB mRNAs using SYBR Green real-time RT-PCR. In the liver, IGF-I mRNA expression increased from 10 days of age to 45 days. In the uterus and ovary, IGF-I mRNA expression increased from 21 days of age, and then decreased at 45 days. In the kidney, IGF-I mRNA expression decreased from 10 days of age. IGF-IA mRNA levels were higher than IGF-IB mRNA levels in all organs examined. Estradiol-17 beta (E2) treatment in ovariectomized mice increased uterine IGF-IA and IGF-IB mRNA levels from 3 hr after injection, and highest levels for both mRNAs were detected at 6 hr, and relative increase was greater for IGF-IB mRNA than for IGF-IA mRNA. These results suggest that expression of IGF-I mRNA variants is regulated in organ-specific and age-dependent manners, and estrogen is involved in the change of IGF-I mRNA variant expression. en-copyright= kn-copyright= en-aut-name=OhtsukiTakashi en-aut-sei=Ohtsuki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtsukiMariko en-aut-sei=Otsuki en-aut-mei=Mariko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MurakamiYousuke en-aut-sei=Murakami en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MaekawaTetsuya en-aut-sei=Maekawa en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YamamotoTakashi en-aut-sei=Yamamoto en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=AkasakaKoji en-aut-sei=Akasaka en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TakahashiSumio en-aut-sei=Takahashi en-aut-mei=Sumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=4 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=5 en-affil= kn-affil=Department of Mathematical and Life Science, Graduate School of Science, Hiroshima University affil-num=6 en-affil= kn-affil=Misaki Marine Biological Station, University of Tokyo affil-num=7 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=8 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University en-keyword=insulin like growth factor-I (IGF-I) kn-keyword=insulin like growth factor-I (IGF-I) en-keyword=uterus kn-keyword=uterus en-keyword=estradiol kn-keyword=estradiol en-keyword=mouse kn-keyword=mouse END start-ver=1.4 cd-journal=joma no-vol=15 cd-vols= no-issue=4 article-no= start-page=573 end-page=579 dt-received= dt-revised= dt-accepted= dt-pub-year=1998 dt-pub=199808 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Insulin-Like Growth Factor-I and Its Receptor in Mouse Pituitary Glands en-subtitle= kn-subtitle= en-abstract= kn-abstract=Insulin-like growth factor-I (IGF-I) is produced in the liver and other peripheral tissues in response to growth hormone (GH) stimuli. IGF-I regulates diverse physiological functions in an autocrine and/or paracrine manner. IGF-I and IGF-I receptor (type-I receptor) are expressed in human and rat pituitary glands. However, the cell types of IGF-I-expressing cells and target cells of IGF-I in the pituitary glands are not known. The present study was aimed to identify the cell types of IGF-I-expressing cells and of its type-I receptor-expressing cells in mouse pituitary glands. In the mouse pituitary glands, IGF-I mRNA and IGF-I receptor mRNA were detected by reverse transcription-polymerase chain reaction (RT-PCR). IGF-I-expressing cells and its receptor-expressing cells were detected by non-radioisotopic in situ hybridization using mouse IGF-I cDNA and IGF-I receptor cDNA probes, and their cell types were immunocytochemically determined using antibodies raised against pituitary hormones. We found that somatotrophs expressed both IGF-I and IGF-I receptors, and some of corticotrophs expressed IGF-I receptors. Co-localization of IGF-I and GH in the same cultured pituitary cells was observed by dual-labelling immunocytochemistry. The present study demonstrated that pituitary IGF-I produced in somatotrophs regulated functions of somatotrophs and corticotrophs in an autocrine and/or paracrine manner. en-copyright= kn-copyright= en-aut-name=HondaJunichi en-aut-sei=Honda en-aut-mei=Junichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=FukumachiHiroshi en-aut-sei=Fukumachi en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TakahashiSumio en-aut-sei=Takahashi en-aut-mei=Sumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Biological Sciences, Graduate School of Science, University of Tokyo affil-num=4 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=5 article-no= start-page=661 end-page=666 dt-received= dt-revised= dt-accepted= dt-pub-year=2000 dt-pub=200007 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Epidermal Growth Factor Stimulates Proliferation of Mouse Uterine Epithelial Cells in Primary Culture en-subtitle= kn-subtitle= en-abstract= kn-abstract=Epidermal growth factor (EGF) is one of growth factors that are thought to mediate the stimulatory effects of estrogen on the proliferation of uterine epithelial cells. The present study was attempted to obtain direct evidence for the mitogenic effects of EGF on uterine epithelial cells, and to prove that EGF and EGF receptors are expressed in these cells. Mouse uterine epithelial cells were isolated from immature female mice and cultured with or without EGF for 5 days. EGF (1 to 100 ng/ml) significantly increased the number of uterine epithelial cells, and the maximal growth (141.9+/-8.3% of controls) was obtained at a dose of 10 ng/ml. In addition, EGF (0.1 to 100 ng/ml) increased the number of DNA-synthesizing cells immunocytochemically detected by bromodeoxyuridine uptake to the nucleus. Northern blot analysis revealed that the uterine epithelial cells expressed both EGF mRNA (4.7 kb) and EGF receptor mRNAs (10.5, 6.6, and 2.7 kb) These results suggest that the proliferation of uterine epithelial cells is regulated by the paracrine and/ or autocrine action of EGF. Our previous study demonstrated the mitogenic effect of IGF-I on uterine epithelial cells. To examine whether the EGF- and IGF-I signaling act at the same level in the regulation of the proliferation of uterine epithelial cells, the cultured cells were simultaneously treated with IGF-I and EGF. IGF-I was found to additively stimulate the mitogenic effects of EGF, suggesting that the EGF-induced growth of uterine epithelial cells is distinct from IGF-l-induced growth. en-copyright= kn-copyright= en-aut-name=ShiragaMasahiro en-aut-sei=Shiraga en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KomatsuNoriko en-aut-sei=Komatsu en-aut-mei=Noriko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeshigawaraKiyoshi en-aut-sei=Teshigawara en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaAkinobu en-aut-sei=Okada en-aut-mei=Akinobu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakeuchiSakae en-aut-sei=Takeuchi en-aut-mei=Sakae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=FukamachiHiroshi en-aut-sei=Fukamachi en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TakahashiSumio en-aut-sei=Takahashi en-aut-mei=Sumio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=4 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=5 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University affil-num=6 en-affil= kn-affil=Department of Biological Sciences, Graduate School of Science, University of Tokyo affil-num=7 en-affil= kn-affil=Department of Biology, Faculty of Science, Okayama University END start-ver=1.4 cd-journal=joma no-vol=1807 cd-vols= no-issue=3 article-no= start-page=319 end-page=325 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201103 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Roles of PsbI and PsbM in photosystem II dimer formation and stability studied by deletion mutagenesis and X-ray crystallography en-subtitle= kn-subtitle= en-abstract= kn-abstract=PsbM and PsbI are two low molecular weight subunits of photosystem II (PSII), with PsbM being located in the center, and PsbI in the periphery, of the PSII dimer. In order to study the functions of these two subunits from a structural point of view, we crystallized and analyzed the crystal structure of PSII dimers from two mutants lacking either PsbM or PsbI. Our results confirmed the location of these two subunits in the current crystal structure, as well as their absence in the respective mutants. The relative contents of PSII dimers were found to be decreased in both mutants, with a concomitant increase in the amount of PSII monomers, suggesting a destabilization of PSII dimers in both of the mutants. On the other hand, the accumulation level of the overall PSII complexes in the two mutants was similar to that in the wild-type strain. Treatment of purified PSII dimers with lauryldimethylamine N-oxide at an elevated temperature preferentially disintegrated the dimers from the PsbM deletion mutant into monomers and CP43-less monomers, whereas no significant degradation of the dimers was observed from the PsbI deletion mutant. These results indicate that although both PsbM and PsbI are required for the efficient formation and stability of PSII dimers in vivo, they have different roles, namely, PsbM is required directly for the formation of dimers and its absence led to the instability of the dimers accumulated. On the other hand, PsbI is required in the assembly process of PSII dimers in vivo; once the dimers are formed, PsbI was no longer required for its stability. en-copyright= kn-copyright= en-aut-name=KawakamiKeisuke en-aut-sei=Kawakami en-aut-mei=Keisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=UmenaYasufumi en-aut-sei=Umena en-aut-mei=Yasufumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IwaiMasako en-aut-sei=Iwai en-aut-mei=Masako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KawabataYousuke en-aut-sei=Kawabata en-aut-mei=Yousuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkeuchiMasahiko en-aut-sei=Ikeuchi en-aut-mei=Masahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KamiyaNobuo en-aut-sei=Kamiya en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShenJian-Ren en-aut-sei=Shen en-aut-mei=Jian-Ren kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University affil-num=2 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University affil-num=3 en-affil= kn-affil=Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science affil-num=4 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University affil-num=5 en-affil= kn-affil=Department of Life Sciences (Biology), Graduate School of Arts and Science, The University of Tokyo affil-num=6 en-affil= kn-affil=Department of Chemistry, Graduate School of Science, Osaka City University affil-num=7 en-affil= kn-affil=Division of Bioscience, Graduate School of Natural Science and Technology/Faculty of Science, Okayama University en-keyword=Photosystem II kn-keyword=Photosystem II en-keyword=Mutant kn-keyword=Mutant en-keyword=Crystal structure kn-keyword=Crystal structure en-keyword=PsbM kn-keyword=PsbM en-keyword=PsbI kn-keyword=PsbI en-keyword=Oxygen evolution kn-keyword=Oxygen evolution END start-ver=1.4 cd-journal=joma no-vol=67 cd-vols= no-issue=6 article-no= start-page=993 end-page=1005 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201109 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana en-subtitle= kn-subtitle= en-abstract= kn-abstract=NimA-related kinase 6 (NEK6) has been implicated in microtubule regulation to suppress the ectopic outgrowth of epidermal cells; however, its molecular functions remain to be elucidated. Here, we analyze the function of NEK6 and other members of the NEK family with regard to epidermal cell expansion and cortical microtubule organization. The functional NEK6-green fluorescent protein fusion localizes to cortical microtubules, predominantly in particles that exhibit dynamic movement along microtubules. The kinase-dead mutant of NEK6 (ibo1-1) exhibits a disturbance of the cortical microtubule array at the site of ectopic protrusions in epidermal cells. Pharmacological studies with microtubule inhibitors and quantitative analysis of microtubule dynamics indicate excessive stabilization of cortical microtubules in ibo1/nek6 mutants. In addition, NEK6 directly binds to microtubules in vitro and phosphorylates beta-tubulin. NEK6 interacts and co-localizes with NEK4 and NEK5 in a transient expression assay. The ibo1-3 mutation markedly reduces the interaction between NEK6 and NEK4 and increases the interaction between NEK6 and NEK5. NEK4 and NEK5 are required for the ibo1/nek6 ectopic outgrowth phenotype in epidermal cells. These results demonstrate that NEK6 homodimerizes and forms heterodimers with NEK4 and NEK5 to regulate cortical microtubule organization possibly through the phosphorylation of beta-tubulins. en-copyright= kn-copyright= en-aut-name=MotoseHiroyasu en-aut-sei=Motose en-aut-mei=Hiroyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HamadaTakahiro en-aut-sei=Hamada en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshimotoKaori en-aut-sei=Yoshimoto en-aut-mei=Kaori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MurataTakashi en-aut-sei=Murata en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HasebeMitsuyasu en-aut-sei=Hasebe en-aut-mei=Mitsuyasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=WatanabeYuichiro en-aut-sei=Watanabe en-aut-mei=Yuichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=HashimotoTakashi en-aut-sei=Hashimoto en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SakaiTatsuya en-aut-sei=Sakai en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TakahashiTaku en-aut-sei=Takahashi en-aut-mei=Taku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ affil-num=2 en-affil= kn-affil=Univ Massachusetts affil-num=3 en-affil= kn-affil=Okayama Univ affil-num=4 en-affil= kn-affil=Natl Inst Basic Biol affil-num=5 en-affil= kn-affil=Natl Inst Basic Biol affil-num=6 en-affil= kn-affil=Univ Tokyo affil-num=7 en-affil= kn-affil=Nara Inst Sci & Technol affil-num=8 en-affil= kn-affil=Niigata Univ affil-num=9 en-affil= kn-affil=Okayama Univ en-keyword=NimA-related kinase kn-keyword=NimA-related kinase en-keyword=cell expansion kn-keyword=cell expansion en-keyword=microtubule kn-keyword=microtubule en-keyword=epidermal cell kn-keyword=epidermal cell en-keyword=Arabidopsis thaliana kn-keyword=Arabidopsis thaliana END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=24 article-no= start-page=8739 end-page=8747 dt-received= dt-revised= dt-accepted= dt-pub-year=2008 dt-pub=20080706 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Drosophila blimp-1 is a transient transcriptional repressor that controls timing of the ecdysone-induced developmental pathway en-subtitle= kn-subtitle= en-abstract= kn-abstract=

Regulatory mechanisms controlling the timing of developmental events are crucial for proper development to occur. ftz-fl is expressed in a temporally regulated manner following pulses of ecdysteroid and this precise expression is necessary for the development of Drosophila melanogaster. To understand how insect hormone ecdysteroids regulate the timing of FTZ-F1 expression, we purified a DNA binding regulator of ftz-fl. Mass spectroscopy analysis revealed this protein to be a fly homolog of mammalian B lymphocyte-induced maturation protein 1 (Blimp-1). Drosophila Blimp-1 (dBlimp-1) is induced directly by 20-hydroxyecdysone, and its product exists during high-ecdysteroid periods and turns over rapidly. Forced expression of dBlimp-1 and RNA interference analysis indicate that dBlimp-1 acts as a repressor and controls the timing of FTZ-F1 expression. Furthermore, its prolonged expression results in delay of pupation timing. These results suggest that the transient transcriptional repressor dBlimp-1 is important for determining developmental timing in the ecdysone-induced pathway.

en-copyright= kn-copyright= en-aut-name=AgawaYasuo en-aut-sei=Agawa en-aut-mei=Yasuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SarhanMoustafa en-aut-sei=Sarhan en-aut-mei=Moustafa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KageyamaYuji en-aut-sei=Kageyama en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AkagiKazutaka en-aut-sei=Akagi en-aut-mei=Kazutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakaiMasayoshi en-aut-sei=Takai en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HashiyamaKazuya en-aut-sei=Hashiyama en-aut-mei=Kazuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WadaTadashi en-aut-sei=Wada en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HandaHiroshi en-aut-sei=Handa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IwamatsuAkihiro en-aut-sei=Iwamatsu en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HiroseSusumu en-aut-sei=Hirose en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UedaHitoshi en-aut-sei=Ueda en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil= kn-affil=Department of Developmental Genetics, National Institute of Genetics and Department of Genetics, The Graduate University for Advanced Studies affil-num=2 en-affil= kn-affil=The Graduate School of Natural Science and Technology and Department of Biology, Faculty of Science, Okayama University affil-num=3 en-affil= kn-affil=Department of Developmental Genetics, National Institute of Genetics and Department of Genetics, The Graduate University for Advanced Studies affil-num=4 en-affil= kn-affil=The Graduate School of Natural Science and Technology and Department of Biology, Faculty of Science, Okayama University affil-num=5 en-affil= kn-affil=The Graduate School of Natural Science and Technology and Department of Biology, Faculty of Science, Okayama University affil-num=6 en-affil= kn-affil=Department of Developmental Genetics, National Institute of Genetics and Department of Genetics, The Graduate University for Advanced Studies affil-num=7 en-affil= kn-affil=Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology affil-num=8 en-affil= kn-affil=Integrated Research Institute, Tokyo Institute of Technology affil-num=9 en-affil= kn-affil=Protein Research Network, Inc. affil-num=10 en-affil= kn-affil=Department of Developmental Genetics, National Institute of Genetics and Department of Genetics, The Graduate University for Advanced Studies affil-num=11 en-affil= kn-affil=The Graduate School of Natural Science and Technology and Department of Biology, Faculty of Science, Okayama University en-keyword=SEQUENTIAL GENE ACTIVATION kn-keyword=SEQUENTIAL GENE ACTIVATION en-keyword=MATURATION PROTEIN-1 BLIMP-1 kn-keyword=MATURATION PROTEIN-1 BLIMP-1 en-keyword=STEROID-RECEPTOR SUPERFAMILY kn-keyword=STEROID-RECEPTOR SUPERFAMILY en-keyword=POLYTENE CHROMOSOMES kn-keyword=POLYTENE CHROMOSOMES en-keyword=SALIVARY-GLAND kn-keyword=SALIVARY-GLAND en-keyword=FUSHI-TARAZU kn-keyword=FUSHI-TARAZU en-keyword=EMBRYONIC-DEVELOPMENT kn-keyword=EMBRYONIC-DEVELOPMENT en-keyword=MOLECULAR-MECHANISM kn-keyword=MOLECULAR-MECHANISM en-keyword=TEMPORAL REGULATION kn-keyword=TEMPORAL REGULATION en-keyword=STAGE SPECIFICITY kn-keyword=STAGE SPECIFICITY END start-ver=1.4 cd-journal=joma no-vol=94 cd-vols= no-issue=14 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20054 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Observation of the acceleration of a single bunch by using the induction device in the kek proton synchrotron en-subtitle= kn-subtitle= en-abstract= kn-abstract=

A single rf bunch in the KEK proton synchrotron was accelerated with an induction acceleration method from the injection energy of 500 MeV to 5 GeV.

en-copyright= kn-copyright= en-aut-name=TakayamaKen en-aut-sei=Takayama en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KosekiKunio en-aut-sei=Koseki en-aut-mei=Kunio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TorikaiKota en-aut-sei=Torikai en-aut-mei=Kota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TokuchiAkira en-aut-sei=Tokuchi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakamuraEiji en-aut-sei=Nakamura en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ArakidaYoshio en-aut-sei=Arakida en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ShimosakiYoshito en-aut-sei=Shimosaki en-aut-mei=Yoshito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WakeMasayoshi en-aut-sei=Wake en-aut-mei=Masayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KounoTadaaki en-aut-sei=Kouno en-aut-mei=Tadaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HoriokaKazuhiko en-aut-sei=Horioka en-aut-mei=Kazuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=IgarashiSusumu en-aut-sei=Igarashi en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=IwashitaTaiki en-aut-sei=Iwashita en-aut-mei=Taiki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KawasakiAtsushi en-aut-sei=Kawasaki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KishiroJun-ichi en-aut-sei=Kishiro en-aut-mei=Jun-ichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=SatoHikaru en-aut-sei=Sato en-aut-mei=Hikaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=ShihoMakoto en-aut-sei=Shiho en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=ShirakataMasashi en-aut-sei=Shirakata en-aut-mei=Masashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=SuenoTsuyoshi en-aut-sei=Sueno en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=ToyamaTakeshi en-aut-sei=Toyama en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=WatanabeMasao en-aut-sei=Watanabe en-aut-mei=Masao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=YamaneIsao en-aut-sei=Yamane en-aut-mei=Isao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= affil-num=1 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=2 en-affil= kn-affil=Graduate University for Advanced Studies affil-num=3 en-affil= kn-affil=Kyushu University affil-num=4 en-affil= kn-affil=Nichicon Corporation affil-num=5 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=6 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=7 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=8 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=9 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=10 en-affil= kn-affil=Tokyo Institute of Technology affil-num=11 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=12 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=13 en-affil= kn-affil=Nichicon Corporation affil-num=14 en-affil= kn-affil=Japan Atomic Energy Research Institute affil-num=15 en-affil= kn-affil=Okayama University affil-num=16 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=17 en-affil= kn-affil=Japan Atomic Energy Research Institute affil-num=18 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=19 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=20 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK affil-num=21 en-affil= kn-affil=Japan Atomic Energy Research Institute affil-num=22 en-affil= kn-affil=High Energy Accelerator Research Organization, KEK END start-ver=1.4 cd-journal=joma no-vol=72 cd-vols= no-issue=6 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2005 dt-pub=20058 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Carbon-substitution dependent multiple superconducting gap of MgB2: A sub-meV resolution photoemission study en-subtitle= kn-subtitle= en-abstract= kn-abstract=

"Sub-meV" resolution photoemission spectroscopy was used to study carbon-substitution dependence of the multiple superconducting gap of Mg(B1-xCx)(2). Two features corresponding to sigma and pi gaps are clearly observed in the raw spectra up to carbon concentration x=0.075. The observed x dependence of the two gaps shows a qualitatively different behavior: the sigma gap is proportional to T-c while the pi gap shows negligible change. Doping as well as temperature dependence can be explained within the two-band mean-field theory. Implications from the present study are discussed.

en-copyright= kn-copyright= en-aut-name=TsudaS en-aut-sei=Tsuda en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YokoyaT en-aut-sei=Yokoya en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KissT en-aut-sei=Kiss en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShimojimaT en-aut-sei=Shimojima en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShinS en-aut-sei=Shin en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TogashiT en-aut-sei=Togashi en-aut-mei=T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=WatanabeS en-aut-sei=Watanabe en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ZhangC en-aut-sei=Zhang en-aut-mei=C kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=ChenC T en-aut-sei=Chen en-aut-mei=C T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=LeeS en-aut-sei=Lee en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=UchiyamaH en-aut-sei=Uchiyama en-aut-mei=H kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=TajimaS en-aut-sei=Tajima en-aut-mei=S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakaiN en-aut-sei=Nakai en-aut-mei=N kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MachidaK en-aut-sei=Machida en-aut-mei=K kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil= kn-affil=University of Tokyo affil-num=2 en-affil= kn-affil=University of Tokyo affil-num=3 en-affil= kn-affil=Institute of Physical and Chemical Research affil-num=4 en-affil= kn-affil=University of Tokyo affil-num=5 en-affil= kn-affil=University of Tokyo affil-num=6 en-affil= kn-affil=Institute of Physical and Chemical Research affil-num=7 en-affil= kn-affil=University of Tokyo affil-num=8 en-affil= kn-affil=Beijing Center for Crystal R&D affil-num=9 en-affil= kn-affil=Beijing Center for Crystal R&D affil-num=10 en-affil= kn-affil=International Superconductivity Technology Center affil-num=11 en-affil= kn-affil=International Superconductivity Technology Center affil-num=12 en-affil= kn-affil=International Superconductivity Technology Center affil-num=13 en-affil= kn-affil=Kyoto University affil-num=14 en-affil= kn-affil=Okayama University en-keyword=magnesium diboride kn-keyword=magnesium diboride en-keyword=single-crystals kn-keyword=single-crystals en-keyword=origin kn-keyword=origin en-keyword=boron kn-keyword=boron END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=23 article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2002 dt-pub=20026 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Structure and physical properties of Cs3+alpha C60 (alpha=0.0-1.0) under ambient and high pressures en-subtitle= kn-subtitle= en-abstract= kn-abstract=

The intermediate phases Cs3+alphaC60 (alpha=0.0-1.0), have been prepared, and their structure and physical properties are studied by x-ray powder diffraction, Raman, ESR, electric conductivity, and ac susceptibility measurements under ambient and high pressures. The x-ray powder diffraction pattern of Cs3+alphaC60 (alpha=0.0-1.0) can be indexed as a mixture of the body-centered-orthorhombic (bco) and cubic (A15) phases. The A15 phase diminishes above 30 kbar. The broad ESR peak due to the conduction electron (c-ESR) is observed only for the phases around alpha=0.0 in Cs3+alphaC60. The resistivity of the Cs3+alphaC60 (alphanot equal0) sample follows the granular metal theory and/or Sheng model even in the sample exhibiting a broad ESR peak. No superconducting transition is observed up to 10.6 kbar in Cs3+alphaC60 (alphanot equal0). These results present that bco phase of Cs3+alphaC60 (alpha=0) is a final candidate for a pressure-induced superconductor.

en-copyright= kn-copyright= en-aut-name=FujikiS. en-aut-sei=Fujiki en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KubozonoY. en-aut-sei=Kubozono en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KobayashiM. en-aut-sei=Kobayashi en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KambeT. en-aut-sei=Kambe en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=RikiishiY. en-aut-sei=Rikiishi en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KashinoS. en-aut-sei=Kashino en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=IshiiK. en-aut-sei=Ishii en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SuematsuH. en-aut-sei=Suematsu en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=FujiwaraA. en-aut-sei=Fujiwara en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=2 en-affil= kn-affil=Department of Vacuum UV Photoscience, Institute for Molecular Science affil-num=3 en-affil= kn-affil=Department of Materials Science, Himeji Institute of Technology affil-num=4 en-affil= kn-affil=Department of Physics, Okayama University affil-num=5 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=6 en-affil= kn-affil=Department of Chemistry, Okayama University affil-num=7 en-affil= kn-affil=Department of Physics, The University of Tokyo affil-num=8 en-affil= kn-affil=Department of Physics, The University of Tokyo affil-num=9 en-affil= kn-affil=Japan Advanced Institute of Science and Technology END start-ver=1.4 cd-journal=joma no-vol=329-333 cd-vols= no-issue= article-no= start-page=713 end-page=714 dt-received= dt-revised= dt-accepted= dt-pub-year=2003 dt-pub=20035 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=X-ray study of modulated structures of beta-CuxV2O5 en-subtitle= kn-subtitle= en-abstract= kn-abstract=

High resolution X-ray study reveals the wave vector change in the modulated structure of the quasi-one dimensional compound beta'-Cu vanadium bronze. Structural modulation of the reduced wave vector q0 = (0, 0.305, 0) emerges below 220 K in beta'-Cu0.29V2O5 . For beta'-Cu0.39V2O5, not the single q modulation but two kinds of modulations were observed. A three-fold superlattice structure with q1 = (0, 0.333, 0) appears below 210 K. An incommensurate modulated structure with q2 = (0, 0.26 ? 0.29, 0) coexists below 175 K, whose satellite intensity and b* component Qb have temperature and passing-time dependencies between 140 K and 175 K. The competition between q1 and q2 modulations was also observed. It seems that the q2 is deeply related to the physical property change between 140 K and 180 K confirmed by the decrease in the magnetic susceptibility and the increase in the resistivity.

en-copyright= kn-copyright= en-aut-name=NagaoNobuaki en-aut-sei=Nagao en-aut-mei=Nobuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NogamiYoshio en-aut-sei=Nogami en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OshimaKokichi en-aut-sei=Oshima en-aut-mei=Kokichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamadaHiroyuki en-aut-sei=Yamada en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=UedaYutaka en-aut-sei=Ueda en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Okayama University affil-num=4 en-affil= kn-affil=University of Tokyo affil-num=5 en-affil= kn-affil=University of Tokyo en-keyword=x-ray kn-keyword=x-ray en-keyword=modulated structures kn-keyword=modulated structures en-keyword=low dimensional conductor kn-keyword=low dimensional conductor en-keyword=vanadium bronze kn-keyword=vanadium bronze en-keyword=b-cuxv2o5 kn-keyword=b-cuxv2o5 END start-ver=1.4 cd-journal=joma no-vol=127 cd-vols= no-issue=1 article-no= start-page=131 end-page=138 dt-received= dt-revised= dt-accepted= dt-pub-year=2006 dt-pub=20062 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A micro ultrasonic motor using a micro-machined cylindrical bulk PZT transducer en-subtitle= kn-subtitle= en-abstract= kn-abstract=

In this paper, a micro ultrasonic motor using a micro-machined bulk piezoelectric transducer is introduced. The cylindrical shaped bulk piezoelectric transducer, a diameter of 0.8 mm and a height of 2.2 mm, was developed as stator transducer for traveling wave type ultrasonic motor. The transducer was made of lead zirconate titanate (PZT) bulk ceramics, and formed by micro machining, Ni plating and laser beam cutting process. Using this stator transducer, we have fabricated a cylindrical micro ultrasonic motor, a diameter of 2.0 mm and a height of 5.9 mm. We have also evaluated some characteristics and succeeded in driving the micro ultrasonic motor.

en-copyright= kn-copyright= en-aut-name=KandaTakefumi en-aut-sei=Kanda en-aut-mei=Takefumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MakinoAkira en-aut-sei=Makino en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OnoTomohisa en-aut-sei=Ono en-aut-mei=Tomohisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzumoriKoichi en-aut-sei=Suzumori en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MoritaTakeshi en-aut-sei=Morita en-aut-mei=Takeshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KurosawaMinoru Kuribayashi en-aut-sei=Kurosawa en-aut-mei=Minoru Kuribayashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Okayama University affil-num=3 en-affil= kn-affil=Okayama University affil-num=4 en-affil= kn-affil=Okayama University affil-num=5 en-affil= kn-affil=University of Tokyo affil-num=6 en-affil= kn-affil=Tokyo Institute of Technology en-keyword=Piezoelectric actuator kn-keyword=Piezoelectric actuator en-keyword=Ultrasonic motor kn-keyword=Ultrasonic motor en-keyword=Micro motor kn-keyword=Micro motor en-keyword=Bulk piezoelectric material kn-keyword=Bulk piezoelectric material en-keyword=Micro machining kn-keyword=Micro machining END start-ver=1.4 cd-journal=joma no-vol=2 cd-vols= no-issue= article-no= start-page=928 end-page=933 dt-received= dt-revised= dt-accepted= dt-pub-year=2000 dt-pub=20006 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Analysis and reduction of EMI conducted by a PWM inverter-fed AC motor drive system having long power cables en-subtitle= kn-subtitle= en-abstract= kn-abstract=

This paper analyzes conducted EMI generated by a PWM inverter-fed induction motor drive system. It is shown experimentally and analytically that resonant phenomena in a high-frequency range beyond a dominant resonant frequency are originated from the behavior of power cables as a distributed-constant circuit. Spectra of common-mode and differential-mode currents are simulated by means of introducing a distributed-constant model of the power cables, which consists of a 20-step ladder circuit. As a result, it is also shown that these resonances can be damped out by a single common-mode transformer (CMT) and three differential-mode filters (DMFs), both of which have been proposed by the authors

en-copyright= kn-copyright= en-aut-name=OgasawaraSatoshi en-aut-sei=Ogasawara en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkagiHirofumi en-aut-sei=Akagi en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Tokyo Institute of Technology en-keyword=DC-AC power convertors kn-keyword=DC-AC power convertors en-keyword=PWM invertors kn-keyword=PWM invertors en-keyword=bipolar transistor switches kn-keyword=bipolar transistor switches en-keyword=electromagnetic interference kn-keyword=electromagnetic interference en-keyword=induction motor drives kn-keyword=induction motor drives en-keyword=insulated gate bipolar transistors kn-keyword=insulated gate bipolar transistors en-keyword=ladder networks kn-keyword=ladder networks en-keyword=power bipolar transistors kn-keyword=power bipolar transistors en-keyword=power cables kn-keyword=power cables en-keyword=power semiconductor switches kn-keyword=power semiconductor switches en-keyword=power transformers kn-keyword=power transformers END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue= article-no= start-page=2015 end-page=2021 dt-received= dt-revised= dt-accepted= dt-pub-year=2001 dt-pub=200110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Suppression of common-mode voltage in a PWM rectifier/inverter system en-subtitle= kn-subtitle= en-abstract= kn-abstract=

This paper proposes a PWM rectifier/inverter system capable of suppressing not only supply harmonic currents but also electromagnetic interference (EMI). An active common-noise canceler (ACC) developed for this system is characterized by sophisticated connection of a common-mode transformer which can compensate for common-mode voltages produced by both PWM rectifier and inverter. As a result, the size of the common-mode transformer can be reduced to 1/3, compared with the previously proposed ACC. A prototype PWM rectifier/inverter system (2.2 kW) has been implemented and tested. Some experimental results show reduction characteristics of the supply harmonic current and EMI

en-copyright= kn-copyright= en-aut-name=OgasawaraSatoshi en-aut-sei=Ogasawara en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkagiHirofumi en-aut-sei=Akagi en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Tokyo Institute of Technology en-keyword=AC-DC power convertors kn-keyword=AC-DC power convertors en-keyword=DC-AC power convertors kn-keyword=DC-AC power convertors en-keyword=PWM invertors kn-keyword=PWM invertors en-keyword=PWM power convertors kn-keyword=PWM power convertors en-keyword=electromagnetic interference kn-keyword=electromagnetic interference en-keyword=equivalent circuits kn-keyword=equivalent circuits en-keyword=harmonic distortion kn-keyword=harmonic distortion en-keyword=harmonics suppression kn-keyword=harmonics suppression en-keyword=power conversion harmonics kn-keyword=power conversion harmonics en-keyword=power transformers kn-keyword=power transformers en-keyword=rectifying circuits kn-keyword=rectifying circuits END start-ver=1.4 cd-journal=joma no-vol=3 cd-vols= no-issue= article-no= start-page=1482 end-page=1488 dt-received= dt-revised= dt-accepted= dt-pub-year=2000 dt-pub=200010 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Circuit configurations and performance of the active common-noise canceler for reduction of common-mode voltage generated by voltage-source PWM inverters en-subtitle= kn-subtitle= en-abstract= kn-abstract=

This paper discusses two different circuit configurations of the active common-noise canceler (ACC) which has been proposed by the authors. One is characterized by its DC power supply isolated from the DC link of a PWM inverter. The configuration makes it possible to integrate the ACC with a medium-voltage PWM inverter. The other compensates a partial frequency component of the common-mode voltage. The purpose is not to achieve complete cancellation, but to restrict only a slope in a change of the common-mode voltage applied to an AC motor. As a result, the core size of the common-mode transformer used in the ACC becomes considerably small. Experimental results show good effects of the proposed active circuits on both ground current and conducted EMI

en-copyright= kn-copyright= en-aut-name=OgasawaraSatoshi en-aut-sei=Ogasawara en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkagiHirofumi en-aut-sei=Akagi en-aut-mei=Hirofumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil= kn-affil=Okayama University affil-num=2 en-affil= kn-affil=Tokyo Institute of Technology en-keyword=PWM invertors kn-keyword=PWM invertors en-keyword=active networks kn-keyword=active networks en-keyword=compensation kn-keyword=compensation en-keyword=electromagnetic interference kn-keyword=electromagnetic interference en-keyword=interference suppression kn-keyword=interference suppression en-keyword=power supplies to apparatus kn-keyword=power supplies to apparatus en-keyword=transformer cores kn-keyword=transformer cores en-keyword=transformers kn-keyword=transformers END start-ver=1.4 cd-journal=joma no-vol=147 cd-vols= no-issue=4 article-no= start-page=505 end-page=509 dt-received= dt-revised= dt-accepted= dt-pub-year=2004 dt-pub=200406 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Phase transition of zircon at high P-T conditions en-subtitle= kn-subtitle= en-abstract= kn-abstract=In situ observations of the zircon-reidite transition in ZrSiO4 were carried out using a multianvil high-pressure apparatus and synchrotron radiation. The phase boundary between zircon and reidite was determined to be P (GPa) = 8.5 + 0.0017×(T-1200) (K) for temperatures between 1100-1900 K. When subducted slabs, including igneous rocks and sediments, descend into the upper mantle, zircon in the subducted slab transforms into reidite at pressures of about 9 GPa, corresponding to a depth of 270 km. Reidite found in an upper Eocene impact ejecta layer in marine sediments is thought to have been transformed from zircon by a shock event. The peak pressure generated by the shock event in this occurrence is estimated to be higher than 8 GPa. en-copyright= kn-copyright= en-aut-name=OnoShigeaki en-aut-sei=Ono en-aut-mei=Shigeaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FunakoshiKenichi en-aut-sei=Funakoshi en-aut-mei=Kenichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakajimaYoichi en-aut-sei=Nakajima en-aut-mei=Yoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TangeYoshinori en-aut-sei=Tange en-aut-mei=Yoshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KatsuraTomoo en-aut-sei=Katsura en-aut-mei=Tomoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Institute for Frontier Research on Earth Evolution, Japan Marine Science & Technology Center affil-num=2 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute affil-num=3 en-affil= kn-affil=Department of Earth and Planetary Sciences, Tokyo Institute of Technology affil-num=4 en-affil= kn-affil=Department of Earth and Planetary Sciences, Tokyo Institute of Technology affil-num=5 en-affil= kn-affil=Institute for Study of the Earth's Interior, Okayama University en-keyword=high-pressure phase kn-keyword=high-pressure phase en-keyword=kokchetav massif kn-keyword=kokchetav massif en-keyword=northern KAZAKSTAN; METAMORPHIC ROCKS; ZRSIO4; TRANSFORMATIONS; POLYMORPH; REIDITE; STATE; GPA kn-keyword=northern KAZAKSTAN; METAMORPHIC ROCKS; ZRSIO4; TRANSFORMATIONS; POLYMORPH; REIDITE; STATE; GPA END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=2 article-no= start-page=177 end-page=180 dt-received= dt-revised= dt-accepted= dt-pub-year=1975 dt-pub=197506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Remarks on manifolds of negative curvature en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=IchidaRyosuke en-aut-sei=Ichida en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Tokyo Institute Of Technology END start-ver=1.4 cd-journal=joma no-vol=17 cd-vols= no-issue=2 article-no= start-page=131 end-page=134 dt-received= dt-revised= dt-accepted= dt-pub-year=1975 dt-pub=197506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On Riemannian manifolds of non-positive sectional curvature admitting a killing vector field en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=IchidaRyosuke en-aut-sei=Ichida en-aut-mei=Ryosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Tokyo Institute Of Technology END start-ver=1.4 cd-journal=joma no-vol=37 cd-vols= no-issue=1 article-no= start-page=219 end-page=239 dt-received= dt-revised= dt-accepted= dt-pub-year=1995 dt-pub=199501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=On the Asymptotic Expansion for the Trace of the Heat Kernel on Locally Symmetric Einstein Spaces and its Application en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=YoshijiKatsuhiro en-aut-sei=Yoshiji en-aut-mei=Katsuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil= kn-affil=Tokyo Institute Of Technology END