start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of size factors and velocity of impinging diesel spray flames on wall heat transfer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To examine the effects of size and velocity of impinging diesel spray flames on wall heat transfer, this study conducted visualization of the spray flame and measurements of wall heat flux in a constant volume vessel. The impinging flame velocity was varied by adjusting the injection velocity. To vary the flame size independently of the flame velocity, the nozzle orifice diameter and the nozzle-to-wall distance were varied under similarity conditions, while maintaining a constant ratio of nozzle-to-wall distance to orifice diameter. Care was taken to minimize wall interference from the liquid phase and unburned regions of the spray flame by employing a high cetane number fuel and increasing the nozzle-to-wall distance. The experimental results showed that the wall heat flux increased as the impinging velocity increased, and the flame width decreased. The power-law correlations between the Nusselt and Reynolds numbers were determined based on the experimental results, revealing that the exponent of the Reynolds number reaches a local minimum at the impingement point. As the radial displacement from the impingement point increases, the exponent of the Reynolds number approaches approximately 0.8, which is a typical value for turbulent wall flow.
en-copyright=
kn-copyright=
en-aut-name=KobashiYoshimitsu
en-aut-sei=Kobashi
en-aut-mei=Yoshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiraiRyoga
en-aut-sei=Hirai
en-aut-mei=Ryoga
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShibataGen
en-aut-sei=Shibata
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgawaHideyuki
en-aut-sei=Ogawa
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Engineering, Hokkaido University
kn-affil=
affil-num=3
en-affil=Graduate School of Engineering, Hokkaido University
kn-affil=
affil-num=4
en-affil=Graduate School of Engineering, Hokkaido University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=187
cd-vols=
no-issue=
article-no=
start-page=106403
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nitrogen distribution and nitrogen isotope fractionation in synthetic 2:1 phyllosilicates under hydrothermal conditions at 200?°C and saturated vapor pressure
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study investigates nitrogen distribution and isotope fractionation within synthetic 2:1 phyllosilicates, simulating submarine hydrothermal environments at 200 °C and saturated vapor pressure. XRD and EDS results revealed the potential coexistence of multiple cations in the interlayer of synthetic 2:1 phyllosilicate, concurrently suggesting cation substitution in the tetrahedral and/or octahedral sheets. Meanwhile, the iron-enriched 25-5 sample exhibited restricted interlayer expansibility. NH4+ absorptions were identified in the NH4-stretching (3200?2800 cm?1) and NH4-bending (1450?1400 cm?1) regions, with wavenumber shifts indicating the influence of interlayer water removal. At pH 10.56, over 95% of nitrogen was released into the gas phase, while at pH 8.88, nitrogen proportions in the liquid and gas phases were comparable (average 48?49%). Experiments with iron at pH ?8.80 showed that the nitrogen proportion in the gas phase (average 28%) was more than twofold lower than that in the liquid phase (average 68%). Equilibrium isotope fractionation factors indicated discernible preference for heavier nitrogen isotopes in the solid phase (αsolid-liquid = 1.009?1.021 and αsolid-gas = 1.011?1.027). The αliquid-gas range for sample 25?2 was 1.001?1.008, while that for the iron-enriched composite 25?5 was 0.997?1.010. Our experimental studies have confirmed that, in the absence of exchange interactions with external substances possessing different nitrogen isotope ratios, nitrogen isotope fractionation between ammonium and ammonia, controlled by variations in temperature and pH during mineralization, plays a crucial role in the variation of nitrogen isotope ratios. Additionally, we confirmed that metal-amines influence nitrogen isotope fractionation by modulating ammonia gas emission. These findings enhance our understanding of nitrogen cycling across the gas, liquid, and solid phases in submarine hydrothermal systems.
en-copyright=
kn-copyright=
en-aut-name=JoJaeguk
en-aut-sei=Jo
en-aut-mei=Jaeguk
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamanakaToshiro
en-aut-sei=Yamanaka
en-aut-mei=Toshiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyoshiYouko
en-aut-sei=Miyoshi
en-aut-mei=Youko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiMasaya
en-aut-sei=Suzuki
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KuwaharaYoshihiro
en-aut-sei=Kuwahara
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ChibaHitoshi
en-aut-sei=Chiba
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=LeeBum Han
en-aut-sei=Lee
en-aut-mei=Bum Han
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Research Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=4
en-affil=Research Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=5
en-affil=Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University
kn-affil=
affil-num=6
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Critical Minerals Research Center, Korea Institute of Geoscience & Mineral Resources (KIGAM)
kn-affil=
en-keyword=Synthetic 2:1 phyllosilicates
kn-keyword=Synthetic 2:1 phyllosilicates
en-keyword=Nitrogen distribution
kn-keyword=Nitrogen distribution
en-keyword=Nitrogen isotope fractionation
kn-keyword=Nitrogen isotope fractionation
en-keyword=Hydrothermal system
kn-keyword=Hydrothermal system
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=1
article-no=
start-page=2586329
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251130
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Asiatic acid, a novel ciprofloxacin adjuvant inhibits Shigella flexneri infection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Bacterial infection caused by intracellular pathogens such as Shigella flexneri is a rapidly increasing global health concern that requires urgent and necessary action. The dearth of licensed vaccines against shigellosis and the decline in susceptibility to conventional antibiotics has encouraged the development of new antibiotic principles and drugs. The treatment options are decreasing faster than the discovery rate of new antibacterial agents. Combinatorial approach of antibiotics with non-antibiotic adjuvants is a promising aspect to treat resistant bacterial infections. Asiatic acid, a membrane-disrupting triterpenoid with wide antimicrobial and immunomodulatory properties, can potentiate antibiotics, but the exact mechanisms remain broadly unexplored. Therefore, in this study, we screened the interaction of asiatic acid with several antibiotics. The results showed synergistic interactions of asiatic acid with antibiotics against susceptible and multidrug-resistant S. flexneri clinical isolates. Particularly important was the interaction of asiatic acid with the quinolone antibiotics ciprofloxacin and nalidixic acid. A detailed study showed that combined treatment of asiatic acid with ciprofloxacin inhibited S. flexneri biofilm formation and resistance development. An increase in membrane disruption and depolarization upon co-treatment was evident by surface electron and confocal microscopy. In addition, asiatic acid and ciprofloxacin synergism was identified to inhibit efflux activity and intracellular bacterial viability. However, asiatic acid showed no synergistic toxicity with ciprofloxacin towards mammalian cells. The antibacterial activity was further verified in a S. flexneri infected mice model. Therapeutic benefits were evident with reduced bacterial burden, recovery from intestinal tissue damage and increase in mice survivability. The results showed that this combination can target the bacterial membrane, efflux pump proteins and biofilm formation, thereby preventing resistance development. The combination treatment offers a proof of concept in targeting essential bacterial activities and might be developed into a novel and efficient treatment alternative against S. flexneri.
en-copyright=
kn-copyright=
en-aut-name=MaitraPriyanka
en-aut-sei=Maitra
en-aut-mei=Priyanka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=BhuktaSamhati
en-aut-sei=Bhukta
en-aut-mei=Samhati
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GopeAnimesh
en-aut-sei=Gope
en-aut-mei=Animesh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KayetPratanu
en-aut-sei=Kayet
en-aut-mei=Pratanu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=BasakSurajit
en-aut-sei=Basak
en-aut-mei=Surajit
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyoshiShin-Ichi
en-aut-sei=Miyoshi
en-aut-mei=Shin-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KitaharaKei
en-aut-sei=Kitahara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=DuttaShanta
en-aut-sei=Dutta
en-aut-mei=Shanta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BhattacharyaSushmita
en-aut-sei=Bhattacharya
en-aut-mei=Sushmita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=2
en-affil=Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=3
en-affil=Division of Clinical Medicine, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=4
en-affil=Division of Bioinformatics, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=5
en-affil=Division of Bioinformatics, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=6
en-affil=Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Collaborative Research Center of Okayama University for Infectious Diseases in India, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=8
en-affil=Department of Bacteriology, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
affil-num=9
en-affil=Division of Biochemistry, ICMR-National Institute for Research in Bacterial Infections
kn-affil=
en-keyword=Shigella flexneri
kn-keyword=Shigella flexneri
en-keyword=asiatic acid
kn-keyword=asiatic acid
en-keyword=ciprofloxacin
kn-keyword=ciprofloxacin
en-keyword=adjuvant
kn-keyword=adjuvant
en-keyword=membrane damage
kn-keyword=membrane damage
en-keyword=depolarization
kn-keyword=depolarization
en-keyword=nuclear damage
kn-keyword=nuclear damage
en-keyword=efflux inhibitor
kn-keyword=efflux inhibitor
END
start-ver=1.4
cd-journal=joma
no-vol=3
cd-vols=
no-issue=
article-no=
start-page=28
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Airway management during sedation for dental treatment in people with intellectual disabilities: a review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The oral health of people with intellectual disabilities remains poor due to a complex combination of physical and social problems, and often requires invasive dental treatment. However, it can be difficult to obtain their cooperation for dental treatment because they may not fully understand the need for treatment or may experience high levels of anxiety due to lack of understanding and/or sensory aversions to stimuli present in the dental environment, and behavioral management is often necessary during such treatment. Sedation is a very useful patient management method for dental treatment for people with intellectual disabilities; however, the dental treatment-related sedation of people with intellectual disabilities has different characteristics to the dental treatment-related sedation of others or other procedure-related sedation. For example, deep sedation is required for behavioral management; drug interactions between the patient’s regular medications, such as antiepileptic and antipsychotic drugs, and anesthetics may make the depth of sedation deeper; and the prevalence rate of obesity is higher among people with intellectual disabilities. The fact that the patient is in the supine position with their mouth open also makes airway management during sedation for dental treatment more difficult. It is therefore imperative that airway management during dental treatment for people with intellectual disabilities be conducted with the utmost precision and vigilance. Various attempts have been made to improve airway management during such sedation, and new technologies, such as capnography, nasal high-flow systems, and acoustic respiration monitors, may help. The objective of this review is to enhance comprehension of the attributes of airway management in dental sedation for people with intellectual disabilities and to properly understand the usefulness of the techniques that have been attempted thus far to ensure safer and more secure airway management for this population. The ultimate goal is to provide them with safe and secure medical care and improve their health outcomes.
en-copyright=
kn-copyright=
en-aut-name=HiguchiHitoshi
en-aut-sei=Higuchi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishiokaYukiko
en-aut-sei=Nishioka
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyakeSaki
en-aut-sei=Miyake
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyawakiTakuya
en-aut-sei=Miyawaki
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Dental Anesthesiology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Dentistry
kn-keyword=Dentistry
en-keyword=sedation
kn-keyword=sedation
en-keyword=airway management
kn-keyword=airway management
en-keyword=people with intellectual disabilities
kn-keyword=people with intellectual disabilities
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=1
article-no=
start-page=ycaf192
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Proliferation of a bloom-forming phytoplankton via uptake of polyphosphate-accumulating bacteria under phosphate-limiting conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Harmful algal blooms negatively impact the ecosystem and fisheries in affected areas. Eutrophication is a major factor contributing to bloom occurrence, and phosphorus is particularly important in limiting the growth of bloom-forming algae. Although algae efficiently utilize orthophosphate (Pi) as a phosphorous source over other molecular forms, Pi is often limited in the marine environment. While uptake and utilization of soluble inorganic and organic phosphorous by bloom-forming algae has been extensively studied, the details of geochemical and biological phosphorous cycling remain to be elucidated. Here, we report for the first time that the bloom-forming alga Heterosigma akashiwo can phagocytose bacteria and grow under phosphate-depleted conditions. The addition of Vibrio comitans to Pi-depleted H. akashiwo enabled the alga propagate to high cell densities, whereas other bacterial strains had only a minor effect. Importantly, V. comitans accumulates polyphosphate?a linear polymer of Pi?at high levels. The extent of algal proliferation induced by the addition of Vibrio species and polyphosphate-accumulating Escherichia coli correlated strongly with their polyphosphate content, indicating that bacterial polyphosphate served as an alternative PO43? source for H. akashiwo. The direct uptake of polyphosphate-accumulating bacteria through algal phagocytosis may represent a novel biological phosphorous-cycling pathway in marine ecosystems. The role of polyphosphate-accumulating marine bacteria as a hidden phosphorous source required for bloom formation warrants further investigation.
en-copyright=
kn-copyright=
en-aut-name=FukuyamaSeiya
en-aut-sei=Fukuyama
en-aut-mei=Seiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UsamiFumiko
en-aut-sei=Usami
en-aut-mei=Fumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HirotaRyuichi
en-aut-sei=Hirota
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OharaShizuka
en-aut-sei=Ohara
en-aut-mei=Shizuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KondoKen
en-aut-sei=Kondo
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GomibuchiYuki
en-aut-sei=Gomibuchi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YasunagaTakuo
en-aut-sei=Yasunaga
en-aut-mei=Takuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OndukaToshimitsu
en-aut-sei=Onduka
en-aut-mei=Toshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KurodaAkio
en-aut-sei=Kuroda
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KoikeKazuhiko
en-aut-sei=Koike
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UekiShoko
en-aut-sei=Ueki
en-aut-mei=Shoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=6
en-affil=Research Institute of Environment, Agriculture and Fisheries , Osaka Prefecture
kn-affil=
affil-num=7
en-affil=Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology
kn-affil=
affil-num=8
en-affil=Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology
kn-affil=
affil-num=9
en-affil=Hatsukaichi Branch, Fisheries Technology Institute , Fisheries Research and Education Agency
kn-affil=
affil-num=10
en-affil=Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=11
en-affil=Graduate School of Integrated Sciences for Life, Hiroshima University
kn-affil=
affil-num=12
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=3
article-no=
start-page=e80656
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250316
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Charcot Spine Arthropathy at the Lumbosacral Level in a Patient With Ankylosis of the Spine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Charcot spinal arthropathy, a rare refractory progressive disease, is characterized by symptoms such as pain, deformity, and neurological impairment, which can significantly reduce functional ability, quality of life, and life expectancy. We report a case of Charcot spine at the L5/S1 level with long segment ankylosis to the L5 vertebra. We first performed thorough debridement via a posterior approach. We used antibiotic-containing cement as a spacer to fill the dead space, facilitating the second surgery approach. In the second surgery, transdiscal screws, which have a low profile and strong force, were used as anchors, and bulk bone harvested from both iliac bones was grafted to the intervertebral space. The lumbosacral alignment was kyphotic, and the patient could sit and move independently. Disimpaction was impossible, and a stoma had to be created.
en-copyright=
kn-copyright=
en-aut-name=OdaYoshiaki
en-aut-sei=Oda
en-aut-mei=Yoshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TetsunagaTomoko
en-aut-sei=Tetsunaga
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ShinoharaKensuke
en-aut-sei=Shinohara
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Musculoskeletal Traumatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=ankylosing spine
kn-keyword=ankylosing spine
en-keyword=charcot spine
kn-keyword=charcot spine
en-keyword=charcot spine arthropathy
kn-keyword=charcot spine arthropathy
en-keyword=lumbosacral segment
kn-keyword=lumbosacral segment
en-keyword=paraplegia
kn-keyword=paraplegia
en-keyword=transdiscal screw
kn-keyword=transdiscal screw
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=急性鶏コクシジウム症感染早期におけるγδ T細胞の機能的役割に関する研究
kn-title=Studies on the functional roles of γδ T cells in the early phase of acute avian coccidiosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=LE VIET QUAN
en-aut-sei=LE VIET QUAN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=BCB染色によって分別された様々な直径の胞状卵胞由来ブタ卵母細胞の形態・発生に関する特徴と酸化ストレスに対する抵抗性
kn-title=Morphological/developmental characteristics and oxidative stress resilience of porcine oocytes derived from antral follicles with various diameters and classified by brilliant cresyl blue staining
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=VAN NGOC PHONG
en-aut-sei=VAN NGOC PHONG
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=WebスクレイピングとBERTモデルを用いた参考文献収集システムの研究
kn-title=A Study of Reference Paper Collection System Using Web Scraping and BERT Model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=INZALI NAING
en-aut-sei=INZALI NAING
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=骨肉腫細胞由来CCL2による腫瘍関連マクロファージ集積を介した肺転移促進機序
kn-title=Osteosarcoma cell?derived CCL2 facilitates lung metastasis via accumulation of tumor-associated macrophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KONDOHiroya
en-aut-sei=KONDO
en-aut-mei=Hiroya
kn-aut-name=近藤宏也
kn-aut-sei=近藤
kn-aut-mei=宏也
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=2
article-no=
start-page=650
end-page=653
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250428
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Successful Transplantation of Multiple Organs from Donor after Helium Asphyxiation: First Case Report in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Helium inhalation has increased, but most cases are either minor injuries or deaths; there have not yet been any reported cases of brain death leading to organ donation. We report a patient who attempted helium inhalation and was declared brain dead and became an organ donor without complications. To the best of our knowledge, this is the first reported case of deceased organ donation following helium asphyxiation in Japan. The patient in cardiac arrest was found with a helium-filled vinyl bag sealed around the neck. During emergency medical transport to the hospital, a spontaneous return of circulation was obtained after 31 minutes of cardiopulmonary resuscitation. Upon hospital arrival, the physical examination revealed dilated pupils with no response to light. Electrocardiography showed widespread ST-segment depression and ST-segment elevation in augmented Vector Right, as well as elevated cardiac enzymes and decreased myocardial contractility. Head computed tomography revealed diffuse cerebral edema and loss of the gray-white matter boundary without signs of air embolism in the cerebral and coronary arteries. Despite comprehensive post-cardiac arrest care with recovery of organ function, brain death was confirmed on day 4 after hospitalization. The family consented to organ donation on the 11th day of hospitalization. The heart, lungs, liver, and two kidneys were successfully transplanted and all organs functioned. All organ grafts were functioning well at the 3-month follow-up. Our case demonstrates that brain death caused by helium inhalation is not a contraindication to organ donation.
en-copyright=
kn-copyright=
en-aut-name=JinnoShunta
en-aut-sei=Jinno
en-aut-mei=Shunta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=brain death
kn-keyword=brain death
en-keyword=heart arrest
kn-keyword=heart arrest
en-keyword=helium
kn-keyword=helium
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=33014
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250926
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=iTRAQ-based quantitative proteomics reveals reduced expression of KRT19, KRT7, and PTGDS in cutaneous specimens after kidney transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Clinical improvement in pigmentation is frequently observed after kidney transplantation. However, the underlying molecular and histological mechanisms remain unclear. We conducted a study to quantify the skin color change using a handheld reflected light colorimeter and to investigate protein expression changes in the skin before and after kidney transplantation. Paired skin biopsies were obtained from three patients who underwent kidney transplantation before and one month after transplantation. Protein expression was analyzed using iTRAQ-based quantitative proteomics. Differentially expressed proteins were identified and visualized using hierarchical clustering and volcano plots. Histopathological evaluation included hematoxylin and eosin (H&E), Masson’s trichrome, and immunohistochemical (IHC) staining for keratin (KRT) 7, KRT19, and MelanA. Skin pigmentation of the arms, ankles, and abdomen had significant L-value improvement after kidney transplantation. Proteomic profiling identified 2148 proteins, with six proteins showing significant differential expression after transplantation. Among them, KRT7, KRT19, and prostaglandin D2 synthase (PTGDS) were significantly downregulated, potentially reflecting reduced epithelial stress and systemic inflammation. H&E and Masson’s trichrome staining revealed a post-transplantation reduction in dermal pigmentation and collagen content. IHC showed decreased KRT7, KRT19, and MelanA expression after transplantation. Our results suggest that targeting KRT or prostaglandin pathways may offer new treatments for ESRD-related skin symptoms.
en-copyright=
kn-copyright=
en-aut-name=TsuboiIchiro
en-aut-sei=Tsuboi
en-aut-mei=Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MitsuiYosuke
en-aut-sei=Mitsui
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SekitoTakanori
en-aut-sei=Sekito
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MaruyamaYuki
en-aut-sei=Maruyama
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Urology Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Urology Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Urology Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Urology Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic
kn-affil=
affil-num=6
en-affil=Department of Inflammation and Immunity, Lerner Research Institute Cleveland Clinic
kn-affil=
affil-num=7
en-affil=Department of Urology Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Urology Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Urology Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Urology Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Cutaneous manifestations
kn-keyword=Cutaneous manifestations
en-keyword=Keratin
kn-keyword=Keratin
en-keyword=Skin color
kn-keyword=Skin color
en-keyword=Pigmentation
kn-keyword=Pigmentation
en-keyword=Prostaglandin D2 synthase
kn-keyword=Prostaglandin D2 synthase
en-keyword=Renal transplantation
kn-keyword=Renal transplantation
en-keyword=Dialysis
kn-keyword=Dialysis
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=
article-no=
start-page=185111
end-page=185124
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=2025
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhancing Protection Against Code Reuse Attacks on IoT Devices by Randomizing Function Addresses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Most Internet of Things (IoT) devices currently in use are vulnerable to code reuse attacks because manufacturers typically deploy the same firmware across all devices. This uniformity enables attackers to craft a single exploit that can compromise multiple devices. To mitigate this risk, we propose a firmware diversification approach that creates multiple executable files with varying software compositions. Our approach introduces two complementary techniques: Function Address Reordering (FAR), which randomizes the order of functions within object files during compilation, and Object Address Reordering (OAR), which permutes the linking order of object files in the final executable. These techniques collectively diversify firmware instances without altering runtime behavior, making executing code reuse attacks significantly more difficult. By deploying firmware with diverse executable files, it is possible to enhance security without altering device behavior. We evaluate the effectiveness and limitations of the proposed methods when integrated into actual IoT firmware, assessing their resilience to code reuse attacks, impact on runtime behavior, and compilation overhead. Experimental results demonstrate that FAR and OAR significantly reduce the success rate of return-oriented programming attacks while incurring minimal performance overhead. This study offers a scalable, hardware-independent defense against code reuse attacks that increases resilience without a significant performance overhead, rendering it practical for widespread adoption in various IoT applications.
en-copyright=
kn-copyright=
en-aut-name=SajiKazuma
en-aut-sei=Saji
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamauchiToshihiro
en-aut-sei=Yamauchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiSatoru
en-aut-sei=Kobayashi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TaniguchiHideo
en-aut-sei=Taniguchi
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Code reuse attack
kn-keyword=Code reuse attack
en-keyword=IoT firmware
kn-keyword=IoT firmware
en-keyword=software diversity
kn-keyword=software diversity
en-keyword=function reordering
kn-keyword=function reordering
en-keyword=LLVM
kn-keyword=LLVM
END
start-ver=1.4
cd-journal=joma
no-vol=34
cd-vols=
no-issue=1
article-no=
start-page=46
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251009
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Highly efficient transgenesis mediated by Tip100 transposon system in medaka
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Transgenesis mediated by transposon is an effective approach for introducing exogenous DNA into the nuclear genome and establishing stable transgenic strains that efficiently express genetic tools. Although the DNA transposon Tol2 is widely used for transgenesis in zebrafish, its endogenous transpositional activity can lead to unintended transgene mobilization, making it unsuitable for transgenesis in medaka (Oryzias latipes). Here, we demonstrated that the DNA transposon Tip100, originally identified in the common morning glory (Ipomoea purpurea), an ornamental plant, can serve as a useful tool for transgenesis in Japanese medaka. The GFP transgene cassette, when co-injected with Tip100 transposase mRNA, was expressed in significantly higher number of somatic cells in the injected fish. Furthermore, a transgene flanked by truncated recognition sequences (100 bp each) exhibited expression levels comparable to those of the original vector containing the full 2.2 kb recognition sequence. Injection of a transgene driven by a germline-specific promoter revealed that fish injected with Tip100 mRNA exhibited a significantly higher germline transmission rate (42/68; 62.7%) compared to those injected without the mRNA (13/62; 21.0%). We successfully established transgenic strains by outcrossing injected founders with GFP-positive germ cells (7/7; 100%) and demonstrated that the transgenes were randomly integrated into the medaka genome, generating 8-bp duplications at the insertional sites?an insertional signature of the hAT superfamily of transposons. Our findings indicate that the Tip100 system is a promising tool for generating stable transgenic strains that express various genetic tools in medaka and potentially other fish species.
en-copyright=
kn-copyright=
en-aut-name=TanakaYoshitaka
en-aut-sei=Tanaka
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SekiTakahide
en-aut-sei=Seki
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoshinoAtsushi
en-aut-sei=Hoshino
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AnsaiSatoshi
en-aut-sei=Ansai
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Ushimado Marine Institute (UMI), Okayama University
kn-affil=
affil-num=2
en-affil=Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University
kn-affil=
affil-num=3
en-affil=National Institute for Basic Biology
kn-affil=
affil-num=4
en-affil=Ushimado Marine Institute (UMI), Okayama University
kn-affil=
en-keyword=Fish
kn-keyword=Fish
en-keyword=Medaka
kn-keyword=Medaka
en-keyword=Morning glory
kn-keyword=Morning glory
en-keyword=Transgenic
kn-keyword=Transgenic
en-keyword=Transposon
kn-keyword=Transposon
END
start-ver=1.4
cd-journal=joma
no-vol=26
cd-vols=
no-issue=1
article-no=
start-page=491
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250826
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Risk of malignant neoplasms of tacrolimus in kidney transplant patients: a retrospective cohort study conducted using the Japanese National Database of Health Insurance Claims
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Although the long-term survival of kidney transplant recipients has significantly improved, malignant neoplasms remain one of the leading causes of death in this population. The recipients face a 1.8-fold increased risk of developing malignant neoplasms compared with the general population. This risk increases with time after transplantation. Tacrolimus (TAC) is preferred over cyclosporine A (CyA) in terms of efficacy against organ rejection, but evidence on the risk of malignant neoplasms is lacking. We aimed to describe the incidence and types of malignant neoplasms in kidney transplant recipients and evaluate the association between malignant neoplasms development and the type of prescribed CNI.
Methods: This retrospective cohort study was conducted using the Japanese National Database of Health Insurance Claims, including data covering 99% of kidney transplant patients in Japan. Patients who underwent kidney transplantation and were prescribed TAC or CyA between April and June 2011 were included. The primary outcome included the incidence of malignant neoplasms, and secondary outcomes included overall survival and graft survival.
Results: A total of 7,590 patients were included, with 11.0% developing malignant neoplasms during the follow-up period. The most common malignant neoplasms were in the digestive organs and urinary tract. No statistically significant difference in malignant neoplasms incidence was observed between TAC and CyA users (hazards ratio: 0.97, 95% CI: 0.84 to 1.12; estimated average treatment effect: ?24.05, 95% CI: ?184.90 to 136.80). The patient and graft survival rates were also comparable between the groups.
Conclusions: This large study suggests that TAC is not associated with an increased risk of malignant neoplasms compared to CyA in the late post-transplant period.
en-copyright=
kn-copyright=
en-aut-name=KubotaRisa
en-aut-sei=Kubota
en-aut-mei=Risa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SadaKen-Ei
en-aut-sei=Sada
en-aut-mei=Ken-Ei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TokunagaMoto
en-aut-sei=Tokunaga
en-aut-mei=Moto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshinagaKasumi
en-aut-sei=Yoshinaga
en-aut-mei=Kasumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamanoiTomoaki
en-aut-sei=Yamanoi
en-aut-mei=Tomoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawadaTatsushi
en-aut-sei=Kawada
en-aut-mei=Tatsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TominagaYusuke
en-aut-sei=Tominaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatayamaSatoshi
en-aut-sei=Katayama
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=IwataTakehiro
en-aut-sei=Iwata
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NishimuraShingo
en-aut-sei=Nishimura
en-aut-mei=Shingo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=BekkuKensuke
en-aut-sei=Bekku
en-aut-mei=Kensuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=EdamuraKohei
en-aut-sei=Edamura
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KobayashiTomoko
en-aut-sei=Kobayashi
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakagawaYuki
en-aut-sei=Nakagawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IchimaruNaotsugu
en-aut-sei=Ichimaru
en-aut-mei=Naotsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=WadaKoichiro
en-aut-sei=Wada
en-aut-mei=Koichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Clinical Epidemiology, Kochi Medical School, Kochi University
kn-affil=
affil-num=3
en-affil=Department of Urology, National Hospital Organization Okayama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Urology, Juntendo University Graduate School of Medicine
kn-affil=
affil-num=16
en-affil=Department of Urology, Kinki Central Hospital
kn-affil=
affil-num=17
en-affil=Department of Urology, Shimane University Faculty of Medicine
kn-affil=
affil-num=18
en-affil=Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Calcineurin inhibitors
kn-keyword=Calcineurin inhibitors
en-keyword=Cyclosporine A
kn-keyword=Cyclosporine A
en-keyword=Kidney transplant
kn-keyword=Kidney transplant
en-keyword=Malignant neoplasms
kn-keyword=Malignant neoplasms
en-keyword=Tacrolimus
kn-keyword=Tacrolimus
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=7
article-no=
start-page=588
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250708
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Map Information Collection Tool for a Pedestrian Navigation System Using Smartphone
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Nowadays, a pedestrian navigation system using a smartphone has become popular as a useful tool to reach an unknown destination. When the destination is the office of a person, a detailed map information is necessary on the target area such as the room number and location inside the building. The information can be collected from various sources including Google maps, websites for the building, and images of signs. In this paper, we propose a map information collection tool for a pedestrian navigation system. To improve the accuracy and completeness of information, it works with the four steps: (1) a user captures building and room images manually, (2) an OCR software using Google ML Kit v2 processes them to extract the sign information from images, (3) web scraping using Scrapy (v2.11.0) and crawling with Apache Nutch (v1.19) software collects additional details such as room numbers, facilities, and occupants from relevant websites, and (4) the collected data is stored in the database to be integrated with a pedestrian navigation system. For evaluations of the proposed tool, the map information was collected for 10 buildings at Okayama University, Japan, a representative environment combining complex indoor layouts (e.g., interconnected corridors, multi-floor facilities) and high pedestrian traffic, which are critical for testing real-world navigation challenges. The collected data is assessed in completeness and effectiveness. A university campus was selected as it presents a complex indoor and outdoor environment that can be ideal for testing pedestrian navigations in real-world scenarios. With the obtained map information, 10 users used the navigation system to successfully reach destinations. The System Usability Scale (SUS) results through a questionnaire confirms the high usability.
en-copyright=
kn-copyright=
en-aut-name=BatubulanKadek Suarjuna
en-aut-sei=Batubulan
en-aut-mei=Kadek Suarjuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BrataKomang Candra
en-aut-sei=Brata
en-aut-mei=Komang Candra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KotamaI Nyoman Darma
en-aut-sei=Kotama
en-aut-mei=I Nyoman Darma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KyawHtoo Htoo Sandi
en-aut-sei=Kyaw
en-aut-mei=Htoo Htoo Sandi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HidayatiShintami Chusnul
en-aut-sei=Hidayati
en-aut-mei=Shintami Chusnul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Informatics, Institut Teknologi Sepuluh Nopember
kn-affil=
en-keyword=pedestrian navigation
kn-keyword=pedestrian navigation
en-keyword=map information
kn-keyword=map information
en-keyword=optical character recognition (OCR)
kn-keyword=optical character recognition (OCR)
en-keyword=smartphones
kn-keyword=smartphones
en-keyword=web scraping
kn-keyword=web scraping
en-keyword=system usability scale (SUS)
kn-keyword=system usability scale (SUS)
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=11
article-no=
start-page=2261
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250531
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=An Automatic Code Generation Tool Using Generative Artificial Intelligence for Element Fill-in-the-Blank Problems in a Java Programming Learning Assistant System
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Presently, Java is a fundamental object-oriented programming language that can be mastered by any student in information technology or computer science. To assist both teachers and students, we developed the Java Programming Learning Assistant System (JPLAS). It offers several types of practice problems with different levels and learning goals for step-by-step self-study, where any answer is automatically marked in the system. One challenge for teachers that is addressed with JPLAS is the generation of proper exercise problems that meet learning requirements. We implemented programs for generating new problems from given source codes, as collecting and evaluating suitable codes remains time-consuming. In this paper, we present an automatic code generation tool using generative AI to solve this challenge. Prompt engineering is used to help generate an appropriate source code, and the quality is controlled by optimizing the prompt based on the outputs. For applications in JPLAS, we implement a web application system to automatically generate an element fill-in-the-blank problem (EFP) in JPLAS. For evaluation, we select the element fill-in-the-blank problem (EFP) as the target type in JPLAS and generate several instances using this tool. The results confirm the validity and effectiveness of the proposed method.
en-copyright=
kn-copyright=
en-aut-name=ZhuZihao
en-aut-sei=Zhu
en-aut-mei=Zihao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MentariMustika
en-aut-sei=Mentari
en-aut-mei=Mustika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AungSoe Thandar
en-aut-sei=Aung
en-aut-mei=Soe Thandar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaoWen-Chung
en-aut-sei=Kao
en-aut-mei=Wen-Chung
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=LeeYi-Fang
en-aut-sei=Lee
en-aut-mei=Yi-Fang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Electrical Engineering, National Taiwan Normal University
kn-affil=
affil-num=6
en-affil=Department of Industrial Education, National Taiwan Normal University
kn-affil=
en-keyword=JPLAS
kn-keyword=JPLAS
en-keyword=Java programming learning
kn-keyword=Java programming learning
en-keyword=learning requirements
kn-keyword=learning requirements
en-keyword=generative AI
kn-keyword=generative AI
en-keyword=prompt engineering
kn-keyword=prompt engineering
en-keyword=quality control
kn-keyword=quality control
en-keyword=prompt optimization
kn-keyword=prompt optimization
END
start-ver=1.4
cd-journal=joma
no-vol=76
cd-vols=
no-issue=9
article-no=
start-page=4815
end-page=4837
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202511
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spatiotemporal evolution of ecosystem carbon storage under land use/land cover dynamics in the coastal region of Central Vietnam
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ecosystem carbon storage is a cost-effective strategy for global climate change mitigation, and its fluctuation is markedly shaped by land use/land cover (LULC) dynamics. Taking Danang city as an example of Central Coastal Vietnam, this study aims to assess LULC changes and analyze the spatiotemporal evolution of carbon storage from 2023 to 2050 under four LULC change scenarios, including natural trend scenario (NTS), ecological protection scenario (EPS), economic development scenario (EDS), and cropland protection scenario (CPS), by integrating the support vector machine-cellular automata-Markov (SVM-CA-Markov) model and the InVEST model. The Optimal Parameters-based Geographical Detector (OPGD) model was subsequently employed to elucidate the impacts of driving factors on the spatial distribution of carbon storage. The results showed that, from 2007 to 2023, Danang city experienced a dramatic back-and-forth transformation between LULC types, with the predominant transitions being from natural forest to acacia tree-dominated plantation forest (6492.31 ha), and from cropland to settlements, acacia tree-dominated plantation forest, and other land (5483.05 ha, 3763.66 ha, 2762.35 ha, respectively). Between 2023 and 2050, LULC transformations in Danang city are projected to yield varying degrees of carbon storage levels across different scenarios. Specifically, carbon storage is anticipated to dwindle by 0.221 Mt, 0.223 Mt, and 0.298 Mt under NTS, EDS, and CPS, respectively, while enhancing by 0.141 Mt under EPS. Regarding the spatial distribution of carbon storage, high values will be chiefly found in the western high-elevation mountainous region, while low values will be concentrated mostly in the eastern lower-lying areas of the city. Additionally, elevation and temperature acted as the two most significant driving factors influencing the spatial distribution of carbon storage, with Q values of 0.88 and 0.86 (p-value < 0.05), respectively. For interaction detection, the combination of elevation and soil exhibited a synergistic reinforcement effect on the spatial partitioning of carbon storage, with a high Q value of 0.9566 (p-value < 0.05). Our study highlights the necessity of ecological conservation measures in Danang city in the on-track pursuit of national net-zero carbon emissions by 2050.
en-copyright=
kn-copyright=
en-aut-name=HoViet Hoang
en-aut-sei=Ho
en-aut-mei=Viet Hoang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoritaHidenori
en-aut-sei=Morita
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HoThanh Ha
en-aut-sei=Ho
en-aut-mei=Thanh Ha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BachoferFelix
en-aut-sei=Bachofer
en-aut-mei=Felix
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=University of Agriculture and Forestry, Hue University
kn-affil=
affil-num=4
en-affil=German Aerospace Center (DLR), Earth Observation Center
kn-affil=
en-keyword=Carbon sequestration
kn-keyword=Carbon sequestration
en-keyword=Scenario-based modeling
kn-keyword=Scenario-based modeling
en-keyword=Remote sensing
kn-keyword=Remote sensing
en-keyword=Spatial autocorrelation analysis
kn-keyword=Spatial autocorrelation analysis
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=519
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250926
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Specific induction of right ventricular-like cardiomyocytes from human pluripotent stem cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Applications employing human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) require well-characterized, chamber-specific hPSC-CMs. Distinct first heart field (FHF) and second heart field (SHF) cardiac progenitor populations give rise to the left ventricular (LV) and right ventricular (RV) cardiomyocytes, respectively. This developmental difference in cardiomyocyte origin suggests that chamber-specific cardiomyocytes have unique characteristics. Therefore, efficient strategies to differentiate human pluripotent stem cells (hPSCs) specifically to LV-like or RV-like cardiomyocytes are needed and it is still unknown whether there is a phenotypic difference between LV-like cardiomyocytes and RV-like cardiomyocytes derived from hPSCs.
Methods An established hPSC cardiac differentiation protocol employing sequential GSK3β inhibition followed by Wnt inhibition (GiWi) was modified by addition of insulin or BMP antagonists during mesoderm formation. Cardiac progenitor populations were evaluated for FHF and SHF markers, and differentiated hPSC-CMs were characterized for chamber-specific markers.
Results The GiWi protocol produced mainly FHF-like progenitor cells that gave rise to LV-like cardiomyocytes. Inhibition of endogenous BMP signaling during mesoderm induction using insulin or BMP antagonists reduced expression of FHF markers and increased expression of SHF markers in cardiac progenitor cells. hPSC-CMs arising from the SHF-like progenitor cells showed an RV-like gene expression pattern and exhibited phenotypic differences in spontaneous contraction rate, Ca2+ transients, and cell size compared to control LV-like cardiomyocytes.
Conclusion This study establishes methodology to generate RV-like hPSC-CMs to support the development of disease modeling research using chamber-specific hPSC-CMs.
en-copyright=
kn-copyright=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatanosakaYuki
en-aut-sei=Katanosaka
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IidaToshihiro
en-aut-sei=Iida
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KusumotoDai
en-aut-sei=Kusumoto
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SatoRyushi
en-aut-sei=Sato
en-aut-mei=Ryushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AdachiRiki
en-aut-sei=Adachi
en-aut-mei=Riki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ShimizuSatoshi
en-aut-sei=Shimizu
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KurokawaJunko
en-aut-sei=Kurokawa
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MoritaHiroshi
en-aut-sei=Morita
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NaruseKeiji
en-aut-sei=Naruse
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NishidaMikako
en-aut-sei=Nishida
en-aut-mei=Mikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UdonoHeiichiro
en-aut-sei=Udono
en-aut-mei=Heiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZhangJianhua
en-aut-sei=Zhang
en-aut-mei=Jianhua
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YuasaShinsuke
en-aut-sei=Yuasa
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KampTimothy J.
en-aut-sei=Kamp
en-aut-mei=Timothy J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Physiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Biomedical Informatics and Molecular Biology, The Sakaguchi Laboratory, Keio University School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=7
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=8
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=9
en-affil=Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Cardiovascular Therapeutics, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Physiology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Metabolic Immune Regulation, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Metabolic Immune Regulation, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Medicine, University of Wisconsin School of Medicine and Public Health
kn-affil=
affil-num=18
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Department of Medicine, University of Wisconsin School of Medicine and Public Health
kn-affil=
affil-num=20
en-affil=Department of Cardiovascular Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Human pluripotent stem cell-derived cardiomyocytes
kn-keyword=Human pluripotent stem cell-derived cardiomyocytes
en-keyword=Anterior second heart field
kn-keyword=Anterior second heart field
en-keyword=Right ventricle
kn-keyword=Right ventricle
en-keyword=Bone morphogenetic protein
kn-keyword=Bone morphogenetic protein
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2500368
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250629
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Integration of Cholesterol Oxidase‐Based Biosensors on a Smart Contact Lens for Wireless Cholesterol Monitoring from Tears
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cholesterol plays a critical role in physiological functions, but elevated levels increase the risk of cardiovascular disease. Regular cholesterol monitoring is essential for elderly or obese individuals. Current methods, such as blood tests, are invasive, inconvenient, and require a professional operator. In contrast, tears, as an accessible body fluid, offer a promising alternative for noninvasive monitoring due to their correlation with blood cholesterol levels. Herein, a noninvasive approach for monitoring cholesterol levels in tears using a biosensor integrated into a smart contact lens is reported. The biosensor employs cholesterol oxidases as the biocatalyst, coupled with an osmium-based mediator, to detect cholesterol concentrations ranging from 0.1?mM to 1.2?mM in artificial tears. A key challenge is the extremely low cholesterol concentration in tears, which is addressed using a parity-time (P-T) symmetry-based magnetic resonance coupling system. This system enables wireless signal reading and achieves high sensitivity due to its high-quality (Q) factor, which can achieve a detection limit of 0.061?mM. This portable, high-sensitivity smart contact lens demonstrates significant potential as a wearable device for continuous, noninvasive cholesterol monitoring. The findings contribute to advancing tear-based diagnostic systems and highlight the scientific importance of utilizing tear biomarkers for health monitoring.
en-copyright=
kn-copyright=
en-aut-name=CuiYang
en-aut-sei=Cui
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhuoLin
en-aut-sei=Zhuo
en-aut-mei=Lin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AzhariSaman
en-aut-sei=Azhari
en-aut-mei=Saman
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyakeTakeo
en-aut-sei=Miyake
en-aut-mei=Takeo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
affil-num=2
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
affil-num=5
en-affil=Graduate school of Information, Production and Systems, Waseda University
kn-affil=
en-keyword=cholesterol
kn-keyword=cholesterol
en-keyword=magnetic resonance coupling
kn-keyword=magnetic resonance coupling
en-keyword=parity-time symmetry
kn-keyword=parity-time symmetry
en-keyword=smart contact lens
kn-keyword=smart contact lens
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=9
article-no=
start-page=846
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Unveiling a New Antimicrobial Peptide with Efficacy against P. aeruginosa and K. pneumoniae from Mangrove-Derived Paenibacillus thiaminolyticus NNS5-6 and Genomic Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This study focused on the discovery of the antimicrobial peptide (AMP) derived from mangrove bacteria. The most promising isolate, NNS5-6, showed the closest taxonomic relation to Paenibacillus thiaminolyticus, with the highest similarity of 74.9%. The AMP produced by Paenibacillus thiaminolyticus NNS5-6 exhibited antibacterial activity against various Gram-negative pathogens, especially Pseudomonas aeruginosa and Klebsiella pneumoniae. The peptide sequence consisted of 13 amino acids and was elucidated as Val-Lys-Gly-Asp-Gly-Gly-Pro-Gly-Thr-Val-Tyr-Thr-Met. The AMP mainly exhibited random coil and antiparallel beta-sheet structures. The stability study indicated that this AMP was tolerant of various conditions, including proteolytic enzymes, pH (1.2?14), surfactants, and temperatures up to 40 °C for 12 h. The AMP demonstrated 4 ?g/mL of MIC and 4?8 ?g/mL of MBC against both pathogens. Time-kill kinetics showed that the AMP acted in a time- and concentration-dependent manner. A cell permeability assay and scanning electron microscopy revealed that the AMP exerted the mode of action by disrupting bacterial membranes. Additionally, nineteen biosynthetic gene clusters of secondary metabolites were identified in the genome. NNS5-6 was susceptible to various commonly used antibiotics supporting the primary safety requirement. The findings of this research could pave the way for new therapeutic approaches in combating antibiotic-resistant pathogens.
en-copyright=
kn-copyright=
en-aut-name=SermkaewNamfa
en-aut-sei=Sermkaew
en-aut-mei=Namfa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AtipairinApichart
en-aut-sei=Atipairin
en-aut-mei=Apichart
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KrobthongSucheewin
en-aut-sei=Krobthong
en-aut-mei=Sucheewin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AonbangkhenChanat
en-aut-sei=Aonbangkhen
en-aut-mei=Chanat
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YingchutrakulYodying
en-aut-sei=Yingchutrakul
en-aut-mei=Yodying
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UchiyamaJumpei
en-aut-sei=Uchiyama
en-aut-mei=Jumpei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SongnakaNuttapon
en-aut-sei=Songnaka
en-aut-mei=Nuttapon
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=2
en-affil=School of Pharmacy, Walailak University
kn-affil=
affil-num=3
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=4
en-affil=Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University
kn-affil=
affil-num=5
en-affil=National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency
kn-affil=
affil-num=6
en-affil=Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=School of Pharmacy, Walailak University
kn-affil=
en-keyword=antimicrobial peptide
kn-keyword=antimicrobial peptide
en-keyword=antimicrobial resistance
kn-keyword=antimicrobial resistance
en-keyword=bacterial genome
kn-keyword=bacterial genome
en-keyword=biosynthetic gene cluster
kn-keyword=biosynthetic gene cluster
en-keyword=Klebsiella pneumoniae
kn-keyword=Klebsiella pneumoniae
en-keyword=Mangrove
kn-keyword=Mangrove
en-keyword=mass spectrometry
kn-keyword=mass spectrometry
en-keyword=NNS5-6
kn-keyword=NNS5-6
en-keyword=Paenibacillus thiaminolyticus
kn-keyword=Paenibacillus thiaminolyticus
en-keyword=Pseudomonas aeruginosa
kn-keyword=Pseudomonas aeruginosa
END
start-ver=1.4
cd-journal=joma
no-vol=390
cd-vols=
no-issue=
article-no=
start-page=116594
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Extension-type flexible pneumatic actuator with a large extension force using a cross-link mechanism based on pantographs
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In this study, we propose an extension-type flexible pneumatic actuator (EFPA) with a high extension force and no buckling. In a previous study, soft actuators that extended in the axial direction by applying a supply pressure were unable to generate the extension’s pushing force because the actuators buckled owing to their high flexibility. To generate a pushing force, the circumferential stiffness of an extension-type flexible soft actuator must be reinforced. Therefore, a cross-linked EFPA (CL-EFPA) was developed, inspired by a pantograph that restrains the EFPA three-dimensionally using the proposed link mechanism. The proposed CL-EFPA consists of three EFPAs and a cross-linking mechanism for integrating each EFPA circumference. The pushing force of the CL-EFPA is approximately 3.0 times compared with that generated by the previous EFPA with plates to restrain its plane. To perform various bending motions, attitude control was performed using an analytical model and a system that included valves, sensors, and controllers.
en-copyright=
kn-copyright=
en-aut-name=ShimookaSo
en-aut-sei=Shimooka
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TadachiKazuma
en-aut-sei=Tadachi
en-aut-mei=Kazuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KamegawaTetsushi
en-aut-sei=Kamegawa
en-aut-mei=Tetsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Mechanical and Systems Engineering Program, School of Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Soft robot
kn-keyword=Soft robot
en-keyword=Extension soft actuator
kn-keyword=Extension soft actuator
en-keyword=Link mechanism
kn-keyword=Link mechanism
en-keyword=Pantograph
kn-keyword=Pantograph
en-keyword=Attitude control
kn-keyword=Attitude control
END
start-ver=1.4
cd-journal=joma
no-vol=239
cd-vols=
no-issue=
article-no=
start-page=113237
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2026
dt-pub=202602
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Counting-loss correction procedure of X-ray imaging detectors with consideration for the effective atomic number of biological objects
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=It is necessary to correct counting loss caused by the pulse pile-up effect and dead time when using energy-resolving photon-counting detectors (ERPCDs) under “high-counting-rate” conditions in medical and/or industrial settings. We aimed to develop a novel counting-loss correction procedure in which biological objects having effective atomic numbers (Zeff values) of 6.5?13.0 are measured with polychromatic X-rays. To correct for counting loss, such a procedure must theoretically estimate the count value of an ideal X-ray spectrum without counting loss. In this study, we estimated the ideal X-ray spectrum by focusing on the following two points: (1) the X-ray attenuation in an object (Zeff values of 6.5?13.0) and (2) the detector response. Virtual materials having intermediate atomic numbers between 6.5 and 13.0 were generated by using a mixture of polymethylmethacrylate (PMMA, Zeff = 6.5) and aluminum (Al, Zeff = 13.0). We then constructed an algorithm that can perform the counting-loss correction based on the object’s true Zeff value. To demonstrate the applicability of our procedure, we analyzed investigational objects consisting of PMMA and Al using a prototype ERPCD system. A fresh fish sample was also analyzed. The Zeff values agree with the theoretical values within an accuracy of Zeff ±1. In conclusion, we have developed a highly accurate procedure for correcting counting losses for the quantitative X-ray imaging of biological objects.
en-copyright=
kn-copyright=
en-aut-name=KimotoNatsumi
en-aut-sei=Kimoto
en-aut-mei=Natsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishigamiRina
en-aut-sei=Nishigami
en-aut-mei=Rina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KobayashiDaiki
en-aut-sei=Kobayashi
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaedaTatsuya
en-aut-sei=Maeda
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AsaharaTakashi
en-aut-sei=Asahara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GotoSota
en-aut-sei=Goto
en-aut-mei=Sota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanazawaYuki
en-aut-sei=Kanazawa
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatsumataAkitoshi
en-aut-sei=Katsumata
en-aut-mei=Akitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoShuichiro
en-aut-sei=Yamamoto
en-aut-mei=Shuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HayashiHiroaki
en-aut-sei=Hayashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University
kn-affil=
affil-num=2
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=3
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=4
en-affil=Graduate School of Medical Sciences, Kanazawa University
kn-affil=
affil-num=5
en-affil=Department of Radiological Technology, Faculty of Health Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Faculty of Health Science, Kobe Tokiwa University
kn-affil=
affil-num=7
en-affil=Faculty of Life Science, Kumamoto University
kn-affil=
affil-num=8
en-affil=Oral Radiology and Artificial Intelligence, Asahi University
kn-affil=
affil-num=9
en-affil=JOB CORPORATION
kn-affil=
affil-num=10
en-affil=College of Transdisciplinary Sciences for Innovation, Kanazawa University
kn-affil=
en-keyword=Photon-counting detector
kn-keyword=Photon-counting detector
en-keyword=Pulse pile-up
kn-keyword=Pulse pile-up
en-keyword=Dead time
kn-keyword=Dead time
en-keyword=Counting-loss correction
kn-keyword=Counting-loss correction
en-keyword=Charge-sharing effect
kn-keyword=Charge-sharing effect
en-keyword=Effective atomic number
kn-keyword=Effective atomic number
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=2
article-no=
start-page=ivae021
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Plasma concentrations of histidine-rich glycoprotein in primary graft dysfunction after lung transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=OBJECTIVES: Histidine-rich glycoprotein has been reported as an anti-inflammatory glycoprotein that inhibits acute lung injury in mice with sepsis and as a prognostic biomarker in patients with sepsis. We investigated the relationship between plasma concentrations of histidine-rich glycoprotein and the risk of occurrence of primary graft dysfunction.
METHODS: According to the primary graft dysfunction grade at post-transplant 72?h, patients who underwent lung transplantation were divided into three groups: non-primary graft dysfunction group (grade 0?1), moderate primary graft dysfunction group (grade 2), and severe primary graft dysfunction group (grade 3). The plasma concentrations of histidine-rich glycoprotein measured daily during the first post-transplant 7?days were compared among the three groups. Appropriate cutoff values of the concentrations were set for survival analyses after lung transplantation.
RESULTS: A total of 68 patients were included. The plasma histidine-rich glycoprotein concentration at post-transplant 72?h was significantly lower in the severe primary graft dysfunction group (n?=?7) than in the other two groups [non-primary graft dysfunction group (n?=?43), P?=?0.042; moderate primary graft dysfunction group (n?=?18), P?=?0.040]. Patients with plasma histidine-rich glycoprotein concentration ?34.4??g/ml at post-transplant 72?h had significantly better chronic lung allograft dysfunction-free survival (P?=?0.012) and overall survival (P?=?0.037) than those with the concentration <34.4??g/ml.
CONCLUSIONS: Plasma histidine-rich glycoprotein concentrations at post-transplant 72?h might be associated with the risk of development of primary graft dysfunction.
en-copyright=
kn-copyright=
en-aut-name=ShiotaniToshio
en-aut-sei=Shiotani
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomiokaYasuaki
en-aut-sei=Tomioka
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
en-keyword=Lung transplantation
kn-keyword=Lung transplantation
en-keyword=Primary graft dysfunction
kn-keyword=Primary graft dysfunction
en-keyword=Histidine-rich glycoprotein
kn-keyword=Histidine-rich glycoprotein
en-keyword=Chronic lung allograft dysfunction
kn-keyword=Chronic lung allograft dysfunction
en-keyword=Overall survival
kn-keyword=Overall survival
END
start-ver=1.4
cd-journal=joma
no-vol=79
cd-vols=
no-issue=4
article-no=
start-page=221
end-page=229
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202508
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Organ Donation after Extracorporeal Cardiopulmonary Resuscitation: Clinical and Ethical Perspectives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Extracorporeal cardiopulmonary resuscitation (ECPR) has evolved into a life-saving therapy for select cardiac arrest patients, yet a growing body of evidence suggests it also holds promise as a bridge to organ donation in non-survivors. This review explores the clinical outcomes, ethical complexities, and evolving policies surrounding organ donation after ECPR. We summarize recent international and Japanese data demonstrating favorable graft function from ECPR donors, with the exception of lung transplantation. The ethical challenges ? particularly those involving brain death determination on extracorporeal membrane oxygenation and adherence to the dead donor rule ? are discussed in the context of Japan’s recent regulatory reforms. Additionally, we highlight the importance of structured end-of-life communication through multidisciplinary team meetings in facilitating ethically sound transitions from rescue efforts to donation pathways. Moving forward, improvements in donor management, standardized legal frameworks, and public and professional education are essential to optimizing the life-saving and life-giving potential of ECPR.
en-copyright=
kn-copyright=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KosakiYoshinori
en-aut-sei=Kosaki
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AgetaKohei
en-aut-sei=Ageta
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=brain death
kn-keyword=brain death
en-keyword=end-of-life care
kn-keyword=end-of-life care
en-keyword=ethical dilemmas
kn-keyword=ethical dilemmas
en-keyword=extracorporeal cardiopulmonary resuscitation
kn-keyword=extracorporeal cardiopulmonary resuscitation
END
start-ver=1.4
cd-journal=joma
no-vol=104
cd-vols=
no-issue=2
article-no=
start-page=151495
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=202506
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tri-culture model of intestinal epithelial cell, macrophage, and bacteria for the triggering of inflammatory bowel disease on a microfluidic device
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inflammatory bowel disease (IBD) involves gastrointestinal inflammation, due to intestinal epithelial barrier destruction caused by excessive immune activation. Conventional cell culture systems do not provide a model system that can recapitulate the complex interactions between epithelial cells, immune cells, and intestinal bacteria. To address this, we developed a microfluidic device that mimics the inflammatory response associated with microbial invasion of the intestinal mucosa. The device consisted of two media channels, an upper and a lower channel, and a porous membrane between these channels on which C2BBe1 intestinal epithelial cells were seeded to form a tight junction layer. Each electrode was placed in contact with both channels to continuously monitor the tight junction state. Fresh medium flow allowed bacterial numbers to be controlled and bacterial toxins to be removed, allowing co-culture of mammalian cells and bacteria. In addition, RAW264 macrophage cells were attached to the bottom of the lower channel. By introducing E. coli into the lower channel, the RAW264 cells were activated and produced TNF-α, successfully recapitulating a culture model of inflammation in which the C2BBe1cell tight junction layer was destroyed. The main structure of the device was initially made of polydimethylsiloxane to facilitate its widespread use, but with a view to introducing anaerobic bacteria in the future, a similar phenomenon was successfully reproduced using polystyrene. When TPCA-1, an IκB kinase 2 inhibitor was added into this IBD culture model, the tight junction destruction was significantly suppressed. The results suggest that this IBD culture model also is useful as a screening system for anti-IBD drugs.
en-copyright=
kn-copyright=
en-aut-name=TamuraShiori
en-aut-sei=Tamura
en-aut-mei=Shiori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PasangClarissa Ellice Talitha
en-aut-sei=Pasang
en-aut-mei=Clarissa Ellice Talitha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsudaMinami
en-aut-sei=Tsuda
en-aut-mei=Minami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MaShilan
en-aut-sei=Ma
en-aut-mei=Shilan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShindoHiromasa
en-aut-sei=Shindo
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NagaokaNoriyuki
en-aut-sei=Nagaoka
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OhkuboTomoki
en-aut-sei=Ohkubo
en-aut-mei=Tomoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujiyamaYoichi
en-aut-sei=Fujiyama
en-aut-mei=Yoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaiMiho
en-aut-sei=Tamai
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TagawaYoh-ichi
en-aut-sei=Tagawa
en-aut-mei=Yoh-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=3
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=4
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=6
en-affil=Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=8
en-affil=Biology-Chemistry Unit, Technology Research Laboratory, Shimadzu Corporation
kn-affil=
affil-num=9
en-affil=School of Life Science and Technology, Tokyo Institute of Technology
kn-affil=
affil-num=10
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
en-keyword=Intestine chip
kn-keyword=Intestine chip
en-keyword=Inflammatory bowel disease
kn-keyword=Inflammatory bowel disease
en-keyword=Co-culture
kn-keyword=Co-culture
en-keyword=Tri-culture
kn-keyword=Tri-culture
en-keyword=Fluidic device
kn-keyword=Fluidic device
en-keyword=Disease model
kn-keyword=Disease model
en-keyword=Macrophage
kn-keyword=Macrophage
en-keyword=Inflammation
kn-keyword=Inflammation
END
start-ver=1.4
cd-journal=joma
no-vol=638
cd-vols=
no-issue=8049
article-no=
start-page=225
end-page=236
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Immune evasion through mitochondrial transfer in the tumour microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer cells in the tumour microenvironment use various mechanisms to evade the immune system, particularly T?cell attack1. For example, metabolic reprogramming in the tumour microenvironment and mitochondrial dysfunction in tumour-infiltrating lymphocytes (TILs) impair antitumour immune responses2,3,4. However, detailed mechanisms of such processes remain unclear. Here we analyse clinical specimens and identify mitochondrial DNA (mtDNA) mutations in TILs that are shared with cancer cells. Moreover, mitochondria with mtDNA mutations from cancer cells are able to transfer to TILs. Typically, mitochondria in TILs readily undergo mitophagy through reactive oxygen species. However, mitochondria transferred from cancer cells do not undergo mitophagy, which we find is due to mitophagy-inhibitory molecules. These molecules attach to mitochondria and together are transferred to TILs, which results in homoplasmic replacement. T?cells that acquire mtDNA mutations from cancer cells exhibit metabolic abnormalities and senescence, with defects in effector functions and memory formation. This in turn leads to impaired antitumour immunity both in vitro and in vivo. Accordingly, the presence of an mtDNA mutation in tumour tissue is a poor prognostic factor for immune checkpoint inhibitors in patients with melanoma or non-small-cell lung cancer. These findings reveal a previously unknown mechanism of cancer immune evasion through mitochondrial transfer and can contribute to the development of future cancer immunotherapies.
en-copyright=
kn-copyright=
en-aut-name=IkedaHideki
en-aut-sei=Ikeda
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaseKatsushige
en-aut-sei=Kawase
en-aut-mei=Katsushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishiTatsuya
en-aut-sei=Nishi
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakenagaKeizo
en-aut-sei=Takenaga
en-aut-mei=Keizo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkiSho
en-aut-sei=Aki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=LinJason
en-aut-sei=Lin
en-aut-mei=Jason
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SuzukiShinichiro
en-aut-sei=Suzuki
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MakinoshimaHideki
en-aut-sei=Makinoshima
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ItamiMakiko
en-aut-sei=Itami
en-aut-mei=Makiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=NakamuraYuki
en-aut-sei=Nakamura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TatsumiYasutoshi
en-aut-sei=Tatsumi
en-aut-mei=Yasutoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuenagaYusuke
en-aut-sei=Suenaga
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=MorinagaTakao
en-aut-sei=Morinaga
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=Honobe-TabuchiAkiko
en-aut-sei=Honobe-Tabuchi
en-aut-mei=Akiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=OhnumaTakehiro
en-aut-sei=Ohnuma
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KawamuraTatsuyoshi
en-aut-sei=Kawamura
en-aut-mei=Tatsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=UmedaYoshiyasu
en-aut-sei=Umeda
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=NakamuraYasuhiro
en-aut-sei=Nakamura
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=KiniwaYukiko
en-aut-sei=Kiniwa
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=IchiharaEiki
en-aut-sei=Ichihara
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=IkedaJun-ichiro
en-aut-sei=Ikeda
en-aut-mei=Jun-ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=HanazawaToyoyuki
en-aut-sei=Hanazawa
en-aut-mei=Toyoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
en-aut-name=ManoHiroyuki
en-aut-sei=Mano
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=31
ORCID=
en-aut-name=SuzukiTakuji
en-aut-sei=Suzuki
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=32
ORCID=
en-aut-name=OsawaTsuyoshi
en-aut-sei=Osawa
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=33
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=34
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=35
ORCID=
affil-num=1
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=2
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute
kn-affil=
affil-num=6
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=9
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=10
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan Department of Dermatology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=11
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=14
en-affil=Tsuruoka Metabolomics Laboratory, National Cancer Center
kn-affil=
affil-num=15
en-affil=Department of Surgical Pathology, Chiba Cancer Center
kn-affil=
affil-num=16
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=17
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=18
en-affil=Laboratory of Evolutionary Oncology, Chiba Cancer Center Research Institute
kn-affil=
affil-num=19
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=20
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=21
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=22
en-affil=Department of Dermatology, Faculty of Medicine, University of Yamanashi
kn-affil=
affil-num=23
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=24
en-affil=Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center
kn-affil=
affil-num=25
en-affil=Department of Dermatology, Shinshu University School of Medicine
kn-affil=
affil-num=26
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
affil-num=27
en-affil=Department of Medical Oncology, Kindai University Faculty of Medicine
kn-affil=
affil-num=28
en-affil=Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=29
en-affil=Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine
kn-affil=
affil-num=30
en-affil=Department of General Thoracic Surgery and Endocrinological Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=31
en-affil=Division of Cellular Signalling, National Cancer Center Research Institute
kn-affil=
affil-num=32
en-affil=Department of Respirology, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=33
en-affil=Division of Nutriomics and Oncology, RCAST, The University of Tokyo
kn-affil=
affil-num=34
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=35
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=8
cd-vols=
no-issue=6
article-no=
start-page=1008
end-page=1016
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240422
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High risk of multiple gastric cancers in Japanese individuals with Lynch syndrome
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Aim: Lynch syndrome (LS) is a dominantly inherited syndrome characterized by an increased risk for LS associated tumors such as colorectal cancer (CRC) and gastric cancer (GC). However, the clinical benefit of surveillance for GC remains unclear while it has already been recommended for CRC. This study aimed to elucidate the clinical features of GC in Japanese individuals with LS, and the risk of developing multiple GCs to build regional-tailored surveillance programs in LS patients with GC.
Methods: Data on Japanese individuals with LS were retrospectively collected from a single institution. The clinical features of GC, including the cumulative risk of multiple GCs, were analyzed.
Results: Among 96 individuals with LS (MLH1/MSH2/MSH6, 75:20:1), 32 GC lesions were detected in 15 individuals with LS (male/female, 11:4). The median age at initial GC diagnosis was 52.7?y (range: 28?71). Histological examination revealed a predominance of intestinal type (19/24: 87.5%). Moreover, the majority of the GC lesions (82%) were determined to have high-frequency of microsatellite instability. The cumulative risk of individuals with LS developing GC at 70?y was 31.3% (MLH1 36.1%, MSH2 18.0%). Notably, the cumulative risk of individuals with LS developing metachronous and/or synchronous GCs at 0, 10 and 20?y after initial diagnosis of GC was 26.7%, 40.7%, and 59.4%, respectively.
Conclusion: Due to a higher risk of developing multiple GCs, intensive surveillance might be especially recommended for Japanese individuals with LS associated initial GC.
en-copyright=
kn-copyright=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=van SchaikThijs A.
en-aut-sei=van Schaik
en-aut-mei=Thijs A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AokiHideki
en-aut-sei=Aoki
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SatoYumiko
en-aut-sei=Sato
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TaniguchiFumitaka
en-aut-sei=Taniguchi
en-aut-mei=Fumitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SuganoKokichi
en-aut-sei=Sugano
en-aut-mei=Kokichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkagiKiwamu
en-aut-sei=Akagi
en-aut-mei=Kiwamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=IshidaHideyuki
en-aut-sei=Ishida
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakayaKohji
en-aut-sei=Tanakaya
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School
kn-affil=
affil-num=3
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=4
en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=5
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Genetic Medicine, Kyoundo Hospital, SSasaki Foundation
kn-affil=
affil-num=8
en-affil=Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center
kn-affil=
affil-num=9
en-affil=Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=10
en-affil=Department of Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
en-keyword=cumulative risk
kn-keyword=cumulative risk
en-keyword=gastric cancer
kn-keyword=gastric cancer
en-keyword=Japanese individuals
kn-keyword=Japanese individuals
en-keyword=Lynch syndrome
kn-keyword=Lynch syndrome
en-keyword=multiple gastric cancers
kn-keyword=multiple gastric cancers
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=3
article-no=
start-page=79
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250703
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association of the expression of 5?FU biomarkers with aging and prognosis in elderly patients with lung cancer treated with S?1 adjuvant chemotherapy: Follow?up results of the Setouchi Lung Cancer Group Study 1201
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Managing elderly patients presents several challenges because of age?related declines; however, age should not be the sole determinant for adjuvant treatment decisions in patients with non?small cell lung cancer (NSCLC). Moreover, age may affect the expression of 5?fluorouracil (5?FU) biomarkers. The present study assessed: i) The effect of age on the expression levels of 5?FU biomarkers by analyzing a public database; and ii) the ability of these biomarkers to predict clinical outcomes in elderly patients with NSCLC who underwent complete resection in the Setouchi Lung Cancer Group Study 1201 (SCLG1201) followed by S?1 adjuvant chemotherapy. Changes in gene expression levels across age groups were assessed by analyzing The Cancer Genome Atlas (TCGA) database. The expression of 5?FU biomarkers, including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase, epidermal growth factor receptor (EGFR) and excision repair cross?complementation group 1 (ERCC1), were assessed via quantitative reverse?transcription PCR assays in 89 elderly patients (?75 years) with NSCLC who received adjuvant chemotherapy with oral fluoropyrimidine prodrug S?1 in the SLCG1201 trial. TCGA database analysis (n=955) showed that TS expression decreased significantly with aging, especially in the age group ?75. In the SCLG1201 trial, univariate analysis revealed that EGFR upregulation and TS downregulation were correlated with favorable recurrence?free survival (RFS) and overall survival (OS), respectively. Multivariate analysis demonstrated that pathological stage was an independent prognostic factor for both RFS and OS. EGFR mutations were associated with upregulation of DPD and EGFR, and downregulation of TS and ERCC1. In conclusion, although pathological stage is an independent prognostic factor for survival, EGFR upregulation and TS downregulation may be a greater predictor of clinical outcomes in elderly patients with NSCLC treated with S?1 adjuvant chemotherapy. The age?related decrease in TS expression supports the potential benefit of 5?FU therapies in elderly patients. Nonetheless, further research is warranted to validate these results.
en-copyright=
kn-copyright=
en-aut-name=SohJunichi
en-aut-sei=Soh
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkumuraNorihito
en-aut-sei=Okumura
en-aut-mei=Norihito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiHiroyuki
en-aut-sei=Suzuki
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakataMasao
en-aut-sei=Nakata
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraToshiya
en-aut-sei=Fujiwara
en-aut-mei=Toshiya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GembaKenicehi
en-aut-sei=Gemba
en-aut-mei=Kenicehi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SanoIsao
en-aut-sei=Sano
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujinagaTakuji
en-aut-sei=Fujinaga
en-aut-mei=Takuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KataokaMasafumi
en-aut-sei=Kataoka
en-aut-mei=Masafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TerasakiYasuhiro
en-aut-sei=Terasaki
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujimotoNobukazu
en-aut-sei=Fujimoto
en-aut-mei=Nobukazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KataokaKazuhiko
en-aut-sei=Kataoka
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KosakaShinji
en-aut-sei=Kosaka
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YamashitaMotohiro
en-aut-sei=Yamashita
en-aut-mei=Motohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=InokawaHidetoshi
en-aut-sei=Inokawa
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=InoueMasaaki
en-aut-sei=Inoue
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=NakamuraHiroshige
en-aut-sei=Nakamura
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamashitaYoshinori
en-aut-sei=Yamashita
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=TakahashiYuta
en-aut-sei=Takahashi
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=TorigoeHidejiro
en-aut-sei=Torigoe
en-aut-mei=Hidejiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=SatoHiroki
en-aut-sei=Sato
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=TomidaShuta
en-aut-sei=Tomida
en-aut-mei=Shuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=HottaKatsuyuki
en-aut-sei=Hotta
en-aut-mei=Katsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=YoshiokaHiroshige
en-aut-sei=Yoshioka
en-aut-mei=Hiroshige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=MoritaSatoshi
en-aut-sei=Morita
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=MatsuoKeitaro
en-aut-sei=Matsuo
en-aut-mei=Keitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=SakamotoJunichi
en-aut-sei=Sakamoto
en-aut-mei=Junichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=DateHiroshi
en-aut-sei=Date
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Thoracic Surgery, Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Department of Chest Surgery, Fukushima Medical University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery, Kawasaki Medical School Hospital
kn-affil=
affil-num=6
en-affil=Department of Thoracic Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Respiratory Medicine, Chugoku Central Hospital, Fukuyama, Hiroshima 720?0001, Japan; 8Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=8
en-affil=Department of Respiratory Surgery, Japanese Red Cross Nagasaki Genbaku Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery, National Hospital Organization Nagara Medical Center
kn-affil=
affil-num=10
en-affil=Department of Surgery and Respiratory Center, Okayama Saiseikai General Hospital
kn-affil=
affil-num=11
en-affil=Department of Respiratory Surgery, Saga Medical Center Koseikan
kn-affil=
affil-num=12
en-affil=Department of Medical Oncology and Respiratory Medicine, Okayama Rosai Hospital
kn-affil=
affil-num=13
en-affil=Department of Thoracic Surgery, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=14
en-affil=Department of Thoracic Surgery, Shimane Prefectural Central Hospital
kn-affil=
affil-num=15
en-affil=Department of Thoracic Surgery, National Hospital Organization Shikoku Cancer Center
kn-affil=
affil-num=16
en-affil=Department of Thoracic Surgery, National Hospital Organization Yamaguchi?Ube Medical Center
kn-affil=
affil-num=17
en-affil=Department of Thoracic Surgery, Shimonoseki City Hospital
kn-affil=
affil-num=18
en-affil=Division of General Thoracic Surgery, Tottori University Hospital
kn-affil=
affil-num=19
en-affil=Department of Thoracic Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center
kn-affil=
affil-num=20
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=21
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=22
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
affil-num=23
en-affil=Center for Comprehensive Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=24
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=25
en-affil=Department of Thoracic Oncology, Kansai Medical University Hospital
kn-affil=
affil-num=26
en-affil=Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine
kn-affil=
affil-num=27
en-affil=Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute
kn-affil=
affil-num=28
en-affil=Tokai Central Hospital
kn-affil=
affil-num=29
en-affil=Department of Thoracic Surgery, Kyoto University Hospital
kn-affil=
affil-num=30
en-affil=Department of Thoracic Surgery, Okayama University Hospital
kn-affil=
en-keyword=non?small cell lung cancer
kn-keyword=non?small cell lung cancer
en-keyword=elderly patients
kn-keyword=elderly patients
en-keyword=adjuvant chemotherapy
kn-keyword=adjuvant chemotherapy
en-keyword=S?1
kn-keyword=S?1
en-keyword=EGFR
kn-keyword=EGFR
en-keyword=TP
kn-keyword=TP
en-keyword=TS
kn-keyword=TS
en-keyword=OPRT
kn-keyword=OPRT
en-keyword=ERCC1
kn-keyword=ERCC1
en-keyword=DPD
kn-keyword=DPD
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=10
article-no=
start-page=1215
end-page=1227
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241121
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enhanced design of pCMViR-TSC plasmid vector for sustainably high cargo gene expression in mammalian cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The first-generation pCMViR-TSC, implemented through the promoter sandwich rule, yields 10- to 100-fold higher gene expression than the standard plasmid used with the CMV (cytomegalovirus) or CAG promoter. However, the vector’s shortcomings limit its utility to transient expression only, as it is not suitable for establishing stable transformants in mammalian cells. To overcome this weakness, we here introduce the improved plasmid vector pSAKA-4B, derived from pCMViR-TSC as a second-generation chromosome-insertable vector. This vector facilitates the linear entry of the expression unit into the TTAA site of DNA universally with transposase assistance. The vector is helpful for the indefinite expression of our target gene. The new vector system is proven here to be efficient in establishing stable transformants with a high likelihood of positive clones that exhibit significantly elevated expression levels of the delivered foreign gene. This system, alongside the first-generation vector, is therefore instrumental for diverse basic research endeavors concerning genes, proteins, cells, and animals, and potentially for clinical applications such as gene therapy.
en-copyright=
kn-copyright=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YamamotoKen-ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakahashiTetta
en-aut-sei=Takahashi
en-aut-mei=Tetta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=RumaI Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SumardikaI Wayan
en-aut-sei=Sumardika
en-aut-mei=I Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SagayamaKazumi
en-aut-sei=Sagayama
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Microbiology, Tokushima Bunri University
kn-affil=
affil-num=5
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=7
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=14
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=15
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=16
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=17
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=18
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=19
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=20
en-affil=Organization for Research and Innovation Strategy, Okayama University
kn-affil=
affil-num=21
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=22
en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University
kn-affil=
affil-num=23
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
en-keyword=Plasmid
kn-keyword=Plasmid
en-keyword=Gene engineering
kn-keyword=Gene engineering
en-keyword=Cancer
kn-keyword=Cancer
en-keyword=Cell culture
kn-keyword=Cell culture
END
start-ver=1.4
cd-journal=joma
no-vol=150
cd-vols=
no-issue=1
article-no=
start-page=19
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250813
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biallelic variants in DNAJC7 cause familial amyotrophic lateral sclerosis with the TDP-43 pathology
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. ALS pathology primarily involves the failure of protein quality control mechanisms, leading to the accumulation of misfolded proteins, particularly TAR DNA-binding protein 43 (TDP-43). TDP-43 aggregation is a central pathological feature of ALS. Maintaining protein homeostasis is critical and facilitated by heat shock proteins (HSPs), particularly the HSP40 family, which includes co-chaperones such as DNAJC7. Here, we report a family with three siblings affected by ALS who carry a homozygous c.518dupC frameshift variant in DNAJC7, a member of the HSP40 family. All three patients exhibited progressive muscle weakness, limb atrophy, bulbar palsy, and respiratory failure. Pathological examination revealed degeneration of both upper and lower motor neurons, with phosphorylated TDP-43-positive neuronal cytoplasmic inclusions in the frontal and temporal cortices. Immunoblot analysis were consistent with a type B pattern of phosphorylated TDP-43 in the precentral gyrus. Immunohistochemistry and RNA sequencing analyses demonstrated a substantial reduction in DNAJC7 expression at both the protein and RNA levels in affected brain regions. In a TDP-43 cell model, DNAJC7 knockdown impaired the disassembly of TDP-43 following arsenite-induced stress, whereas DNAJC7 overexpression suppressed the assembly and promoted the disassembly of arsenite-induced TDP-43 condensates. Furthermore, in a zebrafish ALS model, dnajc7 knockdown resulted in increased TDP-43 aggregation in motor neurons and reduced survival. To the best of our knowledge, this study provides the first evidence linking biallelic loss-of-function variants in DNAJC7 to familial ALS with TDP-43 pathology.
en-copyright=
kn-copyright=
en-aut-name=YamashitaToru
en-aut-sei=Yamashita
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YokotaOsamu
en-aut-sei=Yokota
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OusakaDaiki
en-aut-sei=Ousaka
en-aut-mei=Daiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SunHongming
en-aut-sei=Sun
en-aut-mei=Hongming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HaraguchiTakashi
en-aut-sei=Haraguchi
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Ota-ElliottRicardo Satoshi
en-aut-sei=Ota-Elliott
en-aut-mei=Ricardo Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsuokaChika
en-aut-sei=Matsuoka
en-aut-mei=Chika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawanoTomohito
en-aut-sei=Kawano
en-aut-mei=Tomohito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=Nakashima-YasudaHanae
en-aut-sei=Nakashima-Yasuda
en-aut-mei=Hanae
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FukuiYusuke
en-aut-sei=Fukui
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakanoYumiko
en-aut-sei=Nakano
en-aut-mei=Yumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MoriharaRyuta
en-aut-sei=Morihara
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HasegawaMasato
en-aut-sei=Hasegawa
en-aut-mei=Masato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HosonoYasuyuki
en-aut-sei=Hosono
en-aut-mei=Yasuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TeradaSeishi
en-aut-sei=Terada
en-aut-mei=Seishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakakiManabu
en-aut-sei=Takaki
en-aut-mei=Manabu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IshiuraHiroyuki
en-aut-sei=Ishiura
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurology, National Hospital Organisation Minami-Okayama Medical Centre
kn-affil=
affil-num=6
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Psychiatry, Zikei Hospital
kn-affil=
affil-num=10
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science
kn-affil=
affil-num=14
en-affil=Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Amyotrophic lateral sclerosis
kn-keyword=Amyotrophic lateral sclerosis
en-keyword=Heat shock protein
kn-keyword=Heat shock protein
en-keyword=DNAJC7
kn-keyword=DNAJC7
en-keyword=TDP-43
kn-keyword=TDP-43
en-keyword=Live-cell imaging
kn-keyword=Live-cell imaging
en-keyword=Zebrafish disease model
kn-keyword=Zebrafish disease model
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=6
article-no=
start-page=e00110-25
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250519
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mycobacterium tuberculosis bacillus induces pyroptosis in human lung fibroblasts
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We previously reported that live, but not dead, virulent Mycobacterium tuberculosis (Mtb) H37Rv bacilli induce cell death in human lung fibroblast cell lines, MRC-5, MRC-9, and TIG-1. Here, using two distinct Mtb strains from two different lineages (HN878 lineage 2 and H37Rv lineage 4), we confirmed cell death at day 2 after infection with a device that measures cell growth/cytotoxicity in real time (Maestro-Z [AXION]). Mtb bacilli uptake by the fibroblast was confirmed with a transmission electron microscope on day 2. Expressions of inflammatory cytokines and interleukin (IL)?1β, IL-6, and IL-8 were observed when exposed to live, but not dead bacteria. The cell death of fibroblasts induced by both Mtb strains tested was prevented by caspase-1/4 and NLRP3 inflammasome inhibitors, but not by caspase-3 and caspase-9 inhibitors. Therefore, we classified the fibroblast cell death by Mtb infection as pyroptosis. To investigate the biological and pathological relevance of fibroblast cell death by Mtb infection, we performed dual RNA-Seq analysis on Mtb within fibroblasts and Mtb-infected fibroblasts at day 2. In Mtb bacilli tcrR, secE2, ahpD, and mazF8 genes were highly induced during infection. These genes play roles in survival in a hypoxic environment, production of a calcium-binding protein-inducing cytokine, and regulation of transcription in a toxin-antitoxin system. The gene expressions of IL-1β, IL-6, and IL-8, caspase-4, and NLRP3, but not of caspase-3 and caspase-9, were augmented in Mtb bacilli-infected fibroblasts. Taken together, our study suggests that Mtb bacilli attempt to survive in lung fibroblasts and that pyroptosis of the host fibroblasts activates the immune system against the infection.
en-copyright=
kn-copyright=
en-aut-name=TakiiTakemasa
en-aut-sei=Takii
en-aut-mei=Takemasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaHiroyuki
en-aut-sei=Yamada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MotozonoChihiro
en-aut-sei=Motozono
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamasakiSho
en-aut-sei=Yamasaki
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TorrellesJordi B.
en-aut-sei=Torrelles
en-aut-mei=Jordi B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TurnerJoanne
en-aut-sei=Turner
en-aut-mei=Joanne
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KimishimaAoi
en-aut-sei=Kimishima
en-aut-mei=Aoi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AsamiYukihiro
en-aut-sei=Asami
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OharaNaoya
en-aut-sei=Ohara
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HidaShigeaki
en-aut-sei=Hida
en-aut-mei=Shigeaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=HayashiHidetoshi
en-aut-sei=Hayashi
en-aut-mei=Hidetoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=OnozakiKikuo
en-aut-sei=Onozaki
en-aut-mei=Kikuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=2
en-affil=Department of Mycobacterium Reference and Research, the Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association
kn-affil=
affil-num=3
en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka
kn-affil=
affil-num=4
en-affil=Department of Molecular Immunology, Research Institute for Microbial Diseases, The University of Osaka
kn-affil=
affil-num=5
en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I?CARE)
kn-affil=
affil-num=6
en-affil=Texas Biomedical Research Institute and International Center for the Advancement of Research & Education (I?CARE)
kn-affil=
affil-num=7
en-affil=Laboratory of Applied Microbial Chemistry, ?mura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=8
en-affil=Laboratory of Applied Microbial Chemistry, ?mura Satoshi Memorial Institute, Kitasato University
kn-affil=
affil-num=9
en-affil=Department of Oral Microbiology, Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=11
en-affil=Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
affil-num=12
en-affil=Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University
kn-affil=
en-keyword=Mycobacterium tuberculosis
kn-keyword=Mycobacterium tuberculosis
en-keyword=pyroptosis
kn-keyword=pyroptosis
en-keyword=caspase
kn-keyword=caspase
en-keyword=RNA-Seq
kn-keyword=RNA-Seq
en-keyword=cytokine
kn-keyword=cytokine
en-keyword=fibroblasts
kn-keyword=fibroblasts
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=
article-no=
start-page=e60943
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250729
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Usefulness of Interventions Using a Smartphone Cognitive Behavior Therapy Application for Children With Mental Health Disorders: Prospective, Single-Arm, Uncontrolled Clinical Trial
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: The prevalence of mental health disorders among children in Japan has increased rapidly, and these children often show depressive symptoms and reduced quality of life (QOL). We previously developed a smartphone-based self-monitoring app to deliver cognitive behavioral therapy (CBT), implemented it in healthy children, and reported its effectiveness for health promotion.
Objective: This study aims to examine the usefulness of the CBT app for improvement in depressive symptoms and QOL in children with mental health disorders.
Methods: The participants were 115 children with mental health disorders (eg, school refusal, orthostatic hypotension, eating disorders, developmental disorders, among others) and aged 12‐18 years. The CBT app?based program comprised 1 week of psychoeducation followed by 1 week of self-monitoring. After reading story-like scenarios, participants created a self-monitoring sheet with 5 panels: events, thoughts, feelings, body responses, and actions. All participants received regular mental health care from physicians in addition to the app-based program. To evaluate the participants’ depressive symptoms and QOL, Patient Health Questionnaire for Adolescents (PHQ-9A), Depression Self-Rating Scale for Children (DSRS-C), and Pediatric Quality of Life Inventory (PedsQL) were measured at the beginning of the intervention, and at 2 and 6 months thereafter. Questionnaire for Triage and Assessment with 30 items (QTA30), and Rosenberg Self-Esteem Scale (RSES) were also used to measure their health and self-esteem. Participants were divided into 4 groups on the basis of the PHQ-9A score (above or below the cutoff; PHQ-9A?5 or PHQ-9A<5) and completion or noncompletion of the CBT app?based program (app [+] or app [-]). The primary outcome was improvement in the DSRS-C score, and secondary outcomes were improvement in other psychometric scales including PedsQL, QTA30, and RSE. A paired-samples t test was used for statistical analysis. The Medical Ethics Committee of Fukuoka University Faculty of Medicine (approval U22-05-002) approved the study design.
Results: There were 48, 18, 18, and 7 participants in the PHQ-9A?5 app (+), PHQ-9A?5 app (-), PHQ-9A<5 app (+), and PHQ-9A<5 app (-) groups, respectively. A total of 24 participants dropped out. No improvement in the DSRS-C score was observed in all groups. However, PedsQL scores improved significantly at 2 and 6 months in the PHQ-9A<5 app (+) group (t17=6.62; P<.001 and t17=6.11; P<.001, respectively). There was a significant positive correlation between the PHQ-9A scores and the number of self-monitoring sheets completed.
Conclusions: The CBT app was useful for improving PedsQL scores of children with mental health disorders. However, a higher-intensity CBT program is necessary for more severely depressed children.
Trial Registration: University Hospital Medical Information Network Clinical Trials Registry UMIN000046775; center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000053360
en-copyright=
kn-copyright=
en-aut-name=NagamitsuShinichiro
en-aut-sei=Nagamitsu
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkadaAyumi
en-aut-sei=Okada
en-aut-mei=Ayumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SakutaRyoichi
en-aut-sei=Sakuta
en-aut-mei=Ryoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshiiRyuta
en-aut-sei=Ishii
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KoyanagiKenshi
en-aut-sei=Koyanagi
en-aut-mei=Kenshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HabukawaChizu
en-aut-sei=Habukawa
en-aut-mei=Chizu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaTakashi
en-aut-sei=Katayama
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItoMasaya
en-aut-sei=Ito
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KanieAyako
en-aut-sei=Kanie
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtaniRyoko
en-aut-sei=Otani
en-aut-mei=Ryoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=InoueTakeshi
en-aut-sei=Inoue
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KitajimaTasuku
en-aut-sei=Kitajima
en-aut-mei=Tasuku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsubaraNaoki
en-aut-sei=Matsubara
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TanakaChie
en-aut-sei=Tanaka
en-aut-mei=Chie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiiChikako
en-aut-sei=Fujii
en-aut-mei=Chikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShigeyasuYoshie
en-aut-sei=Shigeyasu
en-aut-mei=Yoshie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=MatsuokaMichiko
en-aut-sei=Matsuoka
en-aut-mei=Michiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KakumaTatsuyuki
en-aut-sei=Kakuma
en-aut-mei=Tatsuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=HorikoshiMasaru
en-aut-sei=Horikoshi
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Faculty of Medicine, Fukuoka University
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Pediatrics & Child Health, Kurume University, School of Medicine
kn-affil=
affil-num=5
en-affil=Nagasaki Prefectural Center of Medicine and Welfare for Children
kn-affil=
affil-num=6
en-affil=Department of Pediatric Allergy, Minami Wakayama Medical Center
kn-affil=
affil-num=7
en-affil=L2B Inc
kn-affil=
affil-num=8
en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry
kn-affil=
affil-num=9
en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry
kn-affil=
affil-num=10
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=11
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=12
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=13
en-affil=Child Development and Psychosomatic Medicine Center, Dokkyo Medical University Saitama Medical Center
kn-affil=
affil-num=14
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Neuropsychiatry, Kurume University School of Medicine
kn-affil=
affil-num=18
en-affil=Biostatistics Center, Kurume University
kn-affil=
affil-num=19
en-affil=National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry
kn-affil=
en-keyword=smartphone
kn-keyword=smartphone
en-keyword=cognitive behavioral therapy
kn-keyword=cognitive behavioral therapy
en-keyword=application
kn-keyword=application
en-keyword=adolescent
kn-keyword=adolescent
en-keyword=youth
kn-keyword=youth
en-keyword=teen
kn-keyword=teen
en-keyword=pediatric
kn-keyword=pediatric
en-keyword=mental health
kn-keyword=mental health
en-keyword=psychoeducation
kn-keyword=psychoeducation
en-keyword=self-monitoring
kn-keyword=self-monitoring
en-keyword=questionnaire
kn-keyword=questionnaire
en-keyword=depressive symptoms
kn-keyword=depressive symptoms
en-keyword=effectiveness
kn-keyword=effectiveness
en-keyword=Japan
kn-keyword=Japan
en-keyword=statistical analysis
kn-keyword=statistical analysis
en-keyword=single-arm uncontrolled study
kn-keyword=single-arm uncontrolled study
en-keyword=mobile phone
kn-keyword=mobile phone
END
start-ver=1.4
cd-journal=joma
no-vol=19
cd-vols=
no-issue=12
article-no=
start-page=2429
end-page=2437
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241112
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.
en-copyright=
kn-copyright=
en-aut-name=KurogiHaruna
en-aut-sei=Kurogi
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KumarAshutosh
en-aut-sei=Kumar
en-aut-mei=Ashutosh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SawadaDaisuke
en-aut-sei=Sawada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZhangKam Y.J.
en-aut-sei=Zhang
en-aut-mei=Kam Y.J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=5
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=6
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=7
en-affil=Department of Fine Organic Synthesis, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=10
article-no=
start-page=2401783
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241010
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
en-copyright=
kn-copyright=
en-aut-name=NicolussiPaola
en-aut-sei=Nicolussi
en-aut-mei=Paola
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=PiloGiovannantonio
en-aut-sei=Pilo
en-aut-mei=Giovannantonio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=CanceddaMaria Giovanna
en-aut-sei=Cancedda
en-aut-mei=Maria Giovanna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PengGuotao
en-aut-sei=Peng
en-aut-mei=Guotao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChauNgoc Do Quyen
en-aut-sei=Chau
en-aut-mei=Ngoc Do Quyen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=De la CadenaAlejandro
en-aut-sei=De la Cadena
en-aut-mei=Alejandro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=VannaRenzo
en-aut-sei=Vanna
en-aut-mei=Renzo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SamadYarjan Abdul
en-aut-sei=Samad
en-aut-mei=Yarjan Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AhmedTanweer
en-aut-sei=Ahmed
en-aut-mei=Tanweer
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MarcellinoJeremia
en-aut-sei=Marcellino
en-aut-mei=Jeremia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=TeddeGiuseppe
en-aut-sei=Tedde
en-aut-mei=Giuseppe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GiroLinda
en-aut-sei=Giro
en-aut-mei=Linda
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YlmazerAcelya
en-aut-sei=Ylmazer
en-aut-mei=Acelya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=LoiFederica
en-aut-sei=Loi
en-aut-mei=Federica
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=CartaGavina
en-aut-sei=Carta
en-aut-mei=Gavina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SecchiLoredana
en-aut-sei=Secchi
en-aut-mei=Loredana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=Dei GiudiciSilvia
en-aut-sei=Dei Giudici
en-aut-mei=Silvia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=MacciocuSimona
en-aut-sei=Macciocu
en-aut-mei=Simona
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=PolliDario
en-aut-sei=Polli
en-aut-mei=Dario
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=LigiosCiriaco
en-aut-sei=Ligios
en-aut-mei=Ciriaco
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=CerulloGiulio
en-aut-sei=Cerullo
en-aut-mei=Giulio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=FerrariAndrea
en-aut-sei=Ferrari
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=BiancoAlberto
en-aut-sei=Bianco
en-aut-mei=Alberto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=FadeelBengt
en-aut-sei=Fadeel
en-aut-mei=Bengt
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=FranzoniGiulia
en-aut-sei=Franzoni
en-aut-mei=Giulia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=DeloguLucia Gemma
en-aut-sei=Delogu
en-aut-mei=Lucia Gemma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
affil-num=1
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=2
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=3
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=4
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=5
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=6
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=7
en-affil=Istituto di Fotonica e Nanotecnologie ? CNR
kn-affil=
affil-num=8
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=9
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=10
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=11
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=12
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
affil-num=13
en-affil=Department of Biomedical Engineering, Ankara University
kn-affil=
affil-num=14
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=15
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=16
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=17
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=18
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=19
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=20
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=21
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=22
en-affil=Dipartimento di Fisica, Politecnico di Milano
kn-affil=
affil-num=23
en-affil=Cambridge Graphene Centre, University of Cambridge
kn-affil=
affil-num=24
en-affil=CNRS, Immunology, Immunopathology and Therapeutic Chemistry
kn-affil=
affil-num=25
en-affil=Institute of Environmental Medicine, Karolinska Institutet
kn-affil=
affil-num=26
en-affil=Istituto Zooprofilattico Sperimentale della Sardegna
kn-affil=
affil-num=27
en-affil=ImmuneNano Laboratory, Department of Biomedical Sciences
kn-affil=
en-keyword=2D materials
kn-keyword=2D materials
en-keyword=biocompatibility
kn-keyword=biocompatibility
en-keyword=immune system
kn-keyword=immune system
en-keyword=porcine model
kn-keyword=porcine model
en-keyword=toxicity
kn-keyword=toxicity
END
start-ver=1.4
cd-journal=joma
no-vol=4
cd-vols=
no-issue=4
article-no=
start-page=263
end-page=272
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240607
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.
en-copyright=
kn-copyright=
en-aut-name=FerrerasAndrea
en-aut-sei=Ferreras
en-aut-mei=Andrea
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatesanzAna
en-aut-sei=Matesanz
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MendizabalJabier
en-aut-sei=Mendizabal
en-aut-mei=Jabier
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ArtolaKoldo
en-aut-sei=Artola
en-aut-mei=Koldo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AcedoPablo
en-aut-sei=Acedo
en-aut-mei=Pablo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=JorcanoJos? L.
en-aut-sei=Jorcano
en-aut-mei=Jos? L.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=RuizAmalia
en-aut-sei=Ruiz
en-aut-mei=Amalia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ReinaGiacomo
en-aut-sei=Reina
en-aut-mei=Giacomo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=Mart?nCristina
en-aut-sei=Mart?n
en-aut-mei=Cristina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=2
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=3
en-affil=Domotek ingenier?a prototipado y formaci?n S.L.
kn-affil=
affil-num=4
en-affil=Domotek ingenier?a prototipado y formaci?n S.L.
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Electronic Technology, Universidad Carlos III de Madrid
kn-affil=
affil-num=7
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
affil-num=8
en-affil=Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford
kn-affil=
affil-num=9
en-affil=Empa Swiss Federal Laboratories for Materials Science and Technology
kn-affil=
affil-num=10
en-affil=Department of Bioengineering, Universidad Carlos III de Madrid
kn-affil=
en-keyword=photothermal therapy
kn-keyword=photothermal therapy
en-keyword=graphene derivatives
kn-keyword=graphene derivatives
en-keyword=4D bioprinting
kn-keyword=4D bioprinting
en-keyword=alginate
kn-keyword=alginate
en-keyword=tissue engineering
kn-keyword=tissue engineering
END
start-ver=1.4
cd-journal=joma
no-vol=121
cd-vols=
no-issue=5
article-no=
start-page=e70046
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Spider mite tetranins elicit different defense responses in different host habitats
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Spider mites (Tetranychus urticae) are a major threat to economically important crops. Here, we investigated the potential of tetranins, in particular Tet3 and Tet4, as T. urticae protein-type elicitors that stimulate plant defense. Truncated Tet3 and Tet4 proteins showed efficacy in activating the defense gene pathogenesis-related 1 (PR1) and inducing phytohormone production in leaves of Phaseolus vulgaris. In particular, Tet3 caused a drastically higher Ca2+ influx in leaves, but a lower reactive oxygen species (ROS) generation compared to other tetranins, whereas Tet4 caused a low Ca2+ influx and a high ROS generation in the host plants. Such specific and non-specific elicitor activities were examined by knockdown of Tet3 and Tet4 expressions in mites, confirming their respective activities and in particular showing that they function additively or synergistically to induce defense responses. Of great interest is the fact that Tet3 and Tet4 expression levels were higher in mites on their preferred host, P. vulgaris, compared to the levels in mites on the less-preferred host, Cucumis sativus, whereas Tet1 and Tet2 were constitutively expressed regardless of their host. Furthermore, mites that had been hosted on C. sativus induced lower levels of PR1 expression, Ca2+ influx and ROS generation, i.e., Tet3- and Tet4-responsive defense responses, in both P. vulgaris and C. sativus leaves compared to the levels induced by mites that had been hosted on P. vulgaris. Taken together, these findings show that selected tetranins respond to variable host cues that may optimize herbivore fitness by altering the anti-mite response of the host plant.
en-copyright=
kn-copyright=
en-aut-name=EndoYukiko
en-aut-sei=Endo
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaMiku
en-aut-sei=Tanaka
en-aut-mei=Miku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UemuraTakuya
en-aut-sei=Uemura
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TanimuraKaori
en-aut-sei=Tanimura
en-aut-mei=Kaori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DesakiYoshitake
en-aut-sei=Desaki
en-aut-mei=Yoshitake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzawaRika
en-aut-sei=Ozawa
en-aut-mei=Rika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=BonzanoSara
en-aut-sei=Bonzano
en-aut-mei=Sara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MaffeiMassimo E.
en-aut-sei=Maffei
en-aut-mei=Massimo E.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShinyaTomonori
en-aut-sei=Shinya
en-aut-mei=Tomonori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GalisIvan
en-aut-sei=Galis
en-aut-mei=Ivan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ArimuraGen‐ichiro
en-aut-sei=Arimura
en-aut-mei=Gen‐ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=2
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=3
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=4
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=5
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
affil-num=6
en-affil=Center for Ecological Research, Kyoto University
kn-affil=
affil-num=7
en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin
kn-affil=
affil-num=8
en-affil=Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin
kn-affil=
affil-num=9
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=10
en-affil=Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=11
en-affil=Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science
kn-affil=
en-keyword=Cucumis sativus
kn-keyword=Cucumis sativus
en-keyword=elicitor
kn-keyword=elicitor
en-keyword=Phaseolus vulgaris
kn-keyword=Phaseolus vulgaris
en-keyword=spider mite (Tetranychus urticae)
kn-keyword=spider mite (Tetranychus urticae)
en-keyword=tetranin
kn-keyword=tetranin
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=7
article-no=
start-page=1152
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240717
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Metatranscriptomic Sequencing of Sheath Blight-Associated Isolates of Rhizoctonia solani Revealed Multi-Infection by Diverse Groups of RNA Viruses
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined.
en-copyright=
kn-copyright=
en-aut-name=UrzoMichael Louie R.
en-aut-sei=Urzo
en-aut-mei=Michael Louie R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GuintoTimothy D.
en-aut-sei=Guinto
en-aut-mei=Timothy D.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Eusebio-CopeAna
en-aut-sei=Eusebio-Cope
en-aut-mei=Ana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BudotBernard O.
en-aut-sei=Budot
en-aut-mei=Bernard O.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YanoriaMary Jeanie T.
en-aut-sei=Yanoria
en-aut-mei=Mary Jeanie T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=JonsonGilda B.
en-aut-sei=Jonson
en-aut-mei=Gilda B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakawaMasao
en-aut-sei=Arakawa
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KondoHideki
en-aut-sei=Kondo
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SuzukiNobuhiro
en-aut-sei=Suzuki
en-aut-mei=Nobuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Ba?os
kn-affil=
affil-num=2
en-affil=Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Ba?os
kn-affil=
affil-num=3
en-affil=Fit-for-Future Genetic Resources Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os
kn-affil=
affil-num=4
en-affil=Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Ba?os
kn-affil=
affil-num=5
en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os
kn-affil=
affil-num=6
en-affil=Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Ba?os
kn-affil=
affil-num=7
en-affil=Faculty of Agriculture, Meijo University
kn-affil=
affil-num=8
en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
affil-num=9
en-affil=Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University
kn-affil=
en-keyword=Rhizoctonia solani
kn-keyword=Rhizoctonia solani
en-keyword=dsRNA
kn-keyword=dsRNA
en-keyword=mycovirus
kn-keyword=mycovirus
en-keyword=RNA virus
kn-keyword=RNA virus
en-keyword=metatranscriptome
kn-keyword=metatranscriptome
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Sulfur dioxide-induced guard cell death and stomatal closure are attenuated in nitrate/proton antiporter AtCLCa mutants
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Guard cells surrounding the stomata play a crucial role in regulating the entrance of hazardous gases such as SO2 into leaves. Stomatal closure could be a plant response to mitigate SO2 damage, although the mechanism for SO2-induced closure remains controversial. Proposed mediators for SO2-induced stomatal closure include phytohormones, reactive oxygen species, gasotransmitters, and cytosolic acidification. In this study, we investigated the mechanism of stomatal closure in Arabidopsis in response to SO2. Despite an increment in auxin and jasmonates after SO2 exposure, the addition of auxin did not cause stomatal closure and jasmonate-insensitive mutants exhibited SO2-induced stomatal closure suggesting auxin and jasmonates are not mediators leading to the closure. In addition, supplementation of scavenging reagents for reactive oxygen species and gasotransmitters did not inhibit SO2-induced closure. Instead, we found that cytosolic acidification is a credible mechanism for SO2-induced stomatal closure in Arabidopsis. CLCa mutants coding H+/nitrate antiporter, involved in cytosolic pH homeostasis, showed less sensitive stomatal phenotype against SO2. These results suggest that cytosolic pH homeostasis plays a tenable role in SO2 response in guard cells.
en-copyright=
kn-copyright=
en-aut-name=OoiLia
en-aut-sei=Ooi
en-aut-mei=Lia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuuraTakakazu
en-aut-sei=Matsuura
en-aut-mei=Takakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MoriIzumi C.
en-aut-sei=Mori
en-aut-mei=Izumi C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=airborne pollutants
kn-keyword=airborne pollutants
en-keyword=cytosolic acidification
kn-keyword=cytosolic acidification
en-keyword=stomatal closure
kn-keyword=stomatal closure
en-keyword=sulfur dioxide
kn-keyword=sulfur dioxide
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=タンパク質の限界発現により引き起こされるタンパク質毒性と細胞表現型の解析
kn-title=Analysis of Protein Toxicity and Cellular Phenotypes Triggered by the Maximum Overexpression of Proteins in Yeast
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NAMBAShotaro
en-aut-sei=NAMBA
en-aut-mei=Shotaro
kn-aut-name=難波匠太郎
kn-aut-sei=難波
kn-aut-mei=匠太郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=岡山大学大学院環境生命自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=2022-2023年,日本における加熱式タバコ使用者のTDSに基づくニコチン依存症の検討: JASTIS調査
kn-title=Nicotine dependence based on the Tobacco Dependence Screener among heated tobacco products users in Japan, 2022-2023: the JASTIS Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KITAJIMATakuma
en-aut-sei=KITAJIMA
en-aut-mei=Takuma
kn-aut-name=北島拓真
kn-aut-sei=北島
kn-aut-mei=拓真
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=CTLA-4阻害の抗腫瘍効果はTreg細胞のCTLA-4非依存性免疫抑制機構の活性化によって減弱する
kn-title=Activated CTLA-4-independent immunosuppression of Treg cells disturbs CTLA-4 blockade-mediated antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WATANABETomofumi
en-aut-sei=WATANABE
en-aut-mei=Tomofumi
kn-aut-name=渡部智文
kn-aut-sei=渡部
kn-aut-mei=智文
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=精神的ストレスはアドレナリンβ2受容体を介して皮膚アレルギー炎症におけるマクロファージの抗炎症機能を減弱させる
kn-title=Stress-experienced monocytes/macrophages lose anti-inflammatory function via β2-adrenergic receptor in skin allergic inflammation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=URAKAMIHitoshi
en-aut-sei=URAKAMI
en-aut-mei=Hitoshi
kn-aut-name=浦上仁志
kn-aut-sei=浦上
kn-aut-mei=仁志
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肺癌術後の気管支断端瘻を回避するために組織弁が果たす予防的効果
kn-title=Prophylactic effect of tissue flap in the prevention of bronchopleural fistula after surgery for lung cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HABUTomohiro
en-aut-sei=HABU
en-aut-mei=Tomohiro
kn-aut-name=土生智大
kn-aut-sei=土生
kn-aut-mei=智大
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=脳卒中モデルマウスにおけるフラボノイド、スダチチンの神経保護効果
kn-title=Neuroprotective effect of, a flavonoid, sudachitin in mice stroke model
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OTA ELLIOTT RICARDO SATOSHI
en-aut-sei=OTA ELLIOTT RICARDO SATOSHI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腫瘍融解アデノウイルスによる腹腔内マクロファージの機能的再構築により、胃癌腹膜播種に対する抗腫瘍免疫が回復する
kn-title=Functional remodeling of intraperitoneal macrophages by oncolytic adenovirus restores anti-tumor immunity for peritoneal metastasis of gastric cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TABUCHIMotoyasu
en-aut-sei=TABUCHI
en-aut-mei=Motoyasu
kn-aut-name=田渕幹康
kn-aut-sei=田渕
kn-aut-mei=幹康
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=7
cd-vols=
no-issue=1
article-no=
start-page=vdaf036
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluating short-term survivors of glioblastoma: A proposal based on SEER registry data
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Glioblastomas (GBMs) are central nervous system tumors with a poor prognosis and limited treatment options. Although small subsets of GBM patients survive longer than 3 years, there is little evidence regarding the prognostic factors of GBM. Therefore, we conducted a thorough characterization of GBM in the United States.
Methods: We queried the Surveillance, Epidemiology, and End Results database between 2000 and 2021 to extract age-adjusted incidence rates (AAIRs), age-adjusted mortality rates (AAMRs), and survival data for GBM. We compared trends in AAIR, AAMR, and survival time across age groups 0?14, 15?39, 40?69, and 70+ years. Also, we employed the Fine?Gray competing risk model among short-term survivors (STSs), defined as those with a survival time of 6 months or less, and long-term survivors (LTSs), defined as those with a survival time of 3 years or more.
Results: This study included 60 615 incident GBM cases, 54 998 GBM-specific deaths, and 47 207 GBM patients with available survival time between 2000 and 2021. The mortality-to-incidence ratio was constant among STSs, whereas it increased with age among LTSs. Higher age and male sex were significantly associated with GBM-specific death among LTSs, whereas non-Hispanic White and less intensive treatments were associated with GBM-specific deaths among STSs. Interestingly, higher age was significantly associated with other causes of death among STSs.
Conclusions: STSs partially consist of populations who died from causes other than GBM. It is important to include only GBM-specific deaths in STS groups to conduct reproducible research comparing STSs and LTSs.
en-copyright=
kn-copyright=
en-aut-name=TomitaYusuke
en-aut-sei=Tomita
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OmaeRyo
en-aut-sei=Omae
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MizutaRyo
en-aut-sei=Mizuta
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HirotsuneNobuyuki
en-aut-sei=Hirotsune
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Medical School
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurosurgery and Neuroendovascular Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=glioblastoma
kn-keyword=glioblastoma
en-keyword=long-term survivor
kn-keyword=long-term survivor
en-keyword=SEER
kn-keyword=SEER
en-keyword=short-term survivor
kn-keyword=short-term survivor
en-keyword=United States
kn-keyword=United States
END
start-ver=1.4
cd-journal=joma
no-vol=295
cd-vols=
no-issue=
article-no=
start-page=128303
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20251201
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Using a microfluidic paper-based analytical device and solid-phase extraction to determine phosphate concentration
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Phosphate is an essential nutrient, but in high concentrations it contributes to water pollution. Traditional methods for phosphate measurement, such as absorption spectrophotometry and ion chromatography, require expensive equipment and skilled operators. This study introduces a microfluidic paper-based analytical device (μPAD) that is designed to accomplish field-based, low-concentration phosphate measurements. This μPAD utilizes colorimetric detection based on the molybdenum blue method. Herein, we describe how the conditions were optimized in terms of design and sensitivity by adjusting reagent concentrations, paper thickness, and the time frames for sample introduction, and reaction. The operation consists of simply dipping the μPAD into a sample, capturing images in a home-made photo studio box, and processing the images with ImageJ software to measure RGB intensity. An additional preconcentration step involves solid-phase extraction with an anion exchange resin that achieves a 10-fold enrichment, which enables detection that ranges from 0.05 to 1 mg L?1 with a detection limit of 0.089 mg L?1 and a quantification limit of 0.269 mg L?1. The replicated measurements showed good reproducibility both intraday and interday (five different days) as 4.7 % and 3.0 % of relative standard deviations, respectively. After storage in a refrigerator for as long as 26 days, this μPAD delivered stable and accurate results for real-world samples of natural water, soil, and toothpaste. The results produced using this system correlate well with those produced via spectrophotometry. This μPAD-based method is a cost-effective, portable, rapid, and simple approach that allows relatively unskilled operators to monitor phosphate concentrations in field applications.
en-copyright=
kn-copyright=
en-aut-name=DanchanaKaewta
en-aut-sei=Danchana
en-aut-mei=Kaewta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NambaHaruka
en-aut-sei=Namba
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanetaTakashi
en-aut-sei=Kaneta
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Okayama University
kn-affil=
en-keyword=Phosphate
kn-keyword=Phosphate
en-keyword=Microfluidic paper-based analytical device
kn-keyword=Microfluidic paper-based analytical device
en-keyword=Solid-phase extraction
kn-keyword=Solid-phase extraction
en-keyword=Anion exchanger
kn-keyword=Anion exchanger
en-keyword=Molybdenum blue method
kn-keyword=Molybdenum blue method
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250501
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Xenopus laevis as an infection model for human pathogenic bacteria
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Animal infection models are essential for understanding bacterial pathogenicity and corresponding host immune responses. In this study, we investigated whether juvenile Xenopus laevis could be used as an infection model for human pathogenic bacteria. Xenopus frogs succumbed to intraperitoneal injection containing the human pathogenic bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes. In contrast, non-pathogenic bacteria Bacillus subtilis and Escherichia coli did not induce mortality in Xenopus frogs. The administration of appropriate antibiotics suppressed mortality caused by S. aureus and P. aeruginosa. Strains lacking the agr locus, cvfA (rny) gene, or hemolysin genes in S. aureus, LIPI-1-deleted mutant of L. monocytogenes, which attenuate virulence within mammals, exhibited reduced virulence in Xenopus frogs compared with their respective wild-type counterparts. Bacterial distribution analysis revealed that S. aureus persisted in the blood, liver, heart, and muscles of Xenopus frogs until death. These results suggested that intraperitoneal injection of human pathogenic bacteria induces sepsis-like symptoms in Xenopus frogs, supporting their use as a valuable animal model for evaluating antimicrobial efficacy and identifying virulence genes in various human pathogenic bacteria.
en-copyright=
kn-copyright=
en-aut-name=KuriuAyano
en-aut-sei=Kuriu
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsuchiyaKohsuke
en-aut-sei=Tsuchiya
en-aut-mei=Kohsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University
kn-affil=
affil-num=4
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Division of Molecular Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=animal infection model
kn-keyword=animal infection model
en-keyword=Staphylococcus aureus
kn-keyword=Staphylococcus aureus
en-keyword=Listeria monocytogenes
kn-keyword=Listeria monocytogenes
en-keyword=Pseudomonas aeruginosa
kn-keyword=Pseudomonas aeruginosa
en-keyword=antibiotics efficacy
kn-keyword=antibiotics efficacy
en-keyword=virulence genes
kn-keyword=virulence genes
en-keyword=hemolysin
kn-keyword=hemolysin
END
start-ver=1.4
cd-journal=joma
no-vol=74
cd-vols=
no-issue=7
article-no=
start-page=193
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250509
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Osteosarcoma cell-derived CCL2 facilitates lung metastasis via accumulation of tumor-associated macrophages
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Osteosarcoma (OS) is the most common malignant tumor of bone in children and adolescents. Although lung metastasis is a major obstacle to improving the prognosis of OS patients, the underlying mechanism of lung metastasis of OS is poorly understood. Tumor-associated macrophages (TAMs) with M2-like characteristics are reportedly associated with lung metastasis and poor prognosis in OS patients. In this study, we investigated the metastasis-associated tumor microenvironment (TME) in orthotopic OS tumor models with non-metastatic and metastatic OS cells. Non-metastatic and metastatic tumor cells derived from mouse OS (Dunn and LM8) and human OS (HOS and 143B) were used to analyze the TME associated with lung metastasis in orthotopic OS tumor models. OS cell-derived secretion factors were identified by cytokine array and enzyme-linked immunosorbent assay (ELISA). Orthotopic tumor models with metastatic LM8 and 143B cells were analyzed to evaluate the therapeutic potential of a neutralizing antibody in the development of primary and metastatic tumors. Metastatic OS cells developed metastatic tumors with infiltration of M2-like TAMs in the lungs. Cytokine array and ELISA demonstrated that metastatic mouse and human OS cells commonly secreted CCL2, which was partially encapsulated in extracellular vesicles. In vivo experiments demonstrated that while primary tumor growth was unaffected, administration of CCL2-neutralizing antibody led to a significant suppression of lung metastasis and infiltration of M2-like TAMs in the lung tissue. Our results suggest that CCL2 plays a crucial role in promoting the lung metastasis of OS cells via accumulation of M2-like TAMs.
en-copyright=
kn-copyright=
en-aut-name=KondoHiroya
en-aut-sei=Kondo
en-aut-mei=Hiroya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YoshidaAki
en-aut-sei=Yoshida
en-aut-mei=Aki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KureMiho
en-aut-sei=Kure
en-aut-mei=Miho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DemiyaKoji
en-aut-sei=Demiya
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HataToshiaki
en-aut-sei=Hata
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=UotaniKoji
en-aut-sei=Uotani
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HaseiJoe
en-aut-sei=Hasei
en-aut-mei=Joe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YoshiokaYusuke
en-aut-sei=Yoshioka
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Molecular and Cellular Medicine, Tokyo Medical University
kn-affil=
affil-num=14
en-affil=Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Departments of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Osteosarcoma
kn-keyword=Osteosarcoma
en-keyword=Lung metastasis
kn-keyword=Lung metastasis
en-keyword=Tumor-associated macrophage
kn-keyword=Tumor-associated macrophage
en-keyword=CCL2
kn-keyword=CCL2
en-keyword=Extracellular vesicle
kn-keyword=Extracellular vesicle
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=2323
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A mini-hairpin shaped nascent peptide blocks translation termination by a distinct mechanism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Protein synthesis by ribosomes produces functional proteins but also serves diverse regulatory functions, which depend on the coding amino acid sequences. Certain nascent peptides interact with the ribosome exit tunnel to arrest translation and modulate themselves or the expression of downstream genes. However, a comprehensive understanding of the mechanisms of such ribosome stalling and its regulation remains elusive. In this study, we systematically screen for unidentified ribosome arrest peptides through phenotypic evaluation, proteomics, and mass spectrometry analyses, leading to the discovery of the arrest peptides PepNL and NanCL in E. coli. Our cryo-EM study on PepNL reveals a distinct arrest mechanism, in which the N-terminus of PepNL folds back towards the tunnel entrance to prevent the catalytic GGQ motif of the release factor from accessing the peptidyl transferase center, causing translation arrest at the UGA stop codon. Furthermore, unlike sensory arrest peptides that require an arrest inducer, PepNL uses tryptophan as an arrest inhibitor, where Trp-tRNATrp reads through the stop codon. Our findings illuminate the mechanism and regulatory framework of nascent peptide-induced translation arrest, paving the way for exploring regulatory nascent peptides.
en-copyright=
kn-copyright=
en-aut-name=AndoYushin
en-aut-sei=Ando
en-aut-mei=Yushin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KoboAkinao
en-aut-sei=Kobo
en-aut-mei=Akinao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NiwaTatsuya
en-aut-sei=Niwa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamakawaAyako
en-aut-sei=Yamakawa
en-aut-mei=Ayako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KonomaSuzuna
en-aut-sei=Konoma
en-aut-mei=Suzuna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiYuki
en-aut-sei=Kobayashi
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NurekiOsamu
en-aut-sei=Nureki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TaguchiHideki
en-aut-sei=Taguchi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ItohYuzuru
en-aut-sei=Itoh
en-aut-mei=Yuzuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ChadaniYuhei
en-aut-sei=Chadani
en-aut-mei=Yuhei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=2
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=3
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=4
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=5
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=6
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=7
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=8
en-affil=School of Life Science and Technology, Institute of Science Tokyo
kn-affil=
affil-num=9
en-affil=Department of Biological Sciences, Graduate School of Science, The University of Tokyo
kn-affil=
affil-num=10
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=12633
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250412
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Association of emergency intensive care unit occupancy due to brain-dead organ donors with ambulance diversion
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Our study aims to explore how intensive care unit (ICU) occupancy by brain-dead organ donors affects emergency ambulance diversions. In this retrospective, single-center study at an emergency ICU (EICU), brain-dead organ donors were managed until organ procurement. We classified each day between August 1, 2021, and July 31, 2023, as either an exposure day (any day with a brain-dead organ donor in the EICU from admission to organ procurement) or a control day (all other days). The study compared these days and used multiple logistic regression analysis to assess the impact of EICU occupancy by brain-dead organ donors on ambulance diversions. Over two years, 6,058 emergency patients were transported by ambulance, with 1327 admitted to the EICU, including 13 brain-dead organ donors. Brain-dead donors had longer EICU stays (17 vs. 2 days, P < 0.001). With 168 exposure and 562 control days, EICU occupancy was higher on exposure days (75% vs. 67%, P = 0.003), leading to more ambulance diversions. Logistic regression showed exposure days significantly increased ambulance diversions, with an odds ratio of 1.79 (95% CIs 1.10-2.88). This study shows that managing brain-dead organ donors in the EICU leads to longer stays and higher occupancy, resulting in more frequent ambulance diversions. These findings highlight the critical need for policies that optimize ICU resource allocation while maintaining the infrastructure necessary to support organ donation programs and ensuring continued care for brain-dead donors, who play an essential role in addressing the organ shortage crisis.
en-copyright=
kn-copyright=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HisamuraMasaki
en-aut-sei=Hisamura
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Epidemiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Ambulance diversion
kn-keyword=Ambulance diversion
en-keyword=Bed occupancy
kn-keyword=Bed occupancy
en-keyword=Brain death
kn-keyword=Brain death
en-keyword=Emergency medical services
kn-keyword=Emergency medical services
en-keyword=Intensive care units
kn-keyword=Intensive care units
en-keyword=Organ donation
kn-keyword=Organ donation
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250410
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Enterobacterial common antigen repeat-unit flippase WzxE is required for Escherichia coli growth under acidic conditions, low temperature, and high osmotic stress conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Colanic acid and enterobacterial common antigen (ECA) are cell-surface polysaccharides that are produced by many Escherichia coli isolates. Colanic acid is induced under acidic, low temperature, and high-salt conditions and is important for E. coli resistance to these stresses; however, the role of ECA in these stresses is less clear. Here, we observed that knockout of flippase wzxE, which translocates lipid-linked ECA repeat units from the cytoplasmic side of the inner membrane to the periplasmic side, resulted in the sensitivity of E. coli BW25113 to acidic conditions. The wzxE-knockout mutant showed reduced growth potential and viable counts in vegetable extracts with acidic environments, including cherry tomatoes, carrots, celery, lettuce, and spinach. A double-knockout strain of wzxE and wecF (glycosyltransferase that adds the third-and-final sugar of the lipid-linked ECA repeat unit) was not sensitive to acidic conditions, with similar results obtained for a double-knockout strain of wzxE and wcaJ (glycosyltransferase that initiates colanic acid lipid-linked repeat-unit biosynthesis). The wzxE-knockout mutant was sensitive to low temperatures or high-salt conditions, which induced colanic acid synthesis, and these sensitivities were abolished by the additional knockout of wcaJ. These results suggest that lipid-linked ECA repeat units confer E. coli susceptibility to acidic, low temperatures, and high-salt conditions in a colanic acid-dependent manner and that wzxE suppresses this negative effect.
en-copyright=
kn-copyright=
en-aut-name=YamaguchiSaki
en-aut-sei=Yamaguchi
en-aut-mei=Saki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshikawaKazuya
en-aut-sei=Ishikawa
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=wzxE flippase
kn-keyword=wzxE flippase
en-keyword=enterobacterial common antigen
kn-keyword=enterobacterial common antigen
en-keyword=low pH
kn-keyword=low pH
en-keyword=low temperature
kn-keyword=low temperature
en-keyword=hyperosmotic stress
kn-keyword=hyperosmotic stress
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250316
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel pulmonary abdominal normothermic regional perfusion circuit for simultaneous in-donor evaluation and preservation of lungs and abdominal organs in donation after circulatory death
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective To overcome limitations of traditional ex vivo lung perfusion (EVLP) for controlled donation after circulatory death (cDCD) lungs, this study aimed to evaluate a novel pulmonary abdominal normothermic regional perfusion (PANRP) technique, which we uniquely designed, for in situ assessment of lungs from cDCD donors.
Methods We modified the abdominal normothermic regional perfusion circuit for simultaneous lung and abdominal organ assessment using independent extracorporeal membrane oxygenation components. Blood was oxygenated via a membrane oxygenator and returned to the body, with pulmonary flow adjusted to maintain pressure?25 mmHg. Femoral cannulation was performed, and the lungs were ventilated with standard settings. Organ function was assessed over 2 h using PaO2/FiO2, AST, ALT, BUN, and Cr measurements to monitor perfusion and oxygen delivery.
Results PANRP maintained stable lung function, with P/F ratios above 300, and preserved abdominal organ parameters, including stable AST, ALT, BUN, and Cr levels. Adequate urine output was observed, indicating normal renal function. Pulmonary artery pressure remained?20 mmHg, and pulmonary vascular resistance was kept at 400 dyn・s/cm5, showing no signs of lung dysfunction or injury throughout the circuit.
Conclusions PANRP offers a promising alternative to traditional EVLP for cDCD lung evaluation, allowing in situ assessment of multiple organs simultaneously. This approach may overcome logistical and economic challenges associated with ex vivo techniques, enabling a more efficient evaluation process. Further studies are warranted to confirm its clinical applicability and impact on long-term outcomes.
en-copyright=
kn-copyright=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=UmedaMasashi
en-aut-sei=Umeda
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UjikeHiroyuki
en-aut-sei=Ujike
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=RyukoTsuyoshi
en-aut-sei=Ryuko
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TomiokaYasuaki
en-aut-sei=Tomioka
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery, Shimane University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=8
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
affil-num=9
en-affil=Department of General Thoracic and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine
kn-affil=
en-keyword=Lung preservation
kn-keyword=Lung preservation
en-keyword=Donation after circulatory death
kn-keyword=Donation after circulatory death
en-keyword=Abdominal normothermic regional perfusion
kn-keyword=Abdominal normothermic regional perfusion
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A randomized controlled trial of conventional GVHD prophylaxis with or without teprenone for the prevention of severe acute GVHD
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Therapies that effectively suppress graft-versus-host disease (GVHD) without compromising graft-versus-leukemia/lymphoma (GVL) effects is important in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematopoietic malignancies. Geranylgeranylacetone (GGA) is a main component of teprenone, a gastric mucosal protectant commonly used in clinical practice. In preclinical models, GGA suppresses proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), which are associated with GVHD as well as induces thioredoxin-1 (Trx-1), which suppresses GVHD while maintaining GVL effects. Here, we investigated whether the addition of teprenone to standard GVHD prophylaxis could reduce the cumulative incidence of severe acute GVHD (aGVHD) without attenuating GVL effects. This open-label, randomized clinical trial enrolled 40 patients (21 control and 19 teprenone group) who received allo-HSCT between May 2022 and February 2023 in our institution. Patients in the teprenone group received 50 mg of teprenone orally thrice daily for 21 days from the initiation of the conditioning regimen. The cumulative incidence of severe aGVHD by day 100 after allo-HSCT was not significantly different in the two groups (27.9 vs. 16.1%, p?=?0.25). The exploratory studies revealed no obvious changes in Trx-1 levels, but the alternations from baseline in IL-1β and TNF-α levels at day 28 after allo-HSCT tended to be lower in the teprenone group. In conclusion, we could not demonstrate that teprenone significantly prevented the development of severe aGVHD. Discrepancy with preclinical model suggests that appropriate dose of teprenone may be necessary to induce the expression of antioxidant enzymes that suppress severe aGVHD. Clinical Trial Registration number:jRCTs 061210072.
en-copyright=
kn-copyright=
en-aut-name=KitamuraWataru
en-aut-sei=Kitamura
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsugeMitsuru
en-aut-sei=Tsuge
en-aut-mei=Mitsuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MitsuhashiToshiharu
en-aut-sei=Mitsuhashi
en-aut-mei=Toshiharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KobayashiHiroki
en-aut-sei=Kobayashi
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KamoiChihiro
en-aut-sei=Kamoi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoAkira
en-aut-sei=Yamamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KondoTakumi
en-aut-sei=Kondo
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=AsadaNoboru
en-aut-sei=Asada
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pediatric Acute Diseases, Okayama University Academic Field of Medicine Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=13
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Hematology and Oncology, Okayama University Hospital
kn-affil=
en-keyword=Allogeneic hematopoietic stem cell transplantation
kn-keyword=Allogeneic hematopoietic stem cell transplantation
en-keyword=Graft-versus-host disease
kn-keyword=Graft-versus-host disease
en-keyword=Teprenone
kn-keyword=Teprenone
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
en-keyword=Interleukin-33
kn-keyword=Interleukin-33
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=2
article-no=
start-page=235
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250205
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Distinct Infection Mechanisms of Rhizoctonia solani AG-1 IA and AG-4 HG-I+II in Brachypodium distachyon and Barley
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Rhizoctonia solani is a basidiomycete phytopathogenic fungus that causes rapid necrosis in a wide range of crop species, leading to substantial agricultural losses worldwide. The species complex is divided into 13 anastomosis groups (AGs) based on hyphal fusion compatibility and further subdivided by culture morphology. While R. solani classifications were shown to be independent of host specificity, it remains unclear whether different R. solani isolates share similar virulence mechanisms. Here, we investigated the infectivity of Japanese R. solani isolates on Brachypodium distachyon and barley. Two isolates, AG-1 IA (from rice) and AG-4 HG-I+II (from cauliflower), infected leaves of both plants, but only AG-4 HG-I+II infected roots. B. distachyon accessions Bd3-1 and Gaz-4 and barley cultivar 'Morex' exhibited enhanced resistance to both isolates compared to B. distachyon Bd21 and barley cultivars 'Haruna Nijo' and 'Golden Promise'. During AG-1 IA infection, but not AG-4 HG-I+II infection, resistant Bd3-1 and Morex induced genes for salicylic acid (SA) and N-hydroxypipecolic acid (NHP) biosynthesis. Pretreatment with SA or NHP conferred resistance to AG-1 IA, but not AG-4 HG-I+II, in susceptible B. distachyon Bd21 and barley Haruna Nijo. On the leaves of susceptible Bd21 and Haruna Nijo, AG-1 IA developed extensive mycelial networks with numerous infection cushions, which are specialized infection structures well-characterized in rice sheath blight. In contrast, AG-4 HG-I+II formed dispersed mycelial masses associated with underlying necrosis. We propose that the R. solani species complex encompasses at least two distinct infection strategies: AG-1 IA exhibits a hemibiotrophic lifestyle, while AG-4 HG-I+II follows a predominantly necrotrophic strategy.
en-copyright=
kn-copyright=
en-aut-name=MahadevanNiranjan
en-aut-sei=Mahadevan
en-aut-mei=Niranjan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FernandaRozi
en-aut-sei=Fernanda
en-aut-mei=Rozi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KouzaiYusuke
en-aut-sei=Kouzai
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KohnoNatsuka
en-aut-sei=Kohno
en-aut-mei=Natsuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NagaoReiko
en-aut-sei=Nagao
en-aut-mei=Reiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NyeinKhin Thida
en-aut-sei=Nyein
en-aut-mei=Khin Thida
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeMegumi
en-aut-sei=Watanabe
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakataNanami
en-aut-sei=Sakata
en-aut-mei=Nanami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsuiHidenori
en-aut-sei=Matsui
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ToyodaKazuhiro
en-aut-sei=Toyoda
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IchinoseYuki
en-aut-sei=Ichinose
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MochidaKeiichi
en-aut-sei=Mochida
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HisanoHiroshi
en-aut-sei=Hisano
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NoutoshiYoshiteru
en-aut-sei=Noutoshi
en-aut-mei=Yoshiteru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
kn-affil=
affil-num=4
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=5
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=8
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=11
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=12
en-affil=RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=13
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=14
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Rhizoctonia solani species complex
kn-keyword=Rhizoctonia solani species complex
en-keyword=virulence mechanism
kn-keyword=virulence mechanism
en-keyword=infection behavior
kn-keyword=infection behavior
en-keyword=salicylic acid
kn-keyword=salicylic acid
en-keyword=N-hydroxypipecolic acid
kn-keyword=N-hydroxypipecolic acid
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250209
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of caffeine on the longevity and locomotion activity of the common green bottle fly, Lucilia sericata (Diptera: Calliphoridae)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The common green bottle fly, Lucilia sericata (Meigen) (Diptera: Calliphoridae), is a promising and useful managed pollinator for greenhouse agricultural crops. The fly can pollinate at lower and higher temperatures than European honeybee. However, management of the longevity of pollinators is important for growers using greenhouses. Previous studies using other insects showed that caffeine affects insect longevity and behaviors. For instance, European honeybee live longer and have increased memory after caffeine consumption. How caffeine affects the longevity and behavior of pollinators is worth investigating because it can affect pollinator’s behavior, extend longevity, or be an insecticide against pollinators. In the present study, therefore, the longevity and locomotion of L. sericata were investigated when they were given different caffeine concentrations. First, the longevity of L. sericata with five different caffeine concentrations was compared to the control. The results showed that higher concentrations of caffeine (2%, 1%, and 0.5%) significantly decreased the life span compared to lower concentrations (0.05% and 0.01%). Second, the locomotion activities of L. sericata were examined at those two caffeine concentrations with treated and control male and female flies utilizing a Drosophila Activity Monitor (DAM). Treatment with 0.05% caffeine dramatically reduced locomotion, but treatment of 0.01% caffeine did not. We also compared lipid concentrations of flies: flies treated with 0.05% caffeine had a lower lipid concentration compared to flies treated with 0% and 0.01% caffeine. These results indicate that caffeine had negative effects on the longevity and locomotion activities of the pollinator L. sericata in laboratory conditions.
en-copyright=
kn-copyright=
en-aut-name=NaingShine Shane
en-aut-sei=Naing
en-aut-mei=Shine Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiokaHaruna
en-aut-sei=Fujioka
en-aut-mei=Haruna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuuraTeruhisa
en-aut-sei=Matsuura
en-aut-mei=Teruhisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyatakeTakahisa
en-aut-sei=Miyatake
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Caffeine
kn-keyword=Caffeine
en-keyword=Life span
kn-keyword=Life span
en-keyword=Locomotor activity
kn-keyword=Locomotor activity
en-keyword=Pollinator
kn-keyword=Pollinator
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250115
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Barriers and solutions for introducing donation after circulatory death (DCD) in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KotaniYasuhiro
en-aut-sei=Kotani
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University and, Okayama University Hospital
kn-affil=
en-keyword=Heart transplanatation
kn-keyword=Heart transplanatation
en-keyword=Donation after circulatory death
kn-keyword=Donation after circulatory death
en-keyword=Machine perfusion
kn-keyword=Machine perfusion
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=1
article-no=
start-page=58
end-page=73
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241224
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=コダマカワザンショウ属の八重山諸島産新種 (腹足綱: クビキレガイ上科: カワザンショウ科) ? 同属で世界最北の現生種
kn-title=A new species of Ovassiminea Thiele, 1927 (Gastropoda: Truncatelloidea: Assimineidae) from the Yaeyama Islands, Okinawa, southern Japan ? the northernmost record among recent species of the genus
en-subtitle=
kn-subtitle=
en-abstract=沖縄県八重山諸島の西表島・石垣島から新種 Ovassiminea hayasei n. sp. ウラウチコダマカワザンショウを記載する。Ovassiminea Thiele, 1927 コダマカワザンショウ属は西太平洋の熱帯・亜熱帯に分布し, 本新種は同属中で世界最北の現生種である。本新種の産地は極端に狭い範囲に限られ, 沖縄県と環境省のレッドリストで絶滅危惧II類 (VU) とされている。なお文末の Appendix には, これまでに記載されたコダマカワザンショウ属全種 (現生5・化石5) の目録を, 異名表とともに挙げる。
kn-abstract=Ovassiminea hayasei n. sp. is described from mangrove swamps in Iriomote and Ishigaki Islands, of the Yaeyama Islands at the southwestern part of the Ry?ky? Archipelago, Okinawa, Japan. This is the northernmost record among recent species of the genus Ovassiminea Thiele, 1927, which is distributed in the tropical and subtropical regions of the Western Pacific. The new species is known to be restricted to extremely narrow ranges and is evaluated as vulnerable in red lists by the governments of Japan and Okinawa Prefecture. A list of all available (five recent and five fossil) species names of Ovassiminea hitherto described, with synonymies, is also given as an Appendix.
en-copyright=
kn-copyright=
en-aut-name=FukudaHiroshi
en-aut-sei=Fukuda
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KuboHirofumi
en-aut-sei=Kubo
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Conservation of Aquatic Biodiversity, Faculty of Agriculture, Okayama University
kn-affil=
affil-num=2
en-affil=Okinawa Prefectural Institute of Health and Environment
kn-affil=
en-keyword=anatomy
kn-keyword=anatomy
en-keyword=conservation
kn-keyword=conservation
en-keyword=description
kn-keyword=description
en-keyword=endangered species
kn-keyword=endangered species
en-keyword=estuary
kn-keyword=estuary
en-keyword=Iriomote Island
kn-keyword=Iriomote Island
en-keyword=Ishigaki Island
kn-keyword=Ishigaki Island
en-keyword=mangrove swamp
kn-keyword=mangrove swamp
en-keyword=salt marsh
kn-keyword=salt marsh
en-keyword=taxonomy
kn-keyword=taxonomy
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=1
article-no=
start-page=e12512
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2025
dt-pub=20250109
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nicotine dependence based on the tobacco dependence screener among heated tobacco products users in Japan, 2022-2023: The JASTIS study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Heated tobacco products (HTPs) are nicotine-containing products similar to cigarettes and are widely used in Japan. However, there has been insufficient research on nicotine dependence associated with HTP use. This study investigated the association of the types of individuals who smoked with the prevalence of nicotine dependence. We utilized data from the Japan Survey on Tobacco and Health (JASTIS). A total of 7969 participants who currently smokes was selected from the 2022 and 2023 survey respondents for the analysis. Nicotine dependence was defined as a score of 5 or higher on the Tobacco Dependence Screener (TDS). The prevalence of nicotine dependence was 43.0% (3473/8077) among all participants who smoked, 42.9% (1479/3447) among those who used cigarettes, 44.2% (760/1720) among those who used two products, and 43.0% (1206/2802) among those who used HTPs. The prevalence of nicotine dependence was statistically higher in the participants who used two products than in cigarettes (odds ratio [OR], 1.17; 95% confidence interval [CI], 1.04-1.33). When classified by temperature, participants who used of two products (high-temp and low-temp) and those using participants who used HTPs (high-temp) had higher ORs for prevalent nicotine dependence (OR, 1.31 [95% CI, 1.14-1.51]) and (OR, 1.12 [95% CI, 1.00-1.25], respectively) compared to participants who used cigarettes. Additionally, the ORs for prevalent nicotine dependence increased with the number of tobacco sticks smoked per day. These results suggest that HTP use, particularly high-temperature HTPs use, and a higher number of tobacco sticks smoked is associated with nicotine dependence.
en-copyright=
kn-copyright=
en-aut-name=KitajimaTakuma
en-aut-sei=Kitajima
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HisamatsuTakashi
en-aut-sei=Hisamatsu
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KandaHideyuki
en-aut-sei=Kanda
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TabuchiTakahiro
en-aut-sei=Tabuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Division of Epidemiology, Department of Health Informatics and Public Health, School of Public Health, Tohoku University Graduate School of Medicine
kn-affil=
en-keyword=cross-sectional survey
kn-keyword=cross-sectional survey
en-keyword= heated tobacco products
kn-keyword= heated tobacco products
en-keyword= logistic regression
kn-keyword= logistic regression
en-keyword= nicotine dependence
kn-keyword= nicotine dependence
en-keyword= tobacco dependence screener
kn-keyword= tobacco dependence screener
END
start-ver=1.4
cd-journal=joma
no-vol=226
cd-vols=
no-issue=
article-no=
start-page=158
end-page=166
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240915
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The impact of cumulus cell viability and pre-culture with the healthy cell mass on brilliant cresyl blue (BCB) staining assessment and meiotic competence of suboptimal porcine oocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objectives of the present study were to investigate the characteristics including glucose-6-phosphate dehydrogenase activity, as determined by Brilliant Cresyl Blue (BCB) staining, of suboptimal porcine oocytes and to enhance the meiotic competence of those through pre-culture with cumulus cell masses (CCMs). Percentage of oocyte-cumulus complexes (OCCs) derived from small follicles (SF; <3 mm in diameter) containing the oocytes that were assessed as BCB-negative (BCB-) was significantly higher than those derived from medium follicles (MF; 3?6 mm in diameter). Degrees of dead cumulus cells were significantly higher in OCCs containing BCB- oocytes, regardless of the origin of OCCs (MF vs. SF), than those containing BCB-positive (BCB+) ones. Exposing OCCs containing BCB+ oocytes to the apoptosis inducer, carbonyl cyanide m-chlorophenylhydrazone, for 20 h significantly induced the transition to BCB- and meiotic progression of exposed OCCs were significantly reduced in both SF and MF derived ones. Transit of BCB- oocytes to BCB+ was induced when OCCs were pre-cultured with CCMs of MF derived OCCs containing BCB+ oocytes for 20 h before IVM. This pre-culture also significantly increased the meiotic competence of BCB- oocytes, particularly in SF derived ones. However, reactive oxygen species levels were significantly higher in BCB+ oocytes as compared with BCB- ones, regardless of pre-culture with CCMs, whereas no significant differences were found in the ATP contents among the treatment groups. In conclusion, the BCB result of oocytes could be regulated by the healthy status and content of surrounding cumulus cells and the meiotic competence of suboptimal BCB- porcine oocytes is improved by pre-culture with healthy CCMs.
en-copyright=
kn-copyright=
en-aut-name=FonsekaWanniarachchige Tharindu Lakshitha
en-aut-sei=Fonseka
en-aut-mei=Wanniarachchige Tharindu Lakshitha
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DoSon Quang
en-aut-sei=Do
en-aut-mei=Son Quang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=VanPhong Ngoc
en-aut-sei=Van
en-aut-mei=Phong Ngoc
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NguyenHai Thanh
en-aut-sei=Nguyen
en-aut-mei=Hai Thanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WakaiTakuya
en-aut-sei=Wakai
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FunahashiHiroaki
en-aut-sei=Funahashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Oocytes
kn-keyword=Oocytes
en-keyword=Meiotic competence
kn-keyword=Meiotic competence
en-keyword=Brilliant cresyl blue
kn-keyword=Brilliant cresyl blue
en-keyword=Cumulus cells
kn-keyword=Cumulus cells
END
start-ver=1.4
cd-journal=joma
no-vol=45
cd-vols=
no-issue=1
article-no=
start-page=11
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230323
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Mutation and apoptosis are well-coordinated for protecting against DNA damage-inducing toxicity in Drosophila
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Apoptotic cell death is an important survival system for multicellular organisms because it removes damaged cells. Mutation is also a survival method for dealing with damaged cells in multicellular and also unicellular organisms, when DNA lesions are not removed. However, to the best of our knowledge, no reports have comprehensively explored the direct relationship between apoptosis and somatic cell mutations induced by various mutagenic factors.
Results Mutation was examined by the wing-spot test, which is used to detect somatic cell mutations, including chromosomal recombination. Apoptosis was observed in the wing discs by acridine orange staining in situ. After treatment with chemical mutagens, ultraviolet light (UV), and X-ray, both the apoptotic frequency and mutagenic activity increased in a dose-dependent manner at non-toxic doses. When we used DNA repair-deficient Drosophila strains, the correlation coefficient of the relationship between apoptosis and mutagenicity, differed from that of the wild-type. To explore how apoptosis affects the behavior of mutated cells, we determined the spot size, i.e., the number of mutated cells in a spot. In parallel with an increase in apoptosis, the spot size increased with MNU or X-ray treatment dose-dependently; however, this increase was not seen with UV irradiation. In addition, BrdU incorporation, an indicator of cell proliferation, in the wing discs was suppressed at 6 h, with peak at 12 h post-treatment with X-ray, and that it started to increase again at 24 h; however, this was not seen with UV irradiation.
Conclusion Damage-induced apoptosis and mutation might be coordinated with each other, and the frequency of apoptosis and mutagenicity are balanced depending on the type of DNA damage. From the data of the spot size and BrdU incorporation, it is possible that mutated cells replace apoptotic cells due to their high frequency of cell division, resulting in enlargement of the spot size after MNU or X-ray treatment. We consider that the induction of mutation, apoptosis, and/or cell growth varies in multi-cellular organisms depending on the type of the mutagens, and that their balance and coordination have an important function to counter DNA damage for the survival of the organism.
en-copyright=
kn-copyright=
en-aut-name=Toyoshima-SasataniMegumi
en-aut-sei=Toyoshima-Sasatani
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ImuraFumika
en-aut-sei=Imura
en-aut-mei=Fumika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamatakeYuko
en-aut-sei=Hamatake
en-aut-mei=Yuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FukunagaAkihiro
en-aut-sei=Fukunaga
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NegishiTomoe
en-aut-sei=Negishi
en-aut-mei=Tomoe
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=School of Nursing, Osaka City University
kn-affil=
affil-num=5
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Drosophila
kn-keyword=Drosophila
en-keyword=Apoptosis
kn-keyword=Apoptosis
en-keyword=Mutation
kn-keyword=Mutation
en-keyword=Larval wing disc
kn-keyword=Larval wing disc
en-keyword=X-ray
kn-keyword=X-ray
en-keyword=Ultraviolet
kn-keyword=Ultraviolet
en-keyword=Alkylating agents
kn-keyword=Alkylating agents
en-keyword=Tobacco smoke
kn-keyword=Tobacco smoke
en-keyword=Acridine orange
kn-keyword=Acridine orange
en-keyword=BrdU
kn-keyword=BrdU
END
start-ver=1.4
cd-journal=joma
no-vol=71
cd-vols=
no-issue=2
article-no=
start-page=215
end-page=224
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241214
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effects of aged microplastics on paddy soil properties and greenhouse gas emissions under laboratory aerobic conditions
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Microplastics (MPs) formed after changes in chemical or physical properties may alter soil properties, which in turn may affect microbial activities and greenhouse gas (GHG) emissions. However, few studies have focused on the effects of aged MPs changes on soil properties and greenhouse gas emissions. Therefore, we aimed to investigate the impact of MPs with different aging times on soil GHG emissions and dissolved organic carbon (DOC). Low-density polyethylene (PE) and polylactic acid (PLA) were treated with ultraviolet (UV) irradiation for 0?2?weeks. Soil was incubated with PE or PLA 1% (w/w) concentration at 60% water holding capacity (WHC) for 35?days. Emissions of nitrous oxide (N2O) and carbon dioxide (CO2) were measured on days 0, 1, 3, 5, 7, 14, 21, 28, and 35. Results showed that CO2 and N2O emissions were higher (p?0.05) in MPs-amended treatments than those without MPs and increased with MPs age. The addition of virgin PE did not affect soil DOC content, whereas aged PE and all PLA additions significantly increased soil DOC content on day 0, probably because UV irradiation caused the degradation of MPs to smaller molecules. In addition, aged MPs addition altered DOC spectral characteristics on day 7, possibly because aged PE and PLA promote microbial decomposition of organic matter by altering soil properties. Changes in soil DOC content and specific ultraviolet absorbance (SUVA) by aged PE and PLA probably promoted the emissions of CO2 and N2O compared to virgin MPs or soil only. Our study revealed that aged PE and PLA promote GHG emissions from soil by changing DOC contents and qualities.
en-copyright=
kn-copyright=
en-aut-name=ZhangTian
en-aut-sei=Zhang
en-aut-mei=Tian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SomuraHiroaki
en-aut-sei=Somura
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AkaoSatoshi
en-aut-sei=Akao
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakaharaNozomi
en-aut-sei=Nakahara
en-aut-mei=Nozomi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=PereraGamamada Liyanage Erandi Priyangika
en-aut-sei=Perera
en-aut-mei=Gamamada Liyanage Erandi Priyangika
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakanoChiyu
en-aut-sei=Nakano
en-aut-mei=Chiyu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MaedaMorihiro
en-aut-sei=Maeda
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Science and Engineering, Doshisha University
kn-affil=
affil-num=4
en-affil=Environmental Management Center, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Aged MPs
kn-keyword=Aged MPs
en-keyword=biodegradable plastics
kn-keyword=biodegradable plastics
en-keyword=microplastics
kn-keyword=microplastics
en-keyword=nitrogen transformation
kn-keyword=nitrogen transformation
en-keyword=organic carbon decomposition
kn-keyword=organic carbon decomposition
END
start-ver=1.4
cd-journal=joma
no-vol=5
cd-vols=
no-issue=
article-no=
start-page=1251
end-page=1273
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Skewing Technology for Permanent Magnet Synchronous Motors: A Comprehensive Review and Recent Trends
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This article gives a comprehensive overview of the current research trends in the skewing technique for permanent magnet synchronous motors (PMSMs). The skewing technique has been widely used in many applications to reduce the cogging torque and torque ripple in PMSMs. There are many ways to implement the skew, and new techniques are continually being developed. First, this article summarizes the types of skew structures and presents a survey of existing techniques. Specific emphasis is placed on what kind of skew structure is selected depending on the PMSM configuration. Second, the optimal value of the skew angle for each structure is comprehensively explained, and the discrepancy between theory and finite element analysis is discussed. The definition of skew angle varies across the literature, and one of the purposes of this article is to organize the definition in an easy-to-understand manner. In addition, this article offers three-dimensional finite element analysis (3D-FEA) results of various PMSMs employing the skew for quantitative comparison. Then, this article discusses the properties of PMSMs using the skew by structure and the latest trends, and finally describes future prospects.
en-copyright=
kn-copyright=
en-aut-name=TsunataRen
en-aut-sei=Tsunata
en-aut-mei=Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakemotoMasatsugu
en-aut-sei=Takemoto
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Additive manufacturing (AM)
kn-keyword=Additive manufacturing (AM)
en-keyword=axial leakage flux
kn-keyword=axial leakage flux
en-keyword=cogging torque
kn-keyword=cogging torque
en-keyword=electrical machine
kn-keyword=electrical machine
en-keyword=finite element analysis (FEA)
kn-keyword=finite element analysis (FEA)
en-keyword=induction motor (IM)
kn-keyword=induction motor (IM)
en-keyword=interior permanent magnet synchronous motor (IPMSM)
kn-keyword=interior permanent magnet synchronous motor (IPMSM)
en-keyword=noise
kn-keyword=noise
en-keyword=patents
kn-keyword=patents
en-keyword=permanent magnet synchronous motor (PMSM)
kn-keyword=permanent magnet synchronous motor (PMSM)
en-keyword=skew
kn-keyword=skew
en-keyword=surface permanent magnet synchronous motor (SPMSM)
kn-keyword=surface permanent magnet synchronous motor (SPMSM)
en-keyword=torque ripple
kn-keyword=torque ripple
en-keyword=total harmonic distortion (THD)
kn-keyword=total harmonic distortion (THD)
en-keyword=traction motor
kn-keyword=traction motor
en-keyword=transportation
kn-keyword=transportation
en-keyword=vibration
kn-keyword=vibration
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=1920〜30年代の佐藤春夫の文学活動における中国観―中国文学理解の影響の研究―
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=QULan
en-aut-sei=QU
en-aut-mei=Lan
kn-aut-name=曲嵐
kn-aut-sei=曲
kn-aut-mei=嵐
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Humanities and Social Sciences, Okayama University
kn-affil=岡山大学大学院社会文化科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=免疫不全/調節異常に起因する古典的ホジキンリンパ腫における9p24.1のコピー数解析
kn-title=Copy Number Analysis of 9p24.1 in Classic Hodgkin Lymphoma Arising in Immune Deficiency/Dysregulation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OHSAWAKumiko
en-aut-sei=OHSAWA
en-aut-mei=Kumiko
kn-aut-name=大澤久美子
kn-aut-sei=大澤
kn-aut-mei=久美子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Health Sciences, Okayama University
kn-affil=岡山大学大学院保健学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腫瘍ホーミングペプチド修飾磁性ナノ粒子の磁気温熱療法および腫瘍検出への応用
kn-title=Application of novel tumor-homing peptide-modified magnetic nanoparticles for magnetic hyperthermia and tumor cell detection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ZHOUSHENGLI
en-aut-sei=ZHOU
en-aut-mei=SHENGLI
kn-aut-name=周聖力
kn-aut-sei=周
kn-aut-mei=聖力
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=卵丘細胞の生存率と前培養が低品質ブタ卵母細胞におけるグルコース-6-リン酸デヒドロゲナーゼ (G6PDH) 活性、減数分裂の進行および発生能力に及ぼす影響
kn-title=The impact of cumulus cell viability and pre-culture on glucose-6-phosphate dehydrogenase (G6PDH) activity, meiotic progression, and developmental competence in suboptimal porcine oocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WANNIARACHCHIGE THARINDU LAKSHITHA FONSEKA
en-aut-sei=WANNIARACHCHIGE THARINDU LAKSHITHA FONSEKA
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=NERICA陸稲における乾燥土壌下のバイオマス生産と収量維持に寄与する水利用特性の解明
kn-title=Water use properties contributing to the maintenance of plant biomass and grain production in NERICA upland rice subjected to dry soils
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NGUYEN THI THANH HIEN
en-aut-sei=NGUYEN THI THANH HIEN
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=植物細胞における亜硫酸の毒性機構に関する研究−亜硫酸毒性への細胞質酸性化と細胞酸化の関与の評価
kn-title=A study on toxic mechanisms of SO2 in plant cells - Evaluation of the involvement of cytosolic acidification and cellular oxidation in SO2 toxicity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MAHDI MOZHGANI
en-aut-sei=MAHDI MOZHGANI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=イネにおけるDPD1ヌクレアーゼを介したオルガネラDNA分解の機能に関する研究
kn-title=Studies on the role of organelle DNA degradation mediated by DPD1 nuclease in rice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MD. FARIDUL ISLAM
en-aut-sei=MD. FARIDUL ISLAM
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=瀬戸内海沿岸島嶼における魚類の多様性に及ぼす環境要因の影響に関する研究
kn-title=THE EFFECTS OF ENVIRONMENTAL FACTORS ON FISH DIVERSITY IN A COASTAL ISLAND OF SETO INLAND SEA
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NGUYEN HONG NHAT
en-aut-sei=NGUYEN HONG NHAT
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=AIと航空機による河川インフラと河川環境のモニタリング
kn-title=Monitoring of Riparian Infrastructure and Riverine Environment using AI and Air Vehicles
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=PANShijun
en-aut-sei=PAN
en-aut-mei=Shijun
kn-aut-name=潘是均
kn-aut-sei=潘
kn-aut-mei=是均
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=小児白血病における診断期間の遅れと生存アウトカムに関する単施設後方視的研究
kn-title=Delayed diagnostic interval and survival outcomes in pediatric leukemia: A single-center, retrospective study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=TAMEFUSAKosuke
en-aut-sei=TAMEFUSA
en-aut-mei=Kosuke
kn-aut-name=爲房宏輔
kn-aut-sei=爲房
kn-aut-mei=宏輔
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=LOXL4によるトリプルネガティブ乳がん細胞浸潤亢進のシグナル伝達機構の解明
kn-title=Dissection of the signal transduction machinery responsible for the lysyl oxidase-like 4-mediated increase in invasive motility in triple-negative breast cancer cells: mechanistic insight into the integrin-β1-NF-κB-MMP9 axis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=JIANGFAN
en-aut-sei=JIANG
en-aut-mei=FAN
kn-aut-name=江帆
kn-aut-sei=江
kn-aut-mei=帆
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=癌関連線維芽細胞を標的とした光免疫療法は腫瘍免疫の再構築に寄与する
kn-title=Fibroblast activation protein-targeted near-infrared photoimmunotherapy depletes immunosuppressive cancer-associated fibroblasts and remodels local tumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=AKAIMasaaki
en-aut-sei=AKAI
en-aut-mei=Masaaki
kn-aut-name=赤井正明
kn-aut-sei=赤井
kn-aut-mei=正明
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=p53搭載テロメラーゼ特異的腫瘍溶解アデノウイルスによる膵臓癌における長期抗腫瘍免疫の活性化
kn-title=Long-term activation of anti-tumor immunity in pancreatic cancer by a p53-expressing telomerase-specific oncolytic adenovirus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HASHIMOTOMasashi
en-aut-sei=HASHIMOTO
en-aut-mei=Masashi
kn-aut-name=橋本将志
kn-aut-sei=橋本
kn-aut-mei=将志
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=患者腫瘍移植モデルに対するヒト化抗Fibroblast Atcivation Protein抗体を用い癌関連線維芽細胞を標的とした光免疫療法
kn-title=Near-infrared Photoimmunotherapy Targeting Cancer-Associated Fibroblasts in Patient-Derived Xenografts Using a Humanized Anti-Fibroblast Activation Protein Antibody
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KOBAYASHITeruki
en-aut-sei=KOBAYASHI
en-aut-mei=Teruki
kn-aut-name=小林照貴
kn-aut-sei=小林
kn-aut-mei=照貴
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=20
cd-vols=
no-issue=3
article-no=
start-page=e20220127
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=2023
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Rapid thawing of frozen bull spermatozoa by transient exposure to 70 °C improves the viability, motility and mitochondrial health
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Up to now, the definitive conclusion of the positive effects of rapid transient thawing at higher temperatures for shorter durations has not been obtained yet and is still under discussion due to some contradictory findings and limited assessment of post-thawed parameters. The purpose of the current study was to evaluate the effectiveness of rapid thawing in water at 70 °C by using various post-thawed parameters of frozen bull spermatozoa. Experiment 1, monitoring the change of temperature inside frozen bull straw thawed in water at different temperatures. Experiment 2, evaluation of various post-thawed characteristics of frozen bull spermatozoa thawed in water at different temperatures by using a computer-assisted sperm analysis, flow cytometry and immunocytochemistry. The time it took for the temperature inside the straw to warm up to 15 °C was nearly twice as faster when the straw was thawed in 70 °C water compared with 39 °C. Although there were differences among bulls, viability, motility, and mitochondrial membrane potential of spermatozoa thawed at 70 °C for 8 seconds and stabilized at 39 °C for 52 seconds were significantly higher than those of controls (thawed at 39 °C for 60 seconds) at 0 and 3 h after thawing. Just after thawing, however, there were no differences in acrosome integrity and distribution of phospholipase C zeta1, whereas mitochondrial reactive oxygen species production was significantly lower in spermatozoa thawed at 70 °C. From these results, we conclude that rapid thawing at 70 °C and then stabilization at 39 °C significantly improves viability, motility and mitochondrial health of bull spermatozoa rather than conventional thawing at 39 °C. The beneficial effect of rapid transient thawing could be due to shorter exposure to temperatures outside the physiological range, consequently maintaining mitochondrial health.
en-copyright=
kn-copyright=
en-aut-name=NguyenHai Thanh
en-aut-sei=Nguyen
en-aut-mei=Hai Thanh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=DoSon Quang
en-aut-sei=Do
en-aut-mei=Son Quang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AthurupanaRukmali
en-aut-sei=Athurupana
en-aut-mei=Rukmali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WakaiTakuya
en-aut-sei=Wakai
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FunahashiHiroaki
en-aut-sei=Funahashi
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=bull semen
kn-keyword=bull semen
en-keyword=cryopreservation process
kn-keyword=cryopreservation process
en-keyword=phospholipase C zeta1 (PLCZ1)
kn-keyword=phospholipase C zeta1 (PLCZ1)
en-keyword=temperature of thawing
kn-keyword=temperature of thawing
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=171824
end-page=171835
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Passability-Based Local Planner Using Growing Neural Gas for an Autonomous Mobile Robot
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=3D spatial perception is one of the most important abilities for autonomous mobile robots. In environments with unknown objects, the ability to perform a local planner, which modifies the global path based on the perception results, is also required as an indispensable capability. In this paper, we propose a method based on Growing Neural Gas with Different Topologies (GNG-DT), which can be applied to unknown data, as a method for 3D spatial perception and local planner in unknown environments. First, we propose a method for extracting travelability perceptions from the features estimated by the topological structure of the GNG-DT. Next, we learn the topological structure of passability information based on the size of the robot from the extracted traversability percepts. Furthermore, we propose a local planner that uses the topological structure of traversability and passability learned from the point cloud currently perceived by the robot. In the experiments, we compared the cases where only traversability was used and where passability information was used in actual environments, and showed that the proposed method can plan a route that determines the area that the robot can actually pass through.
en-copyright=
kn-copyright=
en-aut-name=OzasaKoki
en-aut-sei=Ozasa
en-aut-mei=Koki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TodaYuichiro
en-aut-sei=Toda
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakamuraYoshimasa
en-aut-sei=Nakamura
en-aut-mei=Yoshimasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasudaToshiki
en-aut-sei=Masuda
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KonishiHirohide
en-aut-sei=Konishi
en-aut-mei=Hirohide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsunoTakayuki
en-aut-sei=Matsuno
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Tokyo Metropolitan Industrial Technology Research Institute
kn-affil=
affil-num=4
en-affil=Tokyo Metropolitan Industrial Technology Research Institute
kn-affil=
affil-num=5
en-affil=NSK Ltd.
kn-affil=
affil-num=6
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Autonomous mobile robot
kn-keyword=Autonomous mobile robot
en-keyword=growing neural gas
kn-keyword=growing neural gas
en-keyword=local planner
kn-keyword=local planner
END
start-ver=1.4
cd-journal=joma
no-vol=42
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=11
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20241021
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Tectal glioma: clinical, radiological, and pathological features, and the importance of molecular analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Tectal glioma (TG) is a rare lower grade glioma (LrGG) that occurs in the tectum, mainly affecting children. TG shares pathological similarities with pilocytic astrocytoma (PA), but recent genetic analyses have revealed distinct features, such as alterations in KRAS and BRAF. We conducted a retrospective review of cases clinically diagnosed as TG and treated at our institute between January 2005 and March 2023. Six cases were identified and the median age was 30.5 years. Four patients underwent biopsy and two patients underwent tumor resection. Histological diagnoses included three cases of PA, one case of astrocytoma, and two cases of high-grade glioma. The integrated diagnosis, according to the fifth edition of the World Health Organization Classification of Tumours of the central nervous system, included two cases of PA and one case each of diffuse high-grade glioma; diffuse midline glioma H3 K27-altered; glioblastoma; and circumscribed astrocytic glioma. Among the three patients who underwent molecular evaluation, two had KRAS mutation and one had H3-3A K27M mutation. Our results demonstrate the diverse histological and molecular characteristics of TG distinct from other LrGGs. Given the heterogeneous pathological background and the risk of pathological progression in TG, we emphasize the importance of comprehensive diagnosis, including molecular evaluation.
en-copyright=
kn-copyright=
en-aut-name=ImotoRyoji
en-aut-sei=Imoto
en-aut-mei=Ryoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiKentaro
en-aut-sei=Fujii
en-aut-mei=Kentaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshidaJoji
en-aut-sei=Ishida
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HiranoShuichiro
en-aut-sei=Hirano
en-aut-mei=Shuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KemmotsuNaoya
en-aut-sei=Kemmotsu
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SurugaYasuki
en-aut-sei=Suruga
en-aut-mei=Yasuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MizutaRyo
en-aut-sei=Mizuta
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KegoyaYasuhito
en-aut-sei=Kegoya
en-aut-mei=Yasuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=InoueYohei
en-aut-sei=Inoue
en-aut-mei=Yohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=UmedaTsuyoshi
en-aut-sei=Umeda
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=HokamaMadoka
en-aut-sei=Hokama
en-aut-mei=Madoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=WashioKana
en-aut-sei=Washio
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=YanaiHiroyuki
en-aut-sei=Yanai
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=TanakaShota
en-aut-sei=Tanaka
en-aut-mei=Shota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SatomiKaishi
en-aut-sei=Satomi
en-aut-mei=Kaishi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=IchimuraKoichi
en-aut-sei=Ichimura
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=DateIsao
en-aut-sei=Date
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=15
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Pathology, Kyorin University Faculty of Medicine
kn-affil=
affil-num=17
en-affil=Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine
kn-affil=
affil-num=18
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Tectal glioma
kn-keyword=Tectal glioma
en-keyword=Lower grade glioma
kn-keyword=Lower grade glioma
en-keyword=KRAS
kn-keyword=KRAS
en-keyword=H3 K27M
kn-keyword=H3 K27M
en-keyword=Molecular analysis
kn-keyword=Molecular analysis
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=
article-no=
start-page=1403922
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240820
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lentil adaptation to drought stress: response, tolerance, and breeding approaches
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Lentil (Lens culinaris Medik.) is a cool season legume crop that plays vital roles in food and nutritional security, mostly in the least developed countries. Lentil is often cultivated in dry and semi-dry regions, where the primary abiotic factor is drought, which negatively impacts lentil growth and development, resulting in a reduction of yield. To withstand drought-induced multiple negative effects, lentil plants evolved a variety of adaptation strategies that can be classified within three broad categories of drought tolerance mechanisms (i.e., escape, avoidance, and tolerance). Lentil adapts to drought by the modulation of various traits in the root system, leaf architecture, canopy structure, branching, anatomical features, and flowering process. Furthermore, the activation of certain defensive biochemical pathways as well as the regulation of gene functions contributes to lentil drought tolerance. Plant breeders typically employ conventional and mutational breeding approaches to develop lentil varieties that can withstand drought effects; however, little progress has been made in developing drought-tolerant lentil varieties using genomics-assisted technologies. This review highlights the current understanding of morpho-physiological, biochemical, and molecular mechanisms of lentil adaptation to drought stress. We also discuss the potential application of omics-assisted breeding approaches to develop lentil varieties with superior drought tolerance traits.
en-copyright=
kn-copyright=
en-aut-name=NoorMd. Mahmud Al
en-aut-sei=Noor
en-aut-mei=Md. Mahmud Al
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Tahjib-Ul-ArifMd.
en-aut-sei=Tahjib-Ul-Arif
en-aut-mei=Md.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AlimS. M. Abdul
en-aut-sei=Alim
en-aut-mei=S. M. Abdul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IslamMd. Mohimenul
en-aut-sei=Islam
en-aut-mei=Md. Mohimenul
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HasanMd. Toufiq
en-aut-sei=Hasan
en-aut-mei=Md. Toufiq
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=BabarMd. Ali
en-aut-sei=Babar
en-aut-mei=Md. Ali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HossainMohammad Anwar
en-aut-sei=Hossain
en-aut-mei=Mohammad Anwar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=JewelZilhas Ahmed
en-aut-sei=Jewel
en-aut-mei=Zilhas Ahmed
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MurataYoshiyuki
en-aut-sei=Murata
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MostofaMohammad Golam
en-aut-sei=Mostofa
en-aut-mei=Mohammad Golam
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture
kn-affil=
affil-num=2
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture
kn-affil=
affil-num=4
en-affil=Horticulture Division, Bangladesh Institute of Nuclear Agriculture
kn-affil=
affil-num=5
en-affil=Department of Biotechnology, Bangladesh Agricultural University
kn-affil=
affil-num=6
en-affil=Agronomy Departments, University of Florida
kn-affil=
affil-num=7
en-affil=Department of Genetics and Plant Breeding, Bangladesh Agricultural University
kn-affil=
affil-num=8
en-affil=Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University
kn-affil=
affil-num=9
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Biochemistry and Molecular Biology, Michigan State University
kn-affil=
en-keyword=abiotic stress
kn-keyword=abiotic stress
en-keyword=morphology
kn-keyword=morphology
en-keyword=pulse crop
kn-keyword=pulse crop
en-keyword=plant growth
kn-keyword=plant growth
en-keyword=omics
kn-keyword=omics
en-keyword=water-deficit
kn-keyword=water-deficit
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=111371
end-page=111385
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240812
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Adaptive Resonance Theory-Based Global Topological Map Building for an Autonomous Mobile Robot
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=3D space perception is one of the key technologies for autonomous mobile robots that perform tasks in unknown environments. Among these, building global topological maps for autonomous mobile robots is a challenging task. In this study, we propose a method for learning topological structures from unknown data distributions based on competitive learning, a type of unsupervised learning. For this purpose, adaptive resonance theory-based Topological Clustering (ATC), which can avoid catastrophic forgetting of previously measured point clouds, is applied as a learning method. Furthermore, by extending ATC with Different Topologies (ATC-DT) with multiple topological structures for extracting the traversable information of terrain environments, a path planning method is realized that can reach target points set in an unknown environment. Path planning experiments in unknown environments show that, compared to other methods, ATC-DT can build a global topology map with high accuracy and stability using only measured 3D point cloud and robot position information.
en-copyright=
kn-copyright=
en-aut-name=TodaYuichiro
en-aut-sei=Toda
en-aut-mei=Yuichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MasuyamaNaoki
en-aut-sei=Masuyama
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Informatics, Osaka Metropolitan University
kn-affil=
en-keyword=Adaptive resonance theory
kn-keyword=Adaptive resonance theory
en-keyword=autonomous mobile robot
kn-keyword=autonomous mobile robot
en-keyword=topological map
kn-keyword=topological map
END
start-ver=1.4
cd-journal=joma
no-vol=115
cd-vols=
no-issue=10
article-no=
start-page=3231
end-page=3247
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240809
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Overcoming immunotherapy resistance and inducing abscopal effects with boron neutron immunotherapy (B-NIT)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors (ICIs) are effective against many advanced malignancies. However, many patients are nonresponders to immunotherapy, and overcoming this resistance to treatment is important. Boron neutron capture therapy (BNCT) is a local chemoradiation therapy with the combination of boron drugs that accumulate selectively in cancer and the neutron irradiation of the cancer site. Here, we report the first boron neutron immunotherapy (B-NIT), combining BNCT and ICI immunotherapy, which was performed on a radioresistant and immunotherapy-resistant advanced-stage B16F10 melanoma mouse model. The BNCT group showed localized tumor suppression, but the anti-PD-1 antibody immunotherapy group did not show tumor suppression. Only the B-NIT group showed strong tumor growth inhibition at both BNCT-treated and shielded distant sites. Intratumoral CD8+ T-cell infiltration and serum high mobility group box 1 (HMGB1) levels were higher in the B-NIT group. Analysis of CD8(+) T cells in tumor-infiltrating lymphocytes (TILs) showed that CD62L- CD44(+) effector memory T cells and CD69(+) early-activated T cells were predominantly increased in the B-NIT group. Administration of CD8-depleting mAb to the B-NIT group completely suppressed the augmented therapeutic effects. This indicated that B-NIT has a potent immune-induced abscopal effect, directly destroying tumors with BNCT, inducing antigen-spreading effects, and protecting normal tissue. B-NIT, immunotherapy combined with BNCT, is the first treatment to overcome immunotherapy resistance in malignant melanoma. In the future, as its therapeutic efficacy is demonstrated not only in melanoma but also in other immunotherapy-resistant malignancies, B-NIT can become a new treatment candidate for advanced-stage cancers.
en-copyright=
kn-copyright=
en-aut-name=FujimotoTakuya
en-aut-sei=Fujimoto
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamasakiOsamu
en-aut-sei=Yamasaki
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanehiraNoriyuki
en-aut-sei=Kanehira
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsushitaHirokazu
en-aut-sei=Matsushita
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SakuraiYoshinori
en-aut-sei=Sakurai
en-aut-mei=Yoshinori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KenmotsuNaoya
en-aut-sei=Kenmotsu
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MizutaRyo
en-aut-sei=Mizuta
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KondoNatsuko
en-aut-sei=Kondo
en-aut-mei=Natsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TakataTakushi
en-aut-sei=Takata
en-aut-mei=Takushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KitamatsuMizuki
en-aut-sei=Kitamatsu
en-aut-mei=Mizuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=IgawaKazuyo
en-aut-sei=Igawa
en-aut-mei=Kazuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OtaniYoshihiro
en-aut-sei=Otani
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ShirakawaMakoto
en-aut-sei=Shirakawa
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TeraishiFuminori
en-aut-sei=Teraishi
en-aut-mei=Fuminori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SuzukiMinoru
en-aut-sei=Suzuki
en-aut-mei=Minoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MichiueHiroyuki
en-aut-sei=Michiue
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute
kn-affil=
affil-num=5
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=6
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=9
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=10
en-affil=Faculty of Science and Engineering, Kindai University
kn-affil=
affil-num=11
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=12
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=13
en-affil=Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=19
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=20
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
en-keyword=abscopal effect
kn-keyword=abscopal effect
en-keyword=advanced melanoma
kn-keyword=advanced melanoma
en-keyword=boron neutron capture therapy
kn-keyword=boron neutron capture therapy
en-keyword=boron-neutron immunotherapy
kn-keyword=boron-neutron immunotherapy
en-keyword=immune combination therapy
kn-keyword=immune combination therapy
END
start-ver=1.4
cd-journal=joma
no-vol=88
cd-vols=
no-issue=10
article-no=
start-page=1164
end-page=1171
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240716
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Cytosolic acidification and oxidation are the toxic mechanisms of SO2 in Arabidopsis guard cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=SO2/H2SO3 can damage plants. However, its toxic mechanism has still been controversial. Two models have been proposed, cytosolic acidification model and cellular oxidation model. Here, we assessed the toxic mechanism of H2SO3 in three cell types of Arabidopsis thaliana, mesophyll cells, guard cells (GCs), and petal cells. The sensitivity of GCs of Chloride channel a (CLCa)-knockout mutants to H2SO3 was significantly lower than those of wildtype plants. Expression of other CLC genes in mesophyll cells and petal cells were different from GCs. Treatment with antioxidant, disodium 4,5-dihydroxy-1,3-benzenedisulfonate (tiron), increased the median lethal concentration (LC50) of H2SO3 in GCs indicating the involvement of cellular oxidation, while the effect was negligible in mesophyll cells and petal cells. These results indicate that there are two toxic mechanisms of SO2 to Arabidopsis cells: cytosolic acidification and cellular oxidation, and the toxic mechanism may vary among cell types.
en-copyright=
kn-copyright=
en-aut-name=MozhganiMahdi
en-aut-sei=Mozhgani
en-aut-mei=Mahdi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OoiLia
en-aut-sei=Ooi
en-aut-mei=Lia
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EspagneChristelle
en-aut-sei=Espagne
en-aut-mei=Christelle
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FilleurSophie
en-aut-sei=Filleur
en-aut-mei=Sophie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MoriIzumi C
en-aut-sei=Mori
en-aut-mei=Izumi C
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Universit? Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
kn-affil=
affil-num=4
en-affil=Universit? Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)
kn-affil=
affil-num=5
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=cytosolic acidification
kn-keyword=cytosolic acidification
en-keyword=Arabidopsis
kn-keyword=Arabidopsis
en-keyword=cellular oxidation
kn-keyword=cellular oxidation
en-keyword=chloride channel a
kn-keyword=chloride channel a
en-keyword=sulfur dioxide
kn-keyword=sulfur dioxide
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=14
article-no=
start-page=2700
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240710
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Reference Paper Collection System Using Web Scraping
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Collecting reference papers from the Internet is one of the most important activities for progressing research and writing papers about their results. Unfortunately, the current process using Google Scholar may not be efficient, since a lot of paper files cannot be accessed directly by the user. Even if they are accessible, their effectiveness needs to be checked manually. In this paper, we propose a reference paper collection system using web scraping to automate paper collections from websites. This system can collect or monitor data from the Internet, which is considered as the environment, using Selenium, a popular web scraping software, as the sensor; this examines the similarity against the search target by comparing the keywords using the Bert model. The Bert model is a deep learning model for natural language processing (NLP) that can understand context by analyzing the relationships between words in a sentence bidirectionally. The Python Flask is adopted at the web application server, where Angular is used for data presentations. For the evaluation, we measured the performance, investigated the accuracy, and asked members of our laboratory to use the proposed method and provide their feedback. Their results confirm the method’s effectiveness.
en-copyright=
kn-copyright=
en-aut-name=NaingInzali
en-aut-sei=Naing
en-aut-mei=Inzali
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AungSoe Thandar
en-aut-sei=Aung
en-aut-mei=Soe Thandar
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WaiKhaing Hsu
en-aut-sei=Wai
en-aut-mei=Khaing Hsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Information and Communication Systems, Okayama University
kn-affil=
en-keyword=web scraping
kn-keyword=web scraping
en-keyword=Google Scholar
kn-keyword=Google Scholar
en-keyword=data collection
kn-keyword=data collection
en-keyword=Bert
kn-keyword=Bert
en-keyword=Selenium
kn-keyword=Selenium
en-keyword=flask framework
kn-keyword=flask framework
en-keyword=Angular
kn-keyword=Angular
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=1
article-no=
start-page=5536
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240716
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Controlling 229Th isomeric state population in a VUV transparent crystal
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The radioisotope thorium-229 (Th-229) is renowned for its extraordinarily low-energy, long-lived nuclear first-excited state. This isomeric state can be excited by vacuum ultraviolet (VUV) lasers and Th-229 has been proposed as a reference transition for ultra-precise nuclear clocks. To assess the feasibility and performance of the nuclear clock concept, time-controlled excitation and depopulation of the Th-229 isomer are imperative. Here we report the population of the Th-229 isomeric state through resonant X-ray pumping and detection of the radiative decay in a VUV transparent Th-229-doped CaF2 crystal. The decay half-life is measured to 447(25) s, with a transition wavelength of 148.18(42) nm and a radiative decay fraction consistent with unity. Furthermore, we report a new "X-ray quenching" effect which allows to de-populate the isomer on demand and effectively reduce the half-life. Such controlled quenching can be used to significantly speed up the interrogation cycle in future nuclear clock schemes.
en-copyright=
kn-copyright=
en-aut-name=HirakiTakahiro
en-aut-sei=Hiraki
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkaiKoichi
en-aut-sei=Okai
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=BartokosMichael
en-aut-sei=Bartokos
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=BeeksKjeld
en-aut-sei=Beeks
en-aut-mei=Kjeld
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujimotoHiroyuki
en-aut-sei=Fujimoto
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FukunagaYuta
en-aut-sei=Fukunaga
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HabaHiromitsu
en-aut-sei=Haba
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KasamatsuYoshitaka
en-aut-sei=Kasamatsu
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KitaoShinji
en-aut-sei=Kitao
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=LeitnerAdrian
en-aut-sei=Leitner
en-aut-mei=Adrian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=MasudaTakahiko
en-aut-sei=Masuda
en-aut-mei=Takahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GuanMing
en-aut-sei=Guan
en-aut-mei=Ming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NagasawaNobumoto
en-aut-sei=Nagasawa
en-aut-mei=Nobumoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OgakeRyoichiro
en-aut-sei=Ogake
en-aut-mei=Ryoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=PimonMartin
en-aut-sei=Pimon
en-aut-mei=Martin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=PresslerMartin
en-aut-sei=Pressler
en-aut-mei=Martin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=SasaoNoboru
en-aut-sei=Sasao
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=SchadenFabian
en-aut-sei=Schaden
en-aut-mei=Fabian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=SchummThorsten
en-aut-sei=Schumm
en-aut-mei=Thorsten
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=SetoMakoto
en-aut-sei=Seto
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=ShigekawaYudai
en-aut-sei=Shigekawa
en-aut-mei=Yudai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ShimizuKotaro
en-aut-sei=Shimizu
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=SikorskyTomas
en-aut-sei=Sikorsky
en-aut-mei=Tomas
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=TamasakuKenji
en-aut-sei=Tamasaku
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=TakatoriSayuri
en-aut-sei=Takatori
en-aut-mei=Sayuri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=WatanabeTsukasa
en-aut-sei=Watanabe
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=YamaguchiAtsushi
en-aut-sei=Yamaguchi
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=YodaYoshitaka
en-aut-sei=Yoda
en-aut-mei=Yoshitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=YoshimiAkihiro
en-aut-sei=Yoshimi
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=YoshimuraKoji
en-aut-sei=Yoshimura
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=3
en-affil=Institute for Atomic and Subatomic Physics, TU Wien
kn-affil=
affil-num=4
en-affil=Institute for Atomic and Subatomic Physics, TU Wien
kn-affil=
affil-num=5
en-affil=National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=6
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=7
en-affil=RIKEN
kn-affil=
affil-num=8
en-affil=Graduate School of Science, Osaka University
kn-affil=
affil-num=9
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=10
en-affil=Institute for Atomic and Subatomic Physics, TU Wien
kn-affil=
affil-num=11
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=12
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=13
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=14
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=15
en-affil=Institute for Atomic and Subatomic Physics, TU Wien
kn-affil=
affil-num=16
en-affil=Institute for Atomic and Subatomic Physics, TU Wien
kn-affil=
affil-num=17
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=18
en-affil=Institute for Atomic and Subatomic Physics, TU Wien
kn-affil=
affil-num=19
en-affil=Institute for Atomic and Subatomic Physics, TU Wien
kn-affil=
affil-num=20
en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University
kn-affil=
affil-num=21
en-affil=RIKEN
kn-affil=
affil-num=22
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=23
en-affil=Institute for Atomic and Subatomic Physics, TU Wien
kn-affil=
affil-num=24
en-affil=RIKEN SPring-8 Center
kn-affil=
affil-num=25
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=26
en-affil=National Institute of Advanced Industrial Science and Technology (AIST)
kn-affil=
affil-num=27
en-affil=RIKEN
kn-affil=
affil-num=28
en-affil=Japan Synchrotron Radiation Research Institute
kn-affil=
affil-num=29
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=30
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=137
cd-vols=
no-issue=11
article-no=
start-page=jcs261977
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240612
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Toxicity of the model protein 3×GFP arises from degradation overload, not from aggregate formation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Although protein aggregation can cause cytotoxicity, such aggregates can also form to mitigate cytotoxicity from misfolded proteins, although the nature of these contrasting aggregates remains unclear. We previously found that overproduction (op) of a three green fluorescent protein-linked protein (3×GFP) induces giant aggregates and is detrimental to growth. Here, we investigated the mechanism of growth inhibition by 3×GFP-op using non-aggregative 3×MOX-op as a control in Saccharomyces cerevisiae. The 3×GFP aggregates were induced by misfolding, and 3×GFP-op had higher cytotoxicity than 3×MOX-op because it perturbed the ubiquitin-proteasome system. Static aggregates formed by 3×GFP-op dynamically trapped Hsp70 family proteins (Ssa1 and Ssa2 in yeast), causing the heat-shock response. Systematic analysis of mutants deficient in the protein quality control suggested that 3×GFP-op did not cause a critical Hsp70 depletion and aggregation functioned in the direction of mitigating toxicity. Artificial trapping of essential cell cycle regulators into 3×GFP aggregates caused abnormalities in the cell cycle. In conclusion, the formation of the giant 3×GFP aggregates itself is not cytotoxic, as it does not entrap and deplete essential proteins. Rather, it is productive, inducing the heat-shock response while preventing an overload to the degradation system.
en-copyright=
kn-copyright=
en-aut-name=NambaShotaro
en-aut-sei=Namba
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriyaHisao
en-aut-sei=Moriya
en-aut-mei=Hisao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Graduate School of Environmental, Life, Natural Science and Technology, Okayama University
kn-affil=
en-keyword=Aggregation
kn-keyword=Aggregation
en-keyword=Fluorescent protein
kn-keyword=Fluorescent protein
en-keyword=Hsp70
kn-keyword=Hsp70
en-keyword=Overproduction
kn-keyword=Overproduction
en-keyword=Toxicity
kn-keyword=Toxicity
en-keyword=Yeast
kn-keyword=Yeast
END
start-ver=1.4
cd-journal=joma
no-vol=128
cd-vols=
no-issue=27
article-no=
start-page=6509
end-page=6517
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240701
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Proton (H+) motive force (PMF) serves as the energy source for the flagellar motor rotation, crucial for microbial motility. Here, to control PMF using light, we introduced light-driven inward and outward proton pump rhodopsins, RmXeR and AR3, into Escherichia coli. The motility of E. coli cells expressing RmXeR and AR3 significantly decreased and increased upon illumination, respectively. Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with RmXeR, while it increased to 1170 pN nm with AR3. These alterations in PMF correspond to +146 mV (RmXeR) and ?140 mV (AR3), respectively. Thus, bidirectional optical control of PMF in E. coli was successfully achieved by using proton pump rhodopsins. This system holds a potential for enhancing our understanding of the roles of PMF in various biological functions.
en-copyright=
kn-copyright=
en-aut-name=NakanishiKotaro
en-aut-sei=Nakanishi
en-aut-mei=Kotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KojimaKeiichi
en-aut-sei=Kojima
en-aut-mei=Keiichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SowaYoshiyuki
en-aut-sei=Sowa
en-aut-mei=Yoshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SudoYuki
en-aut-sei=Sudo
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=e63717
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240623
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long‐term survival of an infant with complete tetraploidy: A case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We present the case of a girl with complete tetraploidy who has survived to her present age of 4?years and 1?month. Infants with complete tetraploidy have been described to have a limited lifespan owing to complications. We report her characteristics, medical history, and development.
en-copyright=
kn-copyright=
en-aut-name=OkamuraTomoka
en-aut-sei=Okamura
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YoshimotoJunko
en-aut-sei=Yoshimoto
en-aut-mei=Junko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorimotoDaisaku
en-aut-sei=Morimoto
en-aut-mei=Daisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WanatabeHirokazu
en-aut-sei=Wanatabe
en-aut-mei=Hirokazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WashioYosuke
en-aut-sei=Washio
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=2
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=3
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=4
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
affil-num=5
en-affil=Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science
kn-affil=
en-keyword=abnormalities
kn-keyword=abnormalities
en-keyword=humans
kn-keyword=humans
en-keyword=hydrocephalus
kn-keyword=hydrocephalus
en-keyword=meningomyelocele
kn-keyword=meningomyelocele
en-keyword=polyploidy
kn-keyword=polyploidy
en-keyword=tetralogy of Fallot
kn-keyword=tetralogy of Fallot
END
start-ver=1.4
cd-journal=joma
no-vol=60
cd-vols=
no-issue=3
article-no=
start-page=3934
end-page=3949
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Designing and Prototyping an Axial-Flux Machine Using Ferrite PM and Round Wire for Traction Applications: Comparison With a Radial-Flux Machine Using Nd-Fe-B PM and Rectangular Wire
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This paper proposes a novel axial-flux permanent magnet machine (AFPM) employing ferrite permanent magnets (PMs) and round copper wire. The proposed AFPM adopts a novel rotor structure and uses tooth-tips with a suitable trapezoidal shape. These structures compensate for the low magnetomotive force of the round copper wire and ferrite PMs, achieving high performance at low cost. Additionally, compared with an off-the-shelf radial-flux permanent magnet machine (RFPM) using Nd-sintered PMs and rectangular copper wire, the proposed AFPM achieves the same output power and higher efficiency, despite using ferrite PMs and the round copper wire. Finally, a prototype of the proposed AFPM was manufactured and evaluated experimentally. The prototype achieved a high efficiency of over 95% across a wide operating area while maintaining required maximum torque, suggesting its potential for traction applications.
en-copyright=
kn-copyright=
en-aut-name=TsunataRen
en-aut-sei=Tsunata
en-aut-mei=Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IzumiyaKosuke
en-aut-sei=Izumiya
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakemotoMasatsugu
en-aut-sei=Takemoto
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ImaiJun
en-aut-sei=Imai
en-aut-mei=Jun
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SaitoTatsuya
en-aut-sei=Saito
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=UenoTomoyuki
en-aut-sei=Ueno
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Industrial Innovation Sciences Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Sumitomo Electric Industries Ltd.
kn-affil=
affil-num=6
en-affil=Sumitomo Electric Industries Ltd.
kn-affil=
en-keyword=Axial gap motor
kn-keyword=Axial gap motor
en-keyword=axial-flux machine
kn-keyword=axial-flux machine
en-keyword=carbon fiber rotor
kn-keyword=carbon fiber rotor
en-keyword=carbon fiber-reinforced plastic
kn-keyword=carbon fiber-reinforced plastic
en-keyword=city commuter
kn-keyword=city commuter
en-keyword=ferrite magnet
kn-keyword=ferrite magnet
en-keyword=flat copper wire
kn-keyword=flat copper wire
en-keyword=high circumferential speed
kn-keyword=high circumferential speed
en-keyword=radial-flux machine
kn-keyword=radial-flux machine
END
start-ver=1.4
cd-journal=joma
no-vol=32
cd-vols=
no-issue=11
article-no=
start-page=1419
end-page=1432
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202411
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Inverse genetics tracing the differentiation pathway of human chondrocytes
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Mammalian somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) via the forced expression of Yamanaka reprogramming factors. However, only a limited population of the cells that pass through a particular pathway can metamorphose into iPSCs, while the others do not. This study aimed to clarify the pathways that chondrocytes follow during the reprogramming process.
Design: The fate of human articular chondrocytes under reprogramming was investigated through a time-coursed single-cell transcriptomic analysis, which we termed an inverse genetic approach. The iPS interference technique was also employed to verify that chondrocytes inversely return to pluripotency following the proper differentiation pathway.
Results: We confirmed that human chondrocytes could be converted into cells with an iPSC phenotype. Moreover, it was clarified that a limited population that underwent the silencing of SOX9, a master gene for chondrogenesis, at a specific point during the proper transcriptome transition pathway, could eventually become iPSCs. Interestingly, the other cells, which failed to be reprogrammed, followed a distinct pathway toward cells with a surface zone chondrocyte phenotype. The critical involvement of cellular communication network factors (CCNs) in this process was indicated. The idea that chondrocytes, when reprogrammed into iPSCs, follow the differentiation pathway backward was supported by the successful iPS interference using SOX9.
Conclusions: This inverse genetic strategy may be useful for seeking candidates for the master genes for the differentiation of various somatic cells. The utility of CCNs in articular cartilage regeneration is also supported.
en-copyright=
kn-copyright=
en-aut-name=DoH.T.
en-aut-sei=Do
en-aut-mei=H.T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnoM.
en-aut-sei=Ono
en-aut-mei=M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=WangZ.
en-aut-sei=Wang
en-aut-mei=Z.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KitagawaW.
en-aut-sei=Kitagawa
en-aut-mei=W.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DangA.T.
en-aut-sei=Dang
en-aut-mei=A.T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YonezawaT.
en-aut-sei=Yonezawa
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KubokiT.
en-aut-sei=Kuboki
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OohashiT.
en-aut-sei=Oohashi
en-aut-mei=T.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KubotaS.
en-aut-sei=Kubota
en-aut-mei=S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Cartilage
kn-keyword=Cartilage
en-keyword=Chondrocyte
kn-keyword=Chondrocyte
en-keyword=Differentiation
kn-keyword=Differentiation
en-keyword=Reprogramming
kn-keyword=Reprogramming
en-keyword=CCN family
kn-keyword=CCN family
END
start-ver=1.4
cd-journal=joma
no-vol=51
cd-vols=
no-issue=8
article-no=
start-page=1108
end-page=1112
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240619
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The treatment effect of endovascular therapy for chronic limb‐threatening ischemia with systemic sclerosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Systemic sclerosis (SSc) is a collagen disease with immune abnormalities, vasculopathy, and fibrosis. Ca blockers and prostaglandins are used to treat peripheral circulatory disturbances. Chronic limb-threatening ischemia (CLTI) is a disease characterized by extremity ulcers, necrosis, and pain due to limb ischemia. Since only a few patients present with coexistence of CLTI and SSc, the treatment outcomes of revascularization in these cases are unknown. In this study, we evaluated the clinical characteristics and treatment outcomes of seven patients with CLTI and SSc, and 35 patients with uncomplicated CLTI who were hospitalized from 2012 to 2022. A higher proportion of patients with uncomplicated CLTI had diabetes and male. There were no significant differences in the age at which ischemic ulceration occurred, other comorbidities, or in treatments, including antimicrobial agents, revascularization and amputation, improvement of pain, and the survival time from ulcer onset between the two subgroups. EVT or amputation was performed in six or two of the seven patients with CLTI and SSc, respectively. Among those who underwent EVT, 33% (2/6) achieved epithelialization and 67% (4/6) experienced pain relief. These results suggest that the revascularization in cases with CLTI and SSc should consider factors such as infection and general condition, since revascularization improve the pain of these patients.
en-copyright=
kn-copyright=
en-aut-name=MatsudaYoshihiro
en-aut-sei=Matsuda
en-aut-mei=Yoshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyakeTomoko
en-aut-sei=Miyake
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TodaHironobu
en-aut-sei=Toda
en-aut-mei=Hironobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TachibanaKota
en-aut-sei=Tachibana
en-aut-mei=Kota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NomuraHayato
en-aut-sei=Nomura
en-aut-mei=Hayato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=HiraiYoji
en-aut-sei=Hirai
en-aut-mei=Yoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawakamiYoshio
en-aut-sei=Kawakami
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakodaNaoya
en-aut-sei=Sakoda
en-aut-mei=Naoya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MorizaneShin
en-aut-sei=Morizane
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=chronic limb-threatening ischemia (CLTI)
kn-keyword=chronic limb-threatening ischemia (CLTI)
en-keyword=endovascular therapy (EVT)
kn-keyword=endovascular therapy (EVT)
en-keyword=revascularization
kn-keyword=revascularization
en-keyword=systemic sclerosis (SSc)
kn-keyword=systemic sclerosis (SSc)
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=11
article-no=
start-page=2632
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240603
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=In Vitro Study of Tumor-Homing Peptide-Modified Magnetic Nanoparticles for Magnetic Hyperthermia
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer cells have higher heat sensitivity compared to normal cells; therefore, hyperthermia is a promising approach for cancer therapy because of its ability to selectively kill cancer cells by heating them. However, the specific and rapid heating of tumor tissues remains challenging. This study investigated the potential of magnetic nanoparticles (MNPs) modified with tumor-homing peptides (THPs), specifically PL1 and PL3, for tumor-specific magnetic hyperthermia therapy. The synthesis of THP-modified MNPs involved the attachment of PL1 and PL3 peptides to the surface of the MNPs, which facilitated enhanced tumor cell binding and internalization. Cell specificity studies revealed an increased uptake of PL1- and PL3-MNPs by tumor cells compared to unmodified MNPs, indicating their potential for targeted delivery. In vitro hyperthermia experiments demonstrated the efficacy of PL3-MNPs in inducing tumor cell death when exposed to an alternating magnetic field (AMF). Even without exposure to an AMF, an additional ferroptotic pathway was suggested to be mediated by the nanoparticles. Thus, this study suggests that THP-modified MNPs, particularly PL3-MNPs, hold promise as a targeted approach for tumor-specific magnetic hyperthermia therapy.
en-copyright=
kn-copyright=
en-aut-name=ZhouShengli
en-aut-sei=Zhou
en-aut-mei=Shengli
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsutsumiuchiKaname
en-aut-sei=Tsutsumiuchi
en-aut-mei=Kaname
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ImaiRitsuko
en-aut-sei=Imai
en-aut-mei=Ritsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MikiYukiko
en-aut-sei=Miki
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KondoAnna
en-aut-sei=Kondo
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakagawaHiroshi
en-aut-sei=Nakagawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeKazunori
en-aut-sei=Watanabe
en-aut-mei=Kazunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhtsukiTakashi
en-aut-sei=Ohtsuki
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=3
en-affil=College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=4
en-affil=College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=5
en-affil=College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=6
en-affil=College of Bioscience and Biotechnology, Chubu University
kn-affil=
affil-num=7
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=tumor-homing peptide
kn-keyword=tumor-homing peptide
en-keyword=magnetic hyperthermia
kn-keyword=magnetic hyperthermia
en-keyword=magnetic nanoparticles
kn-keyword=magnetic nanoparticles
en-keyword=ferroptosis
kn-keyword=ferroptosis
en-keyword=tumor-specific delivery
kn-keyword=tumor-specific delivery
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=
article-no=
start-page=1371307
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240528
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dissection of the signal transduction machinery responsible for the lysyl oxidase-like 4-mediated increase in invasive motility in triple-negative breast cancer cells: mechanistic insight into the integrin-β1-NF-κB-MMP9 axis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Triple-negative breast cancer (TNBC) cells are a highly formidable cancer to treat. Nonetheless, by continued investigation into the molecular biology underlying the complex regulation of TNBC cell activity, vulnerabilities can be exposed as potential therapeutic targets at the molecular level. We previously revealed that lysyl oxidase-like 4 (LOXL4) promotes the invasiveness of TNBC cells via cell surface annexin A2 as a novel binding substrate of LOXL4, which promotes the abundant localization of integrin-beta 1 at the cancer plasma membrane. However, it has yet to be uncovered how the LOXL4-mediated abundance of integrin-beta 1 hastens the invasive outgrowth of TNBC cells at the molecular level.
Methods LOXL4-overexpressing stable clones were established from MDA-MB-231 cells and subjected to molecular analyses, real-time qPCR and zymography to clarify their invasiveness, signal transduction, and matrix metalloprotease (MMP) activity, respectively.
Results Our results show that LOXL4 potently promotes the induction of matrix metalloprotease 9 (MMP9) via activation of nuclear factor-kappa B (NF-kappa B). Our molecular analysis revealed that TNF receptor-associated factor 4 (TRAF4) and TGF-beta activated kinase 1 (TAK1) were required for the activation of NF-kappa B through I kappa beta kinase kinase (IKK alpha/beta) phosphorylation.
Conclusion Our results demonstrate that the newly identified LOXL4-mediated axis, integrin-beta 1-TRAF4-TAK1-IKK alpha/beta-I kappa beta alpha-NF-kappa B-MMP9, is crucial for TNBC cell invasiveness.
en-copyright=
kn-copyright=
en-aut-name=JiangFan
en-aut-sei=Jiang
en-aut-mei=Fan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ChenYouyi
en-aut-sei=Chen
en-aut-mei=Youyi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TomonobuNahoko
en-aut-sei=Tomonobu
en-aut-mei=Nahoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KinoshitaRie
en-aut-sei=Kinoshita
en-aut-mei=Rie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KomalasariNi Luh Gede Yoni
en-aut-sei=Komalasari
en-aut-mei=Ni Luh Gede Yoni
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=Kasano-CamonesCarlos Ichiro
en-aut-sei=Kasano-Camones
en-aut-mei=Carlos Ichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NinomiyaKazumi
en-aut-sei=Ninomiya
en-aut-mei=Kazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MurataHitoshi
en-aut-sei=Murata
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YamamotoKen-Ichi
en-aut-sei=Yamamoto
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=GoharaYuma
en-aut-sei=Gohara
en-aut-mei=Yuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OchiToshiki
en-aut-sei=Ochi
en-aut-mei=Toshiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=RumaI. Made Winarsa
en-aut-sei=Ruma
en-aut-mei=I. Made Winarsa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=SumardikaI. Wayan
en-aut-sei=Sumardika
en-aut-mei=I. Wayan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=ZhouJin
en-aut-sei=Zhou
en-aut-mei=Jin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HonjoTomoko
en-aut-sei=Honjo
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=SakaguchiYoshihiko
en-aut-sei=Sakaguchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=YamauchiAkira
en-aut-sei=Yamauchi
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=KuribayashiFutoshi
en-aut-sei=Kuribayashi
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=FutamiJunichiro
en-aut-sei=Futami
en-aut-mei=Junichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=KondoEisaku
en-aut-sei=Kondo
en-aut-mei=Eisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=InoueYusuke
en-aut-sei=Inoue
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=SakaguchiMasakiyo
en-aut-sei=Sakaguchi
en-aut-mei=Masakiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
affil-num=1
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=6
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=7
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=8
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=13
en-affil=Faculty of Medicine, Udayana University
kn-affil=
affil-num=14
en-affil=Medical Oncology Department of Gastrointestinal Tumors, Liaoning Cancer Hospital & Institute, Cancer Hospital of the Dalian University of Technology
kn-affil=
affil-num=15
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Microbiology, Tokushima Bunri University
kn-affil=
affil-num=17
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=18
en-affil=Department of Biochemistry, Kawasaki Medical School
kn-affil=
affil-num=19
en-affil=Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=20
en-affil=Division of Tumor Pathology, Near InfraRed Photo-Immuno-Therapy Research Institute, Kansai Medical University
kn-affil=
affil-num=21
en-affil=Faculty of Science and Technology, Division of Molecular Science, Gunma University
kn-affil=
affil-num=22
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=23
en-affil=Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=invasion
kn-keyword=invasion
en-keyword=lysyl oxidase
kn-keyword=lysyl oxidase
en-keyword=NF-κB
kn-keyword=NF-κB
en-keyword=MMP9
kn-keyword=MMP9
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=291
end-page=294
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A Case of Gallbladder Metastasis of Malignant Melanoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=In the clinical course of malignant melanoma, which can metastasize to multiple organs, gallbladder metastases are rarely detected. A 69-year-old man who underwent resection of a primary malignant melanoma was subsequently treated with nivolumab for lung metastases and achieved complete response. Seven years after surgery, multiple nodules were found in the gallbladder, and he underwent laparoscopic cholecystectomy. The postoperative diagnosis was metastases of malignant melanoma. He has been recurrence-free 8 months after surgery. If radical resection is possible, such surgery should be performed for gallbladder metastases found in patients with other controlled lesions of malignant melanoma.
en-copyright=
kn-copyright=
en-aut-name=MinagiHitoshi
en-aut-sei=Minagi
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=AokiHideki
en-aut-sei=Aoki
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=DoitaSusumu
en-aut-sei=Doita
en-aut-mei=Susumu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MiyakeEiki
en-aut-sei=Miyake
en-aut-mei=Eiki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OgawaToshihiro
en-aut-sei=Ogawa
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TaniguchiFumitaka
en-aut-sei=Taniguchi
en-aut-mei=Fumitaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeMegumi
en-aut-sei=Watanabe
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ArataTakashi
en-aut-sei=Arata
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KatsudaKoh
en-aut-sei=Katsuda
en-aut-mei=Koh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakayaKohji
en-aut-sei=Tanakaya
en-aut-mei=Kohji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center
kn-affil=
affil-num=2
en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center
kn-affil=
affil-num=3
en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center
kn-affil=
affil-num=4
en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center
kn-affil=
affil-num=5
en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center
kn-affil=
affil-num=6
en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center
kn-affil=
affil-num=7
en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center
kn-affil=
affil-num=8
en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center
kn-affil=
affil-num=9
en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center
kn-affil=
affil-num=10
en-affil=Department of Surgery, National Hospital Organization, Iwakuni Clinical Center
kn-affil=
en-keyword=malignant melanoma
kn-keyword=malignant melanoma
en-keyword=gallbladder metastasis
kn-keyword=gallbladder metastasis
en-keyword=laparoscopic cholecystectomy
kn-keyword=laparoscopic cholecystectomy
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=3
article-no=
start-page=271
end-page=279
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of Humidified High-Flow Nasal Cannula Oxygen Therapy with a Pulmonary Infection Control Window as a Ventilation Switching Indication in Combination with Atomizing Inhalation of Terbutaline on the Lung Function of Patients with Acute Exacerbation of COPD
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We investigated how humidified high-flow nasal cannula oxygen therapy (HFNC) with a pulmonary infection control (PIC) window as a ventilation switching indication in combination with atomizing inhalation of terbutaline affects the lung function of patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). We examined 140 hospitalized AECOPD patients randomized to control and observation groups. Conventional supportive therapy and invasive mechanical ventilation with tracheal intubation were conducted in both groups, with a PIC window as the indication for ventilation switching. Noninvasive positive pressure ventilation (NIPPV) plus atomizing inhalation of terbutaline was used in the control group. In the observation group, HFNC combined with atomizing inhalation of terbutaline was used. Compared to the control group, after 48-hr treatment and treatment completion, the observation group had significantly increased levels of lung function indicators (maximal voluntary ventilation [MVV] plus forced vital capacity [FVC], p<0.05) and oxygen metabolism indicators (arterial oxygen partial pressure [PaO2], arterial oxygen content [CaO2], and oxygenation index, p<0.05). The comparison of the groups revealed that the levels of airway remodeling indicators (matrix metalloproteinase-2 [MMP-2], tissue inhibitor of metalloproteinase 2 [TIMP-2] plus MMP-9) and inflammatory indicators (interferon gamma [IFN-γ] together with interleukin-17 [IL-17], IL-10 and IL-4) were significantly lower after 48 h of treatment as well as after treatment completion (both p<0.05). These results demonstrate that HFNC with a PIC window as the indication for ventilation switching combined with atomizing inhalation of terbutaline can relieve the disorder of oxygen metabolism and correct airway hyper-reactivity.
en-copyright=
kn-copyright=
en-aut-name=YeMengjiao
en-aut-sei=Ye
en-aut-mei=Mengjiao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ZhangRenwei
en-aut-sei=Zhang
en-aut-mei=Renwei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine
kn-affil=
affil-num=2
en-affil=Department of Respiratory and Critical Care Medicine, Tiantai Hospital of Traditional Chinese Medicine
kn-affil=
en-keyword=chronic obstructive pulmonary disease
kn-keyword=chronic obstructive pulmonary disease
en-keyword=inhalation
kn-keyword=inhalation
en-keyword=oxygen therapy
kn-keyword=oxygen therapy
en-keyword=pulmonary function
kn-keyword=pulmonary function
en-keyword=ventilation
kn-keyword=ventilation
END
start-ver=1.4
cd-journal=joma
no-vol=22
cd-vols=
no-issue=28
article-no=
start-page=5739
end-page=5747
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=2024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Total synthesis and structure?antifouling activity relationship of scabrolide F
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=An efficient synthetic strategy for scabrolide F (7), a norcembranolide diterpene that was isolated from the Taiwanese soft coral Sinularia scabra, has only recently been reported by our group. Herein, we report details of the first total synthesis of 7. The tetrahydrofuran domain of 7 was stereoselectively constructed via the 5-endo-tet cyclization of a hydroxy vinyl epoxide. The reaction of alkyl iodide 30 with dithiane 38, followed by the introduction of an alkene moiety, afforded allylation precursor 41. The coupling of alkyl iodide 42 and allylic stannane 43 was examined as a model experiment of allylation. Because the desired allylated product 44 was not obtained, an alternative synthetic route toward 7 was investigated instead. In the second synthetic approach, fragment?coupling between alkyl iodide 56 and aldehyde 58, macrolactonization, and transannular ring-closing metathesis were used as the key steps to achieve the first total synthesis of 7. We hope that this synthetic strategy provides access to the total synthesis of other macrocyclic norcembranolides. We also evaluated the antifouling activity and toxicity of 7 and its synthetic intermediates toward the cypris larvae of the barnacle Amphibalanus amphitrite. This study is the first to report the antifouling activity of norcembranolides as well as the biological activity of 7.
en-copyright=
kn-copyright=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugitaniYuki
en-aut-sei=Sugitani
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MorishitaRyohei
en-aut-sei=Morishita
en-aut-mei=Ryohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YorisueTakefumi
en-aut-sei=Yorisue
en-aut-mei=Takefumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Institute of Natural and Environmental Sciences, University of Hyogo
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=391
cd-vols=
no-issue=2
article-no=
start-page=249
end-page=267
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221122
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The medaka mutant deficient in eyes shut homolog exhibits opsin transport defects and enhanced autophagy in retinal photoreceptors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Eyes shut homolog (EYS) encodes a proteoglycan and the human mutation causes retinitis pigmentosa type 25 (RP25) with progressive retinal degeneration. RP25 most frequently affects autosomal recessive RP patients with many ethnic backgrounds. Although studies using RP models have facilitated the development of therapeutic medications, Eys has been lost in rodent model animals. Here we examined the roles for Eys in the maintenance of photoreceptor structure and function by generating eys-null medaka fish using the CRISPR-Cas9 system. Medaka EYS protein was present near the connecting cilium of wild-type photoreceptors, while it was absent from the eys?/? retina. The mutant larvae exhibited a reduced visual motor response compared with wild-type. In contrast to reported eys-deficient zebrafish at the similar stage, no retinal cell death was detected in the 8-month post-hatching (8-mph) medaka eys mutant. Immunohistochemistry showed a significant reduction in the length of cone outer segments (OSs), retention of OS proteins in the inner segments of photoreceptors, and abnormal filamentous actin network at the base of cone OSs in the mutant retina by 8 mph. Electron microscopy revealed aberrant structure of calyceal processes, numerous vesiculation and lamellar interruptions, and autophagosomes in the eys-mutant cone photoreceptors. In situ hybridization showed an autophagy component gene, gabarap, was ectopically expressed in the eys-null retina. These results suggest eys is required for regeneration of OS, especially of cone photoreceptors, and transport of OS proteins by regulating actin filaments. Enhanced autophagy may delay the progression of retinal degeneration when lacking EYS in the medaka retina.
en-copyright=
kn-copyright=
en-aut-name=SatoKeita
en-aut-sei=Sato
en-aut-mei=Keita
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=LiuYang
en-aut-sei=Liu
en-aut-mei=Yang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamashitaTakahiro
en-aut-sei=Yamashita
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OhuchiHideyo
en-aut-sei=Ohuchi
en-aut-mei=Hideyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Cytology and Histology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Biophysics, Graduate School of Science, Kyoto University
kn-affil=
affil-num=4
en-affil=Department of Cytology and Histology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Eyes shut homolog
kn-keyword=Eyes shut homolog
en-keyword=Eys
kn-keyword=Eys
en-keyword=Retinitis pigmentosa
kn-keyword=Retinitis pigmentosa
en-keyword=RP25
kn-keyword=RP25
en-keyword=Cone photoreceptor
kn-keyword=Cone photoreceptor
en-keyword=Autophagy
kn-keyword=Autophagy
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=鉄添加した底質微生物燃料電池を用いた農業排水路におけるリン内部負荷の削減
kn-title=Reduction of internal phosphorus loading in agricultural drainages using iron-incorporated sediment microbial fuel cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=GAMAMADA LIYANAGE ERANDI PRIYANGIKA PERERA
en-aut-sei=GAMAMADA LIYANAGE ERANDI PRIYANGIKA PERERA
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=地球生物圏の過去と未来を理解するための、遷移元素の潜在的役割に関する研究
kn-title=Exploring the potential role of transitional elements to understand the past and the future of the Earth’s biosphere
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=RATNAYAKE MUDIYANSELAGE DILAN MADUSANKA RATNAYAKE
en-aut-sei=RATNAYAKE MUDIYANSELAGE DILAN MADUSANKA RATNAYAKE
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=蛍光ナノダイヤモンド中の窒素欠陥中心を用いた量子バイオセンシング
kn-title=Quantum biosensing with nitrogen vacancy centers in fluorescent nanodiamonds
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OSHIMIKeisuke
en-aut-sei=OSHIMI
en-aut-mei=Keisuke
kn-aut-name=押味佳裕
kn-aut-sei=押味
kn-aut-mei=佳裕
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=SK-Gd実験における大気ニュートリノデータを用いたニュートリノ-酸素原子核中性カレント準弾性散乱反応断面積の測定および核子?原子核反応モデルの研究
kn-title=Measurement of the neutrino-oxygen neutral-current quasielastic cross section and study of nucleon-nucleus interaction model using atmospheric neutrino data in the SK-Gd experiment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SAKAISeiya
en-aut-sei=SAKAI
en-aut-mei=Seiya
kn-aut-name=酒井聖矢
kn-aut-sei=酒井
kn-aut-mei=聖矢
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=CRISPR/dCas13を介したRNA免疫沈降によりSARS-CoV-2 5’UTR RNAとヒト脂質代謝経路との相互作用が明らかとなる
kn-title=An RNA-immunoprecipitation via CRISPR/dCas13 reveals an interaction between the SARS-CoV-2 5'UTR RNA and the process of human lipid metabolism
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHIMIZUYurika
en-aut-sei=SHIMIZU
en-aut-mei=Yurika
kn-aut-name=清水由梨香
kn-aut-sei=清水
kn-aut-mei=由梨香
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=両肺移植後の移植片慢性機能不全、特に閉塞性細気管支炎症候群の検出における、コンピュータ断層撮影を用いた肺野低吸収域割合の有用性
kn-title=Percentage of low attenuation area on computed tomography detects chronic lung allograft dysfunction, especially bronchiolitis obliterans syndrome, after bilateral lung transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KUBOYujiro
en-aut-sei=KUBO
en-aut-mei=Yujiro
kn-aut-name=久保友次郎
kn-aut-sei=久保
kn-aut-mei=友次郎
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=消化器癌患者におけるアナモレリン投与後の内分泌学的変化
kn-title=Endocrinological Changes after Anamorelin Administration in Patients with Gastrointestinal Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KURAOKASakiko
en-aut-sei=KURAOKA
en-aut-mei=Sakiko
kn-aut-name=倉岡紗樹子
kn-aut-sei=倉岡
kn-aut-mei=紗樹子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=PD-L1陽性癌関連線維芽細胞は食道癌において腫瘍免疫を抑制し臨床的転帰を不良にする
kn-title=PD?L1?expressing cancer?associated fibroblasts induce tumor immunosuppression and contribute to poor clinical outcome in esophageal cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAWASAKIKento
en-aut-sei=KAWASAKI
en-aut-mei=Kento
kn-aut-name=河ア健人
kn-aut-sei=河ア
kn-aut-mei=健人
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=p53搭載テロメラーゼ特異的腫瘍融解アデノウイルスの腹腔内投与はびまん性胃癌細胞による腹膜播種を抑制する
kn-title=Intraperitoneal Administration of p53-armed Oncolytic Adenovirus Inhibits Peritoneal Metastasis of Diffuse-type Gastric Cancer Cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HORINaoto
en-aut-sei=HORI
en-aut-mei=Naoto
kn-aut-name=堀直人
kn-aut-sei=堀
kn-aut-mei=直人
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=微小環境の栄養状態がメトホルミンによるCD8+ T細胞代謝とIFNγ産生促進を決定する
kn-title=Nutrient Condition in the Microenvironment Determines Essential Metabolisms of CD8+ T Cells for Enhanced IFNγ Production by Metformin
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=CHAORUOYU
en-aut-sei=CHAO
en-aut-mei=RUOYU
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240325
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=マウス系統によって異なる耐寒性が系統別ES細胞においても存在する
kn-title=Mouse embryonic stem cells embody organismal-level cold resistance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SUITAKoukyou
en-aut-sei=SUITA
en-aut-mei=Koukyou
kn-aut-name=吹田晃享
kn-aut-sei=吹田
kn-aut-mei=晃享
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=28
cd-vols=
no-issue=1
article-no=
start-page=160
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240513
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Organ donation after extracorporeal cardiopulmonary resuscitation: a nationwide retrospective cohort study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Limited data are available on organ donation practices and recipient outcomes, particularly when comparing donors who experienced cardiac arrest and received extracorporeal cardiopulmonary resuscitation (ECPR) followed by veno-arterial extracorporeal membrane oxygenation (ECMO) decannulation, versus those who experienced cardiac arrest without receiving ECPR. This study aims to explore organ donation practices and outcomes post-ECPR to enhance our understanding of the donation potential after cardiac arrest.
Methods We conducted a nationwide retrospective cohort study using data from the Japan Organ Transplant Network database, covering all deceased organ donors between July 17, 2010, and August 31, 2022. We included donors who experienced at least one episode of cardiac arrest. During the study period, patients undergoing ECMO treatment were not eligible for a legal diagnosis of brain death. We compared the timeframes associated with each donor's management and the long-term graft outcomes of recipients between ECPR and non-ECPR groups.
Results Among 370 brain death donors with an episode of cardiac arrest, 26 (7.0%) received ECPR and 344 (93.0%) did not; the majority were due to out-of-hospital cardiac arrests. The median duration of veno-arterial ECMO support after ECPR was 3 days. Patients in the ECPR group had significantly longer intervals from admission to organ procurement compared to those not receiving ECPR (13 vs. 9 days, P = 0.005). Lung graft survival rates were significantly lower in the ECPR group (log-rank test P = 0.009), with no significant differences in other organ graft survival rates. Of 160 circulatory death donors with an episode of cardiac arrest, 27 (16.9%) received ECPR and 133 (83.1%) did not. Time intervals from admission to organ procurement following circulatory death and graft survival showed no significant differences between ECPR and non-ECPR groups. The number of organs donated was similar between the ECPR and non-ECPR groups, regardless of brain or circulatory death.
Conclusions This nationwide study reveals that lung graft survival was lower in recipients from ECPR-treated donors, highlighting the need for targeted research and protocol adjustments in post-ECPR organ donation.
en-copyright=
kn-copyright=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Brain death
kn-keyword=Brain death
en-keyword=Cardiopulmonary resuscitation
kn-keyword=Cardiopulmonary resuscitation
en-keyword=Extracorporeal membrane oxygenation
kn-keyword=Extracorporeal membrane oxygenation
en-keyword=Organ transplantation
kn-keyword=Organ transplantation
en-keyword=Out-of-hospital cardiac arrest
kn-keyword=Out-of-hospital cardiac arrest
en-keyword=Tissue and organ procurement
kn-keyword=Tissue and organ procurement
END
start-ver=1.4
cd-journal=joma
no-vol=31
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240430
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Changes in Spinal Instability After Conventional Radiotherapy for Painful Vertebral Bone Metastases
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: Precise assessment of spinal instability is critical before and after radiotherapy (RT) for evaluating the effectiveness of RT. Therefore, we retrospectively evaluated the efficacy of RT in spinal instability over a period of 6 months after RT, utilizing the spinal instability neoplastic score (SINS) in patients with painful spinal metastasis. We retrospectively evaluated 108 patients who received RT for painful vertebral metastasis in our institution. Mechanical pain at metastatic vertebrae, radiological responses of irradiated vertebrae, and spinal instability were assessed. Follow-up assessments were done at the start of and at intervals of 1, 2, 3, 4, and 6 months after RT, with the pain disappearing in 67%, 85%, 93%, 97%, and 100% of the patients, respectively. The median SINS were 8, 6, 6, 5, 5, and 4 at the beginning and after 1, 2, 3, 4, and 6 months of RT, respectively. Multivariate analysis revealed that posterolateral involvement of spinal elements (PLISE) was the only risk factor for continuous potentially unstable/unstable spine at 1 month. In conclusion, there was improvement of pain, and recalcification results in regaining spinal stability over time after RT although vertebral body collapse and malalignment occur in some irradiated vertebrae. Clinicians should pay attention to PLISE in predicting continuous potentially unstable/unstable spine.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugiharaShinsuke
en-aut-sei=Sugihara
en-aut-mei=Shinsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakaharaRyuichi
en-aut-sei=Nakahara
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Shikoku Cancer Center
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=spinal metastases
kn-keyword=spinal metastases
en-keyword=spinal instability neoplastic score
kn-keyword=spinal instability neoplastic score
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=posterolateral involvement of spinal elements
kn-keyword=posterolateral involvement of spinal elements
en-keyword=risk factor
kn-keyword=risk factor
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=5
article-no=
start-page=1215
end-page=1224
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230726
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Oxidative stress-related markers as prognostic factors for patients with primary sclerosing cholangitis in Japan
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background/purpose Primary sclerosing cholangitis (PSC) is a rare chronic liver disease. The mechanisms and prediction of PSC progression are unclear. Recent investigations have shown that general conditions, such as oxidative stress, affect the course of chronic diseases. We investigated the clinical course and oxidative stress-related condition of PSC to determine prognostic factors.
Methods We recruited 58 patients with PSC (mean age; 37.4 years, mean observation period; 1382 days) who visited our department from 2003 to 2021. Clinical characteristics were investigated to define prognostic factors. Oxidative stress status was evaluated using two types of markers: an oxidative stress marker (serum reactive oxygen metabolite; dROM) and an antioxidant marker (serum OXY adsorbent test; OXY).
Results The revised Mayo risk, Child?Pugh, model for end-stage liver disease-sodium (MELD-Na) scores or fibrosis-related FIB-4 index significantly predicted poor overall survival. High intestinal immunoglobulin A (IgA) levels predicted poor survival. Among patients with high and intermediate revised Mayo risk scores, those with physiologically high dROM levels showed better survival than those with lower dROM levels. In this population, dROM was negatively correlated with AST and IgA, which are both correlated with survival.
Conclusions High and intermediate revised Mayo risk score group predicted a poor clinical course in PSC. Additionally, the Child?Pugh score, MELD-Na score, FIB-4 index, and serum IgA were significantly correlated with survival. In patients with high and intermediate revised Mayo risk scores, physiologically high oxidative stress status correlated with low IgA levels and a good prognosis.
en-copyright=
kn-copyright=
en-aut-name=OyamaAtsushi
en-aut-sei=Oyama
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakakiAkinobu
en-aut-sei=Takaki
en-aut-mei=Akinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AdachiTakuya
en-aut-sei=Adachi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=WadaNozomu
en-aut-sei=Wada
en-aut-mei=Nozomu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TakeuchiYasuto
en-aut-sei=Takeuchi
en-aut-mei=Yasuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OnishiHideki
en-aut-sei=Onishi
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShirahaHidenori
en-aut-sei=Shiraha
en-aut-mei=Hidenori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology and Hepatology, Okayama University, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Primary sclerosing cholangitis
kn-keyword=Primary sclerosing cholangitis
en-keyword=Oxidative stress marker
kn-keyword=Oxidative stress marker
en-keyword=Prognosis
kn-keyword=Prognosis
en-keyword=Serum reactive oxygen metabolite
kn-keyword=Serum reactive oxygen metabolite
en-keyword=Total serum antioxidant capacity
kn-keyword=Total serum antioxidant capacity
en-keyword=Revised Mayo risk score
kn-keyword=Revised Mayo risk score
en-keyword=Child?Pugh score
kn-keyword=Child?Pugh score
en-keyword=MELD score
kn-keyword=MELD score
en-keyword=FIB-4 index
kn-keyword=FIB-4 index
en-keyword=Serum dROM
kn-keyword=Serum dROM
en-keyword=Serum OXY-adsorbent test
kn-keyword=Serum OXY-adsorbent test
en-keyword=Immunoglobulin A
kn-keyword=Immunoglobulin A
END
start-ver=1.4
cd-journal=joma
no-vol=72
cd-vols=
no-issue=11
article-no=
start-page=3787
end-page=3802
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230905
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=PD-L1-expressing cancer-associated fibroblasts induce tumor immunosuppression and contribute to poor clinical outcome in esophageal cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The programmed cell death 1 protein (PD-1)/programmed cell death ligand 1 (PD-L1) axis plays a crucial role in tumor immunosuppression, while the cancer-associated fibroblasts (CAFs) have various tumor-promoting functions. To determine the advantage of immunotherapy, the relationship between the cancer cells and the CAFs was evaluated in terms of the PD-1/PD-L1 axis. Overall, 140 cases of esophageal cancer underwent an immunohistochemical analysis of the PD-L1 expression and its association with the expression of the α smooth muscle actin, fibroblast activation protein, CD8, and forkhead box P3 (FoxP3) positive cells. The relationship between the cancer cells and the CAFs was evaluated in vitro, and the effect of the anti-PD-L1 antibody was evaluated using a syngeneic mouse model. A survival analysis showed that the PD-L1+ CAF group had worse survival than the PD-L1- group. In vitro and in vivo, direct interaction between the cancer cells and the CAFs showed a mutually upregulated PD-L1 expression. In vivo, the anti-PD-L1 antibody increased the number of dead CAFs and cancer cells, resulting in increased CD8+ T cells and decreased FoxP3+ regulatory T cells. We demonstrated that the PD-L1-expressing CAFs lead to poor outcomes in patients with esophageal cancer. The cancer cells and the CAFs mutually enhanced the PD-L1 expression and induced tumor immunosuppression. Therefore, the PD-L1-expressing CAFs may be good targets for cancer therapy, inhibiting tumor progression and improving host tumor immunity.
en-copyright=
kn-copyright=
en-aut-name=KawasakiKento
en-aut-sei=Kawasaki
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatoTakuya
en-aut-sei=Kato
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanabeShunsuke
en-aut-sei=Tanabe
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakedaYasushige
en-aut-sei=Takeda
en-aut-mei=Yasushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=MatsumotoHijiri
en-aut-sei=Matsumoto
en-aut-mei=Hijiri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NishimuraSeitaro
en-aut-sei=Nishimura
en-aut-mei=Seitaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KunitomoTomoyoshi
en-aut-sei=Kunitomo
en-aut-mei=Tomoyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AkaiMasaaki
en-aut-sei=Akai
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KobayashiTeruki
en-aut-sei=Kobayashi
en-aut-mei=Teruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=NishiwakiNoriyuki
en-aut-sei=Nishiwaki
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KashimaHajime
en-aut-sei=Kashima
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MaedaNaoaki
en-aut-sei=Maeda
en-aut-mei=Naoaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=ShirakawaYasuhiro
en-aut-sei=Shirakawa
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Esophageal cancer
kn-keyword=Esophageal cancer
en-keyword=Cancer-associated fibroblasts
kn-keyword=Cancer-associated fibroblasts
en-keyword=Programmed cell death 1
kn-keyword=Programmed cell death 1
en-keyword=Program cell death ligand 1
kn-keyword=Program cell death ligand 1
en-keyword=Immune checkpoint inhibitors
kn-keyword=Immune checkpoint inhibitors
END
start-ver=1.4
cd-journal=joma
no-vol=358
cd-vols=
no-issue=
article-no=
start-page=142060
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202406
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Size, polyglycerol grafting, and net surface charge of iron oxide nanoparticles determine their interaction and toxicity in Caenorhabditis elegans
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The widespread application of engineered nanoparticles (NPs) in environmental remediation has raised public concerns about their toxicity to aquatic organisms. Although appropriate surface modification can mitigate the ecotoxicity of NPs, the lack of polymer coating to inhibit toxicity completely and the insufficient knowledge about charge effect hinder the development of safe nanomaterials. Herein, we explored the potential of polyglycerol (PG) functionalization in alleviating the environmental risks of NPs. Iron oxide NPs (ION) of 20, 100, and 200 nm sizes (IONS, IONM and IONL, respectively) were grafted with PG to afford ION-PG. We examined the interaction of ION and ION-PG with Caenorhabditis elegans (C. elegans) and found that PG suppressed non-specific interaction of ION with C. elegans to reduce their accumulation and to inhibit their translocation. Particularly, IONS-PG was completely excluded from worms of all developmental stages. By covalently introducing sulfate, carboxyl and amino groups onto IONS-PG, we further demonstrated that positively charged IONS-PG-NH3+ induced high intestinal accumulation, cuticle adhesion and distal translocation, whereas the negatively charged IONS-PG-OSO3? and IONS-PG-COO? were excreted out. Consequently, no apparent deleterious effects on brood size and life span were observed in worms treated by IONS-PG and IONS-PG bearing negatively charged groups. This study presents new surface functionalization approaches for developing ecofriendly nanomaterials.
en-copyright=
kn-copyright=
en-aut-name=ZouYajuan
en-aut-sei=Zou
en-aut-mei=Yajuan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShikanoYutaka
en-aut-sei=Shikano
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishinaYuta
en-aut-sei=Nishina
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KomatsuNaoki
en-aut-sei=Komatsu
en-aut-mei=Naoki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=Kage-NakadaiEriko
en-aut-sei=Kage-Nakadai
en-aut-mei=Eriko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiwaraMasazumi
en-aut-sei=Fujiwara
en-aut-mei=Masazumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Systems and Information Engineering, University of Tsukuba
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Human and Environmental Studies, Kyoto University
kn-affil=
affil-num=5
en-affil=Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University
kn-affil=
affil-num=6
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
en-keyword=iron oxide nanoparticles
kn-keyword=iron oxide nanoparticles
en-keyword=polyglycerol functionalization
kn-keyword=polyglycerol functionalization
en-keyword=C. elegans
kn-keyword=C. elegans
en-keyword=accumulation
kn-keyword=accumulation
en-keyword=distribution
kn-keyword=distribution
en-keyword=toxicity
kn-keyword=toxicity
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=1
article-no=
start-page=140
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240422
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Endoscopic manifestation of intestinal transplant-associated microangiopathy after stem cell transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Endoscopic features of intestinal transplant-associated microangiopathy (iTAM) have not been comprehensively investigated. This study aimed to examine the endoscopic characteristics of patients diagnosed with iTAM.
Methods This retrospective analysis included 14 patients pathologically diagnosed with iTAM after stem cell transplantation for hematolymphoid neoplasms (n = 13) or thalassemia (n = 1). The sex, age at diagnosis, endoscopic features, and prognosis of each patient were assessed. Serological markers for diagnosing transplant-associated thrombotic microangiopathy were also evaluated.
Results The mean age at the time of iTAM diagnosis was 40.2 years. Patients diagnosed based on the pathognomonic pathological changes of iTAM presented with diverse symptoms at the times of endoscopic examinations, including diarrhea (n = 10), abdominal pain (n = 5), nausea (n = 4), appetite loss (n = 2), bloody stools (n = 2), abdominal discomfort (n = 1), and vomiting (n = 1). At the final follow-up, six patients survived, while eight patients succumbed, with a median time of 100.5 days (range: 52-247) post-diagnosis. Endoscopic manifestations included erythematous mucosa (n = 14), erosions (n = 13), ulcers (n = 9), mucosal edema (n = 9), granular mucosa (n = 9), and villous atrophy (n = 4). Erosions and/or ulcers were primarily observed in the colon (10/14, 71%), followed by the ileum (9/13, 69%), stomach (4/10, 40%), cecum (5/14, 36%), duodenum (3/10, 30%), rectum (4/14, 29%), and esophagus (1/10, 10%). Cytomegalovirus infection (n = 4) and graft-versus-host disease (n = 2) coexisted within the gastrointestinal tract. Patients had de novo prolonged or progressive thrombocytopenia (6/14, 43%), decreased hemoglobin concentration (4/14, 29%), reduced serum haptoglobin level (3/14, 21%), and a sudden and persistent increase in lactate dehydrogenase level (2/14, 14%). Peripheral blood samples from 12 patients were evaluated for schistocytes, with none exceeding 4%.
Conclusions This study provides a comprehensive exploration of the endoscopic characteristics of iTAM. Notably, all patients exhibited erythematous mucosa throughout the gastrointestinal tract, accompanied by prevalent manifestations, such as erosions (93%), ulcers (64%), mucosal edema (64%), granular mucosa (64%), and villous atrophy (29%). Because of the low positivity for serological markers of transplant-associated thrombotic microangiopathy in patients with iTAM, endoscopic evaluation and biopsy of these lesions are crucial, even in the absence of these serological features.
en-copyright=
kn-copyright=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsuokaKen-Ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=InokuchiToshihiro
en-aut-sei=Inokuchi
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HiraokaSakiko
en-aut-sei=Hiraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Colonoscopy
kn-keyword=Colonoscopy
en-keyword=Esophagogastroduodenoscopy
kn-keyword=Esophagogastroduodenoscopy
en-keyword=Graft-versus-host disease
kn-keyword=Graft-versus-host disease
en-keyword=Hematopoietic stem cell transplantation
kn-keyword=Hematopoietic stem cell transplantation
en-keyword=Intestinal transplant-associated microangiopathy
kn-keyword=Intestinal transplant-associated microangiopathy
en-keyword=iTAM
kn-keyword=iTAM
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=7
article-no=
start-page=1298
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240327
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Copy Number Analysis of 9p24.1 in Classic Hodgkin Lymphoma Arising in Immune Deficiency/Dysregulation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A subset of patients with rheumatoid arthritis receiving methotrexate develop immune deficiencies and dysregulation-associated lymphoproliferative disorders. Patients with these disorders often exhibit spontaneous regression after MTX withdrawal; however, chemotherapeutic intervention is frequently required in patients with classic Hodgkin lymphoma arising in immune deficiency/dysregulation. In this study, we examined PD-L1 expression levels and 9p24.1 copy number alterations in 27 patients with classic Hodgkin lymphoma arising from immune deficiency/dysregulation. All patients demonstrated PD-L1 protein expression and harbored 9p24.1 copy number alterations on the tumor cells. When comparing clinicopathological data and associations with 9p24.1 copy number features, the copy gain group showed a significantly higher incidence of extranodal lesions and clinical stages than the amplification group. Notably, all cases in the amplification group had latency type II, while 6/8 (75%) in the copy gain group had latency type II, and 2/8 (25%) had latency type I. Thus, a subset of the copy-gain group demonstrated more extensive extranodal lesions and higher clinical stages. This finding speculates the presence of a genetically distinct subgroup within the group of patients who develop immune deficiencies and dysregulation-associated lymphoproliferative disorders, which may explain certain characteristic features.
en-copyright=
kn-copyright=
en-aut-name=OhsawaKumiko
en-aut-sei=Ohsawa
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MomoseShuji
en-aut-sei=Momose
en-aut-mei=Shuji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NishikoriAsami
en-aut-sei=Nishikori
en-aut-mei=Asami
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraMidori Filiz
en-aut-sei=Nishimura
en-aut-mei=Midori Filiz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=GionYuka
en-aut-sei=Gion
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SawadaKeisuke
en-aut-sei=Sawada
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HigashiMorihiro
en-aut-sei=Higashi
en-aut-mei=Morihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TokuhiraMichihide
en-aut-sei=Tokuhira
en-aut-mei=Michihide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TamaruJun-Ichi
en-aut-sei=Tamaru
en-aut-mei=Jun-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SatoYasuharu
en-aut-sei=Sato
en-aut-mei=Yasuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=3
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=4
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
affil-num=5
en-affil=Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences
kn-affil=
affil-num=6
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=7
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=8
en-affil=Department of Hematology, Japan Community Health Care Organization Saitama Medical Center
kn-affil=
affil-num=9
en-affil=Department of Pathology, Saitama Medical Center, Saitama Medical University
kn-affil=
affil-num=10
en-affil=Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences
kn-affil=
en-keyword=classic Hodgkin lymphoma
kn-keyword=classic Hodgkin lymphoma
en-keyword=methotrexate
kn-keyword=methotrexate
en-keyword=immunodeficiency
kn-keyword=immunodeficiency
en-keyword=programmed cell death-ligand 1
kn-keyword=programmed cell death-ligand 1
en-keyword=rheumatoid arthritis
kn-keyword=rheumatoid arthritis
END
start-ver=1.4
cd-journal=joma
no-vol=9
cd-vols=
no-issue=
article-no=
start-page=100297
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202408
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Radiation evaluation assay using a human three-dimensional oral cancer model for clinical radiation therapy.
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=With the development of various radiation -based cancer therapies, radiobiological evaluation methods instead of traditional clonogenic assays with monolayer single cell culture are required to bridge gaps in clinical data. Heterogeneity within cancer tissues is the reason for bridging the gap between basic and clinical research in cancer radiotherapy. To solve this problem, we investigated an evaluation assay using a three-dimensional (3D) model of cancer tissue. In this study, a 3D model consisting of tumor and stromal layers was used to compare and verify radiobiological effects with conventional two-dimensional (2D) methods. A significant difference in the response to radiation was observed between the 2D and 3D models. The relative number of cancer cells decreased with X-ray dose escalations in the 2D and 3D models. In contrast, the relative number of normal cells was quite different between the 2D and 3D models. Considering the ability of cells to recover from radiation-induced damage, the histological results of the 3D model were reflected in the clinical data. Histopathological analysis using a 3D model is a potential method for evaluating radiobiological effects on the tumor and tumor margins.
en-copyright=
kn-copyright=
en-aut-name=SercombeLucie
en-aut-sei=Sercombe
en-aut-mei=Lucie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IgawaKazuyo
en-aut-sei=Igawa
en-aut-mei=Kazuyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IzumiKenji
en-aut-sei=Izumi
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Biomedical Engineering Department, Grenoble Institute of Technology
kn-affil=
affil-num=2
en-affil=Neutron Therapy Research Center, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University
kn-affil=
en-keyword=Oral cancer model
kn-keyword=Oral cancer model
en-keyword=3D-cell culture
kn-keyword=3D-cell culture
en-keyword=Radiation therapy
kn-keyword=Radiation therapy
en-keyword=Histopathological assay
kn-keyword=Histopathological assay
en-keyword=Radiobiological evaluation
kn-keyword=Radiobiological evaluation
END
start-ver=1.4
cd-journal=joma
no-vol=160
cd-vols=
no-issue=9
article-no=
start-page=094101
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240301
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=GenIce-core: Efficient algorithm for generation of hydrogen-disordered ice structures
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Ice is different from ordinary crystals because it contains randomness, which means that statistical treatment based on ensemble averaging is essential. Ice structures are constrained by topological rules known as the ice rules, which give them unique anomalous properties. These properties become more apparent when the system size is large. For this reason, there is a need to produce a large number of sufficiently large crystals that are homogeneously random and satisfy the ice rules. We have developed an algorithm to quickly generate ice structures containing ions and defects. This algorithm is provided as an independent software module that can be incorporated into crystal structure generation software. By doing so, it becomes possible to simulate ice crystals on a previously impossible scale.
en-copyright=
kn-copyright=
en-aut-name=MatsumotoMasakazu
en-aut-sei=Matsumoto
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YagasakiTakuma
en-aut-sei=Yagasaki
en-aut-mei=Takuma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaHideki
en-aut-sei=Tanaka
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Research Institute for Interdisciplinary Science, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
kn-affil=
affil-num=3
en-affil=Toyota Physical and Chemical Research Institute
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=154
cd-vols=
no-issue=3
article-no=
start-page=209
end-page=217
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202403
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Attenuation of protein arginine dimethylation via S-nitrosylation of protein arginine methyltransferase 1
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Upregulation of nitric oxide (NO) production contributes to the pathogenesis of numerous diseases via S-nitro- sylation, a post-translational modification of proteins. This process occurs due to the oxidative reaction between NO and a cysteine thiol group; however, the extent of this reaction remains unknown. S-Nitrosylation of PRMT1, a major asymmetric arginine methyltransferase of histones and numerous RNA metabolic proteins, was induced by NO donor treatment. We found that nitrosative stress leads to S-nitrosylation of cysteine 119, located near the active site, and attenuates the enzymatic activity of PRMT1. Interestingly, RNA sequencing analysis revealed similarities in the changes in expression elicited by NO and PRMT1 inhibitors or knockdown. A comprehensive search for PRMT1 substrates using the proximity-dependent biotin identification method highlighted many known and new substrates, including RNA-metabolizing enzymes. To validate this result, we selected the RNA helicase DDX3 and demonstrated that arginine methylation of DDX3 is induced by PRMT1 and attenuated by NO treatment. Our results suggest the existence of a novel regulatory system associated with transcription and RNA metabolism via protein S-nitrosylation.
en-copyright=
kn-copyright=
en-aut-name=TaniguchiRikako
en-aut-sei=Taniguchi
en-aut-mei=Rikako
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MoriyaYuto
en-aut-sei=Moriya
en-aut-mei=Yuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=DohmaeNaoshi
en-aut-sei=Dohmae
en-aut-mei=Naoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SuzukiTakehiro
en-aut-sei=Suzuki
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakaharaKengo
en-aut-sei=Nakahara
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KubotaSho
en-aut-sei=Kubota
en-aut-mei=Sho
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=4
en-affil=Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=5
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Nitric oxide
kn-keyword=Nitric oxide
en-keyword=S-Nitrosylation
kn-keyword=S-Nitrosylation
en-keyword=Protein arginine methyltransferase 1 (PRMT1)
kn-keyword=Protein arginine methyltransferase 1 (PRMT1)
en-keyword=RNA metabolism
kn-keyword=RNA metabolism
en-keyword=Dead-box helicase 3X-linxed (DDX3)
kn-keyword=Dead-box helicase 3X-linxed (DDX3)
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=4953
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240229
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-term monitoring of gastric mucosa-associated lymphoid tissue lymphoma in patients with extra copies of the MALT1 gene
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The objective of this study was to clarify the long-term prognosis of patients with gastric mucosa-associated lymphoid tissue (MALT) lymphoma with additional copies of MALT1. In this multicenter retrospective study, we enrolled 145 patients with gastric MALT lymphoma who underwent fluorescence in situ hybridization (FISH) analysis to detect t(11;18) translocation. The patient cohort was divided into three groups: Group A (n?=?87), comprising individuals devoid of the t(11;18) translocation or extra MALT1 copies; Group B (n?=?27), encompassing patients characterized by the presence of the t(11;18) translocation; and Group C (n?=?31), including patients with extra MALT1 copies. The clinical outcomes in each cohort were collected. Over the course of a mean follow-up of 8.5?±?4.2 years, one patient died of progressive MALT lymphoma, while 15 patients died due to etiologies unrelated to lymphoma. The progression or relapse of MALT lymphoma was observed in 11 patients: three in Group A, two in Group B, and six in Group C. In Groups A, B, and C, the 10-year overall survival rates were 82.5%, 93.8%, and 86.4%, respectively, and the 10-year event-free survival rates were 96.1%, 96.0%, and 82.9%, respectively. The event-free survival rate in Group C was significantly lower than that in Group A. However, no differences were observed in the 10-year event-free survival rates among individuals limited to stage I or II1 disease (equivalent to excluding patients with stage IV disease in this study, as there were no patients with stage II2), with rates of 98.6%, 95.8%, and 92.3% for Groups A, B, and C, respectively. In conclusion, the presence of extra copies of MALT1 was identified as an inferior prognostic determinant of event-free survival. Consequently, trisomy/tetrasomy 18 may serve as an indicator of progression and refractoriness to therapeutic intervention in patients with gastric MALT lymphoma, particularly stage IV gastric MALT lymphoma.
en-copyright=
kn-copyright=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakenakaRyuta
en-aut-sei=Takenaka
en-aut-mei=Ryuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MiyaharaKoji
en-aut-sei=Miyahara
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OkanoueShotaro
en-aut-sei=Okanoue
en-aut-mei=Shotaro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshiokaMasao
en-aut-sei=Yoshioka
en-aut-mei=Masao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakaguchiChihiro
en-aut-sei=Sakaguchi
en-aut-mei=Chihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=YamamotoKumiko
en-aut-sei=Yamamoto
en-aut-mei=Kumiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawaiYoshinari
en-aut-sei=Kawai
en-aut-mei=Yoshinari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyokawaTatsuya
en-aut-sei=Toyokawa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil= Department of Internal Medicine, Tsuyama Chuo Hospital
kn-affil=
affil-num=3
en-affil=Department of Internal Medicine, Hiroshima City Hospital
kn-affil=
affil-num=4
en-affil=Department of Gastroenterology, Mitoyo General Hospital
kn-affil=
affil-num=5
en-affil=Department of Internal Medicine, Okayama Saiseikai General Hospital
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology, Shikoku Cancer Center
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology, Onomichi Municipal Hospital
kn-affil=
affil-num=9
en-affil=Department of Gastroenterology, Fukuyama Medical Center
kn-affil=
affil-num=10
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue
kn-keyword=Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue
en-keyword=Gastric neoplasms
kn-keyword=Gastric neoplasms
en-keyword=Esophagogastroduodenoscopy
kn-keyword=Esophagogastroduodenoscopy
en-keyword=t(11;18) translocation,
kn-keyword=t(11;18) translocation,
en-keyword=Trisomy 18
kn-keyword=Trisomy 18
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240319
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pericardial Effusion in Association With Periodontitis: Case Report and Review of 8 Patients in Literature
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Periodontal diseases are well-known background for infective endocarditis. Here, we show that pericardial effusion or pericarditis might have origin also in periodontal diseases. An 86-year-old man with well-controlled hypertension and diabetes mellitus developed asymptomatic increase in pericardial effusion. Two weeks previously, he took oral new quinolone antibiotics for a week because he had painful periodontitis along a dental bridge in the mandibular teeth on the right side and presented cheek swelling. The sputum was positive for Streptococcus species. He was healthy and had a small volume of pericardial effusion for the previous 5 years after drug-eluting coronary stents were inserted at the left anterior descending branch 10 years previously. The differential diagnoses listed for pericardial effusion were infection including tuberculosis, autoimmune diseases, and metastatic malignancy. Thoracic to pelvic computed tomographic scan demonstrated no mass lesions, except for pericardial effusion and a small volume of pleural effusion on the left side. Fluorodeoxyglucose positron emission tomography disclosed many spotty uptakes in the pericardial effusion. The patient denied pericardiocentesis, based on his evaluation of the risk of the procedure. He was thus discharged in several days and followed at outpatient clinic. He underwent dental treatment and pericardial effusion resolved completely in a month. He was healthy in 6 years until the last follow-up at the age of 92 years. We also reviewed 8 patients with pericarditis in association with periodontal diseases in the literature to reveal that periodontal diseases would be the background for developing infective pericarditis and also mediastinitis on some occasions.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuoChie Nakago
en-aut-sei=Matsuo
en-aut-mei=Chie Nakago
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MatsuoNobuhiko
en-aut-sei=Matsuo
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MoriAyano
en-aut-sei=Mori
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MurakamiMasaaki
en-aut-sei=Murakami
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Okayama University
kn-affil=
affil-num=3
en-affil=Okayama University
kn-affil=
affil-num=4
en-affil=Nagashima Hospital
kn-affil=
affil-num=5
en-affil=Okayama Heart Clinic
kn-affil=
affil-num=6
en-affil=Okayama University
kn-affil=
en-keyword=pericardial effusion
kn-keyword=pericardial effusion
en-keyword=pericarditis
kn-keyword=pericarditis
en-keyword=periodontitis (periodontal disease)
kn-keyword=periodontitis (periodontal disease)
en-keyword=positron emission tomography
kn-keyword=positron emission tomography
en-keyword=Streptococcus
kn-keyword=Streptococcus
END
start-ver=1.4
cd-journal=joma
no-vol=73
cd-vols=
no-issue=4
article-no=
start-page=422
end-page=397
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240321
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Political attitudes in post-Brexit Conservative turmoil in Britain : reading British Election Study 2014-2019 Internet Panel data
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NarihiroT.
en-aut-sei=Narihiro
en-aut-mei=T.
kn-aut-name=成廣孝
kn-aut-sei=成廣
kn-aut-mei=孝
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学学術研究院社会文化科学学域
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=5
article-no=
start-page=719
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=The Impact of Phenological Gaps on Leaf Characteristics and Foliage Dynamics of an Understory Dwarf Bamboo, Sasa kurilensis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Phenological gaps exert a significant influence on the growth of dwarf bamboos. However, how dwarf bamboos respond to and exploit these phenological gaps remain enigmatic. The light environment, soil nutrients, leaf morphology, maximum photosynthetic rate, foliage dynamics, and branching characteristics of Sasa kurilensis were examined under the canopies of Fagus crenata and Magnolia obovata. The goal was to elucidate the adaptive responses of S. kurilensis to phenological gaps in the forest understory. The findings suggest that phenological gaps under an M. obovata canopy augment the available biomass of S. kurilensis, enhancing leaf area, leaf thickness, and carbon content per unit area. However, these gaps do not appreciably influence the maximum photosynthetic rate, total leaf number, leaf lifespan, branch number, and average branch length. These findings underscore the significant impact of annually recurring phenological gaps on various aspects of S. kurilensis growth, such as its aboveground biomass, leaf morphology, and leaf biochemical characteristics. It appears that leaf morphology is a pivotal trait in the response of S. kurilensis to phenological gaps. Given the potential ubiquity of the influence of phenological gaps on dwarf bamboos across most deciduous broadleaf forests, this canopy phenomenon should not be overlooked.
en-copyright=
kn-copyright=
en-aut-name=WuChongyang
en-aut-sei=Wu
en-aut-mei=Chongyang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaRyota
en-aut-sei=Tanaka
en-aut-mei=Ryota
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiyoshiKyohei
en-aut-sei=Fujiyoshi
en-aut-mei=Kyohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkajiYasuaki
en-aut-sei=Akaji
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HirobeMuneto
en-aut-sei=Hirobe
en-aut-mei=Muneto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MikiNaoko
en-aut-sei=Miki
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=LiJuan
en-aut-sei=Li
en-aut-mei=Juan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SakamotoKeiji
en-aut-sei=Sakamoto
en-aut-mei=Keiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=GaoJian
en-aut-sei=Gao
en-aut-mei=Jian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Beijing for Bamboo & Rattan Science and Technology/International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration
kn-affil=
affil-num=2
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Agriculture, Okayama University
kn-affil=
affil-num=4
en-affil=Biodiversity Division, National Institute for Environmental Studies
kn-affil=
affil-num=5
en-affil=Department of Environmental Ecology, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Environmental Ecology, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=7
en-affil=Beijing for Bamboo & Rattan Science and Technology/International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration
kn-affil=
affil-num=8
en-affil=Department of Environmental Ecology, Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=9
en-affil=Beijing for Bamboo & Rattan Science and Technology/International Centre for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration
kn-affil=
en-keyword=bamboo
kn-keyword=bamboo
en-keyword=sasa
kn-keyword=sasa
en-keyword=beech forest
kn-keyword=beech forest
en-keyword=phenological gap
kn-keyword=phenological gap
en-keyword=canopy
kn-keyword=canopy
en-keyword=understory plant
kn-keyword=understory plant
en-keyword=plant morphology
kn-keyword=plant morphology
en-keyword=plastically
kn-keyword=plastically
en-keyword=leaf phenology
kn-keyword=leaf phenology
END
start-ver=1.4
cd-journal=joma
no-vol=62
cd-vols=
no-issue=2
article-no=
start-page=240
end-page=246
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202403
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-term outcomes of lung transplantation requiring renal replacement therapy: A single-center experience
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background
Life-long immunosuppressive therapy after lung transplantation (LT) may lead to end-stage renal disease (ESRD), requiring renal replacement therapy (RRT). We aimed to investigate the characteristics and long-term outcomes of patients undergoing LT and requiring RRT.
Methods
This study was a single-center, retrospective cohort study. The patients were divided into the RRT (n = 15) and non-RRT (n = 170) groups. We summarized the clinical features of patients in the RRT group and compared patient characteristics, overall survival, and chronic lung allograft dysfunction (CLAD)-free survival between the two groups.
Results
The cumulative incidences of ESRD requiring RRT after LT at 5, 10, and 15 years were 0.8 %, 7.6 %, and 25.2 %, respectively. In the RRT group, all 15 patients underwent hemodialysis but not peritoneal dialysis, and two patients underwent living-donor kidney transplantation. The median follow-up period was longer in the RRT group than in the non-RRT group (P < 0.001). The CLAD-free survival and overall survival did not differ between the two groups. The 5-year survival rate even after the initiation of hemodialysis was 53.3 %, and the leading cause of death in the RRT group was infection.
Conclusions
Favorable long-term outcomes can be achieved by RRT for ESRD after LT.
en-copyright=
kn-copyright=
en-aut-name=TomiokaYasuaki
en-aut-sei=Tomioka
en-aut-mei=Yasuaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiotaniToshio
en-aut-sei=Shiotani
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsubaraKei
en-aut-sei=Matsubara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ChoshiHaruki
en-aut-sei=Choshi
en-aut-mei=Haruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=IshiharaMegumi
en-aut-sei=Ishihara
en-aut-mei=Megumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OtaniShinji
en-aut-sei=Otani
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Lung transplantation
kn-keyword=Lung transplantation
en-keyword=Dialysis
kn-keyword=Dialysis
en-keyword=Living-donor kidney transplantation
kn-keyword=Living-donor kidney transplantation
en-keyword=End -stage renal disease
kn-keyword=End -stage renal disease
en-keyword=Renal replacement therapy
kn-keyword=Renal replacement therapy
END
start-ver=1.4
cd-journal=joma
no-vol=43
cd-vols=
no-issue=2
article-no=
start-page=113797
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240227
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Stem-like progenitor and terminally differentiated TFH-like CD4+ T?cell exhaustion in the tumor microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Immune checkpoint inhibitors exert clinical efficacy against various types of cancer through reinvigoration of exhausted CD8+ T cells that attack cancer cells directly in the tumor microenvironment (TME). Using single-cell sequencing and mouse models, we show that CXCL13, highly expressed in tumor-infiltrating exhausted CD8+ T cells, induces CD4+ follicular helper T (TFH) cell infiltration, contributing to anti-tumor immunity. Furthermore, a part of the TFH cells in the TME exhibits cytotoxicity and directly attacks major histocompatibility complex-II-expressing tumors. TFH-like cytotoxic CD4+ T cells have high LAG-3/BLIMP1 and low TCF1 expression without self-renewal ability, whereas non-cytotoxic TFH cells express low LAG-3/BLIMP1 and high TCF1 with self-renewal ability, closely resembling the relationship between terminally differentiated and stem-like progenitor exhaustion in CD8+ T cells, respectively. Our findings provide deep insights into TFH-like CD4+ T cell exhaustion with helper progenitor and cytotoxic differentiated functions, mediating anti-tumor immunity orchestrally with CD8+ T cells.
en-copyright=
kn-copyright=
en-aut-name=ZhouWenhao
en-aut-sei=Zhou
en-aut-mei=Wenhao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawaseKatsushige
en-aut-sei=Kawase
en-aut-mei=Katsushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamashitaKazuo
en-aut-sei=Yamashita
en-aut-mei=Kazuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=DansakoHiromichi
en-aut-sei=Dansako
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SuzukiYutaka
en-aut-sei=Suzuki
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NishikawaHiroyoshi
en-aut-sei=Nishikawa
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Chiba Cancer Center, Research Institute
kn-affil=
affil-num=5
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=KOTAI Biotechnologies, Inc.
kn-affil=
affil-num=7
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Chiba Cancer Center, Research Institute, Division of Cell Therapy
kn-affil=
affil-num=9
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo
kn-affil=
affil-num=11
en-affil=Department of Immunology, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Dermatology, Chiba University Graduate School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Tumor Microenvironment, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=cancer immunology
kn-keyword=cancer immunology
en-keyword=follicular helper T cell
kn-keyword=follicular helper T cell
en-keyword=cytotoxic CD4+ T cell
kn-keyword=cytotoxic CD4+ T cell
en-keyword=CXCL13
kn-keyword=CXCL13
en-keyword=T cell exhaustion
kn-keyword=T cell exhaustion
en-keyword=stem-like progenitor exhaustion
kn-keyword=stem-like progenitor exhaustion
en-keyword=terminally differentiated exhaustion
kn-keyword=terminally differentiated exhaustion
en-keyword=PD-1
kn-keyword=PD-1
en-keyword=LAG-3
kn-keyword=LAG-3
en-keyword=TCF1
kn-keyword=TCF1
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=1
article-no=
start-page=15
end-page=20
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Lung Oligometastasis of Breast Cancer: Prospective Cohort Study of Treatment Strategies (SBP-06)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=While local treatment of metastases is considered to be unrelated to prognosis, previous studies have suggested that local treatment of isolated lung metastases may have positive prognostic impact. We designed this prospective cohort study to investigate the clinical situation and its outcomes. We enrolled patients with fewer than 3 lung nodules suspected of being oligometastases after curative breast cancer surgery. Treatments, including local and systemic therapy, were selected by the physician and patient in consultation. The primary outcome was overall survival (OS); secondary outcomes were the efficacy and the safety of the surgery for lung oligometastases. Between May 2015 and May 2019, 14 patients were enrolled. Resection of lung nodules (metastasectomy) was performed in 11 (78.6%) of 14 patients, and one of these cases was diagnosed as primary lung cancer. Metastasectomies were all performed employing video-assisted thoracic surgery (VATS) without perioperative complications. Systemic therapies were administered to all patients except one. The respective 3-year and 5-year OS rates of patients with lung oligometastases were 91.6% and 81.5%, respectively. Progression occurred in 6 patients: 3 of the 10 with metastasectomy and all 3 without this surgical procedure. Lung metastasectomy was worthwhile as a diagnostic evaluation and may provide long-term benefit in some patients.
en-copyright=
kn-copyright=
en-aut-name=MaedaReina
en-aut-sei=Maeda
en-aut-mei=Reina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShienTadahiko
en-aut-sei=Shien
en-aut-mei=Tadahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakahashiMina
en-aut-sei=Takahashi
en-aut-mei=Mina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawadaKengo
en-aut-sei=Kawada
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KajiwaraYukiko
en-aut-sei=Kajiwara
en-aut-mei=Yukiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuboShinichiro
en-aut-sei=Kubo
en-aut-mei=Shinichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TakabatakeDaisuke
en-aut-sei=Takabatake
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhtaniShoichiro
en-aut-sei=Ohtani
en-aut-mei=Shoichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MatsuokaKinya
en-aut-sei=Matsuoka
en-aut-mei=Kinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=HikinoHajime
en-aut-sei=Hikino
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OgasawaraYutaka
en-aut-sei=Ogasawara
en-aut-mei=Yutaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TairaNaruto
en-aut-sei=Taira
en-aut-mei=Naruto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OsumiShozo
en-aut-sei=Osumi
en-aut-mei=Shozo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=IkedaMasahiko
en-aut-sei=Ikeda
en-aut-mei=Masahiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=DoiharaHiroyoshi
en-aut-sei=Doihara
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Breast Oncology, NHO Shikoku Cancer Center
kn-affil=
affil-num=4
en-affil=Department of Breast and Endocrine Surgery, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=5
en-affil=Department of Breast Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=6
en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital
kn-affil=
affil-num=7
en-affil=Department of Breast Surgery, Kochi Health Sciences Center
kn-affil=
affil-num=8
en-affil=Department of Breast Surgery, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=9
en-affil=Department of Breast and Thyroid Surgery, Ehime Prefectural Central Hospital
kn-affil=
affil-num=10
en-affil=Department of Breast Surgery, Matsue Red Cross Hospital
kn-affil=
affil-num=11
en-affil=Department of Breast and Endocrine Surgery, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=12
en-affil=Department of Breast and Thyroid Surgery, Kawasaki Medical School
kn-affil=
affil-num=13
en-affil=Department of Breast Oncology, NHO Shikoku Cancer Center
kn-affil=
affil-num=14
en-affil=Department of Breast and Thyroid Surgery, Fukuyama City Hospital
kn-affil=
affil-num=15
en-affil=Department of Breast and Endocrine Surgery, Okayama University Hospital
kn-affil=
en-keyword=oligometastasis
kn-keyword=oligometastasis
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=lung
kn-keyword=lung
en-keyword=metastasectomy
kn-keyword=metastasectomy
END
start-ver=1.4
cd-journal=joma
no-vol=78
cd-vols=
no-issue=1
article-no=
start-page=1
end-page=8
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=202402
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Role of Macrophages in Liver Fibrosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Liver fibrosis, which ultimately leads to liver cirrhosis and hepatocellular carcinoma, is a major health burden worldwide. The progression of liver fibrosis is the result of the wound-healing response of liver to repeated injury. Hepatic macrophages are cells with high heterogeneity and plasticity and include tissue-resident macrophages termed Kupffer cells, and recruited macrophages derived from circulating monocytes, spleen and peritoneal cavity. Studies have shown that hepatic macrophages play roles in the initiation and progression of liver fibrosis by releasing inflammatory cytokines/chemokines and pro-fibrogenic factors. Furthermore, the development of liver fibrosis has been shown to be reversible. Hepatic macrophages have been shown to alternately regulate both the regression and turnover of liver fibrosis by changing their phenotypes during the dynamic progression of liver fibrosis. In this review, we summarize the role of hepatic macrophages in the progression and regression of liver fibrosis.
en-copyright=
kn-copyright=
en-aut-name=SunCuiming
en-aut-sei=Sun
en-aut-mei=Cuiming
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsukawaAkihiro
en-aut-sei=Matsukawa
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Department of Pathology and Experimental Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Pathology and Experimental Medicine, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=ERK-MAPK
kn-keyword=ERK-MAPK
en-keyword=SPRED2
kn-keyword=SPRED2
en-keyword=fibrosis
kn-keyword=fibrosis
en-keyword=macrophages
kn-keyword=macrophages
END
start-ver=1.4
cd-journal=joma
no-vol=130
cd-vols=
no-issue=7
article-no=
start-page=1187
end-page=1195
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240205
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Long-term activation of anti-tumor immunity in pancreatic cancer by a p53-expressing telomerase-specific oncolytic adenovirus
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Pancreatic cancer is an aggressive, immunologically “cold” tumor. Oncolytic virotherapy is a promising treatment to overcome this problem. We developed a telomerase-specific oncolytic adenovirus armed with p53 gene (OBP-702).
Methods: We investigated the efficacy of OBP-702 for pancreatic cancer, focusing on its long-term effects via long-lived memory CD8?+?T cells including tissue-resident memory T cells (TRMs) and effector memory T cells (TEMs) differentiated from effector memory precursor cells (TEMps).
Results: First, in vitro, OBP-702 significantly induced adenosine triphosphate (ATP), which is important for memory T cell establishment. Next, in vivo, OBP-702 local treatment to murine pancreatic PAN02 tumors increased TEMps via ATP induction from tumors and IL-15Rα induction from macrophages, leading to TRM and TEM induction. Activation of these memory T cells by OBP-702 was also maintained in combination with gemcitabine+nab-paclitaxel (GN) in a PAN02 bilateral tumor model, and GN?+?OBP-702 showed significant anti-tumor effects and increased TRMs in OBP-702-uninjected tumors. Finally, in a neoadjuvant model, in which PAN02 cells were re-inoculated after resection of treated-PAN02 tumors, GN?+?OBP-702 provided long-term anti-tumor effects even after tumor resection.
Conclusion: OBP-702 can be a long-term immunostimulant with sustained anti-tumor effects on immunologically cold pancreatic cancer.
en-copyright=
kn-copyright=
en-aut-name=HashimotoMasashi
en-aut-sei=Hashimoto
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KurodaShinji
en-aut-sei=Kuroda
en-aut-mei=Shinji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KanayaNobuhiko
en-aut-sei=Kanaya
en-aut-mei=Nobuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KadowakiDaisuke
en-aut-sei=Kadowaki
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YoshidaYusuke
en-aut-sei=Yoshida
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=SakamotoMasaki
en-aut-sei=Sakamoto
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaYuki
en-aut-sei=Hamada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SugimotoRyoma
en-aut-sei=Sugimoto
en-aut-mei=Ryoma
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YagiChiaki
en-aut-sei=Yagi
en-aut-mei=Chiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OhtaniTomoko
en-aut-sei=Ohtani
en-aut-mei=Tomoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KumonKento
en-aut-sei=Kumon
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KakiuchiYoshihiko
en-aut-sei=Kakiuchi
en-aut-mei=Yoshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YasuiKazuya
en-aut-sei=Yasui
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=YoshidaRyuichi
en-aut-sei=Yoshida
en-aut-mei=Ryuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YagiTakahito
en-aut-sei=Yagi
en-aut-mei=Takahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=UrataYasuo
en-aut-sei=Urata
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=19
en-affil=Oncolys BioPharma, Inc.
kn-affil=
affil-num=20
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=118
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2024
dt-pub=20240106
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Hydrogen in Transplantation: Potential Applications and Therapeutic Implications
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Hydrogen gas, renowned for its antioxidant properties, has emerged as a novel therapeutic agent with applications across various medical domains, positioning it as a potential adjunct therapy in transplantation. Beyond its antioxidative properties, hydrogen also exerts anti-inflammatory effects by modulating pro-inflammatory cytokines and signaling pathways. Furthermore, hydrogen's capacity to activate cytoprotective pathways bolsters cellular resilience against stressors. In recent decades, significant advancements have been made in the critical medical procedure of transplantation. However, persistent challenges such as ischemia-reperfusion injury (IRI) and graft rejection continue to hinder transplant success rates. This comprehensive review explores the potential applications and therapeutic implications of hydrogen in transplantation, shedding light on its role in mitigating IRI, improving graft survival, and modulating immune responses. Through a meticulous analysis encompassing both preclinical and clinical studies, we aim to provide valuable insights into the promising utility of hydrogen as a complementary therapy in transplantation.
en-copyright=
kn-copyright=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HirayamaTakahiro
en-aut-sei=Hirayama
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=AgetaKohei
en-aut-sei=Ageta
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=AokageToshiyuki
en-aut-sei=Aokage
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HisamuraMasaki
en-aut-sei=Hisamura
en-aut-mei=Masaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=hydrogen
kn-keyword=hydrogen
en-keyword=organ transplantation
kn-keyword=organ transplantation
en-keyword=ischemia reperfusion
kn-keyword=ischemia reperfusion
END
start-ver=1.4
cd-journal=joma
no-vol=193
cd-vols=
no-issue=
article-no=
start-page=109994
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202312
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of stomach inflation during cardiopulmonary resuscitation on return of spontaneous circulation in out-of-hospital cardiac arrest patients: A retrospective observational study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background: Gastric inflation caused by excessive ventilation is a common complication of cardiopulmonary resuscitation. Gastric inflation may further compromise ventilation via increases in intrathoracic pressure, leading to decreased venous return and cardiac output, which may impair out-of-hospital cardiac arrest (OHCA) outcomes. The purpose of this study was to measure the gastric volume of OHCA patients using computed tomography (CT) scan images and evaluate the effect of gastric inflation on return of spontaneous circulation (ROSC).
Methods: In this single-center, retrospective, observational study, CT scan was conducted after ROSC or immediately after death. Total gastric volume was measured. Primary outcome was ROSC. Achievement of ROSC was compared in the gastric distention group and the no gastric distention group; gastric distension was defined as total gastric volume in the ?75th percentile. Additionally, factors associated with gastric distention were examined.
Results: A total of 446 cases were enrolled in the study; 120 cases (27%) achieved ROSC. The median gastric volume was 400 ml for all OHCA subjects; 1068 ml in gastric distention group vs. 287 ml in no gastric distention group. There was no difference in ROSC between the groups (27/112 [24.1%] vs. 93/334 [27.8%], p = 0.440). Gastric distention did not have a significant impact, even after adjustments (adjusted odds ratio 0.73, 95% confidence interval [0.42?1.29]). Increased gastric volume was associated with longer emergency medical service activity time.
Conclusions: We observed a median gastric volume of 400 ml in patients after OHCA resuscitation. In our setting, gastric distention did not prevent ROSC.
en-copyright=
kn-copyright=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HanafusaHiroaki
en-aut-sei=Hanafusa
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YorifujiTakashi
en-aut-sei=Yorifuji
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WeissmanAlexandra
en-aut-sei=Weissman
en-aut-mei=Alexandra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=RittenbergerJon C.
en-aut-sei=Rittenberger
en-aut-mei=Jon C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=GuyetteFrancis X.
en-aut-sei=Guyette
en-aut-mei=Francis X.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=FujishimaMamoru
en-aut-sei=Fujishima
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MaeyamaHiroki
en-aut-sei=Maeyama
en-aut-mei=Hiroki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=NakaoAstunori
en-aut-sei=Nakao
en-aut-mei=Astunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Emergency and Critical Care Center, Tsuyama Chuo Hospital
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Epidemiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency Medicine, University of Pittsburgh School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Emergency Medicine, Guthrie Robert Packer Hospital
kn-affil=
affil-num=8
en-affil=Department of Emergency Medicine, University of Pittsburgh School of Medicine
kn-affil=
affil-num=9
en-affil=Department of Radiology, Tsuyama Chuo Hospital
kn-affil=
affil-num=10
en-affil=Emergency and Critical Care Center, Tsuyama Chuo Hospital
kn-affil=
affil-num=11
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=Heart arrest
kn-keyword=Heart arrest
en-keyword=Cardiopulmonary resuscitation
kn-keyword=Cardiopulmonary resuscitation
en-keyword=Airway management
kn-keyword=Airway management
en-keyword=Ventilation
kn-keyword=Ventilation
en-keyword=Insufflation
kn-keyword=Insufflation
en-keyword=Regurgitation
kn-keyword=Regurgitation
END
start-ver=1.4
cd-journal=joma
no-vol=47
cd-vols=
no-issue=3
article-no=
start-page=237
end-page=249
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231222
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=International Trends in Adverse Drug Event-Related Mortality from 2001 to 2019: An Analysis of the World Health Organization Mortality Database from 54 Countries
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background and Objective
Adverse drug events (ADEs) are becoming a significant public health issue. However, reports on ADE-related mortality are limited to national-level evaluations. Therefore, we aimed to reveal overall trends in ADE-related mortality across the 21st century on an international level.
Methods
This observational study analysed long-term trends in ADE-related mortality rates from 2001 to 2019 using the World Health Organization Mortality Database. The rates were analysed according to sex, age and region. North America, Latin America and the Caribbean, Western Europe, Eastern Europe and Western Pacific regions were assessed. Fifty-four countries were included with four-character International Statistical Classification of Disease and Related Health Problems, Tenth Revision codes in the database, population data in the World Population Prospects 2019 report, mortality data in more than half of the study period, and high-quality or medium-quality death registration data. A locally weighted regression curve was used to show international trends in age-standardised rates.
Results
The global ADE-related mortality rate per 100,000 population increased from 2.05 (95% confidence interval 0.92?3.18) in 2001 to 6.86 (95% confidence interval 5.76?7.95) in 2019. Mortality rates were higher among men than among women, especially in those aged 20?50 years. The population aged ??75 years had higher ADE-related mortality rates than the younger population. North America had the highest mortality rate among the five regions. The global ADE-related mortality rate increased by approximately 3.3-fold from 2001 to 2019.
Conclusions
The burden of ADEs has increased internationally with rising mortality rates. Establishing pharmacovigilance systems can facilitate efforts to reduce ADE-related mortality rates globally.
en-copyright=
kn-copyright=
en-aut-name=KoyamaToshihiro
en-aut-sei=Koyama
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IinumaShunya
en-aut-sei=Iinuma
en-aut-mei=Shunya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamamotoMichio
en-aut-sei=Yamamoto
en-aut-mei=Michio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NiimuraTakahiro
en-aut-sei=Niimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=OsakiYuka
en-aut-sei=Osaki
en-aut-mei=Yuka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NishimuraSayoko
en-aut-sei=Nishimura
en-aut-mei=Sayoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HaradaKo
en-aut-sei=Harada
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Human Sciences, Osaka University, Osaka, Japan RIKEN Center for Advanced Intelligence Project,
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=5
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Health Data Science, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Infectious Diseases, Okayama University Hospital
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=
article-no=
start-page=100507
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202312
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Treatment patterns and clinician stress related to care of out-of-hospital cardiac arrest patients with a do not attempt resuscitation order
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Objective: This research investigated treatment patterns for out-of-hospital cardiac arrest patients with Do Not Attempt Resuscitation orders in Japanese emergency departments and the associated clinician stress.
Methods: A cross-sectional survey was conducted at 9 hospitals in Okayama, Japan, targeting emergency department nurses and physicians. The questionnaire inquired about the last treated out-of-hospital cardiac arrest patient with a Do Not Attempt Resuscitation. We assessed emotional stress on a 0?10 scale and moral distress on a 1?5 scale among clinicians.
Results: Of 208 participants, 107 (51%) had treated an out-of-hospital cardiac arrest patient with a Do Not Attempt Resuscitation order in the past 6 months. Of these, 65 (61%) clinicians used a “slow code” due to perceived futility in resuscitation (42/65 [65%]), unwillingness to terminate resuscitation upon arrival (38/65 [59%]), and absence of family at the time of patient’s arrival (35/65 [54%]). Female clinicians had higher emotional stress (5 vs. 3; P = 0.007) and moral distress (3 vs. 2; P = 0.002) than males. Nurses faced more moral distress than physicians (3 vs. 2; P < 0.001). Adjusted logistic regression revealed that having performed a “slow code” (adjusted odds ratio, 5.09 [95% CI, 1.68?17.87]) and having greater ethical concerns about “slow code” (adjusted odds ratio, 0.35 [95% CI, 0.19?0.58]) were associated with high stress levels.
Conclusions: The prevalent use of “slow code” for out-of-hospital cardiac arrest patients with Do Not Attempt Resuscitation orders underscores the challenges in managing these patients in clinical practice.
en-copyright=
kn-copyright=
en-aut-name=TanabeRyo
en-aut-sei=Tanabe
en-aut-mei=Ryo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HongoTakashi
en-aut-sei=Hongo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NojimaTsuyoshi
en-aut-sei=Nojima
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ElmerJonathan
en-aut-sei=Elmer
en-aut-mei=Jonathan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Emergency Medicine, University of Pittsburgh
kn-affil=
affil-num=7
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Do not attempt resuscitation
kn-keyword=Do not attempt resuscitation
en-keyword=Out-of-hospital cardiac arrest
kn-keyword=Out-of-hospital cardiac arrest
en-keyword=Emergency department
kn-keyword=Emergency department
en-keyword=Clinicians
kn-keyword=Clinicians
en-keyword=Slow code
kn-keyword=Slow code
en-keyword=Stress
kn-keyword=Stress
END
start-ver=1.4
cd-journal=joma
no-vol=186
cd-vols=
no-issue=
article-no=
start-page=4189
end-page=4203.e22
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230914
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Structure of the thrombopoietin-MPL receptor complex is a blueprint for biasing hematopoiesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thrombopoietin (THPO or TPO) is an essential cytokine for hematopoietic stem cell (HSC) maintenance and megakaryocyte differentiation. Here, we report the 3.4 ? resolution cryoelectron microscopy structure of the extracellular TPO-TPO receptor (TpoR or MPL) signaling complex, revealing the basis for homodimeric MPL activation and providing a structural rationalization for genetic loss-of-function thrombocytopenia mutations. The structure guided the engineering of TPO variants (TPOmod) with a spectrum of signaling activities, from neutral antagonists to partial- and super-agonists. Partial agonist TPOmod decoupled JAK/STAT from ERK/AKT/CREB activation, driving a bias for megakaryopoiesis and platelet production without causing significant HSC expansion in mice and showing superior maintenance of human HSCs in vitro. These data demonstrate the functional uncoupling of the two primary roles of TPO, highlighting the potential utility of TPOmod in hematology research and clinical HSC transplantation.
en-copyright=
kn-copyright=
en-aut-name=TsutsumiNaotaka
en-aut-sei=Tsutsumi
en-aut-mei=Naotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MasoumiZahra
en-aut-sei=Masoumi
en-aut-mei=Zahra
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=JamesSophie C.
en-aut-sei=James
en-aut-mei=Sophie C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TuckerJulie A.
en-aut-sei=Tucker
en-aut-mei=Julie A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=WinkelmannHauke
en-aut-sei=Winkelmann
en-aut-mei=Hauke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GreyWilliam
en-aut-sei=Grey
en-aut-mei=William
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=PictonLora K.
en-aut-sei=Picton
en-aut-mei=Lora K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=MossLucie
en-aut-sei=Moss
en-aut-mei=Lucie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=WilsonSteven C.
en-aut-sei=Wilson
en-aut-mei=Steven C.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=CaveneyNathanael A.
en-aut-sei=Caveney
en-aut-mei=Nathanael A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=JudeKevin M.
en-aut-sei=Jude
en-aut-mei=Kevin M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=GatiCornelius
en-aut-sei=Gati
en-aut-mei=Cornelius
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=PiehlerJacob
en-aut-sei=Piehler
en-aut-mei=Jacob
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HitchcockIan S.
en-aut-sei=Hitchcock
en-aut-mei=Ian S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=GarciaK. Christopher
en-aut-sei=Garcia
en-aut-mei=K. Christopher
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=York Biomedical Research Institute, Department of Biology, University of York
kn-affil=
affil-num=3
en-affil=York Biomedical Research Institute, Department of Biology, University of York
kn-affil=
affil-num=4
en-affil=York Biomedical Research Institute, Department of Biology, University of York
kn-affil=
affil-num=5
en-affil=Department of Biology/Chemistry and Center of Cellular Nanoanalytics, Osnabr?ck University
kn-affil=
affil-num=6
en-affil=York Biomedical Research Institute, Department of Biology, University of York
kn-affil=
affil-num=7
en-affil=Department of Molecular and Cellular Physiology, Stanford University School of Medicine
kn-affil=
affil-num=8
en-affil=York Biomedical Research Institute, Department of Biology, University of York
kn-affil=
affil-num=9
en-affil=Department of Molecular and Cellular Physiology, Stanford University School of Medicine
kn-affil=
affil-num=10
en-affil=Department of Molecular and Cellular Physiology, Stanford University School of Medicine
kn-affil=
affil-num=11
en-affil=Department of Molecular and Cellular Physiology, Stanford University School of Medicine
kn-affil=
affil-num=12
en-affil=Department of Structural Biology, Stanford University School of Medicine
kn-affil=
affil-num=13
en-affil=Department of Biology/Chemistry and Center of Cellular Nanoanalytics, Osnabr?ck University
kn-affil=
affil-num=14
en-affil=York Biomedical Research Institute, Department of Biology, University of York
kn-affil=
affil-num=15
en-affil=Department of Molecular and Cellular Physiology, Stanford University School of Medicine
kn-affil=
en-keyword=thrombopoietin
kn-keyword=thrombopoietin
en-keyword=TpoR
kn-keyword=TpoR
en-keyword=c-MPL
kn-keyword=c-MPL
en-keyword=structure
kn-keyword=structure
en-keyword=cryo-EM
kn-keyword=cryo-EM
en-keyword=signaling
kn-keyword=signaling
en-keyword=JAK-STAT
kn-keyword=JAK-STAT
en-keyword=mTOR
kn-keyword=mTOR
en-keyword=hematopoiesis
kn-keyword=hematopoiesis
en-keyword=ligand engineering
kn-keyword=ligand engineering
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=12
article-no=
start-page=e8364
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231221
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Nontuberculous mycobacterial abscess of lacrimal sac and eyelid debridement: Case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 56-year-old otherwise healthy woman developed abscess from dacryocystitis in the right lower eyelid. The smear of puncture fluid showed acid-fast bacilli and Mycobacterium abscessus was identified after a month. The early start of clarithromycin/ethambutol was switched to clarithromycin/levofloxacin. Debridement specimen after 7-month treatment showed granulomatous tissue with no bacilli.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YamadaKiyoshi
en-aut-sei=Yamada
en-aut-mei=Kiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NoseMotoko
en-aut-sei=Nose
en-aut-mei=Motoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanimotoYasushi
en-aut-sei=Tanimoto
en-aut-mei=Yasushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Plastic and Reconstructive Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Clinical Laboratory, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Allergy and Respiratory Medicine, Okayama University Hospital
kn-affil=
en-keyword=debridement
kn-keyword=debridement
en-keyword=eyelid
kn-keyword=eyelid
en-keyword=lacrimal sac
kn-keyword=lacrimal sac
en-keyword=Mycobacterium abscessus
kn-keyword=Mycobacterium abscessus
en-keyword=nontuberculous mycobacteria
kn-keyword=nontuberculous mycobacteria
END
start-ver=1.4
cd-journal=joma
no-vol=23
cd-vols=
no-issue=1
article-no=
start-page=843
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231108
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Ligneous periodontitis exacerbated by Beh?et’s disease in a patient with plasminogen deficiency and a stop-gained variant PLG c.1468C?>?T: a case report
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Background Plasminogen serves as the precursor to plasmin, an essential element in the fibrinolytic process, and is synthesized primarily in the liver. Plasminogen activation occurs through the action of plasminogen activator, converting it into plasmin. This conversion greatly enhances the fibrinolytic system within tissues and blood vessels, facilitating the dissolution of fibrin clots. Consequently, congenital deficiency of plasminogen results in impaired fibrin degradation. Patients with plasminogen deficiency typically exhibit fibrin deposits in various mucosal sites throughout the body, including the oral cavity, eyes, vagina, and digestive organs. Behcet's disease is a chronic recurrent systemic inflammatory disease with four main symptoms: aphthous ulcers of the oral mucosa, vulvar ulcers, skin symptoms, and eye symptoms, and has been reported worldwide. This disease is highly prevalent around the Silk Road from the Mediterranean to East Asia.
We report a case of periodontitis in a patient with these two rare diseases that worsened quickly, leading to alveolar bone destruction. Genetic testing revealed a novel variant characterized by a stop-gain mutation, which may be a previously unidentified etiologic gene associated with decreased plasminogen activity.
Case presentation This case report depicts a patient diagnosed with ligneous gingivitis during childhood, originating from plasminogen deficiency and progressing to periodontitis. Genetic testing revealed a suspected association with the PLG c.1468C?>?T (p.Arg490*) stop-gain mutation. The patient's periodontal condition remained stable with brief intervals of supportive periodontal therapy. However, the emergence of Beh?et's disease induced acute systemic inflammation, necessitating hospitalization and treatment with steroids. During hospitalization, the dental approach focused on maintaining oral hygiene and alleviating contact-related pain. The patient's overall health improved with inpatient care and the periodontal tissues deteriorated.
Conclusions Collaborative efforts between medical and dental professionals are paramount in comprehensively evaluating and treating patients with intricate complications from rare diseases. Furthermore, the PLG c.1468C?>?T (p.Arg490*) stop-gain mutation could contribute to the association between plasminogen deficiency and related conditions.
en-copyright=
kn-copyright=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HiraiAnna
en-aut-sei=Hirai
en-aut-mei=Anna
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IdeguchiHidetaka
en-aut-sei=Ideguchi
en-aut-mei=Hidetaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=YamamotoHideki
en-aut-sei=Yamamoto
en-aut-mei=Hideki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatoFumino
en-aut-sei=Kato
en-aut-mei=Fumino
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ObataKyoichi
en-aut-sei=Obata
en-aut-mei=Kyoichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OgawaTatsuo
en-aut-sei=Ogawa
en-aut-mei=Tatsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=NakanoKeisuke
en-aut-sei=Nakano
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=NakadoiTakato
en-aut-sei=Nakadoi
en-aut-mei=Takato
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KatsuyamaEri
en-aut-sei=Katsuyama
en-aut-mei=Eri
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IbaragiSoichiro
en-aut-sei=Ibaragi
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=YamamotoTadashi
en-aut-sei=Yamamoto
en-aut-mei=Tadashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NagatsukaHitoshi
en-aut-sei=Nagatsuka
en-aut-mei=Hitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=HirasawaAkira
en-aut-sei=Hirasawa
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Clinical Genomic Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Clinical Genomic Medicine, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=The Center for Graduate Medical Education (Dental Division), Okayama University Hospital
kn-affil=
affil-num=14
en-affil=Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Clinical Genomic Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=16
en-affil=Department of Pathophysiology?Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=Ligneous periodontitis
kn-keyword=Ligneous periodontitis
en-keyword=Plasminogen deficiency
kn-keyword=Plasminogen deficiency
en-keyword=PLG
kn-keyword=PLG
en-keyword=Behcet's disease
kn-keyword=Behcet's disease
en-keyword=Gingival hyperplasia
kn-keyword=Gingival hyperplasia
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=11
article-no=
start-page=1562
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231024
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel Iron Chelators, Super-Polyphenols, Show Antimicrobial Effects against Cariogenic Streptococcus mutans
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dental caries are an oral infectious disease that can affect human health both orally and systemically. It remains an urgent issue to establish a novel antibacterial method to prevent oral infection for a healthy life expectancy. The aim of this study was to evaluate the inhibitory effects of novel iron chelators, super-polyphenols (SPs), on the cariogenic bacterium Streptococcus mutans, in vitro. SPs were developed to reduce the side effects of iron chelation therapy and were either water-soluble or insoluble depending on their isoforms. We found that SP6 and SP10 inhibited bacterial growth equivalent to povidone-iodine, and viability tests indicated that their effects were bacteriostatic. These results suggest that SP6 and SP10 have the potential to control oral bacterial infections such as Streptococcus mutans.
en-copyright=
kn-copyright=
en-aut-name=Shinoda-ItoYuki
en-aut-sei=Shinoda-Ito
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OmoriKazuhiro
en-aut-sei=Omori
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoTakashi
en-aut-sei=Ito
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NakayamaMasaaki
en-aut-sei=Nakayama
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IkedaAtsushi
en-aut-sei=Ikeda
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ItoMasahiro
en-aut-sei=Ito
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TakashibaShogo
en-aut-sei=Takashiba
en-aut-mei=Shogo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Oral Microbiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Periodontics & Endodontics, Division of Dentistry, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Pathology and Experimental Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Pathophysiology-Periodontal Science, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=antimicrobial
kn-keyword=antimicrobial
en-keyword=iron chelator
kn-keyword=iron chelator
en-keyword=oral infection
kn-keyword=oral infection
en-keyword=Streptococcus mutans
kn-keyword=Streptococcus mutans
en-keyword=super-polyphenols
kn-keyword=super-polyphenols
END
start-ver=1.4
cd-journal=joma
no-vol=38
cd-vols=
no-issue=1
article-no=
start-page=e15169
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231026
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Impact of changes in skeletal muscle mass and quality during the waiting time on outcomes of lung transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: The association of changes in skeletal muscle mass and quality during the waiting time with outcomes of lung transplantation (LT) remains unclear. We aimed to examine the association of changes in skeletal muscle mass and quality during the waiting time, as well as preoperative skeletal muscle mass and quality, with outcomes of LT.
Methods: This study included individuals who underwent LT from brain-dead donors. Skeletal muscle mass (cm2/m2) and quality (mean Hounsfield units [HU]) of the erector spinae muscle at the 12th thoracic level were evaluated using computed tomography. Preoperative skeletal muscle mass and quality, and their changes during the waiting time were calculated. We evaluated the associations among mechanical ventilation (MV) duration, intensive care unit (ICU) length of stay (LOS), hospital LOS, 6-minute walk distance at discharge, and 5-year survival after LT.
Results: This study included 98 patients. The median waiting time was 594.5 days (interquartile range [IQR], 355.0?913.0). The median changes in skeletal muscle mass and quality were ?4.4% (IQR, ?13.3?3.1) and ?2.9% (IQR, ?16.0?4.1), respectively. Severe low skeletal muscle mass at LT was associated with prolonged ICU LOS (B = 8.46, 95% confidence interval [CI]: .51?16.42) and hospital LOS (B = 36.00, 95% CI: 3.23?68.78). Pronounced decrease in skeletal muscle mass during the waiting time was associated with prolonged MV duration (B = 7.85, 95% CI: .89?14.81) and ICU LOS (B = 7.97, 95% CI: .83?15.10).
Conclusion: Maintaining or increasing skeletal muscle mass during the waiting time would be beneficial to improve the short-term outcomes of LT.
en-copyright=
kn-copyright=
en-aut-name=HagiyamaAkikazu
en-aut-sei=Hagiyama
en-aut-mei=Akikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsubaraKei
en-aut-sei=Matsubara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KatayamaYoshimi
en-aut-sei=Katayama
en-aut-mei=Yoshimi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamadaMasanori
en-aut-sei=Hamada
en-aut-mei=Masanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SendaMasuo
en-aut-sei=Senda
en-aut-mei=Masuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Division of Physical Medicine and Rehabilitation, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=computed tomography
kn-keyword=computed tomography
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=prognosis
kn-keyword=prognosis
en-keyword=skeletal muscle
kn-keyword=skeletal muscle
en-keyword=waiting time
kn-keyword=waiting time
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ベイズ統計を用いた頭部CT検査における検査実施者の造影効果に与える影響に関する研究
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SUGIMOTOKohei
en-aut-sei=SUGIMOTO
en-aut-mei=Kohei
kn-aut-name=杉本昂平
kn-aut-sei=杉本
kn-aut-mei=昂平
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=ウシ凍結融解精子の運動性及び生存性に影響を及ぼす諸因子に関する評価
kn-title=Assessment of factors affecting the motility and viability of frozen-thawed bull spermatozoa
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NGUYEN THANH HAI
en-aut-sei=NGUYEN THANH HAI
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=岡山大学大学院環境生命科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=SK-Gd実験における中性子同定手法の開発と超新星背景ニュートリノの探索
kn-title=Development of Neutron Tagging Algorithm and Search for Supernova Relic Neutrino in SK-Gd Experiment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HARADAMasayuki
en-aut-sei=HARADA
en-aut-mei=Masayuki
kn-aut-name=原田将之
kn-aut-sei=原田
kn-aut-mei=将之
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=成人期自閉症スペクトラム障害におけるSafe and Sound Protocolの初期成果:探索的介入研究
kn-title=Initial Outcomes of the Safe and Sound Protocol on Patients with Adult Autism Spectrum Disorder: Exploratory Pilot Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAWAIHiroki
en-aut-sei=KAWAI
en-aut-mei=Hiroki
kn-aut-name=河合弘樹
kn-aut-sei=河合
kn-aut-mei=弘樹
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=小児心臓手術後の呼吸器合併症に対する予防的高流量鼻カニュラ酸素療法の有効性:前向き単一群試験
kn-title=Efficacy of prophylactic high-flow nasal cannula therapy for postoperative pulmonary complications after pediatric cardiac surgery: a prospective single-arm study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHIMIZUTatsuhiko
en-aut-sei=SHIMIZU
en-aut-mei=Tatsuhiko
kn-aut-name=清水達彦
kn-aut-sei=清水
kn-aut-mei=達彦
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=生体肺移植後の長期的なドナーQOLの検討
kn-title=Donor’s long-term quality of life following living-donor lobar lung transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FUJIIKento
en-aut-sei=FUJII
en-aut-mei=Kento
kn-aut-name=藤井健人
kn-aut-sei=藤井
kn-aut-mei=健人
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230925
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=従来のがん治療は、食道がんモデルにおいてがん関連線維芽細胞の賦活化によってがん細胞の悪性能を増強しうる
kn-title=Conventional Cancer Therapies Can Accelerate Malignant Potential of Cancer Cells by Activating Cancer-Associated Fibroblasts in Esophageal Cancer Models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KOMOTOSatoshi
en-aut-sei=KOMOTO
en-aut-mei=Satoshi
kn-aut-name=河本慧
kn-aut-sei=河本
kn-aut-mei=慧
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=11
article-no=
start-page=e8248
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231120
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A simple method for culturing Acanthamoeba from soft contact lens at a clinical laboratory of a hospital: Case report of Acanthamoeba keratitis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 19-year-old woman with pain and injection in the right eye showed spotty corneal infiltration and radiating linear opacity. Suspicious of Acanthamoeba keratitis, corneal scraping, and the soft contact lens were sent to in-house clinical laboratory to culture successfully Acanthamoeba on Sabouraud dextrose agar plate painted with heat-treated dead bacilli.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NoseMotoko
en-aut-sei=Nose
en-aut-mei=Motoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Clinical Laboratory, Okayama University Hospital
kn-affil=
en-keyword=Acanthamoeba keratitis
kn-keyword=Acanthamoeba keratitis
en-keyword=clinical laboratory
kn-keyword=clinical laboratory
en-keyword=culture
kn-keyword=culture
en-keyword=Sabouraud dextrose agar plate
kn-keyword=Sabouraud dextrose agar plate
en-keyword=soft contact lens
kn-keyword=soft contact lens
END
start-ver=1.4
cd-journal=joma
no-vol=3
cd-vols=
no-issue=4
article-no=
start-page=101786
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221216
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A protocol to induce expandable limb-bud mesenchymal cells from human pluripotent stem cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Here, we present a protocol for the selective differentiation of human pluripotent stem cells mimicking human developmental processes into expandable PRRX1+ limb-bud mesenchymal (ExpLBM) cells. This approach enables expansion through serial passage while maintaining capacity for chondrogenic differentiation. For complete details on the use and execution of this protocol, please refer to Yamada et al. (2021, 2022).
en-copyright=
kn-copyright=
en-aut-name=TakaoTomoka
en-aut-sei=Takao
en-aut-mei=Tomoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamadaDaisuke
en-aut-sei=Yamada
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakaradaTakeshi
en-aut-sei=Takarada
en-aut-mei=Takeshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=5
article-no=
start-page=545
end-page=552
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202310
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Endoscopic Manifestations and Clinical Characteristics of Localized Gastric Light-Chain Amyloidosis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=To determine the endoscopic and clinical features of localized gastric amyloid light-chain (AL) amyloidosis, we retrospectively examined the characteristics of nine patients (eight men and one woman) encountered by the hospitals in our network. Lesions were predominantly flat and depressed with surface vascular dilatation (n=5); others were characterized by subepithelial lesions (n=2), mucosal color change (n=1), and a mass-like morphology with swollen mucosal folds (n=1). Colonoscopy (n=7), video capsule enteroscopy (n=2), serum (n=5) and urine immunoelectrophoresis (n=4), and bone marrow examination (n=3) were performed to exclude involvement of organs other than the stomach. As treatment for gastric lesions of AL amyloidosis, one patient each underwent endoscopic submucosal dissection (n=1) and argon plasma coagulation (n=1), while the remaining seven patients underwent no specific treatment. During a mean follow-up of 4.2 years, one patient died 3.2 years after diagnosis, but the cause of death, which occurred in another hospital, was unknown. The remaining eight patients were alive at the last visit. In conclusion, although localized gastric AL amyloidosis can show various macroscopic features on esophagogastroduodenoscopy, flat, depressed lesions with vascular dilatation on the surface are predominant.
en-copyright=
kn-copyright=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaShouichi
en-aut-sei=Tanaka
en-aut-mei=Shouichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ToyokawaTatsuya
en-aut-sei=Toyokawa
en-aut-mei=Tatsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraMamoru
en-aut-sei=Nishimura
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TsuzukiTakao
en-aut-sei=Tsuzuki
en-aut-mei=Takao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MiyaharaKoji
en-aut-sei=Miyahara
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NegishiShin
en-aut-sei=Negishi
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=OhyaShogen
en-aut-sei=Ohya
en-aut-mei=Shogen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OtsukaMotoyuki
en-aut-sei=Otsuka
en-aut-mei=Motoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology, National Hospital Organization Iwakuni Clinical Center
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology, National Hospital Organization Fukuyama Medical Center
kn-affil=
affil-num=4
en-affil=Department of Internal Medicine, Okayama City Hospital
kn-affil=
affil-num=5
en-affil=Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital
kn-affil=
affil-num=6
en-affil=Department of Internal Medicine, Hiroshima City Hiroshima Citizens Hospital
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology, Kagawa Prefectural Central Hospital
kn-affil=
affil-num=8
en-affil=Kawaguchi Medical Clinic
kn-affil=
affil-num=9
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=esophagogastroduodenoscopy
kn-keyword=esophagogastroduodenoscopy
en-keyword=gastric lesion
kn-keyword=gastric lesion
en-keyword=amyloidosis
kn-keyword=amyloidosis
en-keyword=light chain
kn-keyword=light chain
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230929
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Relative stereochemical determination of the C61?C83 fragment of symbiodinolide using a stereodivergent synthetic approach
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Structural determination is required in the use of marine natural products to create novel drugs and drug leads in medicinal chemistry. Symbiodinolide, which is a polyol marine natural product with a molecular weight of 2860, increases the intracellular Ca2+ concentration and exhibits inhibitory activity against cyclooxygenase-1. Seventy percent of the structure of symbiodinolide has been stereochemically clarified. Herein, we report the elucidation of the relative configuration of the C61?C83 fragment, which is among the remaining thirty percent, using a stereodivergent synthetic strategy. We first assigned the relative configuration of the C61?C74 fragment. Two candidate diastereomers of the C61?C74 fragment were synthesized, and their NMR data were compared with those of the natural product, revealing the relative stereochemistry of this component. We then narrowed down the candidate compounds for the C69?C83 fragment from 16 possible diastereomers by analyzing the NMR data of the natural product, and we thus selected eight candidate diastereomers. Stereodivergent synthesis of the candidates for this fragment and comparison of the NMR data of the natural product and the eight synthetic products resulted in the relative stereostructural clarification of the C69?C83 fragment. These individually determined relative stereochemistries of the C61?C74 and C69?C83 fragments were connected via the common C69?C73 tetrahydropyran moiety of the fragments. Finally, the relative configuration of the C61?C83 fragment of symbiodinolide was determined. The stereodivergent synthetic approach used in this study can be extended to the stereochemical determination of other fragments of symbiodinolide.
en-copyright=
kn-copyright=
en-aut-name=TakamuraHiroyoshi
en-aut-sei=Takamura
en-aut-mei=Hiroyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HattoriKosuke
en-aut-sei=Hattori
en-aut-mei=Kosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OhashiTakumi
en-aut-sei=Ohashi
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OtsuTaichi
en-aut-sei=Otsu
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KadotaIsao
en-aut-sei=Kadota
en-aut-mei=Isao
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=16
cd-vols=
no-issue=1
article-no=
start-page=3
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2021
dt-pub=20211108
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Evaluation of skin sensitization based on interleukin?2 promoter activation in Jurkat cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Skin sensitization is an allergic reaction caused by certain chemical substances, and is an important factor to be taken into consideration when evaluating the safety of numerous types of products. Although animal testing has long been used to evaluate skin sensitization, the recent trend to regulate such testing has led to the development and use of alternative methods. Skin sensitization reactions are summarized in the form of an adverse outcome pathway consisting of four key events (KE), including covalent binding to skin proteins (KE1), keratinocyte activation (KE2), and dendritic cell activation (KE3). Equivalent alternative methods have been developed for KE1 to KE3, but no valid alternative has yet been developed for the evaluation of KE4 and T?cell activation. Current alternative methods rely on data from KE1 to KE3 to predict the effect of chemicals on skin sensitization. The addition of KE4 data is expected to improve the accuracy and reproducibility of such predictions. The aim of this study was to establish an assay to evaluate KE4 T?cell activation to supplement data on skin sensitization related to KE4. To evaluate T?cell activation, the Jurkat T?cell line stably expressing luciferase downstream of the pro?inflammatory cytokine interleukin?2 promoter was used. After exposure to known skin sensitizing agents and control substances, luciferase activity measurements revealed that this assay was valid for evaluating skin sensitization. However, two skin sensitizers known to have immunosuppressive effects on T?cells reacted negatively in this assay. The results revealed that this assay simultaneously allows for monitoring of the skin sensitization and immuno?suppressiveness of chemical substances and supplements KE4 T?cell activation data, and may thus contribute to reducing the use of animal experiments.
en-copyright=
kn-copyright=
en-aut-name=NagahataTaichi
en-aut-sei=Nagahata
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TsujinoYoshio
en-aut-sei=Tsujino
en-aut-mei=Yoshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TakayamaEiji
en-aut-sei=Takayama
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=HikasaHaruka
en-aut-sei=Hikasa
en-aut-mei=Haruka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SatohAyano
en-aut-sei=Satoh
en-aut-mei=Ayano
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Science, Technology and Innovation, Kobe University
kn-affil=
affil-num=3
en-affil=Department of Oral Biochemistry, Asahi University School of Dentistry
kn-affil=
affil-num=4
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=skin sensitization
kn-keyword=skin sensitization
en-keyword=immunotoxicity
kn-keyword=immunotoxicity
en-keyword=interleukin-2 promoter
kn-keyword=interleukin-2 promoter
en-keyword=Jurkat
kn-keyword=Jurkat
en-keyword=T-cell activation
kn-keyword=T-cell activation
END
start-ver=1.4
cd-journal=joma
no-vol=10
cd-vols=
no-issue=
article-no=
start-page=1261330
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230907
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=In vivo tracking transplanted cardiomyocytes derived from human induced pluripotent stem cells using nuclear medicine imaging
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: Transplantation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) is a promising treatment for heart failure. Information on long-term cell engraftment after transplantation is clinically important. However, clinically applicable evaluation methods have not yet been established.
Methods: In this study, to noninvasively assess transplanted cell engraftment, human SLC5A5, which encodes a sodium/iodide symporter (NIS) that transports radioactive tracers such as 125I, 18F-tetrafluoroborate (TFB), and 99mTc-pertechnetate (99mTcO4?), was transduced into human induced pluripotent stem cells (iPSCs), and nuclear medicine imaging was used to track engrafted human iPSC-CMs.
Results: To evaluate the pluripotency of NIS-expressing human iPSCs, they were subcutaneously transplanted into immunodeficient rats. Teratomas were detected by 99mTcO4? single photon emission computed tomography (SPECT/CT) imaging. NIS expression and the uptake ability of 125I were maintained in purified human iPSC-CMs. NIS-expressing human iPSC-CMs transplanted into immunodeficient rats could be detected over time using 99mTcO4? SPECT/CT imaging. Unexpectedly, NIS expression affected cell proliferation of human iPSCs and iPSC-derived cells.
Discussion: Such functionally designed iPSC-CMs have potential clinical applications as a noninvasive method of grafted cell evaluation, but further studies are needed to determine the effects of NIS transduction on cellular characteristics and functions.
en-copyright=
kn-copyright=
en-aut-name=SaitoYukihiro
en-aut-sei=Saito
en-aut-mei=Yukihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NoseNaoko
en-aut-sei=Nose
en-aut-mei=Naoko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IidaToshihiro
en-aut-sei=Iida
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=AkazawaKaoru
en-aut-sei=Akazawa
en-aut-mei=Kaoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KannoTakayuki
en-aut-sei=Kanno
en-aut-mei=Takayuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujimotoYuki
en-aut-sei=Fujimoto
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SasakiTakanori
en-aut-sei=Sasaki
en-aut-mei=Takanori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AkehiMasaru
en-aut-sei=Akehi
en-aut-mei=Masaru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HiguchiTakahiro
en-aut-sei=Higuchi
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=AkagiSatoshi
en-aut-sei=Akagi
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YoshidaMasashi
en-aut-sei=Yoshida
en-aut-mei=Masashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=MiyoshiToru
en-aut-sei=Miyoshi
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=ItoHiroshi
en-aut-sei=Ito
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=NakamuraKazufumi
en-aut-sei=Nakamura
en-aut-mei=Kazufumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
affil-num=1
en-affil=Department of Cardiovascular Medicine, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Okayama Medical Innovation Center, Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Okayama Medical Innovation Center, Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Molecular Imaging Project of RECTOR Program, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Chronic Kidney Disease and Cardiovascular Disease, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Department of General Internal Medicine 3, Kawasaki Medical School
kn-affil=
affil-num=14
en-affil=Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=sodium/iodide symporter
kn-keyword=sodium/iodide symporter
en-keyword=human induced pluripotent stem cell-derived cardiomyocytes
kn-keyword=human induced pluripotent stem cell-derived cardiomyocytes
en-keyword=single photon emission computed tomography
kn-keyword=single photon emission computed tomography
en-keyword=cell-based therapy
kn-keyword=cell-based therapy
en-keyword=in vivo imaging
kn-keyword=in vivo imaging
END
start-ver=1.4
cd-journal=joma
no-vol=361
cd-vols=
no-issue=
article-no=
start-page=114603
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231016
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=A soft rotary actuator with a flexible shaft using flexible pneumatic actuators
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=This paper proposes a soft rotary actuator that can rotate even when its shaft is bent. The tested rotary actuator consists of three Extension-type Flexible Pneumatic Actuators (EFPA), flexible plates for restraining the EFPAs geometrically, and a polyurethane tube as a shaft. The EFPA consists of a silicone rubber tube covered with a sleeve that can expand significantly in the axial direction when the tube is pressurized. By restraining the EFPA to a helical shape using plates, the proposed rotary actuator can rotate when the three EFPAs are extended in the rotational direction upon the application of pressure. It is confirmed that the tested actuator could rotate even if the shaft is bent, because the shaft and EFPAs consist of flexible materials. The maximum rotation angle and torque are approximately 400° and 0.5 Nm, respectively, for an input pressure of 500 kPa. An analytical model of the tested actuator is proposed to predict the relationship between the rotation angle and the input pressure. A comparison between the calculated and experimental rotation angles reveals that the experimental results can be accurately predicted using the proposed analytical model, which considers the effects of EFPA friction and restraining.
en-copyright=
kn-copyright=
en-aut-name=ShimookaSo
en-aut-sei=Shimooka
en-aut-mei=So
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawanakaMiku
en-aut-sei=Kawanaka
en-aut-mei=Miku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GofukuAkio
en-aut-sei=Gofuku
en-aut-mei=Akio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
en-keyword=Soft rotary actuator
kn-keyword=Soft rotary actuator
en-keyword=Extension soft actuator
kn-keyword=Extension soft actuator
en-keyword=Flexible shaft
kn-keyword=Flexible shaft
en-keyword=Pneumatic drive
kn-keyword=Pneumatic drive
END
start-ver=1.4
cd-journal=joma
no-vol=63
cd-vols=
no-issue=7
article-no=
start-page=e80
end-page=e85
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220528
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Novel animal model of combined generalized and focal epilepsy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thioredoxin, encoded by Txn1, is a critical antioxidant that protects against oxidative damage by regulating the dithiol/disulfide balance of interacting proteins. We recently discovered the Adem rat, an epileptic rat harboring the Txn1-F54L mutation, characterized by wild running and vacuolar degeneration in the midbrain. This study aimed to characterize the classification of epilepsy in Adem rats. We performed simultaneous video-electroencephalographic recordings, magnetic resonance imaging, neurotransmitter measurements using gas chromatography?mass spectrometry (GC-MS), and immunohistochemistry. Adem rats exhibited absence, tonic, and focal seizures. The type of epilepsy was classified as combined generalized and focal epilepsy. Neurotransmitters in the midbrain and cortex were measured at 3 weeks of age, when neuronal cell death occurs in the midbrain. The results of GC-MS ruled out the dominance of the excitatory system in the midbrain and cortex of Adem rats. Activation of astrocytes and microglia was more pronounced at 5 weeks of age, at which time epileptic seizures occurred frequently. The underlying pathology in Adem rats remains unknown. However, glial cell activation and inflammation may play a significant role in the occurrence of epilepsy.
en-copyright=
kn-copyright=
en-aut-name=OhmoriIori
en-aut-sei=Ohmori
en-aut-mei=Iori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OuchidaMamoru
en-aut-sei=Ouchida
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShinoharaMasakazu
en-aut-sei=Shinohara
en-aut-mei=Masakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiKiyoka
en-aut-sei=Kobayashi
en-aut-mei=Kiyoka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=IshidaSaeko
en-aut-sei=Ishida
en-aut-mei=Saeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MashimoTomoji
en-aut-sei=Mashimo
en-aut-mei=Tomoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Section of Developmental Physiology and Pathology, Faculty of Education, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Molecular Oncology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Division of Epidemiology, Kobe University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Otsuka Pharmaceutical
kn-affil=
affil-num=5
en-affil=Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo
kn-affil=
affil-num=6
en-affil=Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, University of Tokyo
kn-affil=
en-keyword=animal model
kn-keyword=animal model
en-keyword=combined generalized and focal epilepsy
kn-keyword=combined generalized and focal epilepsy
en-keyword=oxidative stress
kn-keyword=oxidative stress
en-keyword=thioredoxin
kn-keyword=thioredoxin
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=4
article-no=
start-page=345
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220817
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Effect of bacterium in the malignant wounds of soft tissue sarcoma
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Malignant wounds (MWs) are rare skin lesions, which accompany ulceration, necrosis and infection caused by infiltration or damage by malignant tumor. The present study aimed to investigate the bacterial etiology implicated in MW in soft tissue sarcoma (STS), and the effectiveness of culture?guided perioperative antibacterial administration. A retrospective evaluation was conducted on medical records of patients who presented with MW between 2006 and 2020. A total of seven patients were included in the present study, in whom all tumors were relatively large (>5 cm) and high?grade. Subsequently, five patients underwent limb?sparing surgery, and three patients had distant metastases with a 5?year overall survival of 71%. Preoperative microbiological sampling from the wound identified 11 different bacterial strains in five patients. The infections were polymicrobial with an average of 2.6 strains isolated per patient (1 aerobic, 1.6 anaerobic bacteria). They were predominantly methicillin?sensitive Staphylococcus aureus. Patients with MWs from STS reported symptoms, including bleeding (71%), exudation (71%) and malodorous wound (43%) at the initial presentation; these completely resolved after surgery. All but one patient reported pain at the MW site with an average numeric rating scale of 4.4 at presentation that decreased to 1.4 (P=0.14) and 0.6 (P=0.04) one and two weeks after surgery, respectively. The patients had elevated C?reactive protein (71%), anemia (57%), low albumin (86%) and renal/liver dysfunction (14?29%). One patient was diagnosed with sepsis. Surgical resection afforded symptomatic relief and resolution of abnormal laboratory values. Although selected antibiotics were administered in four patients based on the preoperative antibiotic sensitivity test, surgical site infection (SSI) occurred in three patients. Therefore, the effectiveness of the selected antibiotics based on the results of the preoperative culture in preventing SSI needs to be investigated in the future. In conclusion, physicians should keep in mind that although surgical resection can improve the symptoms and abnormal values in laboratory examination form MW, it is accompanied with a high rate of SSI and poor prognosis.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=malignant wounds
kn-keyword=malignant wounds
en-keyword=soft tissue sarcoma
kn-keyword=soft tissue sarcoma
en-keyword=microbiological analysis
kn-keyword=microbiological analysis
en-keyword=surgical site infection
kn-keyword=surgical site infection
en-keyword=prognosis
kn-keyword=prognosis
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=3
article-no=
start-page=319
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220719
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Clinicopathological and histological analysis of secondary malignant giant cell tumors of bone without radiotherapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Giant cell tumor of bone (GCTB) is an intermediate bone tumor that rarely undergoes malignant transformation. Secondary malignant GCTB (SMGCTB) is defined as a lesion in which high?grade sarcoma occurs at the site of previously treated GCTB. The present study retrospectively reviewed the medical records of patients with GCTB treated at Okayama University Hospital between April 1986 and April 2020. The clinicopathological and histological features of patients with SMGCTB without prior radiotherapy were investigated. A total of three patients (4%) with SMGCTB were detected, and the tumor sites were the distal ulna, distal femur and sacrum. Two of the patients had been treated with curettage and bone graft, and one had been treated with denosumab. In all cases, the lesions were made up of two components, the conventional GCTB component and the malignant component. The Ki67 labeling index was higher in the malignant components of SMGCTB and metastatic lesions compared with that in primary and recurrent conventional GCTB, or the conventional GCTB component of SMGCTB. Moreover, p53 expression was higher in these same components in patients who underwent curettage and bone grafting; however, there was no difference in the patient that received denosumab treatment. In this patient, clinical cancer genomic profiling revealed loss of CDKN2A, CDKN2B and MTAP expression. All three patients developed distant metastasis. The patients with SMGCTB in the ulna and femur died 13 and 54 months after detection of malignant transformation, respectively. The patient with SMGCTB in the sacrum received carbon?ion radiotherapy to the sacrum and pazopanib; the treatment was effective and the patient was alive at the last follow?up 3 years later. In conclusion, p53 may be associated with malignant transformation in GCTB. Future studies should investigate the association of between denosumab treatment and malignant transformation, as well as molecular targeted therapy to improve the clinical outcomes of SMGCTB.
en-copyright=
kn-copyright=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawaiHotaka
en-aut-sei=Kawai
en-aut-mei=Hotaka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=FujiwaraTomohiro
en-aut-sei=Fujiwara
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KunisadaToshiyuki
en-aut-sei=Kunisada
en-aut-mei=Toshiyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=InoueHirofumi
en-aut-sei=Inoue
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FutagawaMashu
en-aut-sei=Futagawa
en-aut-mei=Mashu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KatayamaHaruyoshi
en-aut-sei=Katayama
en-aut-mei=Haruyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=ItanoTakuto
en-aut-sei=Itano
en-aut-mei=Takuto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of Pathology, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Orthopedic Surgery, Okayama University Hospital
kn-affil=
en-keyword=giant cell tumor of bone
kn-keyword=giant cell tumor of bone
en-keyword=malignant transformation
kn-keyword=malignant transformation
en-keyword=p53
kn-keyword=p53
en-keyword=denosumab
kn-keyword=denosumab
en-keyword=molecular targeted therapy
kn-keyword=molecular targeted therapy
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=8
article-no=
start-page=1368
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230729
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Microstructural Control and Alloy Design for Improving the Resistance to Delayed Fracture of Ultrahigh-Strength Automotive Steel Sheets
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The demand for higher-strength automotive steel sheets has increased significantly for lightweight and safe body concepts. However, the increment of the steel strength is often limited by the potential occurrence of delayed fracture. This paper discusses proper microstructure control and alloy design to improve the resistance against the delayed fracture of ultrahigh-strength automotive steel sheets in order to increase the usable upper limit of their strength and provides basic data serving as a practical guide for solving the problem of delayed fracture in ultrahigh-strength automotive steel sheets. It is confirmed that grain refinement, the appropriate dual-phase structure of martensite with ferrite or retained austenite, and surface decarburization, increase the resistance to delayed fracture. In terms of alloy design, the effects of Nb, Mo, and B on the delayed fracture resistance of hot-stamped steels have been investigated. The results suggest that there are other reasons for Nb to improve delayed fracture resistance in addition to grain refinement and the ability to trap hydrogen by its precipitates, as has been conventionally believed. Regarding Mo, it was clearly demonstrated that the segregation of this element at the grain boundary plays a main role in improving the delayed fracture resistance.
en-copyright=
kn-copyright=
en-aut-name=SenumaTakehide
en-aut-sei=Senuma
en-aut-mei=Takehide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OkayasuMitsuhiro
en-aut-sei=Okayasu
en-aut-mei=Mitsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MohrbacherHardy
en-aut-sei=Mohrbacher
en-aut-mei=Hardy
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Department of Mechanical and Systems Engineering, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Mechanical and Systems Engineering, Okayama University
kn-affil=
affil-num=3
en-affil=NiobelCon BV
kn-affil=
en-keyword=delayed fracture
kn-keyword=delayed fracture
en-keyword=hydrogen embrittlement
kn-keyword=hydrogen embrittlement
en-keyword=high-strength steel
kn-keyword=high-strength steel
en-keyword=automotive steel sheets
kn-keyword=automotive steel sheets
en-keyword=microstructural control
kn-keyword=microstructural control
en-keyword=alloy design
kn-keyword=alloy design
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=15
article-no=
start-page=3786
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230726
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Trends in Head and Neck Cancer Mortality from 1999 to 2019 in Japan: An Observational Analysis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Simple Summary The number of cases of head and neck cancer (HNC) and related deaths has recently increased worldwide. To the best of our knowledge, few studies have examined crude or age-adjusted HNC mortality rates in Japan. Therefore, this study aimed to determine the trends in crude and age-adjusted mortality rates for HNC per million individuals in Japan from 1999 to 2019. In Japan, the number of HNC-related deaths increased 1.48-fold. Age-adjusted mortality rates for HNC were four times higher in men than in women, and the rates for both men and women decreased over the 21-year period. This study clarifies the changes in age-adjusted mortality rates of HNC in Japan over time and will aid in developing targeted screening and prevention programs for HNC. Globally, the numbers of head and neck cancer (HNC) cases and related deaths have recently increased. In Japan, few studies have examined crude or age-adjusted HNC mortality rates. Therefore, this study aimed to determine the trends in crude and age-adjusted mortality rates for HNC per million individuals in Japan from 1999 to 2019. Data on HNC-associated deaths were extracted from the national death certificate database using the International Classification of Diseases, Tenth Revision (n = 156,742). HNC mortality trends were analysed using joinpoint regression models to estimate annual percentage change (APC) and average APC (AAPC). Among men, no significant change was observed in the age-adjusted death rate trend from 1999 to 2014; however, a marked decrease was observed from 2014 to 2019. No changing point was observed in women. Age-adjusted mortality rates continuously decreased over the 21-year period, with an AAPC of -0.7% in men and -0.6% in women. In conclusion, the overall trend in age-adjusted rates of HNC-associated deaths decreased, particularly among men, in the past 5 years. These results will contribute to the formulation of medical policies to develop targeted screening and prevention programmes for HNC in Japan and determine the direction of treatment strategies.
en-copyright=
kn-copyright=
en-aut-name=HigashionnaTsukasa
en-aut-sei=Higashionna
en-aut-mei=Tsukasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=HaradaKeisaku
en-aut-sei=Harada
en-aut-mei=Keisaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MaruoAkinari
en-aut-sei=Maruo
en-aut-mei=Akinari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NiimuraTakahiro
en-aut-sei=Niimura
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanElizabeth
en-aut-sei=Tan
en-aut-mei=Elizabeth
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=VuQuynh Thi
en-aut-sei=Vu
en-aut-mei=Quynh Thi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KawabataTakayoshi
en-aut-sei=Kawabata
en-aut-mei=Takayoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=UshioSoichiro
en-aut-sei=Ushio
en-aut-mei=Soichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=HamanoHirofumi
en-aut-sei=Hamano
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KajizonoMakoto
en-aut-sei=Kajizono
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=ZamamiYoshito
en-aut-sei=Zamami
en-aut-mei=Yoshito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=IshizawaKeisuke
en-aut-sei=Ishizawa
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=HaradaKo
en-aut-sei=Harada
en-aut-mei=Ko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=HinotsuShiro
en-aut-sei=Hinotsu
en-aut-mei=Shiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KanoMitsunobu R.
en-aut-sei=Kano
en-aut-mei=Mitsunobu R.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=HagiyaHideharu
en-aut-sei=Hagiya
en-aut-mei=Hideharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KoyamaToshihiro
en-aut-sei=Koyama
en-aut-mei=Toshihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
affil-num=1
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=5
en-affil=Graduate School, Centro Escolar University Manila
kn-affil=
affil-num=6
en-affil=Faculty of Pharmacy, Haiphong University of Medicine and Pharmacy
kn-affil=
affil-num=7
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of Pharmacy, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of Pharmacy, Kitakyushu City Yahata Hospital
kn-affil=
affil-num=12
en-affil=Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School
kn-affil=
affil-num=13
en-affil=Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel
kn-affil=
affil-num=14
en-affil=Department of Biostatistics and Data Management, Sapporo Medical University
kn-affil=
affil-num=15
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=16
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=head and neck cancer
kn-keyword=head and neck cancer
en-keyword=mortality
kn-keyword=mortality
en-keyword=joinpoint regression
kn-keyword=joinpoint regression
en-keyword=trend analysis
kn-keyword=trend analysis
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=7
article-no=
start-page=359
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230624
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=INSUS: Indoor Navigation System Using Unity and Smartphone for User Ambulation Assistance
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Currently, outdoor navigation systems have widely been used around the world on smartphones. They rely on GPS (Global Positioning System). However, indoor navigation systems are still under development due to the complex structure of indoor environments, including multiple floors, many rooms, steps, and elevators. In this paper, we present the design and implementation of the Indoor Navigation System using Unity and Smartphone (INSUS). INSUS shows the arrow of the moving direction on the camera view based on a smartphone's augmented reality (AR) technology. To trace the user location, it utilizes the Simultaneous Localization and Mapping (SLAM) technique with a gyroscope and a camera in a smartphone to track users' movements inside a building after initializing the current location by the QR code. Unity is introduced to obtain the 3D information of the target indoor environment for Visual SLAM. The data are stored in the IoT application server called SEMAR for visualizations. We implement a prototype system of INSUS inside buildings in two universities. We found that scanning QR codes with the smartphone perpendicular in angle between 60 degrees and 100 degrees achieves the highest QR code detection accuracy. We also found that the phone's tilt angles influence the navigation success rate, with 90 degrees to 100 degrees tilt angles giving better navigation success compared to lower tilt angles. INSUS also proved to be a robust navigation system, evidenced by near identical navigation success rate results in navigation scenarios with or without disturbance. Furthermore, based on the questionnaire responses from the respondents, it was generally found that INSUS received positive feedback and there is support to improve the system.
en-copyright=
kn-copyright=
en-aut-name=FajriantiEvianita Dewi
en-aut-sei=Fajrianti
en-aut-mei=Evianita Dewi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=FunabikiNobuo
en-aut-sei=Funabiki
en-aut-mei=Nobuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SukaridhotoSritrusta
en-aut-sei=Sukaridhoto
en-aut-mei=Sritrusta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=PandumanYohanes Yohanie Fridelin
en-aut-sei=Panduman
en-aut-mei=Yohanes Yohanie Fridelin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=DezhengKong
en-aut-sei=Dezheng
en-aut-mei=Kong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=ShihaoFang
en-aut-sei=Shihao
en-aut-mei=Fang
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=Surya Pradhana Anak Agung
en-aut-sei=Surya Pradhana
en-aut-mei= Anak Agung
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Informatic and Computer, Politeknik Elektronika Negeri Surabaya
kn-affil=
affil-num=4
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=6
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=7
en-affil=Indonesian Institute of Business and Technology (INSTIKI)
kn-affil=
en-keyword=indoor navigation system
kn-keyword=indoor navigation system
en-keyword=INSUS
kn-keyword=INSUS
en-keyword=unity
kn-keyword=unity
en-keyword=QR code
kn-keyword=QR code
en-keyword=smartphone
kn-keyword=smartphone
en-keyword=SEMAR
kn-keyword=SEMAR
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=4
article-no=
start-page=347
end-page=357
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202308
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Feasibility of Flow Cytometry Analysis of Gastrointestinal Tract-Residing Lymphocytes in Hematopoietic Stem Cell Transplant Recipients
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The feasibility of lymphocyte isolation and flow cytometry using a single endoscopic biopsy specimen from the gastrointestinal tract of patients who have undergone hematopoietic stem cell transplantation has not been investigated. We acquired 51 endoscopic biopsy specimens from the gastrointestinal tract of 35 patients. We divided the flow cytometry samples into two groups: group A, successful lymphocyte isolation (n=24), and group B, incomplete isolation (n=27). We compared the backgrounds of the samples between the groups to reveal crucial elements in the successful isolation of lymphocytes residing in the gastrointestinal tract. Comparison between the groups revealed lymphocyte isolation success rates differed between biopsy sites. Isolation was most successful in samples from the duodenum (8/9, 88.9%), followed by the ileum (4/8, 50.0%), large intestine (4/11, 36.4%), and stomach (8/23, 34.8%). Tacrolimus was used more frequently in group B (92.6%) than in group A (62.5%) (p=0.015). Logistic regression analysis revealed that isolation from the duodenum or ileum was a significant factor for successful isolation, while tacrolimus use was not statistically significant. In conclusion, the duodenum and ileum are more suitable sites than the stomach and colorectum for acquiring samples for flow cytometry.
en-copyright=
kn-copyright=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KondoTakumi
en-aut-sei=Kondo
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=EnnishiDaisuke
en-aut-sei=Ennishi
en-aut-mei=Daisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MatsuokaKen-ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TakahashiTakahide
en-aut-sei=Takahashi
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HirabataAraki
en-aut-sei=Hirabata
en-aut-mei=Araki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Division of Medical Support, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Division of Medical Support, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=flow cytometry
kn-keyword=flow cytometry
en-keyword=stem cell transplantation
kn-keyword=stem cell transplantation
en-keyword=transplantation-associated microangiopathy
kn-keyword=transplantation-associated microangiopathy
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=7
article-no=
start-page=895
end-page=908
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230705
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=High Expression of MHC Class I Overcomes Cancer Immunotherapy Resistance Due to IFNγ Signaling Pathway Defects
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=IFNγ signaling pathway defects are well-known mechanisms of resistance to immune checkpoint inhibitors. However, conflicting data have been reported, and the detailed mechanisms remain unclear. In this study, we have demonstrated that resistance to immune checkpoint inhibitors owing to IFNγ signaling pathway defects may be primarily caused by reduced MHC-I expression rather than by the loss of inhibitory effects on cellular proliferation or decreased chemokine production. In particular, we found that chemokines that recruit effector T cells were mainly produced by immune cells rather than cancer cells in the tumor microenvironment of a mouse model, with defects in IFNγ signaling pathways. Furthermore, we found a response to immune checkpoint inhibitors in a patient with JAK-negative head and neck squamous cell carcinoma whose HLA-I expression level was maintained. In addition, CRISPR screening to identify molecules associated with elevated MHC-I expression independent of IFNγ signaling pathways demonstrated that guanine nucleotide-binding protein subunit gamma 4 (GNG4) maintained MHC-I expression via the NF-κB signaling pathway. Our results indicate that patients with IFNγ signaling pathway defects are not always resistant to immune checkpoint inhibitors and highlight the importance of MHC-I expression among the pathways and the possibility of NF-κB?targeted therapies to overcome such resistance.
en-copyright=
kn-copyright=
en-aut-name=KawaseKatsushige
en-aut-sei=Kawase
en-aut-mei=Katsushige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=KawashimaShusuke
en-aut-sei=Kawashima
en-aut-mei=Shusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=InozumeTakashi
en-aut-sei=Inozume
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanjiEtsuko
en-aut-sei=Tanji
en-aut-mei=Etsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KawazuMasahito
en-aut-sei=Kawazu
en-aut-mei=Masahito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HanazawaToyoyuki
en-aut-sei=Hanazawa
en-aut-mei=Toyoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=2
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=5
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=6
en-affil=Division of Cell Therapy, Chiba Cancer Center Research Institute
kn-affil=
affil-num=7
en-affil=Department of Otorhinolaryngology/Head & Neck Surgery, Graduate School of Medicine, Chiba University
kn-affil=
affil-num=8
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=14
cd-vols=
no-issue=1
article-no=
start-page=621
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230204
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pivotal role for S-nitrosylation of DNA methyltransferase 3B in epigenetic regulation of tumorigenesis
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=DNA methyltransferases (DNMTs) catalyze methylation at the C5 position of cytosine with S-adenosyl-l-methionine. Methylation regulates gene expression, serving a variety of physiological and pathophysiological roles. The chemical mechanisms regulating DNMT enzymatic activity, however, are not fully elucidated. Here, we show that protein S-nitrosylation of a cysteine residue in DNMT3B attenuates DNMT3B enzymatic activity and consequent aberrant upregulation of gene expression. These genes include Cyclin D2 (Ccnd2), which is required for neoplastic cell proliferation in some tumor types. In cell-based and in vivo cancer models, only DNMT3B enzymatic activity, and not DNMT1 or DNMT3A, affects Ccnd2 expression. Using structure-based virtual screening, we discovered chemical compounds that specifically inhibit S-nitrosylation without directly affecting DNMT3B enzymatic activity. The lead compound, designated DBIC, inhibits S-nitrosylation of DNMT3B at low concentrations (IC50 <= 100nM). Treatment with DBIC prevents nitric oxide (NO)-induced conversion of human colonic adenoma to adenocarcinoma in vitro. Additionally, in vivo treatment with DBIC strongly attenuates tumor development in a mouse model of carcinogenesis triggered by inflammation-induced generation of NO. Our results demonstrate that de novo DNA methylation mediated by DNMT3B is regulated by NO, and DBIC protects against tumor formation by preventing aberrant S-nitrosylation of DNMT3B.
en-copyright=
kn-copyright=
en-aut-name=OkudaKosaku
en-aut-sei=Okuda
en-aut-mei=Kosaku
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NakaharaKengo
en-aut-sei=Nakahara
en-aut-mei=Kengo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ItoAkihiro
en-aut-sei=Ito
en-aut-mei=Akihiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IijimaYuta
en-aut-sei=Iijima
en-aut-mei=Yuta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NomuraRyosuke
en-aut-sei=Nomura
en-aut-mei=Ryosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KumarAshutosh
en-aut-sei=Kumar
en-aut-mei=Ashutosh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=FujikawaKana
en-aut-sei=Fujikawa
en-aut-mei=Kana
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=AdachiKazuya
en-aut-sei=Adachi
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ShimadaYuki
en-aut-sei=Shimada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=FujioSatoshi
en-aut-sei=Fujio
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=YamamotoReina
en-aut-sei=Yamamoto
en-aut-mei=Reina
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TakasugiNobumasa
en-aut-sei=Takasugi
en-aut-mei=Nobumasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=OnumaKunishige
en-aut-sei=Onuma
en-aut-mei=Kunishige
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=OsakiMitsuhiko
en-aut-sei=Osaki
en-aut-mei=Mitsuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=OkadaFutoshi
en-aut-sei=Okada
en-aut-mei=Futoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=UkegawaTaichi
en-aut-sei=Ukegawa
en-aut-mei=Taichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=TakeuchiYasuo
en-aut-sei=Takeuchi
en-aut-mei=Yasuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=YasuiNorihisa
en-aut-sei=Yasui
en-aut-mei=Norihisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
en-aut-name=YamashitaAtsuko
en-aut-sei=Yamashita
en-aut-mei=Atsuko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=19
ORCID=
en-aut-name=MarusawaHiroyuki
en-aut-sei=Marusawa
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=20
ORCID=
en-aut-name=MatsushitaYosuke
en-aut-sei=Matsushita
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=21
ORCID=
en-aut-name=KatagiriToyomasa
en-aut-sei=Katagiri
en-aut-mei=Toyomasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=22
ORCID=
en-aut-name=ShibataTakahiro
en-aut-sei=Shibata
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=23
ORCID=
en-aut-name=UchidaKoji
en-aut-sei=Uchida
en-aut-mei=Koji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=24
ORCID=
en-aut-name=NiuSheng-Yong
en-aut-sei=Niu
en-aut-mei=Sheng-Yong
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=25
ORCID=
en-aut-name=LangNhi B.
en-aut-sei=Lang
en-aut-mei=Nhi B.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=26
ORCID=
en-aut-name=NakamuraTomohiro
en-aut-sei=Nakamura
en-aut-mei=Tomohiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=27
ORCID=
en-aut-name=ZhangKam Y. J.
en-aut-sei=Zhang
en-aut-mei=Kam Y. J.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=28
ORCID=
en-aut-name=LiptonStuart A.
en-aut-sei=Lipton
en-aut-mei=Stuart A.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=29
ORCID=
en-aut-name=UeharaTakashi
en-aut-sei=Uehara
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=30
ORCID=
affil-num=1
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science
kn-affil=
affil-num=4
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=7
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=13
en-affil=Division of Experimental Pathology, Faculty of Medicine, Tottori University
kn-affil=
affil-num=14
en-affil=Division of Experimental Pathology, Faculty of Medicine, Tottori University
kn-affil=
affil-num=15
en-affil=Division of Experimental Pathology, Faculty of Medicine, Tottori University
kn-affil=
affil-num=16
en-affil=Department of Synthetic and Medicinal Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=17
en-affil=Department of Synthetic and Medicinal Chemistry, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=18
en-affil=Laboratory of Structural Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=19
en-affil=Laboratory of Structural Biology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=20
en-affil=Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University
kn-affil=
affil-num=21
en-affil=Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=22
en-affil=Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University
kn-affil=
affil-num=23
en-affil=Graduate School of Bioagricultural Sciences, Nagoya University
kn-affil=
affil-num=24
en-affil=Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo
kn-affil=
affil-num=25
en-affil=Broad Institute of MIT and Harvard
kn-affil=
affil-num=26
en-affil=Neurodegeneration New Medicines Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute
kn-affil=
affil-num=27
en-affil=Neurodegeneration New Medicines Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute
kn-affil=
affil-num=28
en-affil=Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN
kn-affil=
affil-num=29
en-affil=Neurodegeneration New Medicines Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute
kn-affil=
affil-num=30
en-affil=Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=13
cd-vols=
no-issue=1
article-no=
start-page=4720
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230323
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ADAR1 has an oncogenic function and can be a prognostic factor in cervical cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Adenosine deaminase acting on RNA 1 (ADAR1), a recently described epigenetic modifier, is believed to play a critical oncogenic role in human cancers. However, its functional role and clinical significance in cervical cancer (CC) remain unclear. ADAR1 knockdown was performed to investigate its oncogenic functions in SiHa (HPV16), HeLa (HPV18), and Yumoto (non-HPV) CC cell lines. Cytoplasmic and nuclear ADAR1 expression were examined to clarify their correlation with clinicopathological parameters and prognosis in patients with CC. This resulted in increased apoptosis and necroptosis in HPV16 -type SiHa, HPV18-type HeLa, and non-HPV-type Yumoto CC cell lines. Progression-free survival (PFS) rates of patients exhibiting high cytoplasmic and nuclear ADAR1 expression were poorer than those in the other groups (P = 0.016). Multivariate analysis indicated that the combination of higher cytoplasmic and nuclear ADAR1 expression was an independent predictor of prognosis in patients with CC (P = 0.017). ADAR1 could be a potential therapeutic target for HPV-positive or HPV-negative CC. The combination of cytoplasmic and nuclear ADAR1 comprises a better prognostic factor for CC.
en-copyright=
kn-copyright=
en-aut-name=NakamuraKeiichiro
en-aut-sei=Nakamura
en-aut-mei=Keiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=ShigeyasuKunitoshi
en-aut-sei=Shigeyasu
en-aut-mei=Kunitoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkamotoKazuhiro
en-aut-sei=Okamoto
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsuokaHirofumi
en-aut-sei=Matsuoka
en-aut-mei=Hirofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MasuyamaHisashi
en-aut-sei=Masuyama
en-aut-mei=Hisashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=37
cd-vols=
no-issue=11
article-no=
start-page=e15077
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230717
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Percentage of low attenuation area on computed tomography detects chronic lung allograft dysfunction, especially bronchiolitis obliterans syndrome, after bilateral lung transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Introduction: The percentage of low attenuation area (%LAA) on computed tomography (CT) is useful for evaluating lung emphysema, and higher %LAA was observed in patients with chronic lung allograft dysfunction (CLAD). This study investigated the relationship between the %LAA and the development of CLAD after bilateral lung transplantation (LT).
Methods: We conducted a single-center retrospective study of 75 recipients who underwent bilateral LT; the recipients were divided into a CLAD group (n = 30) and a non-CLAD group (n = 45). The %LAA was calculated using CT and compared between the two groups from 4 years before to 4 years after the diagnosis of CLAD. The relationships between the %LAA and the percent baseline values of the pulmonary function test parameters were also calculated.
Results: The %LAA was significantly higher in the CLAD group than in the non-CLAD group from 2 years before to 2 years after the diagnosis of CLAD (P < .05). In particular, patients with bronchiolitis obliterans syndrome (BOS) exhibited significant differences even from 4 years before to 4 years after diagnosis (P < .05). Significant negative correlations between the %LAA and the percent baseline values of the forced expiratory volume in 1 s (r = ?.36, P = .0031), the forced vital capacity (r = ?.27, P = .027), and the total lung capacity (r = ?.40, P < .001) were seen at the time of CLAD diagnosis.
Conclusion: The %LAA on CT was associated with the development of CLAD and appears to have the potential to predict CLAD, especially BOS, after bilateral LT.
en-copyright=
kn-copyright=
en-aut-name=KuboYujiro
en-aut-sei=Kubo
en-aut-mei=Yujiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShiotaniToshio
en-aut-sei=Shiotani
en-aut-mei=Toshio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MatsubaraKei
en-aut-sei=Matsubara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HashimotoKohei
en-aut-sei=Hashimoto
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ShienKazuhiko
en-aut-sei=Shien
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=SuzawaKen
en-aut-sei=Suzawa
en-aut-mei=Ken
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=YamamotoHiromasa
en-aut-sei=Yamamoto
en-aut-mei=Hiromasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=10
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=11
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
en-keyword=bronchiolitis obliterans syndrome
kn-keyword=bronchiolitis obliterans syndrome
en-keyword=chronic lung allograft dysfunction
kn-keyword=chronic lung allograft dysfunction
en-keyword=computed tomography
kn-keyword=computed tomography
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=restrictive allograft syndrome
kn-keyword=restrictive allograft syndrome
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230705
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Bilateral Lacrimal Gland Mantle Cell Lymphoma in 11-Year Follow-Up: Case Report and Review of 48 Cases With Ocular Adnexal Presentation in the Literature
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 63-year-old woman, with 11-year history of breast cancer, showed bilateral lacrimal gland enlargement on magnetic resonance imaging. Gallium-67 scintigraphy, as the standard at that time in 2004, demonstrated abnormally high uptake only in bilateral lacrimal glands. The lacrimal glands were extirpated and the pathological diagnosis was mantle cell lymphoma (MCL). She underwent bilateral orbital radiation, based on no uptake of gallium-67 in other sites of the body. In a month, bone marrow biopsy revealed the infiltration with MCL, positive for cyclin D1. She showed hepatic lymphadenopathy and splenomegaly, and so received 2 cycles of alternating Hyper-CVAD therapy and high-dose methotrexate with cytarabine, combined with rituximab, in 2 months, leading to complete remission. She underwent autologous peripheral blood stem cell transplantation and was well until the age of 68 years when she showed a recurrent intratracheal submucosal lesion of lymphoma and underwent one course of reduced-dose CHOP combined with rituximab. Next year, the left rib resection revealed the metastasis of breast adenocarcinoma, leading to daily oral letrozole. Further 2 years later, computed tomographic scan demonstrated multiple submucosal nodular lesions in the trachea and bronchi, together with cervical and supraclavicular lymphadenopathy, and intratracheal lesion biopsy and bone marrow biopsy proved the involvement with MCL. She underwent 2 courses of bendamustine and rituximab, resulting in complete remission but died of metastatic breast cancer at the age of 74 years. Clinical features in 48 previous cases with ocular adnexal MCL in the literature were summarized in this study.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OkadaKazuya
en-aut-sei=Okada
en-aut-mei=Kazuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NotoharaKenji
en-aut-sei=Notohara
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiiKeiko
en-aut-sei=Fujii
en-aut-mei=Keiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Okayama University
kn-affil=
affil-num=3
en-affil=Kurashiki Central Hospital
kn-affil=
affil-num=4
en-affil=Kurashiki Central Hospital
kn-affil=
affil-num=5
en-affil=Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Okayama University Hospital
kn-affil=
en-keyword=mantle cell lymphoma
kn-keyword=mantle cell lymphoma
en-keyword=lacrimal gland
kn-keyword=lacrimal gland
en-keyword=autologous peripheral blood stem cell transplantation
kn-keyword=autologous peripheral blood stem cell transplantation
en-keyword=breast cancer
kn-keyword=breast cancer
en-keyword=tracheal and bronchial infiltration
kn-keyword=tracheal and bronchial infiltration
END
start-ver=1.4
cd-journal=joma
no-vol=164
cd-vols=
no-issue=
article-no=
start-page=588
end-page=605
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202307
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Design of continuous-time recurrent neural networks with piecewise-linear activation function for generation of prescribed sequences of bipolar vectors
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A recurrent neural network (RNN) can generate a sequence of patterns as the temporal evolution of the output vector. This paper focuses on a continuous-time RNN model with a piecewise-linear activation function that has neither external inputs nor hidden neurons, and studies the problem of finding the parameters of the model so that it generates a given sequence of bipolar vectors. First, a sufficient condition for the model to generate the desired sequence is derived, which is expressed as a system of linear inequalities in the parameters. Next, three approaches to finding solutions of the system of linear inequalities are proposed: One is formulated as a convex quadratic programming problem and others are linear programming problems. Then, two types of sequences of bipolar vectors that can be generated by the model are presented. Finally, the case where the model generates a periodic sequence of bipolar vectors is considered, and a sufficient condition for the trajectory of the state vector to converge to a limit cycle is provided.
en-copyright=
kn-copyright=
en-aut-name=TakahashiNorikazu
en-aut-sei=Takahashi
en-aut-mei=Norikazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamakawaTsuyoshi
en-aut-sei=Yamakawa
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=MinetomaYasuhiro
en-aut-sei=Minetoma
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishiTetsuo
en-aut-sei=Nishi
en-aut-mei=Tetsuo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MigitaTsuyoshi
en-aut-sei=Migita
en-aut-mei=Tsuyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Okayama University
kn-affil=
affil-num=2
en-affil=Kyushu University
kn-affil=
affil-num=3
en-affil=Kyushu University
kn-affil=
affil-num=4
en-affil=Kyushu University
kn-affil=
affil-num=5
en-affil=Okayama University
kn-affil=
en-keyword=Recurrent neural network
kn-keyword=Recurrent neural network
en-keyword=Piecewise-linear activation function
kn-keyword=Piecewise-linear activation function
en-keyword=Sequence
kn-keyword=Sequence
en-keyword=Bipolar vector
kn-keyword=Bipolar vector
en-keyword=Mathematical programming
kn-keyword=Mathematical programming
en-keyword=Limit cycle
kn-keyword=Limit cycle
END
start-ver=1.4
cd-journal=joma
no-vol=15
cd-vols=
no-issue=11
article-no=
start-page=2971
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230530
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Conventional Cancer Therapies Can Accelerate Malignant Potential of Cancer Cells by Activating Cancer-Associated Fibroblasts in Esophageal Cancer Models
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Esophageal cancer is one of the most aggressive tumors, and the outcome remains poor. One contributing factor is the presence of tumors that are less responsive or have increased malignancy when treated with conventional chemotherapy, radiotherapy, or a combination of these. Cancer-associated fibroblasts (CAFs) play an important role in the tumor microenvironment. Focusing on conventional cancer therapies, we investigated how CAFs acquire therapeutic resistance and how they affect tumor malignancy. In this study, low-dose chemotherapy or radiotherapy-induced normal fibroblasts showed enhanced activation of CAFs markers, fibroblast activation protein, and α-smooth muscle actin, indicating the acquisition of malignancy in fibroblasts. Furthermore, CAFs activated by radiotherapy induce phenotypic changes in cancer cells, increasing their proliferation, migration, and invasion abilities. In in vivo peritoneal dissemination models, the total number of tumor nodules in the abdominal cavity was significantly increased in the co-inoculation group of cancer cells and resistant fibroblasts compared to that in the co-inoculation group of cancer cells and normal fibroblasts. In conclusion, we demonstrated that conventional cancer therapy causes anti-therapeutic effects via the activation of fibroblasts, resulting in CAFs. It is important to select or combine modalities of esophageal cancer treatment, recognizing that inappropriate radiotherapy and chemotherapy can lead to resistance in CAF-rich tumors.
en-copyright=
kn-copyright=
en-aut-name=KomotoSatoshi
en-aut-sei=Komoto
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=KatoTakuya
en-aut-sei=Kato
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KobayashiTeruki
en-aut-sei=Kobayashi
en-aut-mei=Teruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NishiwakiNoriyuki
en-aut-sei=Nishiwaki
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NarusakaToru
en-aut-sei=Narusaka
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SatoHiroaki
en-aut-sei=Sato
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatsuraYuki
en-aut-sei=Katsura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KashimaHajime
en-aut-sei=Kashima
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=cancer-associated fibroblast
kn-keyword=cancer-associated fibroblast
en-keyword=chemotherapy
kn-keyword=chemotherapy
en-keyword=radiotherapy
kn-keyword=radiotherapy
en-keyword=esophageal cancer
kn-keyword=esophageal cancer
en-keyword=tumor microenvironment
kn-keyword=tumor microenvironment
END
start-ver=1.4
cd-journal=joma
no-vol=299
cd-vols=
no-issue=4
article-no=
start-page=104587
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202304
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ATP and its metabolite adenosine cooperatively upregulate the antigen-presenting molecules on dendritic cells leading to IFN-gamma production by T cells
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow- derived dendritic cells (BMDCs) as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86 but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8T cells and induced interferon-gamma (IFN-gamma) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigenpresenting and co-stimulatory molecules but not that of coinhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-gamma-producing T cells upon antigen presentation.
en-copyright=
kn-copyright=
en-aut-name=FurutaKazuyuki
en-aut-sei=Furuta
en-aut-mei=Kazuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OnishiHiroka
en-aut-sei=Onishi
en-aut-mei=Hiroka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=IkadaYuki
en-aut-sei=Ikada
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=MasakiKento
en-aut-sei=Masaki
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TanakaSatoshi
en-aut-sei=Tanaka
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KaitoChikara
en-aut-sei=Kaito
en-aut-mei=Chikara
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
kn-affil=
affil-num=6
en-affil=Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=6
article-no=
start-page=e7595
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230620
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=ANCA-associated vasculitis with scleritis, corneal melt, and perforation rescued by rituximab: Case report and literature review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Key Clinical Message: Patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, specifically with myeloperoxidase (MPO)-ANCA, would have a risk for developing corneal melt and perforation abruptly in a short period. It is desirable to have a team of collaboration of rheumatologists and other specialties.
Abstract: An 80-year old man who had been diagnosed 5.5?years previously as ANCA-associated vasculitis by temporal artery biopsy developed corneal melt and perforation with scleritis in both eyes. He underwent successful cataract surgery and retained ambulatory vision with the aid of intravenous rituximab. Two additional patients with similar manifestations were found in the literature.
en-copyright=
kn-copyright=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=Hiramatsu‐AsanoSumie
en-aut-sei=Hiramatsu‐Asano
en-aut-mei=Sumie
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SawachikaHiroshi
en-aut-sei=Sawachika
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NishimuraHirotake
en-aut-sei=Nishimura
en-aut-mei=Hirotake
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Rheumatology, Kawasaki Medical School
kn-affil=
affil-num=3
en-affil=Department of Rheumatology, Kawasaki Medical School
kn-affil=
affil-num=4
en-affil=Department of Pathology, Kawasaki Medical School
kn-affil=
en-keyword=ANCA-associated vasculitis
kn-keyword=ANCA-associated vasculitis
en-keyword=corneal melt and perforation
kn-keyword=corneal melt and perforation
en-keyword=rituximab
kn-keyword=rituximab
en-keyword=scleritis
kn-keyword=scleritis
en-keyword=temporal artery biopsy
kn-keyword=temporal artery biopsy
END
start-ver=1.4
cd-journal=joma
no-vol=2023
cd-vols=
no-issue=6
article-no=
start-page=063H01
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230505
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Angular correlation of the two gamma rays produced in the thermal neutron capture on gadolinium-155 and gadolinium-157
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=The ANNRI-Gd collaboration studied in detail the single gamma-ray spectrum produced from the thermal neutron capture on Gd-155 and Gd-157 in our previous publications. Gadolinium targets were exposed to a neutron beam provided by the Japan Spallation Neutron Source (JSNS) in J-PARC, Japan. In the present analysis, one new additional coaxial germanium crystal was used in combination with the 14 germanium crystals in the cluster detectors to study the angular correlation of the two gamma rays emitted in the same neutron capture. We present for the first time angular correlation functions for two gamma rays produced during the electromagnetic cascade transitions in the (n, gamma) reactions on Gd-155 and Gd-157. As expected, we observe mild angular correlations for the strong, but rare transitions from the resonance state to the two energy levels of known spin-parities. Contrariwise, we observe negligibly small angular correlations for arbitrary pairs of two gamma rays produced in the majority of cascade transitions from the resonance state to the dense continuum states.
en-copyright=
kn-copyright=
en-aut-name=GouxPierre
en-aut-sei=Goux
en-aut-mei=Pierre
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=GlessgenFranz
en-aut-sei=Glessgen
en-aut-mei=Franz
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=GazzolaEnrico
en-aut-sei=Gazzola
en-aut-mei=Enrico
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=ReenMandeep Singh
en-aut-sei=Reen
en-aut-mei=Mandeep Singh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FocillonWilliam
en-aut-sei=Focillon
en-aut-mei=William
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=GoninMichel
en-aut-sei=Gonin
en-aut-mei=Michel
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TanakaTomoyuki
en-aut-sei=Tanaka
en-aut-mei=Tomoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HagiwaraKaito
en-aut-sei=Hagiwara
en-aut-mei=Kaito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=AliAjmi
en-aut-sei=Ali
en-aut-mei=Ajmi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=SudoTakashi
en-aut-sei=Sudo
en-aut-mei=Takashi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KoshioYusuke
en-aut-sei=Koshio
en-aut-mei=Yusuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=SakudaMakoto
en-aut-sei=Sakuda
en-aut-mei=Makoto
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=CollazuolGianmaria
en-aut-sei=Collazuol
en-aut-mei=Gianmaria
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=KimuraAtsushi
en-aut-sei=Kimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=NakamuraShoji
en-aut-sei=Nakamura
en-aut-mei=Shoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=IwamotoNobuyuki
en-aut-sei=Iwamoto
en-aut-mei=Nobuyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=HaradaHideo
en-aut-sei=Harada
en-aut-mei=Hideo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=WurmMichael
en-aut-sei=Wurm
en-aut-mei=Michael
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=5
en-affil=D?partement de Physique, ?cole Polytechnique, IN2P3/CNRS
kn-affil=
affil-num=6
en-affil=D?partement de Physique, ?cole Polytechnique, IN2P3/CNRS
kn-affil=
affil-num=7
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=9
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=10
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=11
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=12
en-affil=Department of Physics, Okayama University
kn-affil=
affil-num=13
en-affil=INFN Sezione di Padova and Universit? di Padova, Dipartimento di Fisica
kn-affil=
affil-num=14
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=15
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=16
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=17
en-affil=Japan Atomic Energy Agency
kn-affil=
affil-num=18
en-affil=Institut f?r Physik, Johannes Gutenberg-Universit?t Mainz
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=3
article-no=
start-page=301
end-page=309
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Associations between Comorbidities and Acute Exacerbation of Interstitial Lung Disease after Primary Lung Cancer Surgery
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Acute exacerbation (AE) of interstitial lung disease (ILD) is a severe complication of lung resection in lung cancer patients with ILD (LC-ILD). This study aimed to assess the predictive value of comorbidities other than ILD for postoperative AE in patients with LC-ILD. We retrospectively evaluated 68 patients with LC-ILD who had undergone lung resection. We classified them into two groups: those who had developed postoperative AE within 30 days after resection and those who had not. We analyzed patient characteristics, high-resolution computed tomography findings, clinical data, pulmonary function, and intraoperative data. The incidence of postoperative AEs was 11.8%. In univariate analysis, performance status (PS), honeycombing, forced vital capacity (FVC), and high hemoglobin A1c (HbA1c) levels without comorbidities were significantly associated with postoperative AE. Patients were divided into two groups according to cutoff levels of those four variables as determined by receiver operating characteristic curves, revealing that the rates of patients without postoperative AE differed significantly between groups. The present results suggested that preoperative comorbidities other than ILD were not risk factors for postoperative AE in patients with LC-ILD. However, a high preoperative HbA1c level, poor PS, low FVC, and honeycombing may be associated with postoperative AE of LC-ILD.
en-copyright=
kn-copyright=
en-aut-name=KatoTakahide
en-aut-sei=Kato
en-aut-mei=Takahide
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiSeigo
en-aut-sei=Miyoshi
en-aut-mei=Seigo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=HamadaChizuru
en-aut-sei=Hamada
en-aut-mei=Chizuru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SanoYoshifumi
en-aut-sei=Sano
en-aut-mei=Yoshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NogamiNaoyuki
en-aut-sei=Nogami
en-aut-mei=Naoyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=YamaguchiOsamu
en-aut-sei=Yamaguchi
en-aut-mei=Osamu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=HamaguchiNaohiko
en-aut-sei=Hamaguchi
en-aut-mei=Naohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine
kn-affil=
affil-num=2
en-affil=Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine
kn-affil=
affil-num=3
en-affil=Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine
kn-affil=
affil-num=4
en-affil=Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine
kn-affil=
affil-num=5
en-affil=Department of Community Medicine, Pulmonology and Cardiology, Ehime University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine
kn-affil=
affil-num=7
en-affil=Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University Graduate School of Medicine
kn-affil=
en-keyword=lung cancer
kn-keyword=lung cancer
en-keyword=interstitial lung disease
kn-keyword=interstitial lung disease
en-keyword=acute exacerbation
kn-keyword=acute exacerbation
en-keyword=comorbidity
kn-keyword=comorbidity
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=3
article-no=
start-page=235
end-page=241
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202306
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Endocrinological Changes after Anamorelin Administration in Patients with Gastrointestinal Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Changes in hormone levels in patients with cancer cachexia after anamorelin administration have not been fully investigated. This study aimed to determine how anamorelin affects the endocrine system in patients with gastrointestinal cancer and cachexia. We prospectively enrolled 13 patients and comprehensively investigated their body weight and levels of serum albumin, hemoglobin A1c (HbA1c), and hormones before (week 0) and 3 and 12 weeks after anamorelin administration. The variables were evaluated at week 3 in 9 patients and at week 12 in 5 patients. At week 3, anamorelin administration resulted in body weight gain and increased the levels of growth hormone and HbA1c, as well as insulin-like growth factor-1 standard deviation scores (IGF-1 SD scores). At the same time, negative correlations were observed between ΔIGF-1 SD score and Δthyroidstimulating hormone (TSH) and between ΔIGF-1 SD score and Δfree testosterone. ΔBody weight and ΔIGF-1 SD score correlated positively at week 12. These results suggest that TSH and free testosterone levels can be affected 3 weeks after anamorelin administration; however, those variables tend to return to a state of equilibrium, and anabolic effects of anamorelin appear in long-term (? 12 weeks) users.
en-copyright=
kn-copyright=
en-aut-name=KuraokaSakiko
en-aut-sei=Kuraoka
en-aut-mei=Sakiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IwamuroMasaya
en-aut-sei=Iwamuro
en-aut-mei=Masaya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SatomiTakuya
en-aut-sei=Satomi
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamazakiTatsuhiro
en-aut-sei=Yamazaki
en-aut-mei=Tatsuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=HamadaKenta
en-aut-sei=Hamada
en-aut-mei=Kenta
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KonoYoshiyasu
en-aut-sei=Kono
en-aut-mei=Yoshiyasu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=KanzakiHiromitsu
en-aut-sei=Kanzaki
en-aut-mei=Hiromitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=KatoHironari
en-aut-sei=Kato
en-aut-mei=Hironari
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OtsukaFumio
en-aut-sei=Otsuka
en-aut-mei=Fumio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=OkadaHiroyuki
en-aut-sei=Okada
en-aut-mei=Hiroyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
affil-num=1
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=anamorelin
kn-keyword=anamorelin
en-keyword=body weight
kn-keyword=body weight
en-keyword=cancer cachexia
kn-keyword=cancer cachexia
en-keyword=endocrine system
kn-keyword=endocrine system
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=1
article-no=
start-page=29
end-page=48
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230331
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Summary of our activities toward development of the ESD interdisciplinary study plans on climate and cultural understanding education with attention to the seasonal cycle and “seasonal feeling” around Japan and Europe
kn-title=気候・文化理解教育の学際的ESD学習プラン開発へ向けた取り組み(日本とヨーロッパの季節サイクルや季節感に注目して)
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=We have continued the interdisciplinary integration of the knowledge on climate and music and have developed the crosscutting study plans on the climate and cultural understanding education. A part of these results had been summarized in a Japanese book titled “Climate and music (Cultural understanding and ESD spreading from the “Doors of Song”)” (Kato and Kato 2019), building mainly our papers written in Japanese. This article will re-integrate our above study results, mainly for the climate and songs/traditional seasonal events around Germany, Northern Europe and Japan, with special attention to (A) asymmetric seasonal progression from autumn to next spring around Japan, (B) winter climate around Germany in association with the seasonal feeling on the traditional events “Fasnacht” for driving winter away and (C) climate around Northern Europe in association with the seasonal feeling on the summer solstice festival “Juhannus” with comparison to the summer climate around Japan.
en-copyright=
kn-copyright=
en-aut-name=KATOKuranoshin
en-aut-sei=KATO
en-aut-mei=Kuranoshin
kn-aut-name=加藤内藏進
kn-aut-sei=加藤
kn-aut-mei=内藏進
aut-affil-num=1
ORCID=
en-aut-name=KATOHaruko
en-aut-sei=KATO
en-aut-mei=Haruko
kn-aut-name=加藤晴子
kn-aut-sei=加藤
kn-aut-mei=晴子
aut-affil-num=2
ORCID=
en-aut-name=AKAGIRikako
en-aut-sei=AKAGI
en-aut-mei=Rikako
kn-aut-name=赤木里香子
kn-aut-sei=赤木
kn-aut-mei=里香子
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Faculty of Education, Okayama University
kn-affil=岡山大学学術研究院教育学域
affil-num=2
en-affil=Faculty of Education, Gufu Shotoku Gakuen University (Former Affiliation)
kn-affil=元 岐阜聖徳学園大学教育学部
affil-num=3
en-affil=Faculty of Education, Okayama University
kn-affil=岡山大学学術研究院教育学域
en-keyword=climate and music
kn-keyword=climate and music
en-keyword=interdisciplinary climate and cultural understanding education
kn-keyword=interdisciplinary climate and cultural understanding education
en-keyword=seasonal cycle around Japan and Europe
kn-keyword=seasonal cycle around Japan and Europe
en-keyword=seasonal feeling
kn-keyword=seasonal feeling
en-keyword=ESD
kn-keyword=ESD
en-keyword=comparative climatology
kn-keyword=comparative climatology
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=がん発生に関与するシグナル伝達経路及びがん幹細胞標的におけるシグナル伝達阻害剤の効果に関する研究
kn-title=Study on the signaling pathway in tumor initiation and the efficacy of signaling inhibitors for cancer stem cell targeting therapy
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=XuYanning
en-aut-sei=Xu
en-aut-mei=Yanning
kn-aut-name=徐燕?
kn-aut-sei=徐
kn-aut-mei=燕?
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=金重陶陽の表現様式と影響:写し、偶然性、不完全さに関する考察を通じて
kn-title=Kaneshige T?y?'s Style and Influences: With Consideration of the Elements of Copying, Chance, and Imperfection
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=WELLS John Thomas
en-aut-sei=WELLS John Thomas
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Humanities and Social Sciences, Okayama University
kn-affil=岡山大学大学院社会文化科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=自己抗体バイオマーカーの網羅的定量評価システムの実用化研究
kn-title=Practice research of comprehensive and quantitative autoantibody assay systems
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=MIYAMOTOAi
en-aut-sei=MIYAMOTO
en-aut-mei=Ai
kn-aut-name=宮本愛
kn-aut-sei=宮本
kn-aut-mei=愛
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=岡山大学大学院ヘルスシステム統合科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=西南日本中国地方の後期新生代火山岩のハフニウム・ホウ素・リチウム・マグネシウム同位体システマティクス:沈み込み帯で発生するスラブ由来の流体の特性と輸送メカニズムの解明
kn-title=Hf-B-Li-Mg isotope systematics of late Cenozoic volcanic rocks from the Chugoku district, Southwest Japan: Implications for the property and transport mechanism of slab-derived fluids in the subduction zone
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ZHANGWei
en-aut-sei=ZHANG
en-aut-mei=Wei
kn-aut-name=??
kn-aut-sei=?
kn-aut-mei=?
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=曝露磁界制限下での受電電力向上を目指したMHz級磁界結合型ワイヤレス給電制御技術の開発
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KONISHIAkihiro
en-aut-sei=KONISHI
en-aut-mei=Akihiro
kn-aut-name=小西晃央
kn-aut-sei=小西
kn-aut-mei=晃央
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=実践的なセキュリティオペレーションの高度化と効率化に関する研究
kn-title=Research on Sophistication and Improving Efficiency of Practical Security Operations
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=FUJIIShota
en-aut-sei=FUJII
en-aut-mei=Shota
kn-aut-name=藤井翔太
kn-aut-sei=藤井
kn-aut-mei=翔太
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Natural Science and Technology, Okayama university
kn-affil=岡山大学大学院自然科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=岡山での新型コロナウィルス流行時における自損行為による救急搬送−記述疫学研究
kn-title=Emergency Dispatches for Suicide Attempts During the COVID-19 Outbreak in Okayama, Japan: A Descriptive Epidemiological Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=HABUHiroshi
en-aut-sei=HABU
en-aut-mei=Hiroshi
kn-aut-name=土生裕
kn-aut-sei=土生
kn-aut-mei=裕
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=膀胱がんの進行におけるS100A8/A9-TLR4経路の意義の解明
kn-title=Toll-like receptor 4 promotes bladder cancer progression upon S100A8/A9 binding, which requires TIRAP-mediated TPL2 activation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=ACOSTA GONZALEZ HERIK RODRIGO
en-aut-sei=ACOSTA GONZALEZ HERIK RODRIGO
en-aut-mei=
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=4C mortality scoreを用いたCOVID-19予後予測の臨床的有用性
kn-title=Clinical Utility of 4C Mortality Scores among Japanese COVID-19 Patients: A Multicenter Study
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=OCHOKazuki
en-aut-sei=OCHO
en-aut-mei=Kazuki
kn-aut-name=大重和樹
kn-aut-sei=大重
kn-aut-mei=和樹
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=腫瘍微小環境下における食道癌と腫瘍関連線維芽細胞に対する光線免疫療法
kn-title=Dual?targeted near?infrared photoimmunotherapy for esophageal cancer and cancer?associated fbroblasts in the tumor microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SATOHiroaki
en-aut-sei=SATO
en-aut-mei=Hiroaki
kn-aut-name=佐藤浩明
kn-aut-sei=佐藤
kn-aut-mei=浩明
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=同種造血幹細胞移植後非感染性肺合併症に対する早期ステロイド投与と長期生存の関連性
kn-title=Association between Early Corticosteroid Administration and Long-term Survival in Non-Infectious Pulmonary Complications after Allogeneic Hematopoietic Stem Cell Transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=KAMBARAYui
en-aut-sei=KAMBARA
en-aut-mei=Yui
kn-aut-name=神原由依
kn-aut-sei=神原
kn-aut-mei=由依
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=S100A8/A9阻害による、マウス異所性気管移植モデルでの気道閉塞の改善
kn-title=Inhibiting S100A8/A9 attenuates airway obstruction in a mouse model of heterotopic tracheal transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=SHIMIZUDai
en-aut-sei=SHIMIZU
en-aut-mei=Dai
kn-aut-name=清水大
kn-aut-sei=清水
kn-aut-mei=大
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=EGFR阻害が誘導するEgfr変異陽性肺癌に対するCD8陽性T細胞の反応を逐次的VEGFR-2/PD-1阻害が増強する
kn-title=CD8+ T-cell Responses Are Boosted by Dual PD-1/VEGFR2 Blockade after EGFR Inhibition in Egfr-Mutant Lung Cancer
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NISHIIKazuya
en-aut-sei=NISHII
en-aut-mei=Kazuya
kn-aut-name=西井和也
kn-aut-sei=西井
kn-aut-mei=和也
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=肺移植における無気肺ドナーからの臓器保護的肺摘出法
kn-title=Lung recruitment after cardiac arrest during procurement of atelectatic donor lungs is a protective measure in lung transplantation
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=NIMANEito
en-aut-sei=NIMAN
en-aut-mei=Eito
kn-aut-name=二萬英斗
kn-aut-sei=二萬
kn-aut-mei=英斗
aut-affil-num=1
ORCID=
affil-num=1
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=岡山大学大学院医歯薬学総合研究科
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=6
article-no=
start-page=e01160
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230523
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Pulmonary alveolar proteinosis after lung transplantation: Two case reports and literature review
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pulmonary alveolar proteinosis (PAP) affecting transplanted lungs is not well recognized. Herein, we report two cases of PAP after lung transplantation (LTx). The first case was a 4-year-old boy with hereditary pulmonary fibrosis who underwent bilateral LTx and presented with respiratory distress on postoperative day (POD) 23. He was initially treated for acute rejection, died due to infection on POD 248, and was diagnosed with PAP at autopsy. The second case involved a 52-year-old man with idiopathic pulmonary fibrosis who underwent bilateral LTx. On POD 99, chest computed tomography revealed ground-glass opacities. Bronchoalveolar lavage and transbronchial biopsy led to a diagnosis of PAP. Follow-up with immunosuppression tapering resulted in clinical and radiological improvement. PAP after lung transplantation mimics common acute rejection; however, is potentially transient or resolved with tapering immunosuppression, as observed in the second case. Transplant physicians should be aware of this rare complication to avoid misconducting immunosuppressive management.
en-copyright=
kn-copyright=
en-aut-name=KawanaShinichi
en-aut-sei=Kawana
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MiyoshiKentaroh
en-aut-sei=Miyoshi
en-aut-mei=Kentaroh
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TanakaShin
en-aut-sei=Tanaka
en-aut-mei=Shin
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SugimotoSeiichiro
en-aut-sei=Sugimoto
en-aut-mei=Seiichiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ShimizuDai
en-aut-sei=Shimizu
en-aut-mei=Dai
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MatsubaraKei
en-aut-sei=Matsubara
en-aut-mei=Kei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=OkazakiMikio
en-aut-sei=Okazaki
en-aut-mei=Mikio
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=HattoriNoboru
en-aut-sei=Hattori
en-aut-mei=Noboru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=ToyookaShinichi
en-aut-sei=Toyooka
en-aut-mei=Shinichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
affil-num=1
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=2
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=3
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=4
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=5
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=6
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=7
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
affil-num=8
en-affil=Department of Molecular and Internal Medicine, Hiroshima University, Graduate School of Biomedical and Health Sciences
kn-affil=
affil-num=9
en-affil=Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital
kn-affil=
en-keyword=graft dysfunction
kn-keyword=graft dysfunction
en-keyword=immunosuppression
kn-keyword=immunosuppression
en-keyword=lung transplantation
kn-keyword=lung transplantation
en-keyword=pulmonary alveolar proteinosis
kn-keyword=pulmonary alveolar proteinosis
END
start-ver=1.4
cd-journal=joma
no-vol=175
cd-vols=
no-issue=
article-no=
start-page=105921
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Thioredoxin deficiency increases oxidative stress and causes bilateral symmetrical degeneration in rat midbrain
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Thioredoxin, encoded by Txn1, acts as a critical antioxidant in the defense against oxidative stress by regulating the dithiol/disulfide balance of interacting proteins. The role of thioredoxin in the central nervous system (CNS) is largely unknown. A phenotype-driven study of N-ethyl-N-nitrosourea-mutated rats with wild-running seizures revealed the importance of Txn1 mutations in CNS degeneration. Genetic mapping identified Txn1-F54L in the epileptic rats. The insulin-reducing activity of Txn1-F54L was approximately one-third of that of the wild-type (WT). Bilateral symmetrical vacuolar degeneration in the midbrain, mainly in the thalamus and the inferior colliculus, was observed in the Txn1-F54L rats. The lesions displayed neuronal and oligodendrocytic cell death. Neurons in Txn1-F54L rats showed morphological changes in the mitochondria. Vacuolar degeneration peaked at five weeks of age, and spontaneous repair began at seven weeks. The TUNEL assay showed that fibroblasts derived from homozygotes were susceptible to cell death under oxidative stress. In five-week-old WT rats, energy metabolism in the thalamus was significantly higher than that in the cerebral cortex. In conclusion, in juvenile rats, Txn1 seems to play an essential role in reducing oxidative stress in the midbrains with high energy metabolism.
en-copyright=
kn-copyright=
en-aut-name=OhmoriIori
en-aut-sei=Ohmori
en-aut-mei=Iori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=OuchidaMamoru
en-aut-sei=Ouchida
en-aut-mei=Mamoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ImaiHirohiko
en-aut-sei=Imai
en-aut-mei=Hirohiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=IshidaSaeko
en-aut-sei=Ishida
en-aut-mei=Saeko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=ToyokuniShinya
en-aut-sei=Toyokuni
en-aut-mei=Shinya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=MashimoTomoji
en-aut-sei=Mashimo
en-aut-mei=Tomoji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Section of Developmental Physiology and Pathology, Faculty of Education, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Systems Science, Kyoto University Graduate School of Informatics
kn-affil=
affil-num=4
en-affil=Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo
kn-affil=
affil-num=5
en-affil=Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine
kn-affil=
affil-num=6
en-affil=Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo
kn-affil=
en-keyword=Txn1
kn-keyword=Txn1
en-keyword=Thioredoxin
kn-keyword=Thioredoxin
en-keyword=Mitochondria
kn-keyword=Mitochondria
en-keyword=Vacuolar degeneration
kn-keyword=Vacuolar degeneration
en-keyword=Epilepsy
kn-keyword=Epilepsy
en-keyword=Oxidative stress
kn-keyword=Oxidative stress
END
start-ver=1.4
cd-journal=joma
no-vol=49
cd-vols=
no-issue=
article-no=
start-page=15
end-page=29
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220331
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=『ダロウェイ夫人』の配色における考察
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=
en-aut-sei=
en-aut-mei=
kn-aut-name=小野和子
kn-aut-sei=小野
kn-aut-mei=和子
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=岡山大学大学院社会文化科学研究科
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=2023324
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Improvements in thermal efficiency and exhaust emissions with ozone addition in a natural gas-diesel dual fuel engine
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Here, ozone (O-3) was introduced into the intake air in a natural gas fueled engine ignited by diesel fuel, a natural gas-diesel dual fuel engine, to utilize the reactive O-radicals decomposed from the O-3 for the promotion of the ignition and for improvements in the thermal efficiency and exhaust emissions. The engine experiments were performed over a range of equivalence ratios of the natural gas in a single cylinder engine. The timing of the pilot injection of the diesel fuel was varied from early in the compression stroke to near top dead center to examine the changes in the effects of the O-3 addition on the ignition and combustion with the pilot injection timing while varying the O-3 concentration. The results showed that the combination of the O-3 addition and the early pilot injection is a means to improve the thermal efficiency and unburned emissions with a small amount of O-3. Further, the improvement in the thermal efficiency and the reduction of the unburned hydrocarbons with the O-3 addition are more pronounced for lower equivalence ratios of natural gas, while the O-3 addition has a limited effect on the thermal efficiency and the unburned hydrocarbons for higher equivalence ratios of the natural gas.
en-copyright=
kn-copyright=
en-aut-name=KobashiYoshimitsu
en-aut-sei=Kobashi
en-aut-mei=Yoshimitsu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=InagakiRyuya
en-aut-sei=Inagaki
en-aut-mei=Ryuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=ShibataGen
en-aut-sei=Shibata
en-aut-mei=Gen
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgawaHideyuki
en-aut-sei=Ogawa
en-aut-mei=Hideyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Faculty of Natural Science and Technology, Okayama University
kn-affil=
affil-num=2
en-affil=Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University
kn-affil=
affil-num=3
en-affil=Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University
kn-affil=
affil-num=4
en-affil=Division of Energy and Environmental Systems, Graduate School of Engineering, Hokkaido University
kn-affil=
en-keyword=Dual fuel engine
kn-keyword=Dual fuel engine
en-keyword=ozone
kn-keyword=ozone
en-keyword=natural gas
kn-keyword=natural gas
en-keyword=diesel fuel
kn-keyword=diesel fuel
en-keyword=pilot injection
kn-keyword=pilot injection
en-keyword=thermal efficiency
kn-keyword=thermal efficiency
en-keyword=exhaust emissions
kn-keyword=exhaust emissions
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230210
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Activated CTLA-4-independent immunosuppression of Treg cells disturbs CTLA-4 blockade-mediated antitumor immunity
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Combination therapy with anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) monoclonal antibodies (mAbs) has dramatically improved the prognosis of patients with multiple types of cancer, including renal cell carcinoma (RCC). However, more than half of RCC patients fail to respond to this therapy. Regulatory T cells (Treg cells) are a subset of highly immunosuppressive CD4(+) T cells that promote the immune escape of tumors by suppressing effector T cells in the tumor microenvironment (TME) through various mechanisms. CTLA-4 is constitutively expressed in Treg cells and is regarded as a key molecule for Treg-cell-mediated immunosuppressive functions, suppressing antigen-presenting cells by binding to CD80/CD86. Reducing Treg cells in the TME with an anti-CTLA-4 mAb with antibody-dependent cellular cytotoxicity (ADCC) activity is considered an essential mechanism to achieve tumor regression. In contrast, we demonstrated that CTLA-4 blockade without ADCC activity enhanced CD28 costimulatory signaling pathways in Treg cells and promoted Treg-cell proliferation in mouse models. CTLA-4 blockade also augmented CTLA-4-independent immunosuppressive functions, including cytokine production, leading to insufficient antitumor effects. Similar results were also observed in human peripheral blood lymphocytes and tumor-infiltrating lymphocytes from patients with RCC. Our findings highlight the importance of Treg-cell depletion to achieve tumor regression in response to CTLA-4 blockade therapies.
en-copyright=
kn-copyright=
en-aut-name=WatanabeTomofumi
en-aut-sei=Watanabe
en-aut-mei=Tomofumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=IshinoTakamasa
en-aut-sei=Ishino
en-aut-mei=Takamasa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=UedaYouki
en-aut-sei=Ueda
en-aut-mei=Youki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NagasakiJoji
en-aut-sei=Nagasaki
en-aut-mei=Joji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=SadahiraTakuya
en-aut-sei=Sadahira
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=DansakoHiromichi
en-aut-sei=Dansako
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=ArakiMotoo
en-aut-sei=Araki
en-aut-mei=Motoo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=TogashiYosuke
en-aut-sei=Togashi
en-aut-mei=Yosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=2
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=3
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=4
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Urology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=6
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=7
en-affil=Department of Urology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
affil-num=8
en-affil=Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
en-keyword=antibody-dependent cell cytotoxicity
kn-keyword=antibody-dependent cell cytotoxicity
en-keyword=cytotoxic T-lymphocyte-associated antigen 4
kn-keyword=cytotoxic T-lymphocyte-associated antigen 4
en-keyword=immune checkpoint inhibitors
kn-keyword=immune checkpoint inhibitors
en-keyword=regulatory T cell
kn-keyword=regulatory T cell
en-keyword=renal cell carcinoma
kn-keyword=renal cell carcinoma
END
start-ver=1.4
cd-journal=joma
no-vol=24
cd-vols=
no-issue=5
article-no=
start-page=4411
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230223
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Revisiting Cryptocyanine Dye, NK-4, as an Old and New Drug: Review and Future Perspectives
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=NK-4 plays a key role in the treatment of various diseases, such as in hay fever to expect anti-allergic effects, in bacterial infections and gum abscesses to expect anti-inflammatory effects, in scratches, cuts, and mouth sores from bites inside the mouth for enhanced wound healing, in herpes simplex virus (HSV)-1 infections for antiviral effects, and in peripheral nerve disease that causes tingling pain and numbness in hands and feet, while NK-4 is used also to expect antioxidative and neuroprotective effects. We review all therapeutic directions for the cyanine dye NK-4, as well as the pharmacological mechanism of NK-4 in animal models of related diseases. Currently, NK-4, which is sold as an over-the-counter drug in drugstores, is approved for treating allergic diseases, loss of appetite, sleepiness, anemia, peripheral neuropathy, acute suppurative diseases, wounds, heat injuries, frostbite, and tinea pedis in Japan. The therapeutic effects of NK-4’s antioxidant and neuroprotective properties in animal models are now under development, and we hope to apply these pharmacological effects of NK-4 to the treatment of more diseases. All experimental data suggest that different kinds of utility of NK-4 in the treatment of diseases can be developed based on the various pharmacological properties of NK-4. It is expected that NK-4 could be developed in more therapeutic strategies to treat many types of diseases, such as neurodegenerative and retinal degenerative diseases.
en-copyright=
kn-copyright=
en-aut-name=LiuShihui
en-aut-sei=Liu
en-aut-mei=Shihui
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=MatsuoToshihiko
en-aut-sei=Matsuo
en-aut-mei=Toshihiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AbeTakumi
en-aut-sei=Abe
en-aut-mei=Takumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
affil-num=1
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=2
en-affil=Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=
cd-vols=
no-issue=
article-no=
start-page=2206542
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230214
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=CDKAL1 Drives the Maintenance of Cancer Stem-Like Cells by Assembling the eIF4F Translation Initiation Complex
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer stem-like cells (CSCs) have a unique translation mode, but little is understood about the process of elongation, especially the contribution of tRNA modifications to the maintenance of CSCs properties. Here, it is reported that, contrary to the initial aim, a tRNA-modifying methylthiotransferase CDKAL1 promotes CSC-factor SALL2 synthesis by assembling the eIF4F translation initiation complex. CDKAL1 expression is upregulated in patients with worse prognoses and is essential for maintaining CSCs in rhabdomyosarcoma (RMS) and common cancers. Translatome analysis reveals that a group of mRNAs whose translation is CDKAL1-dependent contains cytosine-rich sequences in the 5' untranslated region (5'UTR). Mechanistically, CDKAL1 promotes the translation of such mRNAs by organizing the eIF4F translation initiation complex. This complex formation does not require the enzyme activity of CDKAL1 but requires only the NH2-terminus domain of CDKAL1. Furthermore, sites in CDKAL1 essential for forming the eIF4F complex are identified and discovered candidate inhibitors of CDKAL1-dependent translation.
en-copyright=
kn-copyright=
en-aut-name=HuangRongsheng
en-aut-sei=Huang
en-aut-mei=Rongsheng
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YamamotoTakahiro
en-aut-sei=Yamamoto
en-aut-mei=Takahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=NakataEiji
en-aut-sei=Nakata
en-aut-mei=Eiji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OzakiToshifumi
en-aut-sei=Ozaki
en-aut-mei=Toshifumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=KurozumiKazuhiko
en-aut-sei=Kurozumi
en-aut-mei=Kazuhiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=WeiFanyan
en-aut-sei=Wei
en-aut-mei=Fanyan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=TomizawaKazuhito
en-aut-sei=Tomizawa
en-aut-mei=Kazuhito
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujimuraAtsushi
en-aut-sei=Fujimura
en-aut-mei=Atsushi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
affil-num=1
en-affil=Department of Cellular Physiology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Molecular Physiology Kumamoto University Faculty of Life Sciences Kumamoto
kn-affil=
affil-num=3
en-affil=Department of Orthopedic Surgery Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Orthopedic Surgery Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Neurosurgery Hamamatsu University School of Medicine Hamamatsu
kn-affil=
affil-num=6
en-affil=Department of Modomics Biology and Medicine Institute of Development, Aging and Cancer Tohoku University
kn-affil=
affil-num=7
en-affil=Department of Molecular Physiology Kumamoto University Faculty of Life Sciences Kumamoto
kn-affil=
affil-num=8
en-affil=Department of Cellular Physiology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
kn-affil=
en-keyword=cancer stem-like cells
kn-keyword=cancer stem-like cells
en-keyword=CG-rich 5'UTR
kn-keyword=CG-rich 5'UTR
en-keyword=eIF4F complex
kn-keyword=eIF4F complex
en-keyword=CDKAL1
kn-keyword=CDKAL1
en-keyword=SALL2
kn-keyword=SALL2
END
start-ver=1.4
cd-journal=joma
no-vol=77
cd-vols=
no-issue=1
article-no=
start-page=117
end-page=120
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=202302
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Organ Donation after Extracorporeal Cardiopulmonary Resuscitation and Brain Death
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A 38-year-old primipara Japanese woman suffered cardiac arrest due to a pulmonary thromboembolism 1 day after undergoing a cesarean section. Extracorporeal cardiopulmonary resuscitation was initiated and extracorporeal membrane oxygenation support was needed for 24 h. Despite intensive care, the patient was diagnosed with brain death on day 6. With the family’s consent, comprehensive end-of-life care including organ donation was discussed based on our hospital’s policy. The family decided to donate her organs. Specific training and education are required for emergency physicians to optimize the process of incorporating organ donation into end-of-life care while respecting the patient’s and family’s wishes.
en-copyright=
kn-copyright=
en-aut-name=ObaraTakafumi
en-aut-sei=Obara
en-aut-mei=Takafumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=YumotoTetsuya
en-aut-sei=Yumoto
en-aut-mei=Tetsuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=AoshimaKenji
en-aut-sei=Aoshima
en-aut-mei=Kenji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=TsukaharaKohei
en-aut-sei=Tsukahara
en-aut-mei=Kohei
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=NaitoHiromichi
en-aut-sei=Naito
en-aut-mei=Hiromichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NakaoAtsunori
en-aut-sei=Nakao
en-aut-mei=Atsunori
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
affil-num=1
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
en-keyword=brain death
kn-keyword=brain death
en-keyword=end-of-life
kn-keyword=end-of-life
en-keyword=extracorporeal cardiopulmonary resuscitation
kn-keyword=extracorporeal cardiopulmonary resuscitation
en-keyword=organ donation
kn-keyword=organ donation
en-keyword=potential organ donor
kn-keyword=potential organ donor
END
start-ver=1.4
cd-journal=joma
no-vol=29
cd-vols=
no-issue=
article-no=
start-page=1
end-page=62
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220331
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=Annual report / Institute of Plant Science and Resources, Okayama University
kn-title=岡山大学資源植物科学研究所報告
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=
en-copyright=
kn-copyright=
en-aut-name=Institute of Plant Science and Resources, Okayama University
en-aut-sei=Institute of Plant Science and Resources, Okayama University
en-aut-mei=
kn-aut-name=岡山大学資源植物科学研究所
kn-aut-sei=岡山大学資源植物科学研究所
kn-aut-mei=
aut-affil-num=1
ORCID=
affil-num=1
en-affil=
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=11
cd-vols=
no-issue=
article-no=
start-page=4740
end-page=4751
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20230111
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Reduction in Eddy Current Loss of Special Rectangular Windings in High-Torque IPMSM Used for Wind Generator
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=A special rectangular winding structure, which has different cross-sectional shape but the same cross-sectional area for each turn, has been adopted in a high-torque IPMSM used for a wind generator to improve slot factor and heat dissipation. However, large eddy current loss occurs to the rectangular windings. According to this problem, this paper proposes three improvements to reduce the eddy current loss. Among them, removing a portion of windings and replacing a portion of windings with aluminum are discussed to realize a tradeoff between eddy current and copper losses. And adjusting the tooth-tip shape is discussed to suppress the magnetic flux passing through the windings by mitigating magnetic saturation around the tooth-tip. Additionally, manufacturing costs can also be reduced by adopting a portion of aluminum windings. Moreover, a 3-step-skewed rotor structure is discussed to reduce cogging torque and lower the start-up wind speed. And its influence on losses is also discussed. Furthermore, three models adopting round windings are made and discussed for comparison. The FEM (Finite Element Method) results show that compared with the three round windings models, the proposed model still has a better performance in the reduction of windings eddy current loss. Finally, a prototype machine is manufactured to verify the FEM results, and the experimental results show that the maximum efficiency of the prototype can exceed 97.5%.
en-copyright=
kn-copyright=
en-aut-name=TaoXianji
en-aut-sei=Tao
en-aut-mei=Xianji
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=TakemotoMasatsugu
en-aut-sei=Takemoto
en-aut-mei=Masatsugu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=TsunataRen
en-aut-sei=Tsunata
en-aut-mei=Ren
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=OgasawaraSatoshi
en-aut-sei=Ogasawara
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
affil-num=1
en-affil=Graduate School of Information and Technology, Hokkaido University
kn-affil=
affil-num=2
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Natural Science and Technology, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Information and Technology, Hokkaido University
kn-affil=
en-keyword=IPMSM
kn-keyword=IPMSM
en-keyword=IPMSG
kn-keyword=IPMSG
en-keyword=high-torque
kn-keyword=high-torque
en-keyword=concentrated windings
kn-keyword=concentrated windings
en-keyword=rectangular windings
kn-keyword=rectangular windings
en-keyword=eddy current loss
kn-keyword=eddy current loss
en-keyword=wind generator
kn-keyword=wind generator
END
start-ver=1.4
cd-journal=joma
no-vol=18
cd-vols=
no-issue=1
article-no=
start-page=2153182
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2023
dt-pub=20231231
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Identification of quantitative trait loci associated with sorghum susceptibility to Asian stem borer damage
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Sorghum (Sorghum bicolor (L.) Moench) is an important crop originated in Africa that shows susceptibility to herbivores. In this study, we identified two sorghum genotypes with highly contrasting levels of stem damage caused by the caterpillars of Asian stem borer (Ostrinia furnacalis Guenee). Recombinant inbred lines (RILs) from genetic cross between resistant (BTx623) and susceptible (NOG) sorghum were used to perform a quantitative trait locus (QTL) analysis in the field. Two major QTLs responsible for higher NOG infestation by stem borer in three independent field seasons were detected on chromosomes 7 and 9, interestingly in positions that overlapped with two major QTLs for plant height. As plant height and stem borer damage were highly correlated, we propose that sorghum height-associated morphological or physiological traits could be important for stem borer establishment and/or damage in sorghum.
en-copyright=
kn-copyright=
en-aut-name=OsindeCyprian
en-aut-sei=Osinde
en-aut-mei=Cyprian
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SakamotoWataru
en-aut-sei=Sakamoto
en-aut-mei=Wataru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=Kajiya-KanegaeHiromi
en-aut-sei=Kajiya-Kanegae
en-aut-mei=Hiromi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=SobhyIslam S.
en-aut-sei=Sobhy
en-aut-mei=Islam S.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=TugumeArthur K.
en-aut-sei=Tugume
en-aut-mei=Arthur K.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=NsubugaAnthony M.
en-aut-sei=Nsubuga
en-aut-mei=Anthony M.
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=GalisIvan
en-aut-sei=Galis
en-aut-mei=Ivan
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
affil-num=1
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=2
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=3
en-affil=Graduate School of Agricultural and Life Sciences, The University of Tokyo
kn-affil=
affil-num=4
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
affil-num=5
en-affil=Department of Plant Science, Microbiology and Biotechnology Makerere University
kn-affil=
affil-num=6
en-affil=Department of Plant Science, Microbiology and Biotechnology Makerere University
kn-affil=
affil-num=7
en-affil=Institute of Plant Science and Resources, Okayama University
kn-affil=
en-keyword=Quantitative trait locus (QTL)
kn-keyword=Quantitative trait locus (QTL)
en-keyword=stem borer
kn-keyword=stem borer
en-keyword=herbivory
kn-keyword=herbivory
en-keyword=BTx623 and NOG
kn-keyword=BTx623 and NOG
en-keyword=recombinant inbred lines (RILs)
kn-keyword=recombinant inbred lines (RILs)
en-keyword=sorghum
kn-keyword=sorghum
END
start-ver=1.4
cd-journal=joma
no-vol=17
cd-vols=
no-issue=9
article-no=
start-page=e0273749
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20220909
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Prevention of non-infectious pulmonary complications after intra-bone marrow stem cell transplantation in mice
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Non-infectious pulmonary complications including idiopathic pneumonia syndrome (IPS) and bronchiolitis obliterans syndrome (BOS), which are clinical and diagnostic manifestations of lung chronic graft-versus-host disease (GVHD), cause significant mortality after allogeneic stem cell transplantation (SCT). Increasing evidence suggests that alloantigen reactions in lung tissue play a central role in the pathogenesis of IPS and BOS; however, the mechanism is not fully understood. Several clinical and experimental studies have reported that intrabone marrow (IBM)-SCT provides high rates of engraftment and is associated with a low incidence of acute GVHD. In the present study, allogeneic SCT was conducted in mouse models of IPS and BOS, to compare intravenous (IV)-SCT with IBM-SCT. Allogeneic IBM-SCT improved the clinical and pathological outcomes of pulmonary complications compared to those of IV-SCT. The mechanisms underlying the reductions in pulmonary complications in IBM-SCT mice were explored. The infiltrating lung cells were mainly CD11b+ myeloid and CD3+ T cells, in the same proportions as in transplanted donor cells. In an in vivo bioluminescence imaging, a higher proportion of injected donor cells was detected in the lung during the early phase (1 h after IV-SCT) than after IBM-SCT (16.7 +/- 1.1 vs. 3.1 +/- 0.7 x 10(5) photons/s/animal, IV-SCT vs. IBM-SCT, P = 1.90 x 10(-10)). In the late phase (5 days) after SCT, there were also significantly more donor cells in the lung after IV-SCT than after IBM-SCT or allogeneic-SCT (508.5 +/- 66.1 vs. 160.1 +/- 61.9 x 10(6) photons/s/animal, IV-SCT vs. IBM-SCT, P = 0.001), suggesting that the allogeneic reaction induces sustained donor cell infiltration in the lung during the late phase. These results demonstrated that IBM-SCT is capable of reducing injected donor cells in the lung; IBM-SCT decreases donor cell infiltration. IBM-SCT therefore represents a promising transplantation strategy for reducing pulmonary complications, by suppressing the first step in the pathophysiology of chronic GVHD.
en-copyright=
kn-copyright=
en-aut-name=Yamasuji-MaedaYoshiko
en-aut-sei=Yamasuji-Maeda
en-aut-mei=Yoshiko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NishimoriHisakazu
en-aut-sei=Nishimori
en-aut-mei=Hisakazu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=SeikeKeisuke
en-aut-sei=Seike
en-aut-mei=Keisuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=YamamotoAkira
en-aut-sei=Yamamoto
en-aut-mei=Akira
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=FujiwaraHideaki
en-aut-sei=Fujiwara
en-aut-mei=Hideaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KuroiTaiga
en-aut-sei=Kuroi
en-aut-mei=Taiga
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=SaekiKyosuke
en-aut-sei=Saeki
en-aut-mei=Kyosuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=FujinagaHaruko
en-aut-sei=Fujinaga
en-aut-mei=Haruko
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=OkamotoSachiyo
en-aut-sei=Okamoto
en-aut-mei=Sachiyo
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=MatsuokaKen-Ichi
en-aut-sei=Matsuoka
en-aut-mei=Ken-Ichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=FujiiNobuharu
en-aut-sei=Fujii
en-aut-mei=Nobuharu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=TanakaTakehiro
en-aut-sei=Tanaka
en-aut-mei=Takehiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=FujiiMasahiro
en-aut-sei=Fujii
en-aut-mei=Masahiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=MominokiKatsumi
en-aut-sei=Mominoki
en-aut-mei=Katsumi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KanekuraTakuro
en-aut-sei=Kanekura
en-aut-mei=Takuro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=MaedaYoshinobu
en-aut-sei=Maeda
en-aut-mei=Yoshinobu
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
affil-num=1
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Transfusion Medicine, Okayama University Hospital
kn-affil=
affil-num=12
en-affil=Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=14
en-affil=Department of Animal Resources, Advanced Science Research Center, Okayama University
kn-affil=
affil-num=15
en-affil=Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences
kn-affil=
affil-num=16
en-affil=Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=12
cd-vols=
no-issue=1
article-no=
start-page=20152
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=20221123
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Dual-targeted near-infrared photoimmunotherapy for esophageal cancer and cancer-associated fibroblasts in the tumor microenvironment
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Cancer-associated fibroblasts (CAFs) play a significant role in tumor progression within the tumor microenvironment. Previously, we used near-infrared photoimmunotherapy (NIR-PIT), a next-generation cancer cell-targeted phototherapy, to establish CAF-targeted NIR-PIT. In this study, we investigated whether dual-targeted NIR-PIT, targeting cancer cells and CAFs, could be a therapeutic strategy. A total of 132 cases of esophageal cancer were analyzed for epidermal growth factor receptor (EGFR), human epidermal growth factor 2 (HER2), and fibroblast activation protein (FAP) expression using immunohistochemistry. Human esophageal cancer cells and CAFs were co-cultured and treated with single- or dual-targeted NIR-PIT in vitro. These cells were co-inoculated into BALB/c-nu/nu mice and the tumors were treated with single-targeted NIR-PIT or dual-targeted NIR-PIT in vivo. Survival analysis showed FAP- or EGFR-high patients had worse survival than patients with low expression of FAP or EGFR (log-rank, P < 0.001 and P = 0.074, respectively), while no difference was observed in HER2 status. In vitro, dual (EGFR/FAP)-targeted NIR-PIT induced specific therapeutic effects in cancer cells and CAFs along with suppressing tumor growth in vivo, whereas single-targeted NIR-PIT did not show any significance. Moreover, these experiments demonstrated that dual-targeted NIR-PIT could treat cancer cells and CAFs simultaneously with a single NIR light irradiation. We demonstrated the relationship between EGFR/FAP expression and prognosis of patients with esophageal cancer and the stronger therapeutic effect of dual-targeted NIR-PIT than single-targeted NIR-PIT in experimental models. Thus, dual-targeted NIR-PIT might be a promising therapeutic strategy for cancer treatment.
en-copyright=
kn-copyright=
en-aut-name=SatoHiroaki
en-aut-sei=Sato
en-aut-mei=Hiroaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=NomaKazuhiro
en-aut-sei=Noma
en-aut-mei=Kazuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=OharaToshiaki
en-aut-sei=Ohara
en-aut-mei=Toshiaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=KawasakiKento
en-aut-sei=Kawasaki
en-aut-mei=Kento
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=AkaiMasaaki
en-aut-sei=Akai
en-aut-mei=Masaaki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
en-aut-name=KobayashiTeruki
en-aut-sei=Kobayashi
en-aut-mei=Teruki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=6
ORCID=
en-aut-name=NishiwakiNoriyuki
en-aut-sei=Nishiwaki
en-aut-mei=Noriyuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=7
ORCID=
en-aut-name=NarusakaToru
en-aut-sei=Narusaka
en-aut-mei=Toru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=8
ORCID=
en-aut-name=KomotoSatoshi
en-aut-sei=Komoto
en-aut-mei=Satoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=9
ORCID=
en-aut-name=KashimaHajime
en-aut-sei=Kashima
en-aut-mei=Hajime
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=10
ORCID=
en-aut-name=KatsuraYuki
en-aut-sei=Katsura
en-aut-mei=Yuki
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=11
ORCID=
en-aut-name=KatoTakuya
en-aut-sei=Kato
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=12
ORCID=
en-aut-name=KikuchiSatoru
en-aut-sei=Kikuchi
en-aut-mei=Satoru
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=13
ORCID=
en-aut-name=TazawaHiroshi
en-aut-sei=Tazawa
en-aut-mei=Hiroshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=14
ORCID=
en-aut-name=KagawaShunsuke
en-aut-sei=Kagawa
en-aut-mei=Shunsuke
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=15
ORCID=
en-aut-name=ShirakawaYasuhiro
en-aut-sei=Shirakawa
en-aut-mei=Yasuhiro
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=16
ORCID=
en-aut-name=KobayashiHisataka
en-aut-sei=Kobayashi
en-aut-mei=Hisataka
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=17
ORCID=
en-aut-name=FujiwaraToshiyoshi
en-aut-sei=Fujiwara
en-aut-mei=Toshiyoshi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=18
ORCID=
affil-num=1
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=2
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=3
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=4
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=5
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=6
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=7
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=8
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=9
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=10
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=11
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=12
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=13
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=14
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=15
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=16
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
affil-num=17
en-affil=Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
kn-affil=
affil-num=18
en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
kn-affil=
END
start-ver=1.4
cd-journal=joma
no-vol=25
cd-vols=
no-issue=4
article-no=
start-page=101999
end-page=
dt-received=
dt-revised=
dt-accepted=
dt-pub-year=2022
dt-pub=202212
dt-online=
en-article=
kn-article=
en-subject=
kn-subject=
en-title=
kn-title=Longevity of Lucilia sericata (Meigen, 1826) used as pollinator
en-subtitle=
kn-subtitle=
en-abstract=
kn-abstract=Pollinators play an important role in the production of many agricultural products. Honeybees, Apis mellifera L., are leading pollinators, but the number of honeybees in the world is declining. Finding alternatives is beginning to be important. In the present study, we compared the longevity of Lucilia sericata (Meigen, 1826), which is used as a pollinator, in cages in the laboratory and in a vinyl greenhouse under controlled feeding conditions. First, we showed that the longevity of the flies was significantly extended (c.a. 40 days) in the laboratory when water and sugar were supplied compared to the cases without sugar and/or water. Second, we found that the average longevity was 20 days with water and sugar in cages kept in a vinyl greenhouse during the summer. Finally, we released marked flies into a vinyl greenhouse where strawberries were cultivated without feeding water or sugar in the spring. As a result, fewer than 10% of the flies survived 10 days after release. Based on the result, we discuss the use of this species as a pollinator in the context of its survival rate.
en-copyright=
kn-copyright=
en-aut-name=ShimomaeKoichi
en-aut-sei=Shimomae
en-aut-mei=Koichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=1
ORCID=
en-aut-name=SatoTakuya
en-aut-sei=Sato
en-aut-mei=Takuya
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=2
ORCID=
en-aut-name=YoshidaYuichi
en-aut-sei=Yoshida
en-aut-mei=Yuichi
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=3
ORCID=
en-aut-name=NaingShine Shane
en-aut-sei=Naing
en-aut-mei=Shine Shane
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=4
ORCID=
en-aut-name=MiyatakeTakahisa
en-aut-sei=Miyatake
en-aut-mei=Takahisa
kn-aut-name=
kn-aut-sei=
kn-aut-mei=
aut-affil-num=5
ORCID=
affil-num=1
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=2
en-affil=Japan Maggot Company, Co. Ltd.
kn-affil=
affil-num=3
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=4
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
affil-num=5
en-affil=Graduate School of Environmental and Life Science, Okayama University
kn-affil=
en-keyword=Diptera
kn-keyword=Diptera
en-keyword=Lifespan
kn-keyword=Lifespan
en-keyword=Pollination
kn-keyword=Pollination
en-keyword=Quality control
kn-keyword=Quality control
END