start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=11 article-no= start-page=113D01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20241026 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Measurement of γ-Rays Generated by Neutron Interaction with 16O at 30 MeV and 250 MeV en-subtitle= kn-subtitle= en-abstract= kn-abstract=Deep understanding of γ-ray production from the fast neutron reaction in water is crucial for various physics studies at large-scale water Cherenkov detectors. We performed test experiments using quasi-mono energetic neutron beams (⁠En = 30 and 250 MeV) at Osaka University’s Research Center for Nuclear Physics to measure γ-rays originating from the neutron–oxygen reaction with a high-purity germanium detector. Multiple γ-ray peaks which are expected to be from excited nuclei after the neutron–oxygen reaction were successfully observed. We measured the neutron beam flux using an organic liquid scintillator for the cross section measurement. With a spectral fitting analysis based on the tailored γ-ray signal and background templates, we measured cross sections for each observed γ-ray component. The results will be useful to validate neutron models employed in ongoing and future water Cherenkov experiments. en-copyright= kn-copyright= en-aut-name=TanoT. en-aut-sei=Tano en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HoraiT. en-aut-sei=Horai en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AshidaY. en-aut-sei=Ashida en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HinoY. en-aut-sei=Hino en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IacobF. en-aut-sei=Iacob en-aut-mei=F. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MaurelA. en-aut-sei=Maurel en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MoriM. en-aut-sei=Mori en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=CollazuolG. en-aut-sei=Collazuol en-aut-mei=G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KonakaA. en-aut-sei=Konaka en-aut-mei=A. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KoshioY. en-aut-sei=Koshio en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=NakayaT. en-aut-sei=Nakaya en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=ShimaT. en-aut-sei=Shima en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=WendellR. en-aut-sei=Wendell en-aut-mei=R. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics and Astronomy, University of Utah kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Department of Physics and Astronomy, University of Padova kn-affil= affil-num=6 en-affil=Ecole Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet kn-affil= affil-num=7 en-affil=National Astronomical Observatory of Japan kn-affil= affil-num=8 en-affil=Department of Physics and Astronomy, University of Padova kn-affil= affil-num=9 en-affil=TRIUMF kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Kyoto University kn-affil= affil-num=12 en-affil=Research Center for Nuclear Physics (RCNP) kn-affil= affil-num=13 en-affil=Department of Physics, Kyoto University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=2024 cd-vols= no-issue=10 article-no= start-page=103D01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Study of the Neutrino–Oxygen Cross Sections of the Charged-Current Reaction 16O(ν̄e, e+)16N(0 MeV, 2–) and the Neutral-Current Reaction 16O(ν, ν′)16O(12.97/12.53 MeV, 2–), Producing High-Energy γ Rays en-subtitle= kn-subtitle= en-abstract= kn-abstract=In our previous work, we discussed the cross section and the detection of 4.4 MeV γ rays produced in the neutrino neutral-current (NC)reaction 16O(ν, ν′)16O(12.97 and 12.53 MeV, 2−) in a water Cherenkov detector at low energy below 100 MeV. In this report, we further investigate both the charged-current reaction 16O(ν¯e, e+)16N(0 MeV, 2−) and the NC reaction16O(ν, ν′)16O(12.97 and 12.53 MeV, 2−), producing high-energy γ rays, in which a more solid identification of the reactions can be applied via the coincidence method. en-copyright= kn-copyright= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiToshio en-aut-sei=Suzuki en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakazatoKen'Ichiro en-aut-sei=Nakazato en-aut-mei=Ken'Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=SuzukiHideyuki en-aut-sei=Suzuki en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Physics Department, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, College of Humanities and Sciences, Nihon University kn-affil= affil-num=3 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= affil-num=4 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=8 article-no= start-page=ziae085 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240704 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Macrophages modulate mesenchymal stem cell function via tumor necrosis factor alpha in tooth extraction model en-subtitle= kn-subtitle= en-abstract= kn-abstract=Mesenchymal stem cells (MSCs) and macrophages collaboratively contribute to bone regeneration after injury. However, detailed mechanisms underlying the interaction between MSCs and inflammatory macrophages (M1) remain unclear. A macrophage-depleted tooth extraction model was generated in 5-wk-old female C57BL/6J mice using clodronate liposome (12.5 mg/kg/mouse, intraperitoneally) or saline injection (control) before maxillary first molar extraction. Mice were sacrificed on days 1, 3, 5, 7, and 10 after tooth extraction (n = 4). Regenerated bone volume evaluation of tooth extraction socket (TES) and histochemical analysis of CD80+M1, CD206+M2 (anti-inflammatory macrophages), PDGFRα+MSC, and TNF-α+ cells were performed. In vitro, isolated MSCs with or without TNF-α stimulation (10 ng/mL, 24 h, n = 3) were bulk RNA-sequenced (RNA-Seq) to identify TNF-α stimulation-specific MSC transcriptomes. Day 7 micro-CT and HE staining revealed significantly lower mean bone volume (clodronate vs control: 0.01 mm3 vs 0.02 mm3, p<.0001) and mean percentage of regenerated bone area per total TES in clodronate group (41.97% vs 54.03%, p<.0001). Clodronate group showed significant reduction in mean number of CD80+, TNF-α+, PDGFRα+, and CD80+TNF-α+ cells on day 5 (306.5 vs 558.8, p<.0001; 280.5 vs 543.8, p<.0001; 365.0 vs 633.0, p<.0001, 29.0 vs 42.5, p<.0001), while these cells recovered significantly on day 7 (493.3 vs 396.0, p=.0004; 479.3 vs 384.5, p=.0008; 593.0 vs 473.0, p=.0010, 41.0 vs 32.5, p=.0003). RNA-Seq analysis showed that 15 genes (|log2FC| > 5.0, log2TPM > 5) after TNF-α stimulation were candidates for regulating MSC’s immunomodulatory capacity. In vivo, Clec4e and Gbp6 are involved in inflammation and bone formation. Clec4e, Gbp6, and Cxcl10 knockdown increased osteogenic differentiation of MSCs in vitro. Temporal reduction followed by apparent recovery of TNF-α-producing M1 macrophages and MSCs after temporal macrophage depletion suggests that TNF-α activated MSCs during TES healing. In vitro mimicking the effect of TNF-α on MSCs indicated that there are 15 candidate MSC genes for regulation of immunomodulatory capacity. en-copyright= kn-copyright= en-aut-name=MunAung Ye en-aut-sei=Mun en-aut-mei=Aung Ye kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkiyamaKentaro en-aut-sei=Akiyama en-aut-mei=Kentaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WangZiyi en-aut-sei=Wang en-aut-mei=Ziyi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ZhangJiewen en-aut-sei=Zhang en-aut-mei=Jiewen kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KitagawaWakana en-aut-sei=Kitagawa en-aut-mei=Wakana kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KohnoTeisaku en-aut-sei=Kohno en-aut-mei=Teisaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TagashiraRyuji en-aut-sei=Tagashira en-aut-mei=Ryuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshibashiKei en-aut-sei=Ishibashi en-aut-mei=Kei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MatsunagaNaoya en-aut-sei=Matsunaga en-aut-mei=Naoya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=ZouTingling en-aut-sei=Zou en-aut-mei=Tingling kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=OnoMitsuaki en-aut-sei=Ono en-aut-mei=Mitsuaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KubokiTakuo en-aut-sei=Kuboki en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=3 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=6 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=7 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=8 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=9 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=11 en-affil=Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=12 en-affil=Department of Oral Rehabilitation and Regenerative Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=cytokines kn-keyword=cytokines en-keyword=dental biology kn-keyword=dental biology en-keyword=injury healing kn-keyword=injury healing en-keyword=osteoimmunology kn-keyword=osteoimmunology en-keyword=stem cells kn-keyword=stem cells END start-ver=1.4 cd-journal=joma no-vol=65 cd-vols= no-issue=4 article-no= start-page=491 end-page=499 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240628 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Comparison of mutation spectra induced by gamma-rays and carbon ion beams en-subtitle= kn-subtitle= en-abstract= kn-abstract=The ionizing radiation with high linear energy transfer (LET), such as a heavy ion beam, induces more serious biological effects than low LET ones, such as gamma- and X-rays. This indicates a difference in the DNA damage produced by low and high LET radiations and their biological effects. We have been studying the differences in DNA damage produced by gamma-rays and carbon ion beams. Therefore, we analyze mutations induced by both ionizing radiations to discuss the differences in their biological effects in this study. pUC19 plasmid DNA was irradiated by carbon ion beams in the solution containing 1M dimethyl sulfoxide to mimic a cellular condition. The irradiated DNA was cloned in competent cells of Escherichia coli. The clones harboring some mutations in the region of lacZ alpha were selected, and the sequence alterations were analyzed. A one-deletion mutation is significant in the carbon-irradiated DNA, and the C:G <-> T:A transition is minor. On the other hand, the gamma-irradiated DNA shows mainly G:C <-> T:A transversion. These results suggest that carbon ion beams produce complex DNA damage, and gamma-rays are prone to single oxidative base damage, such as 8-oxoguanine. Carbon ion beams can also introduce oxidative base damage, and the damage species is 5-hydroxycytosine. This was consistent with our previous results of DNA damage caused by heavy ion beams. We confirmed the causal DNA damage by mass spectrometry for these mutations. en-copyright= kn-copyright= en-aut-name=TokuyamaYuka en-aut-sei=Tokuyama en-aut-mei=Yuka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MoriKanae en-aut-sei=Mori en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsobeMidori en-aut-sei=Isobe en-aut-mei=Midori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TeratoHiroaki en-aut-sei=Terato en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Analytical Research Center for Experimental Science, Saga University kn-affil= affil-num=2 en-affil=Analytical Research Center for Experimental Science, Saga University kn-affil= affil-num=3 en-affil=Advanced Science Research Center, Okayama University kn-affil= affil-num=4 en-affil=Advanced Science Research Center, Okayama University kn-affil= en-keyword=base damage kn-keyword=base damage en-keyword=mutation kn-keyword=mutation en-keyword=gamma-rays kn-keyword=gamma-rays en-keyword=heavy ion beam kn-keyword=heavy ion beam END start-ver=1.4 cd-journal=joma no-vol=52 cd-vols= no-issue=10 article-no= start-page=5825 end-page=5840 dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240425 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The ABCF proteins in Escherichia coli individually cope with 'hard-to-translate' nascent peptide sequences en-subtitle= kn-subtitle= en-abstract= kn-abstract=Organisms possess a wide variety of proteins with diverse amino acid sequences, and their synthesis relies on the ribosome. Empirical observations have led to the misconception that ribosomes are robust protein factories, but in reality, they have several weaknesses. For instance, ribosomes stall during the translation of the proline-rich sequences, but the elongation factor EF-P assists in synthesizing proteins containing the poly-proline sequences. Thus, living organisms have evolved to expand the translation capability of ribosomes through the acquisition of translation elongation factors. In this study, we have revealed that Escherichia coli ATP-Binding Cassette family-F (ABCF) proteins, YheS, YbiT, EttA and Uup, individually cope with various problematic nascent peptide sequences within the exit tunnel. The correspondence between noncanonical translations and ABCFs was YheS for the translational arrest by nascent SecM, YbiT for poly-basic sequence-dependent stalling and poly-acidic sequence-dependent intrinsic ribosome destabilization (IRD), EttA for IRD at the early stage of elongation, and Uup for poly-proline-dependent stalling. Our results suggest that ATP hydrolysis-coupled structural rearrangement and the interdomain linker sequence are pivotal for handling 'hard-to-translate' nascent peptides. Our study highlights a new aspect of ABCF proteins to reduce the potential risks that are encoded within the nascent peptide sequences. Graphical Abstract en-copyright= kn-copyright= en-aut-name=ChadaniYuhei en-aut-sei=Chadani en-aut-mei=Yuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamanouchiShun en-aut-sei=Yamanouchi en-aut-mei=Shun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=UemuraEri en-aut-sei=Uemura en-aut-mei=Eri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamasakiKohei en-aut-sei=Yamasaki en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NiwaTatsuya en-aut-sei=Niwa en-aut-mei=Tatsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkedaToma en-aut-sei=Ikeda en-aut-mei=Toma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuriharaMiku en-aut-sei=Kurihara en-aut-mei=Miku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IwasakiWataru en-aut-sei=Iwasaki en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TaguchiHideki en-aut-sei=Taguchi en-aut-mei=Hideki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Department of Biological Sciences, Graduate School of Science, the University of Tokyo kn-affil= affil-num=3 en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= affil-num=4 en-affil=Faculty of Science, Okayama University kn-affil= affil-num=5 en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= affil-num=6 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=7 en-affil=School of Life Science and Technology, Tokyo Institute of Technology kn-affil= affil-num=8 en-affil=Department of Biological Sciences, Graduate School of Science, the University of Tokyo kn-affil= affil-num=9 en-affil=Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology kn-affil= END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=2 article-no= start-page=rkae045 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240327 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=ANCA-associated vasculitis with isolated splenomegaly as the initial organ presentation en-subtitle= kn-subtitle= en-abstract= kn-abstract= en-copyright= kn-copyright= en-aut-name=KitamuraWataru en-aut-sei=Kitamura en-aut-mei=Wataru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KuratsuneMasatoshi en-aut-sei=Kuratsune en-aut-mei=Masatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IsekiAkiko en-aut-sei=Iseki en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KuyamaShoichi en-aut-sei=Kuyama en-aut-mei=Shoichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Nephrology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=3 en-affil=Department of Pathology, National Hospital Organization Iwakuni Clinical Center kn-affil= affil-num=4 en-affil=Department of Respiratory Medicine, National Hospital Organization Iwakuni Clinical Center kn-affil= END start-ver=1.4 cd-journal=joma no-vol=10 cd-vols= no-issue= article-no= start-page=rbac088 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20221102 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Fabrication of initial trabecular bone-inspired three-dimensional structure with cell membrane nano fragments en-subtitle= kn-subtitle= en-abstract= kn-abstract=The extracellular matrix of trabecular bone has a large surface exposed to the bone marrow and plays important roles such as hematopoietic stem cell niche formation and maintenance. In vitro reproduction of trabecular bone microenvironment would be valuable not only for developing a functional scaffold for bone marrow tissue engineering but also for understanding its biological functions. Herein, we analyzed and reproduced the initial stages of trabecular bone formation in mouse femur epiphysis. We identified that the trabecular bone formation progressed through the following steps: (i) partial rupture of hypertrophic chondrocytes; (ii) calcospherite formation on cell membrane nano fragments (CNFs) derived from the ruptured cells; and (iii) calcospherite growth and fusion to form the initial three-dimensional (3D) structure of trabecular bones. For reproducing the initial trabecular bone formation in vitro, we collected CNFs from cultured cells and used as nucleation sites for biomimetic calcospherite formation. Strikingly, almost the same 3D structure of the initial trabecular bone could be obtained in vitro by using additional CNFs as a binder to fuse biomimetic calcospherites. en-copyright= kn-copyright= en-aut-name=KadoyaKoichi en-aut-sei=Kadoya en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HaraEmilio Satoshi en-aut-sei=Hara en-aut-mei=Emilio Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkadaMasahiro en-aut-sei=Okada en-aut-mei=Masahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=JiaoYu Yang en-aut-sei=Jiao en-aut-mei=Yu Yang kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoTakayoshi en-aut-sei=Nakano en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasakiAkira en-aut-sei=Sasaki en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsumotoTakuya en-aut-sei=Matsumoto en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Division of Materials & Manufacturing Science, Osaka University kn-affil= affil-num=6 en-affil=Department of Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= en-keyword=trabecular bone kn-keyword=trabecular bone en-keyword=calcospherites kn-keyword=calcospherites en-keyword=cell membrane nano fragments kn-keyword=cell membrane nano fragments en-keyword=three dimensionalization kn-keyword=three dimensionalization en-keyword=bone tissue synthesis kn-keyword=bone tissue synthesis END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=1 article-no= start-page=dsad027 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=MCPtaggR: R package for accurate genotype calling in reduced representation sequencing data by eliminating error-prone markers based on genome comparison en-subtitle= kn-subtitle= en-abstract= kn-abstract=Reduced representation sequencing (RRS) offers cost-effective, high-throughput genotyping platforms such as genotyping-by-sequencing (GBS). RRS reads are typically mapped onto a reference genome. However, mapping reads harbouring mismatches against the reference can potentially result in mismapping and biased mapping, leading to the detection of error-prone markers that provide incorrect genotype information. We established a genotype-calling pipeline named mappable collinear polymorphic tag genotyping (MCPtagg) to achieve accurate genotyping by eliminating error-prone markers. MCPtagg was designed for the RRS-based genotyping of a population derived from a biparental cross. The MCPtagg pipeline filters out error-prone markers prior to genotype calling based on marker collinearity information obtained by comparing the genome sequences of the parents of a population to be genotyped. A performance evaluation on real GBS data from a rice F2 population confirmed its effectiveness. Furthermore, our performance test using a genome assembly that was obtained by genome sequence polishing on an available genome assembly suggests that our pipeline performs well with converted genomes, rather than necessitating de novo assembly. This demonstrates its flexibility and scalability. The R package, MCPtaggR, was developed to provide functions for the pipeline and is available at https://github.com/tomoyukif/MCPtaggR. en-copyright= kn-copyright= en-aut-name=FurutaTomoyuki en-aut-sei=Furuta en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoToshio en-aut-sei=Yamamoto en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=genotyping kn-keyword=genotyping en-keyword=genome comparison kn-keyword=genome comparison en-keyword=next-generation sequencing kn-keyword=next-generation sequencing en-keyword=R package kn-keyword=R package END start-ver=1.4 cd-journal=joma no-vol=8 cd-vols= no-issue=1 article-no= start-page=zrad161 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2024 dt-pub=20240118 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Epidural versus patient-controlled intravenous analgesia on pain relief and recovery after laparoscopic gastrectomy for gastric cancer: randomized clinical trial en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background: Epidural analgesia (EDA) is a main modality for postoperative pain relief in major open abdominal surgery within the Enhanced Recovery After Surgery protocol. However, it remains unclear whether EDA is an imperative modality in laparoscopic gastrectomy (LG). This study examined non-inferiority of patient-controlled intravenous analgesia (PCIA) to EDA in terms of postoperative pain and recovery in patients who underwent LG.
Methods: In this open-label, non-inferiority, parallel, individually randomized clinical trial, patients who underwent elective LG for gastric cancer were randomized 1:1 to receive either EDA or PCIA after surgery. The primary endpoint was pain score using the Numerical Rating Scale at rest 24 h after surgery, analysed both according to the intention-to-treat (ITT) principle and per protocol. The non-inferiority margin for pain score was set at 1. Secondary outcomes were postoperative parameters related to recovery and adverse events related to analgesia.
Results: Between 3 July 2017 and 29 September 2020, 132 patients were randomized to receive either EDA (n = 66) or PCIA (n = 66). After exclusions, 64 patients were included in the EDA group and 65 patients in the PCIA group for the ITT analysis. Pain score at rest 24 h after surgery was 1.94 (s.d. 2.07) in the EDA group and 2.63 (s.d. 1.76) in the PCIA group (P = 0.043). PCIA was not non-inferior to EDA for the primary endpoint (difference 0.69, one side 95% c.i. 1.25, P = 0.184) in ITT analysis. Postoperative parameters related to recovery were similar between groups. More EDA patients (21 (32.8%) versus 1 (1.5%), P < 0.001) developed postoperative hypotension as an adverse event.
Conclusions: PCIA was not non-inferior to EDA in terms of early-phase pain relief after LG. Registration number: UMIN000027643 (https://www.umin.ac.jp/ctr/index-j.htm). Conclusions: PCIA was not non-inferior to EDA in terms of early-phase pain relief after LG.Registration number: UMIN000027643 (https://www.umin.ac.jp/ctr/index-j.htm). en-copyright= kn-copyright= en-aut-name=KikuchiSatoru en-aut-sei=Kikuchi en-aut-mei=Satoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MatsusakiTakashi en-aut-sei=Matsusaki en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MitsuhashiToshiharu en-aut-sei=Mitsuhashi en-aut-mei=Toshiharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KurodaShinji en-aut-sei=Kuroda en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KashimaHajime en-aut-sei=Kashima en-aut-mei=Hajime kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakataNobuo en-aut-sei=Takata en-aut-mei=Nobuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MitsuiEma en-aut-sei=Mitsui en-aut-mei=Ema kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KakiuchiYoshihiko en-aut-sei=Kakiuchi en-aut-mei=Yoshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NomaKazuhiro en-aut-sei=Noma en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=UmedaYuzo en-aut-sei=Umeda en-aut-mei=Yuzo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MorimatsuHiroshi en-aut-sei=Morimatsu en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Center for Innovative Clinical Medicine, Okayama University Hospital kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=8 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=9 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=10 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=11 en-affil=Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=12 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=5 article-no= start-page=dsad015 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230616 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genetic basis of lineage-specific evolution of fruit traits in hexaploid persimmon en-subtitle= kn-subtitle= en-abstract= kn-abstract=Frequent polyploidization events in plants have led to the establishment of many lineage-specific traits representing each species. Little is known about the genetic bases for these specific traits in polyploids, presumably due to plant genomic complexity and their difficulties in applying genetic approaches. Hexaploid Oriental persimmon (Diospyros kaki) has evolved specific fruit characteristics, including wide variations in fruit shapes and astringency. In this study, using whole-genome diploidized/quantitative genotypes from ddRAD-Seq data of 173 persimmon cultivars, we examined their population structures and potential correlations between their structural transitions and variations in nine fruit traits. The population structures of persimmon cultivars were highly randomized and not substantially correlated with the representative fruit traits focused on in this study, except for fruit astringency. With genome-wide association analytic tools considering polyploid alleles, we identified the loci associated with the nine fruit traits; we mainly focused on fruit-shape variations, which have been numerically characterized by principal component analysis of elliptic Fourier descriptors. The genomic regions that putatively underwent selective sweep exhibited no overlap with the loci associated with these persimmon-specific fruit traits. These insights will contribute to understanding the genetic mechanisms by which fruit traits are independently established, possibly due to polyploidization events. en-copyright= kn-copyright= en-aut-name=HoriuchiAyano en-aut-sei=Horiuchi en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MasudaKanae en-aut-sei=Masuda en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShirasawaKenta en-aut-sei=Shirasawa en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoueNoriyuki en-aut-sei=Onoue en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MatsuzakiRyusuke en-aut-sei=Matsuzaki en-aut-mei=Ryusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaoRyutaro en-aut-sei=Tao en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuboYasutaka en-aut-sei=Kubo en-aut-mei=Yasutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AkagiTakashi en-aut-sei=Akagi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Kazusa DNA Research Institute kn-affil= affil-num=4 en-affil=Institute of Fruit Tree and Tea Science, NARO kn-affil= affil-num=5 en-affil=Institute of Fruit Tree and Tea Science, NARO kn-affil= affil-num=6 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=9 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=fruit shape kn-keyword=fruit shape en-keyword=astringency kn-keyword=astringency en-keyword=polyploid kn-keyword=polyploid en-keyword=population structure kn-keyword=population structure en-keyword=GWAS kn-keyword=GWAS END start-ver=1.4 cd-journal=joma no-vol=40 cd-vols= no-issue=7 article-no= start-page=msad151 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230707 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Ongoing Rapid Evolution of a Post-Y Region Revealed by Chromosome-Scale Genome Assembly of a Hexaploid Monoecious Persimmon (Diospyros kaki) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Plants have evolved sex chromosomes independently in many lineages, and loss of separate sexes can also occur. In this study, we assembled a monoecious recently hexaploidized persimmon (Diospyros kaki), in which the Y chromosome has lost the maleness-determining function. Comparative genomic analysis of D. kaki and its dioecious relatives uncovered the evolutionary process by which the nonfunctional Y chromosome (or Y-monoecy) was derived, which involved silencing of the sex-determining gene, OGI, approximately 2 million years ago. Analyses of the entire X and Y-monoecy chromosomes suggested that D. kaki's nonfunctional male-specific region of the Y chromosome (MSY), which we call a post-MSY, has conserved some characteristics of the original functional MSY. Specifically, comparing the functional MSY in Diospyros lotus and the nonfunctional "post-MSY" in D. kaki indicated that both have been rapidly rearranged, mainly via ongoing transposable element bursts, resembling structural changes often detected in Y-linked regions, some of which can enlarge the nonrecombining regions. The recent evolution of the post-MSY (and possibly also MSYs in dioecious Diospyros species) therefore probably reflects these regions' ancestral location in a pericentromeric region, rather than the presence of male-determining genes and/or genes controlling sexually dimorphic traits. en-copyright= kn-copyright= en-aut-name=HoriuchiAyano en-aut-sei=Horiuchi en-aut-mei=Ayano kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MasudaKanae en-aut-sei=Masuda en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShirasawaKenta en-aut-sei=Shirasawa en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoueNoriyuki en-aut-sei=Onoue en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FujitaNaoko en-aut-sei=Fujita en-aut-mei=Naoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=AkagiTakashi en-aut-sei=Akagi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Frontier Research and Development, Kazusa DNA Research Institute kn-affil= affil-num=4 en-affil=Institute of Fruit Tree and Tea Science, NARO kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=sex chromosome kn-keyword=sex chromosome en-keyword=genome assembly kn-keyword=genome assembly en-keyword=monoecy kn-keyword=monoecy en-keyword=transposable elements kn-keyword=transposable elements END start-ver=1.4 cd-journal=joma no-vol=2023 cd-vols= no-issue=6 article-no= start-page=063H01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230505 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Angular correlation of the two gamma rays produced in the thermal neutron capture on gadolinium-155 and gadolinium-157 en-subtitle= kn-subtitle= en-abstract= kn-abstract=The ANNRI-Gd collaboration studied in detail the single gamma-ray spectrum produced from the thermal neutron capture on Gd-155 and Gd-157 in our previous publications. Gadolinium targets were exposed to a neutron beam provided by the Japan Spallation Neutron Source (JSNS) in J-PARC, Japan. In the present analysis, one new additional coaxial germanium crystal was used in combination with the 14 germanium crystals in the cluster detectors to study the angular correlation of the two gamma rays emitted in the same neutron capture. We present for the first time angular correlation functions for two gamma rays produced during the electromagnetic cascade transitions in the (n, gamma) reactions on Gd-155 and Gd-157. As expected, we observe mild angular correlations for the strong, but rare transitions from the resonance state to the two energy levels of known spin-parities. Contrariwise, we observe negligibly small angular correlations for arbitrary pairs of two gamma rays produced in the majority of cascade transitions from the resonance state to the dense continuum states. en-copyright= kn-copyright= en-aut-name=GouxPierre en-aut-sei=Goux en-aut-mei=Pierre kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=GlessgenFranz en-aut-sei=Glessgen en-aut-mei=Franz kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GazzolaEnrico en-aut-sei=Gazzola en-aut-mei=Enrico kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ReenMandeep Singh en-aut-sei=Reen en-aut-mei=Mandeep Singh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=FocillonWilliam en-aut-sei=Focillon en-aut-mei=William kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=GoninMichel en-aut-sei=Gonin en-aut-mei=Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaTomoyuki en-aut-sei=Tanaka en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HagiwaraKaito en-aut-sei=Hagiwara en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AliAjmi en-aut-sei=Ali en-aut-mei=Ajmi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SudoTakashi en-aut-sei=Sudo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KoshioYusuke en-aut-sei=Koshio en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=CollazuolGianmaria en-aut-sei=Collazuol en-aut-mei=Gianmaria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KimuraAtsushi en-aut-sei=Kimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=NakamuraShoji en-aut-sei=Nakamura en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=IwamotoNobuyuki en-aut-sei=Iwamoto en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=HaradaHideo en-aut-sei=Harada en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=WurmMichael en-aut-sei=Wurm en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Département de Physique, École Polytechnique, IN2P3/CNRS kn-affil= affil-num=6 en-affil=Département de Physique, École Polytechnique, IN2P3/CNRS kn-affil= affil-num=7 en-affil=Department of Physics, Okayama University kn-affil= affil-num=8 en-affil=Department of Physics, Okayama University kn-affil= affil-num=9 en-affil=Department of Physics, Okayama University kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=Department of Physics, Okayama University kn-affil= affil-num=13 en-affil=INFN Sezione di Padova and Università di Padova, Dipartimento di Fisica kn-affil= affil-num=14 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=15 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=16 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=17 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=18 en-affil=Institut für Physik, Johannes Gutenberg-Universität Mainz kn-affil= END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=5 article-no= start-page=ytad214 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230430 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A successful bridge to recovery with Impella 5.0 and subsequent hybrid cardiac resynchronization therapy in systemic right ventricle failure: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background Impella 5.0 is currently used as a temporary mechanical circulatory support device in cardiogenic shock (CS). However, Impella 5.0 implantation for the systemic right ventricle (sRV) has not been well documented.
Case summary A 50-year-old man with atrial switch for dextro-transposition of the great arteries was transferred to our hospital for the treatment of embolic acute myocardial infarction of the left main trunk lesion with CS. To stabilize haemodynamics, we implanted Impella 5.0 via the left subclavian artery in the sRV. After optimal medical therapy initiation and gradual weaning of Impella 5.0, Impella 5.0 was successfully explanted. An electrocardiogram was obtained, which showed complete right branch block with a QRS duration of 172 ms. Acute invasive haemodynamic evaluation of cardiac resynchronization therapy (CRT) pacing showed that dP/dt increased from 497 to 605 mmHg/s (21.7% improvement), and hybrid cardiac resynchronization therapy defibrillator (CRTD) with a sRV epicardial lead was subsequently implanted. The patient was discharged without inotropic support.
Discussion Coronary artery embolism is a rare but serious complication of dextro-transposition of the great arteries after atrial switch operations. Impella 5.0 implantation is a feasible bridge strategy for refractory CS due to sRV failure. Although CRT implantation in patients with sRV is controversial, an acute invasive haemodynamic evaluation can help assess its potential benefits. en-copyright= kn-copyright= en-aut-name=IwasakiKeiichiro en-aut-sei=Iwasaki en-aut-mei=Keiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiNobuhiro en-aut-sei=Nishii en-aut-mei=Nobuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AkagiSatoshi en-aut-sei=Akagi en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ItoHiroshi en-aut-sei=Ito en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences kn-affil= en-keyword=Transposition of great arteries kn-keyword=Transposition of great arteries en-keyword=Impella kn-keyword=Impella en-keyword=Mechanical circulatory support kn-keyword=Mechanical circulatory support en-keyword=Cardiac resynchronization therapy kn-keyword=Cardiac resynchronization therapy en-keyword=Case report kn-keyword=Case report END start-ver=1.4 cd-journal=joma no-vol=2023 cd-vols= no-issue=1 article-no= start-page=013D02 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230110 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Detection of the 4.4-MeV gamma rays from 16O(ν, ν′)16O(12.97 MeV, 2−) with a water Cherenkov detector in supernova neutrino bursts en-subtitle= kn-subtitle= en-abstract= kn-abstract=We first discuss and determine the isospin mixing of the two 2− states (12.53 MeV and 12.97 MeV) of the16O nucleus using inelastic electron scattering data. We then evaluate the cross section of 4.4-MeV γ rays produced in the neutrino neutral-current (NC) reaction 16O(ν, ν′)16O(12.97 MeV, 2−) in a water Cherenkov detector at a low energy, below 100 MeV. The detection of γ rays for Eγ > 5 MeV from the NC reaction 16O(ν, ν′)16O(Ex > 16 MeV, T = 1) with a water Cherenkov detector in supernova neutrino bursts has been proposed and discussed by several authors previously. In this article, we discuss a new NC reaction channel from 16O(12.97 MeV, 2−) producing a 4.4-MeV γ ray, the cross section of which is more robust and even larger at low energy (Eν < 25 MeV) than the NC cross section from 16O(Ex > 16 MeV, T = 1). We also evaluate the number of such events induced by neutrinos from supernova explosion which can be observed by the Super-Kamiokande, an Earth-based 32-kton water Cherenkov detector. en-copyright= kn-copyright= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SuzukiToshio en-aut-sei=Suzuki en-aut-mei=Toshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ReenMandeep Singh en-aut-sei=Reen en-aut-mei=Mandeep Singh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakazatoKen'Ichiro en-aut-sei=Nakazato en-aut-mei=Ken'Ichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SuzukiHideyuki en-aut-sei=Suzuki en-aut-mei=Hideyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Physics Department, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, College of Humanities and Sciences, Nihon University kn-affil= affil-num=3 en-affil=Department of Physics, Akal University kn-affil= affil-num=4 en-affil=Faculty of Arts and Science, Kyushu University kn-affil= affil-num=5 en-affil=Department of Physics, Faculty of Science and Technology, Tokyo University of Science kn-affil= END start-ver=1.4 cd-journal=joma no-vol=6 cd-vols= no-issue=4 article-no= start-page=igac035 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220606 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=The Effects of Wages and Training on Intent to Switch or Leave Among Direct Care Workers en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background and Objectives Although most studies have not separated turnover of direct care workers (DCWs) into those who switch to another organization (switchers) and those who leave the industry (leavers), switchers and leavers have different impacts on the facilities they quit and the labor market for DCWs. We distinguished between intent to switch and intent to leave and investigated the impact of wages and training on each turnover intention. Research Design and Methods Data were obtained from Japan's Fact-Finding Survey on Long-term Care Work. We included DCWs (n = 7,311) in the analyses and used multinomial regression by sex and provider type to compare those who wanted to switch and those who wanted to leave with those who wanted to remain in their current workplace. Results The impacts of an increase in wages and a higher training score were larger for intent to switch than intent to leave. Compared with wages, the impact of training was greater. The impact of job characteristics on turnover intention varied between women and men and across provider types. Discussion and Implications This study provides a better understanding of the difference in the determinants of switching and leaving and simultaneously increases our understanding of the differences between women and men and across provider types. en-copyright= kn-copyright= en-aut-name=KishidaKensaku en-aut-sei=Kishida en-aut-mei=Kensaku kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Graduate School of Humanities and Social Sciences, Okayama University kn-affil= en-keyword=Long-term care kn-keyword=Long-term care en-keyword=Turnover kn-keyword=Turnover en-keyword=Workforce issues kn-keyword=Workforce issues END start-ver=1.4 cd-journal=joma no-vol=34 cd-vols= no-issue=11 article-no= start-page=563 end-page=570 dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=2022423 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=A variety of ‘exhausted’ T cells in the tumor microenvironment en-subtitle= kn-subtitle= en-abstract= kn-abstract=In T-cell biology, ‘exhaustion’ was initially described as a hyporesponsive state in CD8+ T cells during chronic infections. Recently, exhaustion has been recognized as a T-cell dysfunctional state in the tumor microenvironment (TME). The term ‘exhaustion’ is used mainly to refer to effector T cells with a reduced capacity to secrete cytokines and an increased expression of inhibitory receptors. The up-regulation of exhaustion-related inhibitory receptors, including programmed cell death protein 1 (PD-1), in such T cells has been associated with the development of tumors, prompting the development of immune checkpoint inhibitors. In addition to CD8+ T cells, CD4+ T cells, including the regulatory T (Treg) cell subset, perform a wide variety of functions within the adaptive immune system. Up-regulation of the same inhibitory receptors that are associated with CD8+ T-cell exhaustion has also been identified in CD4+ T cells in chronic infections and cancers, suggesting a similar CD4+ T-cell exhaustion phenotype. For instance, high expression of PD-1 has been observed in Treg cells in the TME, and such Treg cells can play an important role in the resistance to PD-1 blockade therapies. Furthermore, recent progress in single-cell RNA sequencing has shown that CD4+ T cells with cytotoxic activity are also vulnerable to exhaustion. In this review, we will discuss novel insights into various exhausted T-cell subsets, which could reveal novel therapeutic targets and strategies to induce a robust anti-tumor immune response. en-copyright= kn-copyright= en-aut-name=NagasakiJoji en-aut-sei=Nagasaki en-aut-mei=Joji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TogashiYosuke en-aut-sei=Togashi en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=2 en-affil=Department of Tumor Microenvironment, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= en-keyword=CD4(+) T cell kn-keyword=CD4(+) T cell en-keyword=cytotoxic CD4(+ )T cell kn-keyword=cytotoxic CD4(+ )T cell en-keyword=regulatory T cell kn-keyword=regulatory T cell en-keyword=T-cell exhaustion kn-keyword=T-cell exhaustion END start-ver=1.4 cd-journal=joma no-vol=2022 cd-vols= no-issue=5 article-no= start-page=rjac101 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220501 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Anorectal leiomyoma with GLUT1 overexpression mimicking malignancy on FDG-PET/CT en-subtitle= kn-subtitle= en-abstract= kn-abstract=A 43-year-old female underwent pelvic magnetic resonance imaging for uterine myoma that incidentally revealed a 4.6 x 2.8 cm soft tissue mass in the anorectal region. Rectal endoscopy showed a submucosal tumor just above the anal canal. Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) revealed an anorectal tumor with very high FDG uptake. Aspiration cytology and needle biopsy were inconclusive, and the patient underwent trans-perineal tumor resection. The excised tumor was a 4.6 x 3.5 x 2.7 cm gray-white bifurcated nodular tumor. Light microscopy revealed fenestrated growth of poorly dysmorphic short spindle-shaped cells with eosinophilic sporophytes. Immunohistochemical staining was positive for alpha SMA and desmin, negative for CD117 (KIT) and S100, and the patient was diagnosed with benign leiomyoma. Tumor cells were also positive for glucose transporter-1 (GLUT1) immunohistochemically. It is important to keep in mind that FDG-PET/CT may show false-positive results even in benign anal leiomyoma for various reasons, including GLUT1 overexpression. en-copyright= kn-copyright= en-aut-name=TeraishiFuminori en-aut-sei=Teraishi en-aut-mei=Fuminori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShigeyasuKunitoshi en-aut-sei=Shigeyasu en-aut-mei=Kunitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=KagawaShunsuke en-aut-sei=Kagawa en-aut-mei=Shunsuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujiwaraToshiyoshi en-aut-sei=Fujiwara en-aut-mei=Toshiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=29 cd-vols= no-issue=1 article-no= start-page=dsac001 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2022 dt-pub=20220112 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Chromosome-scale assembly of barley cv. 'Haruna Nijo' as a resource for barley genetics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Cultivated barley (Hordeum vulgare ssp. vulgare) is used for food, animal feed, and alcoholic beverages and is widely grown in temperate regions. Both barley and its wild progenitor (H. vulgare ssp. spontaneum) have large 5.1-Gb genomes. High-quality chromosome-scale assemblies for several representative barley genotypes, both wild and domesticated, have been constructed recently to populate the nascent barley pan-genome infrastructure. Here, we release a chromosome-scale assembly of the Japanese elite malting barley cultivar 'Haruna Nijo' using a similar methodology as in the barley pan-genome project. The 4.28-Gb assembly had a scaffold N50 size of 18.9 Mb. The assembly showed high collinearity with the barley reference genome 'Morex' cultivar, with some inversions. The pseudomolecule assembly was characterized using transcript evidence of gene projection derived from the reference genome and de novo gene annotation achieved using published full-length cDNA sequences and RNA-Seq data for 'Haruna Nijo'. We found good concordance between our whole-genome assembly and the publicly available BAC clone sequence of 'Haruna Nijo'. Interesting phenotypes have since been identified in Haruna Nijo; its genome sequence assembly will facilitate the identification of the underlying genes. en-copyright= kn-copyright= en-aut-name=SakkourAreej en-aut-sei=Sakkour en-aut-mei=Areej kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=MascherMartin en-aut-sei=Mascher en-aut-mei=Martin kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HimmelbachAxel en-aut-sei=Himmelbach en-aut-mei=Axel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HabererGeorg en-aut-sei=Haberer en-aut-mei=Georg kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LuxThomas en-aut-sei=Lux en-aut-mei=Thomas kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SpannaglManuel en-aut-sei=Spannagl en-aut-mei=Manuel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SteinNils en-aut-sei=Stein en-aut-mei=Nils kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KawamotoShoko en-aut-sei=Kawamoto en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=SatoKazuhiro en-aut-sei=Sato en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) kn-affil= affil-num=3 en-affil=Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) kn-affil= affil-num=4 en-affil=Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health kn-affil= affil-num=5 en-affil=Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health kn-affil= affil-num=6 en-affil=Plant Genome and Systems Biology (PGSB), Helmholtz Center Munich, German Research Center for Environmental Health kn-affil= affil-num=7 en-affil=Department Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) kn-affil= affil-num=8 en-affil=Department of Informatics, National Institute of Genetics kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Hordeum vulgare kn-keyword=Hordeum vulgare en-keyword=full-length cDNA kn-keyword=full-length cDNA en-keyword=RNA-Seq kn-keyword=RNA-Seq en-keyword=genome sequencing kn-keyword=genome sequencing en-keyword=pseudomolecules kn-keyword=pseudomolecules END start-ver=1.4 cd-journal=joma no-vol=62 cd-vols= no-issue=5 article-no= start-page=861 end-page=867 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=20210809 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Radon inhalation decreases DNA damage induced by oxidative stress in mouse organs via the activation of antioxidative functions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Radon inhalation decreases the level of lipid peroxide (LPO); this is attributed to the activation of antioxidative functions. This activation contributes to the beneficial effects of radon therapy, but there are no studies on the risks of radon therapy, such as DNA damage. We evaluated the effect of radon inhalation on DNA damage caused by oxidative stress and explored the underlying mechanisms. Mice were exposed to radon inhalation at concentrations of 2 or 20 kBq/m(3) (for one, three, or 10 days). The 8-hydroxy-2 '-deoxyguanosine (8-OHdG) levels decreased in the brains of mice that inhaled 20 kBq/m(3) radon for three days and in the kidneys of mice that inhaled 2 or 20 kBq/m(3) radon for one, three or 10 days. The 8-OHdG levels in the small intestine decreased by approximately 20-40% (2 kBq/m(3) for three days or 20 kBq/m(3) for one, three or 10 days), but there were no significant differences in the 8-OHdG levels between mice that inhaled a sham treatment and those that inhaled radon. There was no significant change in the levels of 8-oxoguanine DNA glycosylase, which plays an important role in DNA repair. However, the level of Mn-superoxide dismutase (SOD) increased by 15-60% and 15-45% in the small intestine and kidney, respectively, following radon inhalation. These results suggest that Mn-SOD probably plays an important role in the inhibition of oxidative DNA damage. en-copyright= kn-copyright= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShutoHina en-aut-sei=Shuto en-aut-mei=Hina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NaoeShota en-aut-sei=Naoe en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YanoJunki en-aut-sei=Yano en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanzakiNorie en-aut-sei=Kanzaki en-aut-mei=Norie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SakodaAkihiro en-aut-sei=Sakoda en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=TanakaHiroshi en-aut-sei=Tanaka en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HanamotoKatsumi en-aut-sei=Hanamoto en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=MitsunobuFumihiro en-aut-sei=Mitsunobu en-aut-mei=Fumihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TeratoHiroaki en-aut-sei=Terato en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=6 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=7 en-affil=Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency kn-affil= affil-num=8 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Graduate School ofMedicine Dentistry and Pharmaceutical Sciences, Okayama University kn-affil= affil-num=10 en-affil=Advanced Science Research Center Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=radon kn-keyword=radon en-keyword=oxidative DNA damage kn-keyword=oxidative DNA damage en-keyword=Mn-superoxide dismutase (SOD) kn-keyword=Mn-superoxide dismutase (SOD) en-keyword=8-oxoguanine DNA glycosylase kn-keyword=8-oxoguanine DNA glycosylase END start-ver=1.4 cd-journal=joma no-vol=51 cd-vols= no-issue=1 article-no= start-page=130 end-page=137 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=2020727 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Long-term ureteroscopic management of upper tract urothelial carcinoma: 28-year single-centre experience en-subtitle= kn-subtitle= en-abstract= kn-abstract=Background
Long-term survival outcomes of patients who undergo endoscopic management of non-invasive upper tract urothelial carcinoma remain uncertain. The longest mean follow-up period in previous studies was 6.1 years. This study reports the long-term outcomes of patients with upper tract urothelial carcinoma who underwent ureteroscopic ablation at a single institution over a 28-year period.
Methods
We identified all patients who underwent ureteroscopic management of upper tract urothelial carcinoma as their primary treatment at our institution between January 1991 and April 2011. Survival outcomes, including overall survival, cancer-specific survival, upper-tract recurrence-free survival and renal unit survival, were estimated using Kaplan−Meier methodology.
Results
A total of 15 patients underwent endoscopic management, with a mean age at diagnosis of 66 years. All patients underwent ureteroscopy, and biopsy-confirmed pathology was obtained. Median (range; mean) follow-up was 11.7 (2.3–20.9, 11.9) years. Upper tract recurrence occurred in 87% (n = 13) of patients. Twenty percent (n = 3) of patients proceeded to nephroureterectomy. The estimated cancer-specific survival rate was 93% at 5, 10, 15 and 20 years. Estimated overall survival rates were 86, 80, 54 and 20% at 5, 10, 15 and 20 years. Only one patient experienced cancer-specific mortality. The estimated mean and median overall survival times were 14.5 and 16.6 years, respectively. The estimated mean cancer-specific survival time was not reached.
Conclusions
Although upper tract recurrence is common, endoscopic management of non-invasive upper tract urothelial carcinoma provides a 90% cancer-specific survival rate at 20 years in selected patients. en-copyright= kn-copyright= en-aut-name=MaruyamaYuki en-aut-sei=Maruyama en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ArakiMotoo en-aut-sei=Araki en-aut-mei=Motoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WadaKoichiro en-aut-sei=Wada en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YoshinagaKasumi en-aut-sei=Yoshinaga en-aut-mei=Kasumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MitsuiYosuke en-aut-sei=Mitsui en-aut-mei=Yosuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SadahiraTakuya en-aut-sei=Sadahira en-aut-mei=Takuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NishimuraShingo en-aut-sei=Nishimura en-aut-mei=Shingo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=EdamuraKohei en-aut-sei=Edamura en-aut-mei=Kohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KobayashiYasuyuki en-aut-sei=Kobayashi en-aut-mei=Yasuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=WatanabeMasami en-aut-sei=Watanabe en-aut-mei=Masami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=WatanabeToyohiko en-aut-sei=Watanabe en-aut-mei=Toyohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=MongaManoj en-aut-sei=Monga en-aut-mei=Manoj kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NasuYasutomo en-aut-sei=Nasu en-aut-mei=Yasutomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=KumonHiromi en-aut-sei=Kumon en-aut-mei=Hiromi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= affil-num=1 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=2 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=3 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=4 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=5 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=6 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=7 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=8 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=9 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=10 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=11 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=12 en-affil=Department of Urology, The Cleveland Clinic kn-affil= affil-num=13 en-affil=Department of Urology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Science kn-affil= affil-num=14 en-affil=Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University kn-affil= en-keyword=urothelial carcinoma kn-keyword=urothelial carcinoma en-keyword=urinary tract cancer kn-keyword=urinary tract cancer en-keyword=ureteroscopy kn-keyword=ureteroscopy en-keyword=long-term survival kn-keyword=long-term survival en-keyword=renal pelvis kn-keyword=renal pelvis en-keyword=ureter kn-keyword=ureter END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=4 article-no= start-page=dsaa023 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200926 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=History and future perspectives of barley genomics en-subtitle= kn-subtitle= en-abstract= kn-abstract=Barley (Hordeum vulgare), one of the most widely cultivated cereal crops, possesses a large genome of 5.1Gbp. Through various international collaborations, the genome has recently been sequenced and assembled at the chromosome-scale by exploiting available genetic and genomic resources. Many wild and cultivated barley accessions have been collected and preserved around the world. These accessions are crucial to obtain diverse natural and induced barley variants. The barley bioresource project aims to investigate the diversity of this crop based on purified seed and DNA samples of a large number of collected accessions. The long-term goal of this project is to analyse the genome sequences of major barley accessions worldwide. In view of technical limitations, a strategy has been employed to establish the exome structure of a selected number of accessions and to perform high-quality chromosome-scale assembly of the genomes of several major representative accessions. For the future project, an efficient annotation pipeline is essential for establishing the function of genomes and genes as well as for using this information for sequence-based digital barley breeding. In this article, the author reviews the existing barley resources along with their applications and discuss possible future directions of research in barley genomics. en-copyright= kn-copyright= en-aut-name=SatoKazuhiro en-aut-sei=Sato en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Hordeum vulgare kn-keyword=Hordeum vulgare en-keyword=genome sequencing kn-keyword=genome sequencing en-keyword=genetic resources kn-keyword=genetic resources END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=8 article-no= start-page=1408 end-page=1418 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200511 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Decoding Plant–Environment Interactions That Influence Crop Agronomic Traits en-subtitle= kn-subtitle= en-abstract= kn-abstract=To ensure food security in the face of increasing global demand due to population growth and progressive urbanization, it will be crucial to integrate emerging technologies in multiple disciplines to accelerate overall throughput of gene discovery and crop breeding. Plant agronomic traits often appear during the plants’ later growth stages due to the cumulative effects of their lifetime interactions with the environment. Therefore, decoding plant–environment interactions by elucidating plants’ temporal physiological responses to environmental changes throughout their lifespans will facilitate the identification of genetic and environmental factors, timing and pathways that influence complex end-point agronomic traits, such as yield. Here, we discuss the expected role of the life-course approach to monitoring plant and crop health status in improving crop productivity by enhancing the understanding of plant–environment interactions. We review recent advances in analytical technologies for monitoring health status in plants based on multi-omics analyses and strategies for integrating heterogeneous datasets from multiple omics areas to identify informative factors associated with traits of interest. In addition, we showcase emerging phenomics techniques that enable the noninvasive and continuous monitoring of plant growth by various means, including three-dimensional phenotyping, plant root phenotyping, implantable/injectable sensors and affordable phenotyping devices. Finally, we present an integrated review of analytical technologies and applications for monitoring plant growth, developed across disciplines, such as plant science, data science and sensors and Internet-of-things technologies, to improve plant productivity. en-copyright= kn-copyright= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=NishiiRyuei en-aut-sei=Nishii en-aut-mei=Ryuei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HirayamaTakashi en-aut-sei=Hirayama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=School of Information and Data Sciences, Nagasaki University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Genome to phenome kn-keyword=Genome to phenome en-keyword=Life-course approach kn-keyword=Life-course approach en-keyword=Multi-omics kn-keyword=Multi-omics en-keyword=Plant phenomics kn-keyword=Plant phenomics en-keyword=Sensor. kn-keyword=Sensor. END start-ver=1.4 cd-journal=joma no-vol=2020 cd-vols= no-issue=9 article-no= start-page=093H02 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200920 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Improved method for measuring low-concentration radium and its application to the Super-Kamiokande Gadolinium project en-subtitle= kn-subtitle= en-abstract= kn-abstract=Chemical extraction using a molecular recognition resin named "Empore Radium Rad Disk" was developed to improve sensitivity for the low concentration of radium (Ra). Compared with the previous method, the extraction process speed was improved by a factor of three and the recovery rate for Ra-226 was also improved from 81 +/- 4% to > 99.9%. The sensitivity on the 10(-1) mBq level was achieved using a high-purity germanium detector. This improved method was applied to determine Ra-226 in Gd-2(SO4)(3)center dot 8H(2)O which will be used in the Super-Kamiokande Gadolinium project. The improvement and measurement results are reported in this paper. en-copyright= kn-copyright= en-aut-name=ItoS. en-aut-sei=Ito en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchimuraK. en-aut-sei=Ichimura en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakuY. en-aut-sei=Takaku en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AbeK. en-aut-sei=Abe en-aut-mei=K. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HaradaM. en-aut-sei=Harada en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IkedaM. en-aut-sei=Ikeda en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoH. en-aut-sei=Ito en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KishimotoY. en-aut-sei=Kishimoto en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakajimaY. en-aut-sei=Nakajima en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=OkadaT. en-aut-sei=Okada en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SekiyaH. en-aut-sei=Sekiya en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Okayama University, Faculty of Science kn-affil= affil-num=2 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=3 en-affil=Institute for Environmental Sciences, Department of Radioecology kn-affil= affil-num=4 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=5 en-affil=Okayama University, Faculty of Science kn-affil= affil-num=6 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=7 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=8 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=9 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=10 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=11 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=8 article-no= start-page=1438 end-page=1448 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200415 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Life-Course Monitoring of Endogenous Phytohormone Levels under Field Conditions Reveals Diversity of Physiological States among Barley Accessions en-subtitle= kn-subtitle= en-abstract= kn-abstract=Agronomically important traits often develop during the later stages of crop growth as consequences of various plant–environment interactions. Therefore, the temporal physiological states that change and accumulate during the crop’s life course can significantly affect the eventual phenotypic differences in agronomic traits among crop varieties. Thus, to improve productivity, it is important to elucidate the associations between temporal physiological responses during the growth of different crop varieties and their agronomic traits. However, data representing the dynamics and diversity of physiological states in plants grown under field conditions are sparse. In this study, we quantified the endogenous levels of five phytohormones — auxin, cytokinins (CKs), ABA, jasmonate and salicylic acid — in the leaves of eight diverse barley (Hordeum vulgare) accessions grown under field conditions sampled weekly over their life course to assess the ongoing fluctuations in hormone levels in the different accessions under field growth conditions. Notably, we observed enormous changes over time in the development-related plant hormones, such as auxin and CKs. Using 3′ RNA-seq-based transcriptome data from the same samples, we investigated the expression of barley genes orthologous to known hormone-related genes of Arabidopsis throughout the life course. These data illustrated the dynamics and diversity of the physiological states of these field-grown barley accessions. Together, our findings provide new insights into plant–environment interactions, highlighting that there is cultivar diversity in physiological responses during growth under field conditions. en-copyright= kn-copyright= en-aut-name=HirayamaTakashi en-aut-sei=Hirayama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SaishoDaisuke en-aut-sei=Saisho en-aut-mei=Daisuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsuuraTakakazu en-aut-sei=Matsuura en-aut-mei=Takakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OkadaSatoshi en-aut-sei=Okada en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahagiKotaro en-aut-sei=Takahagi en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KanataniAsaka en-aut-sei=Kanatani en-aut-mei=Asaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=ItoJun en-aut-sei=Ito en-aut-mei=Jun kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TsujiHiroyuki en-aut-sei=Tsuji en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IkedaYoko en-aut-sei=Ikeda en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MochidaKeiichi en-aut-sei=Mochida en-aut-mei=Keiichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=6 en-affil=RIKEN Center for Sustainable Resource Science kn-affil= affil-num=7 en-affil=Kihara Institute for Biological Research, Yokohama City University kn-affil= affil-num=8 en-affil=Kihara Institute for Biological Research, Yokohama City University kn-affil= affil-num=9 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=10 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=transcriptome kn-keyword=transcriptome en-keyword=barley kn-keyword=barley en-keyword=filed conditions kn-keyword=filed conditions en-keyword=hormone profiling kn-keyword=hormone profiling en-keyword=life-course monitoring kn-keyword=life-course monitoring END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=16 article-no= start-page=4778 end-page=4796 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200506 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Low temperature modulates natural peel degreening in lemon fruit independently of endogenous ethylene en-subtitle= kn-subtitle= en-abstract= kn-abstract=Peel degreening is an important aspect of fruit ripening in many citrus fruit, and previous studies have shown that it can be advanced by ethylene treatment or by low-temperature storage. However, the important regulators and pathways involved in natural peel degreening remain largely unknown. To determine how natural peel degreening is regulated in lemon fruit (Citrus limon), we studied transcriptome and physiochemical changes in the flavedo in response to ethylene treatment and low temperatures. Treatment with ethylene induced rapid peel degreening, which was strongly inhibited by the ethylene antagonist, 1-methylcyclopropene (1-MCP). Compared with 25 degrees C, moderately low storage temperatures of 5-20 degrees C also triggered peel degreening. Surprisingly, repeated 1-MCP treatments failed to inhibit the peel degreening induced by low temperature. Transcriptome analysis revealed that low temperature and ethylene independently regulated genes associated with chlorophyll degradation, carotenoid metabolism, photosystem proteins, phytohormone biosynthesis and signalling, and transcription factors. Peel degreening of fruit on trees occurred in association with drops in ambient temperature, and it coincided with the differential expression of low temperature-regulated genes. In contrast, genes that were uniquely regulated by ethylene showed no significant expression changes during on-tree peel degreening. Based on these findings, we hypothesize that low temperature plays a prominent role in regulating natural peel degreening independently of ethylene in citrus fruit. en-copyright= kn-copyright= en-aut-name=MitaloOscar W. en-aut-sei=Mitalo en-aut-mei=Oscar W. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OtsukiTakumi en-aut-sei=Otsuki en-aut-mei=Takumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OkadaRui en-aut-sei=Okada en-aut-mei=Rui kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ObitsuSaeka en-aut-sei=Obitsu en-aut-mei=Saeka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=MasudaKanae en-aut-sei=Masuda en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=HojoYuko en-aut-sei=Hojo en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=MatsuuraTakakazu en-aut-sei=Matsuura en-aut-mei=Takakazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MoriIzumi C. en-aut-sei=Mori en-aut-mei=Izumi C. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=AbeDaigo en-aut-sei=Abe en-aut-mei=Daigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AsicheWilliam O. en-aut-sei=Asiche en-aut-mei=William O. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=AkagiTakashi en-aut-sei=Akagi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KuboYasutaka en-aut-sei=Kubo en-aut-mei=Yasutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=9 en-affil=National Agriculture and Food Research Organization, Shikoku Research Station kn-affil= affil-num=10 en-affil=Department of Research and Development, Del Monte Kenya Ltd kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=12 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=13 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=1-methylcyclopropene kn-keyword=1-methylcyclopropene en-keyword=carotenoids kn-keyword=carotenoids en-keyword=chlorophyll kn-keyword=chlorophyll en-keyword=Citrus limon kn-keyword=Citrus limon en-keyword=ethylene kn-keyword=ethylene en-keyword=low temperature kn-keyword=low temperature en-keyword=peel degreening kn-keyword=peel degreening en-keyword=phytohormones kn-keyword=phytohormones en-keyword=transcriptome kn-keyword=transcriptome END start-ver=1.4 cd-journal=joma no-vol=2020 cd-vols= no-issue=4 article-no= start-page=043D02 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200413 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium en-subtitle= kn-subtitle= en-abstract= kn-abstract=Natural gadolinium is widely used for its excellent thermal neutron capture cross section, because of its two major isotopes: Gd-155 and Gd-157. We measured the gamma-ray spectra produced from the thermal neutron capture on targets comprising a natural gadolinium film and enriched Gd-155 (in Gd2O3 powder) in the energy range from 0.11 MeV to 8.0 MeV, using the ANNRI germanium spectrometer at MLF, J-PARC. The freshly analyzed data of the Gd-155(n,gamma) reaction are used to improve our previously developed model (ANNRI-Gd model) for the Gd-157(n,gamma) reaction [K. Hagiwara et al. [ANNRI-Gd Collaboration], Prog. Theor. Exp. Phys. 2019, 023D01 (2019)], and its performance confirmed with the independent data from the Gd-nat(n,gamma) reaction. This article completes the development of an efficient Monte Carlo model required to simulate and analyze particle interactions involving the thermal neutron captures on gadolinium in any relevant future experiments. en-copyright= kn-copyright= en-aut-name=TanakaTomoyuki en-aut-sei=Tanaka en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HagiwaraKaito en-aut-sei=Hagiwara en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=GazzolaEnrico en-aut-sei=Gazzola en-aut-mei=Enrico kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=AliAjmi en-aut-sei=Ali en-aut-mei=Ajmi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OuIwa en-aut-sei=Ou en-aut-mei=Iwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SudoTakashi en-aut-sei=Sudo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=DasPretam Kumar en-aut-sei=Das en-aut-mei=Pretam Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ReenMandeep Singh en-aut-sei=Reen en-aut-mei=Mandeep Singh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DhirRohit en-aut-sei=Dhir en-aut-mei=Rohit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KoshioYusuke en-aut-sei=Koshio en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KimuraAtsushi en-aut-sei=Kimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=NakamuraShoji en-aut-sei=Nakamura en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=IwamotoNobuyuki en-aut-sei=Iwamoto en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=HaradaHideo en-aut-sei=Harada en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=CollazuolGianmaria en-aut-sei=Collazuol en-aut-mei=Gianmaria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=LorenzSebastian en-aut-sei=Lorenz en-aut-mei=Sebastian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=WurmMichael en-aut-sei=Wurm en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=FocillonWilliam en-aut-sei=Focillon en-aut-mei=William kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=GoninMichel en-aut-sei=Gonin en-aut-mei=Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=YanoTakatomi en-aut-sei=Yano en-aut-mei=Takatomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Department of Physics, Okayama University kn-affil= affil-num=3 en-affil=Universitá di Padova and INFN, Dipartimento di Fisica kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Department of Physics, Okayama University kn-affil= affil-num=6 en-affil=Department of Physics, Okayama University kn-affil= affil-num=7 en-affil=Department of Physics, Okayama University kn-affil= affil-num=8 en-affil=Department of Physics, Okayama University kn-affil= affil-num=9 en-affil=Department of Physics, Okayama University kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=13 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=14 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=15 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=16 en-affil=Universitá di Padova and INFN, Dipartimento di Fisica kn-affil= affil-num=17 en-affil=Institut für Physik, Johannes Gutenberg-Universität Mainz kn-affil= affil-num=18 en-affil=Institut für Physik, Johannes Gutenberg-Universität Mainz kn-affil= affil-num=19 en-affil=Département de Physique, École Polytechnique kn-affil= affil-num=20 en-affil=Département de Physique, École Polytechnique kn-affil= affil-num=21 en-affil=Kamioka Observatory, ICRR, University of Tokyo kn-affil= END start-ver=1.4 cd-journal=joma no-vol=71 cd-vols= no-issue=10 article-no= start-page=2922 end-page=2932 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200227 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Inhibition of light-induced stomatal opening by allyl isothiocyanate does not require guard cell cytosolic Ca2+ signaling en-subtitle= kn-subtitle= en-abstract= kn-abstract=The glucosinolate-myrosinase system is a well-known defense system that has been shown to induce stomatal closure in Brassicales. Isothiocyanates are highly reactive hydrolysates of glucosinolates, and an isothiocyanate, allyl isothiocyanate (AITC), induces stomatal closure accompanied by elevation of free cytosolic Ca2+ concentration ([Ca2+](cyt)) in Arabidopsis. It remains unknown whether AITC inhibits light-induced stomatal opening. This study investigated the role of Ca2+ in AITC-induced stomatal closure and inhibition of light-induced stomatal opening. AITC induced stomatal closure and inhibited light-induced stomatal opening in a dose-dependent manner. A Ca2+ channel inhibitor, La3+, a Ca(2+)chelator, EGTA, and an inhibitor of Ca2+ release from internal stores, nicotinamide, inhibited AITC-induced [Ca2+](cyt) elevation and stomatal closure, but did not affect inhibition of light-induced stomatal opening. AITC activated non-selective Ca2+-permeable cation channels and inhibited inward-rectifying K+ (K-in(+)) channels in a Ca2+-independent manner. AITC also inhibited stomatal opening induced by fusicoccin, a plasma membrane H+-ATPase activator, but had no significant effect on fusicoccin-induced phosphorylation of the penultimate threonine of H+-ATPase. Taken together, these results suggest that AITC induces Ca2+ influx and Ca2+ release to elevate [Ca2+](cyt), which is essential for AITC-induced stomatal closure but not for inhibition of K-in(+) channels and light-induced stomatal opening. en-copyright= kn-copyright= en-aut-name=YeWenxiu en-aut-sei=Ye en-aut-mei=Wenxiu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AndoEigo en-aut-sei=Ando en-aut-mei=Eigo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=RhamanMohammad Saidur en-aut-sei=Rhaman en-aut-mei=Mohammad Saidur kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Tahjib-Ul-ArifMd en-aut-sei=Tahjib-Ul-Arif en-aut-mei=Md kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=OkumaEiji en-aut-sei=Okuma en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraYoshimasa en-aut-sei=Nakamura en-aut-mei=Yoshimasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KinoshitaToshinori en-aut-sei=Kinoshita en-aut-mei=Toshinori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MurataYoshiyuki en-aut-sei=Murata en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Science, Nagoya University kn-affil= affil-num=3 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Institute of Transformative Bio-Molecule, Nagoya University kn-affil= affil-num=8 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=Allyl isothiocyanate kn-keyword=Allyl isothiocyanate en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=calcium channel kn-keyword=calcium channel en-keyword=potassium channel kn-keyword=potassium channel en-keyword=proton pump kn-keyword=proton pump en-keyword=stomatal closure kn-keyword=stomatal closure en-keyword=stomatal opening kn-keyword=stomatal opening END start-ver=1.4 cd-journal=joma no-vol=70 cd-vols= no-issue=5 article-no= start-page=1683 end-page=1696 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190502 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Honeydew-associated microbes elicit defense responses against brown planthopper in rice en-subtitle= kn-subtitle= en-abstract= kn-abstract=Feeding of sucking insects, such as the rice brown planthopper (Nilaparvata lugens; BPH), causes only limited mechanical damage on plants that is otherwise essential for injury-triggered defense responses against herbivores. In pursuit of complementary BPH elicitors perceived by plants, we examined the potential effects of BPH honeydew secretions on the BPH monocot host, rice (Oryza sativa). We found that BPH honeydew strongly elicits direct and putative indirect defenses in rice, namely accumulation of phytoalexins in the leaves, and release of volatile organic compounds from the leaves that serve to attract natural enemies of herbivores, respectively. We then examined the elicitor active components in the honeydew and found that bacteria in the secretions are responsible for the activation of plant defense. Corroborating the importance of honeydew-associated microbiota for induced plant resistance, BPHs partially devoid of their microbiota via prolonged antibiotics ingestion induced significantly less defense in rice relative to antibiotic-free insects applied to similar groups of plants. Our data suggest that rice plants may additionally perceive herbivores via their honeydew-associated microbes, allowing them to discriminate between incompatible herbivores—that do not produce honeydew—and those that are compatible and therefore dangerous. en-copyright= kn-copyright= en-aut-name=WariDavid en-aut-sei=Wari en-aut-mei=David kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KabirMd Alamgir en-aut-sei=Kabir en-aut-mei=Md Alamgir kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MujionoKadis en-aut-sei=Mujiono en-aut-mei=Kadis kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HojoYuko en-aut-sei=Hojo en-aut-mei=Yuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ShinyaTomonori en-aut-sei=Shinya en-aut-mei=Tomonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TaniAkio en-aut-sei=Tani en-aut-mei=Akio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=NakataniHiroko en-aut-sei=Nakatani en-aut-mei=Hiroko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=GalisIvan en-aut-sei=Galis en-aut-mei=Ivan kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=2 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=3 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=4 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=5 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=6 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=7 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= affil-num=8 en-affil=Institute of Plant Science and Resources, Okayama University kn-affil= en-keyword=Honeydew-associated microorganisms kn-keyword=Honeydew-associated microorganisms en-keyword=phytoalexins kn-keyword=phytoalexins en-keyword=plant defense kn-keyword=plant defense en-keyword=rice (Oryza sativa) kn-keyword=rice (Oryza sativa) en-keyword=rice brown planthopper (Nilaparvata lugens) kn-keyword=rice brown planthopper (Nilaparvata lugens) en-keyword=sucking insect kn-keyword=sucking insect END start-ver=1.4 cd-journal=joma no-vol=130 cd-vols= no-issue=1 article-no= start-page=34 end-page=40 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200507 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genetic variation and phenotypic plasticity in circadian rhythms in an armed beetle, Gnatocerus cornutus (Tenebrionidae) en-subtitle= kn-subtitle= en-abstract= kn-abstract=Circadian rhythms, their free-running periods and the power of the rhythms are often used as indicators of biological clocks, and there is evidence that the free-running periods of circadian rhythms are not affected by environmental factors, such as temperature. However, there are few studies of environmental effects on the power of the rhythms, and it is not clear whether temperature compensation is universal. Additionally, genetic variation and phenotypic plasticity in biological clocks are important for understanding the evolution of biological rhythms, but genetic and plastic effects are rarely investigated. Here, we used 18 isofemale lines (genotypes) of Gnatocerus cornutus to assess rhythms of locomotor activity, while also testing for temperature effects. We found that total activity and the power of the circadian rhythm were affected by interactions between sex and genotype or between sex, genotype and temperature. The males tended to be more active and showed greater increases in activity, but this effect varied across both genotypes and temperatures. The period of activity varied only by genotype and was thus independent of temperature. The complicated genotype–sex–environment interactions we recorded stress the importance of investigating circadian activity in more integrated ways. en-copyright= kn-copyright= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AbeMasato S en-aut-sei=Abe en-aut-mei=Masato S kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SharmaManmohan D en-aut-sei=Sharma en-aut-mei=Manmohan D kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HoskenDavid J en-aut-sei=Hosken en-aut-mei=David J kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshiiTaishi en-aut-sei=Yoshii en-aut-mei=Taishi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Center for Advanced Intelligence Project, RIKEN kn-affil= affil-num=3 en-affil=Centre for Ecology and Conservation, School of Biosciences, University of Exeter kn-affil= affil-num=4 en-affil=Centre for Ecology and Conservation, School of Biosciences, University of Exeter kn-affil= affil-num=5 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=circadian rhythm kn-keyword=circadian rhythm en-keyword=Gnatocerus cornutus kn-keyword=Gnatocerus cornutus en-keyword=isofemale line kn-keyword=isofemale line en-keyword=power of circadian rhythm kn-keyword=power of circadian rhythm END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue=3 article-no= start-page=rjaa061 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200328 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Surgical resection for advanced bisphosphonate-related osteonecrosis of the jaw associated with fibrous dysplasia: a case report en-subtitle= kn-subtitle= en-abstract= kn-abstract=Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is an adverse drug reaction represented by destruction and/or death of bone. Fibrous dysplasia (FD) is a rare bony disorder characterised by abnormal fibro-osseous tissue that has lowered resistance to infection. Effective treatments for BRONJ that follows FD are unclear. Here, we report that advanced BRONJ associated with FD was successfully treated by surgical resection. A 69-year-old woman, whose left maxillary bone showed a ground glass appearance on computed tomography (CT) images, was taking alendronate. At 1 year after teeth within the abnormal bone were extracted, exposed bone was observed in the extraction sites and CT images revealed separated sequestrums. Under the clinical diagnosis of Stage 2 BRONJ with FD, we performed not only sequestrectomy but also a partial resection of the FD. Thereafter, the healing was uneventful without recurrence. In conclusion, our case suggests that surgical resection is useful for advanced BRONJ associated with FD. en-copyright= kn-copyright= en-aut-name=MuraseYurika en-aut-sei=Murase en-aut-mei=Yurika kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KishimotoKoji en-aut-sei=Kishimoto en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshidaShoko en-aut-sei=Yoshida en-aut-mei=Shoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KunisadaYuki en-aut-sei=Kunisada en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KadoyaKoichi en-aut-sei=Kadoya en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=IbaragiSoichiro en-aut-sei=Ibaragi en-aut-mei=Soichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SasakiAkira en-aut-sei=Sasaki en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= affil-num=1 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=2 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=3 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=4 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=5 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=6 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= affil-num=7 en-affil=Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine,Dentistry and Pharmaceutical Sciences kn-affil= END start-ver=1.4 cd-journal=joma no-vol=50 cd-vols= no-issue=3 article-no= start-page=225 end-page=229 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200128 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Adjuvant and neoadjuvant therapy for breast cancer en-subtitle= kn-subtitle= en-abstract= kn-abstract=Systemic therapies for operable breast cancer patients have improved outcomes and have thus become standard treatments. Recently, new molecular target drugs and regimens are being developed based on the predicted sensitivity for specific breast cancer histological types. Systemic therapy is selected according to recurrence risk, with the treatment for low-risk patients being de-escalated, while high-risk patients receive aggressive systemic treatment with an adequate dose and duration. Neoadjuvant systemic therapy has a different aim. The efficacy of systemic therapies, based on the sensitivities to drugs, is supported by improvements in the rate of breast-conserving therapy. The response to neoadjuvant systemic therapy is the most important factor for predicting outcomes and selecting the optimal adjuvant therapy. Novel biological markers unique to individual patients allow appropriate targeted therapy, which can achieve optimal efficacy. en-copyright= kn-copyright= en-aut-name=ShienTadahiko en-aut-sei=Shien en-aut-mei=Tadahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IwataHiroji en-aut-sei=Iwata en-aut-mei=Hiroji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Okayama University Hospital kn-affil= affil-num=2 en-affil=Okayama University Hospital kn-affil= en-keyword=breast cancer kn-keyword=breast cancer en-keyword=adjuvant kn-keyword=adjuvant en-keyword=neoadjuvant kn-keyword=neoadjuvant END start-ver=1.4 cd-journal=joma no-vol=220 cd-vols= no-issue=1 article-no= start-page=190 end-page=200 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190930 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Deformation of rhyolite lava crust associated with intermittent inner flow of lava: palaeomagnetic evidence en-subtitle= kn-subtitle= en-abstract= kn-abstract=A palaeomagnetic study has been conducted to examine the deformation of thick crusts of rhyolite lava while its inner portions continue to flow. The Sanukayama rhyolite lava, which erupted in the Pleistocene in Kozushima Island, Japan, was chosen as the investigation site because of its well-exposed vertical lithofacies variations classified into three distinct zones (pumiceous, obsidian and crystalline). The targets of this study are the pumiceous and obsidian zones, which constitute the crust of the lava. Thermal demagnetization reveals three remanent magnetization components from the pumiceous and obsidian samples but only a single magnetization component from the inner crystalline rhyolite samples. Alternating field demagnetization is ineffective in isolating the magnetization components in the pumiceous and obsidian samples. The multiple components of remanent magnetization of the crust are interpreted to have been acquired during cooling as thermoremanent magnetizations. We suspect intermittent lava transport of the inner portions, the primary mode of rhyolite lava advancement, to be responsible for the presence of multiple components in pumice and obsidian of the lava crust. When the inner portions of the lava retain mobility to flow out of the crust, the solidified crust of the lava surface below the magnetite Curie temperature remains susceptible to deformation. Analysis of palaeomagnetic directions from the crust allows the deformation of the crust to be described in terms of rotation. Although the mode of rhyolite lava advancement is not well understood, because of its infrequent occurrence, our observations offer an important insight on how the mobile part of the lava is associated with the deformation of the crust during continued lava advance. en-copyright= kn-copyright= en-aut-name=UnoKoji en-aut-sei=Uno en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=FurukawaKuniyuki en-aut-sei=Furukawa en-aut-mei=Kuniyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NakaiKotaro en-aut-sei=Nakai en-aut-mei=Kotaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KamioTakuma en-aut-sei=Kamio en-aut-mei=Takuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KanamaruTatsuo en-aut-sei=Kanamaru en-aut-mei=Tatsuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Business Administration, Aichi University kn-affil= affil-num=3 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=4 en-affil=Department of Earth Sciences, Okayama University kn-affil= affil-num=5 en-affil=Department of Earth and Environmental Sciences, Nihon University kn-affil= en-keyword=Asia kn-keyword=Asia en-keyword=Palaeomagnetism kn-keyword=Palaeomagnetism en-keyword=Rock and mineral magnetism kn-keyword=Rock and mineral magnetism en-keyword=Volcanic hazards and risks kn-keyword=Volcanic hazards and risks END start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=3 article-no= start-page=470 end-page=480 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20191113 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Regulation of the Poly(A) Status of Mitochondrial mRNA by Poly(A)-Specific Ribonuclease Is Conserved among Land Plants en-subtitle= kn-subtitle= en-abstract= kn-abstract=Regulation of the stability and the quality of mitochondrial RNA is essential for the maintenance of mitochondrial and cellular functions in eukaryotes. We have previously reported that the eukaryotic poly(A)-specific ribonuclease (PARN) and the prokaryotic poly(A) polymerase encoded by AHG2 and AGS1, respectively, coordinately regulate the poly(A) status and the stability of mitochondrial mRNA in Arabidopsis. Mitochondrial function of PARN has not been reported in any other eukaryotes. To know how much this PARN-based mitochondrial mRNA regulation is conserved among plants, we studied the AHG2 and AGS1 counterparts of the liverwort, Marchantia polymorpha, a member of basal land plant lineage. We found that M. polymorpha has one ortholog each for AHG2 and AGS1, named MpAHG2 and MpAGS1, respectively. Their Citrine-fused proteins were detected in mitochondria of the liverwort. Molecular genetic analysis showed that MpAHG2 is essential and functionally interacts with MpAGS1 as observed in Arabidopsis. A recombinant MpAHG2 protein had a deadenylase activity in vitro. Overexpression of MpAGS1 and the reduced expression of MpAHG2 caused an accumulation of polyadenylated Mpcox1 mRNA. Furthermore, MpAHG2 suppressed Arabidopsis ahg2-1 mutant phenotype. These results suggest that the PARN-based mitochondrial mRNA regulatory system is conserved in land plants. en-copyright= kn-copyright= en-aut-name=KanazawaMai en-aut-sei=Kanazawa en-aut-mei=Mai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IkedaYoko en-aut-sei=Ikeda en-aut-mei=Yoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=NishihamaRyuichi en-aut-sei=Nishihama en-aut-mei=Ryuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=YamaokaShohei en-aut-sei=Yamaoka en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=LeeNam-Hee en-aut-sei=Lee en-aut-mei=Nam-Hee kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=YamatoKatsuyuki T en-aut-sei=Yamato en-aut-mei=Katsuyuki T kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KohchiTakayuk en-aut-sei=Kohchi en-aut-mei=Takayuk kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HirayamaTakashi en-aut-sei=Hirayama en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil=Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Biostudies, Kyoto University kn-affil= affil-num=4 en-affil=Graduate School of Biostudies, Kyoto University kn-affil= affil-num=5 en-affil=Department of Life Sciences, Faculty of Science and Engineering, Sorbonne University kn-affil= affil-num=6 en-affil=Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kindai University kn-affil= affil-num=7 en-affil=Graduate School of Biostudies, Kyoto University kn-affil= affil-num=8 en-affil=Division of Science for Bioresources, Graduate School of Environment and Life Science, Okayama University kn-affil= en-keyword=Arabidopsis kn-keyword=Arabidopsis en-keyword=Marchantia polymorpha kn-keyword=Marchantia polymorpha en-keyword=Mitochondria kn-keyword=Mitochondria en-keyword= Poly(A) polymerase kn-keyword= Poly(A) polymerase en-keyword=Poly(A) regulation kn-keyword=Poly(A) regulation en-keyword= Poly(A)-specific ribonuclease kn-keyword= Poly(A)-specific ribonuclease END start-ver=1.4 cd-journal=joma no-vol=26 cd-vols= no-issue=5 article-no= start-page=399 end-page=409 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190803 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of molecular markers associated with resistance to Meloidogyne incognita by performing quantitative trait locus analysis and genome-wide association study in sweetpotato en-subtitle= kn-subtitle= en-abstract= kn-abstract=The southern root-knot nematode, Meloidogyne incognita, is a pest that decreases yield and the quality of sweetpotato [Ipomoea batatas (L.) Lam.]. There is a demand to produce resistant cultivars and develop DNA markers to select this trait. However, sweetpotato is hexaploid, highly heterozygous, and has an enormous genome (similar to 3 Gb), which makes genetic linkage analysis difficult. In this study, a high-density linkage map was constructed based on retrotransposon insertion polymorphism, simple sequence repeat, and single nucleotide polymorphism markers. The markers were developed using F-1 progeny between J-Red, which exhibits resistance to multiple races of M. incognita, and Choshu, which is susceptible to multiple races of such pest. Quantitative trait locus (QTL) analysis and a genome-wide association study detected highly effective QTLs for resistance against three races, namely, SP1, SP4, and SP6-1, in the Ib01-6 J-Red linkage group. A polymerase chain reaction marker that can identify genotypes based on single nucleotide polymorphisms located in this QTL region can discriminate resistance from susceptibility in the F-1 progeny at a rate of 70%. Thus, this marker could be helpful in selecting sweetpotato cultivars that are resistant to multiple races of M. incognita. en-copyright= kn-copyright= en-aut-name=SasaiRumi en-aut-sei=Sasai en-aut-mei=Rumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=TabuchiHiroaki en-aut-sei=Tabuchi en-aut-mei=Hiroaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShirasawaKenta en-aut-sei=Shirasawa en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KishimotoKazuki en-aut-sei=Kishimoto en-aut-mei=Kazuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=SatoShusei en-aut-sei=Sato en-aut-mei=Shusei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkadaYoshihiro en-aut-sei=Okada en-aut-mei=Yoshihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuramotoAkihide en-aut-sei=Kuramoto en-aut-mei=Akihide kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=KobayashiAkira en-aut-sei=Kobayashi en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=IsobeSachiko en-aut-sei=Isobe en-aut-mei=Sachiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TaharaMakoto en-aut-sei=Tahara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=MondenYuki en-aut-sei=Monden en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Kyusyu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization kn-affil= affil-num=3 en-affil=Kazusa DNA Research Institute kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Life Science, Tohoku University kn-affil= affil-num=6 en-affil=Kyusyu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization kn-affil= affil-num=7 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=8 en-affil=Kyusyu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization kn-affil= affil-num=9 en-affil=Kazusa DNA Research Institute kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=11 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=sweetpotato kn-keyword=sweetpotato en-keyword=GWAS kn-keyword=GWAS en-keyword=QTL mapping kn-keyword=QTL mapping en-keyword=polyploids kn-keyword=polyploids en-keyword=marker-assisted breeding kn-keyword=marker-assisted breeding END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue=2 article-no= start-page=023D01 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190222 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Gamma-ray spectrum from thermal neutron capture on gadolinium-157 en-subtitle= kn-subtitle= en-abstract= kn-abstract=We have measured the -ray energy spectrum from the thermal neutron capture, Gd, on an enriched Gd target (GdO) in the energy range from 0.11 MeV up to about 8 MeV. The target was placed inside the germanium spectrometer of the ANNRI detector at J-PARC and exposed to a neutron beam from the Japan Spallation Neutron Source (JSNS). Radioactive sources (Co, Cs, and Eu) and the Cl(,) reaction were used to determine the spectrometers detection efficiency for rays at energies from 0.3 to 8.5 MeV. Using a Geant4-based Monte Carlo simulation of the detector and based on our data, we have developed a model to describe the -ray spectrum from the thermal Gd(,) reaction. While we include the strength information of 15 prominent peaks above 5 MeV and associated peaks below 1.6 MeV from our data directly into the model, we rely on the theoretical inputs of nuclear level density and the photon strength function of Gd to describe the continuum -ray spectrum from the Gd(,) reaction. Our model combines these two components. The results of the comparison between the observed -ray spectra from the reaction and the model are reported in detail. en-copyright= kn-copyright= en-aut-name=HagiwaraKaito en-aut-sei=Hagiwara en-aut-mei=Kaito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YanoTakatomi en-aut-sei=Yano en-aut-mei=Takatomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TanakaTomoyuki en-aut-sei=Tanaka en-aut-mei=Tomoyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ReenMandeep Singh en-aut-sei=Reen en-aut-mei=Mandeep Singh kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=DasPretam Kumar en-aut-sei=Das en-aut-mei=Pretam Kumar kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=LorenzSebastian en-aut-sei=Lorenz en-aut-mei=Sebastian kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=OuIwa en-aut-sei=Ou en-aut-mei=Iwa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SudoTakashi en-aut-sei=Sudo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=YamadaYoshiyuki en-aut-sei=Yamada en-aut-mei=Yoshiyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=MoriTakaaki en-aut-sei=Mori en-aut-mei=Takaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KayanoTsubasa en-aut-sei=Kayano en-aut-mei=Tsubasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=DhirRohit en-aut-sei=Dhir en-aut-mei=Rohit kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KoshioYusuke en-aut-sei=Koshio en-aut-mei=Yusuke kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=SakudaMakoto en-aut-sei=Sakuda en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=KimuraAtsushi en-aut-sei=Kimura en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraShoji en-aut-sei=Nakamura en-aut-mei=Shoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=IwamotoNobuyuki en-aut-sei=Iwamoto en-aut-mei=Nobuyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=HaradaHideo en-aut-sei=Harada en-aut-mei=Hideo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=WurmMichael en-aut-sei=Wurm en-aut-mei=Michael kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=FocillonWilliam en-aut-sei=Focillon en-aut-mei=William kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=GoninMichel en-aut-sei=Gonin en-aut-mei=Michel kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=AliAjmi en-aut-sei=Ali en-aut-mei=Ajmi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=CollazuolGianmaria en-aut-sei=Collazuol en-aut-mei=Gianmaria kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= affil-num=1 en-affil=Department of Physics, Okayama University kn-affil= affil-num=2 en-affil=Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=3 en-affil=Department of Physics, Okayama University kn-affil= affil-num=4 en-affil=Department of Physics, Okayama University kn-affil= affil-num=5 en-affil=Department of Physics, Okayama University kn-affil= affil-num=6 en-affil=Department of Physics, Okayama University kn-affil= affil-num=7 en-affil=Department of Physics, Okayama University kn-affil= affil-num=8 en-affil=Department of Physics, Okayama University kn-affil= affil-num=9 en-affil=Department of Physics, Okayama University kn-affil= affil-num=10 en-affil=Department of Physics, Okayama University kn-affil= affil-num=11 en-affil=Department of Physics, Okayama University kn-affil= affil-num=12 en-affil=Department of Physics, Okayama University kn-affil= affil-num=13 en-affil=Department of Physics, Okayama University kn-affil= affil-num=14 en-affil=Department of Physics, Okayama University kn-affil= affil-num=15 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=16 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=17 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=18 en-affil=Japan Atomic Energy Agency kn-affil= affil-num=19 en-affil=Institut für Physik, Johannes Gutenberg-Universität Mainz kn-affil= affil-num=20 en-affil=Département de Physique, École Polytechnique kn-affil= affil-num=21 en-affil=Département de Physique, École Polytechnique kn-affil= affil-num=22 en-affil=Department of Physics, Okayama University kn-affil= affil-num=23 en-affil=Universitá di Padova and INFN, Dipartimento di Fisica kn-affil= END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue=6 article-no= start-page=063H03 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190629 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a method for measuring rare earth elements in the environment for future experiments with gadolinium-loaded detectors en-subtitle= kn-subtitle= en-abstract= kn-abstract=Demand to use gadolinium (Gd) in detectors is increasing in the field of elementary particle physics, especially in neutrino measurements and dark matter searches. Large amounts of Gd are used in these experiments. To assess the impact of Gd on the environment it is becoming important to measure the baseline concentrations of Gd. Such measurement, however, is not easy due to interference by other elements. In this paper a method for measuring the concentrations of rare earth elements, including Gd, is proposed. In the method, inductively coupled plasma-mass spectrometry is utilized after collecting the dissolved elements in chelating resin. Results of the ability to detect anomalous concentrations of rare earth elements in river water samples in the Kamioka and Toyama areas are also reported. en-copyright= kn-copyright= en-aut-name=ItoS. en-aut-sei=Ito en-aut-mei=S. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaT. en-aut-sei=Okada en-aut-mei=T. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TakakuY. en-aut-sei=Takaku en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=HaradaM. en-aut-sei=Harada en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IkedaM. en-aut-sei=Ikeda en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KishimotoY. en-aut-sei=Kishimoto en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KoshioY. en-aut-sei=Koshio en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=NakahataM. en-aut-sei=Nakahata en-aut-mei=M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NakajimaY. en-aut-sei=Nakajima en-aut-mei=Y. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SekiyaH. en-aut-sei=Sekiya en-aut-mei=H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Okayama University, Faculty of Science kn-affil= affil-num=2 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=3 en-affil=Institute for Environmental Sciences, Department of Radioecology kn-affil= affil-num=4 en-affil=Okayama University, Faculty of Science kn-affil= affil-num=5 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=6 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=7 en-affil=Okayama University, Faculty of Science kn-affil= affil-num=8 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=9 en-affil=Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo kn-affil= affil-num=10 en-affil= kn-affil= END start-ver=1.4 cd-journal=joma no-vol=60 cd-vols= no-issue=8 article-no= start-page=1681 end-page=1715 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190912 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Transition from Plume-driven to Plate-driven Magmatism in the Evolution of the Main Ethiopian Rift en-subtitle= kn-subtitle= en-abstract= kn-abstract= New K-Ar ages, major and trace element concentrations, and Sr-Nd-Pb isotope data are presented for Oligocene to recent mafic volcanic rocks from the Ethiopian Plateau, the Main Ethiopian Rift (MER), and the Afar depression. Chronological and geochemical data from this study are combined with previously published datasets to reveal secular variations in magmatism throughout the entire Ethiopian volcanic region. The mafic lavas in these regions show variability in terms of silica-saturation (i.e. alkaline and sub-alkaline series) and extent of differentiation (mafic through intermediate to felsic). The P-T conditions of melting, estimated using the least differentiated basalts, reveal a secular decrease in the mantle potential temperature, from when the flood basalt magmas erupted (up to 1600 degrees C) to the time of the rift-related magmatism (<1500 degrees C). Variations in the Sr-Nd-Pb isotopic compositions of the mafic lavas can account for the involvement of multiple end-member components. The relative contributions of these end-member components vary in space and time owing to changes in the thermal condition of the asthenosphere and the thickness of the lithosphere. The evolution of the Ethiopian rift is caused by a transition from plume-driven to plate-driven mantle upwelling, although the present-day mantle beneath the MER and the Afar depression is still warmer than normal asthenosphere. en-copyright= kn-copyright= en-aut-name=FeyissaDejene Hailemariam en-aut-sei=Feyissa en-aut-mei=Dejene Hailemariam kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=KitagawaHiroshi en-aut-sei=Kitagawa en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BizunehTesfaye Demissie en-aut-sei=Bizuneh en-aut-mei=Tesfaye Demissie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TanakaRyoji en-aut-sei=Tanaka en-aut-mei=Ryoji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KabetoKurkura en-aut-sei=Kabeto en-aut-mei=Kurkura kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakamuraEizo en-aut-sei=Nakamura en-aut-mei=Eizo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= affil-num=1 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=4 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=5 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= affil-num=6 en-affil=The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University kn-affil= en-keyword=Ethiopian Plateau kn-keyword=Ethiopian Plateau en-keyword=Ethiopian rift kn-keyword=Ethiopian rift en-keyword=Afar depression kn-keyword=Afar depression en-keyword=mantle source kn-keyword=mantle source en-keyword=mantle melting kn-keyword=mantle melting END start-ver=1.4 cd-journal=joma no-vol=30 cd-vols= no-issue=6 article-no= start-page=1522 end-page=1529 dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=20190705 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Artificial selection on walking distance suggests a mobility-sperm competitiveness trade-off en-subtitle= kn-subtitle= en-abstract= kn-abstract= Securing matings is a key determinant of fitness, and in many species, males are the sex that engages in mate searching. Searching for mates is often associated with increased mobility. This elevated investment in movement is predicted to trade-off with sperm competitiveness, but few studies have directly tested whether this trade-off occurs. Here, we assessed whether artificial selection on mobility affected sperm competitiveness and mating behavior, and if increased mobility was due to increased leg length in red flour beetles (Tribolium castaneum). We found that, in general, males selected for decreased mobility copulated for longer, stimulated females more during mating, and tended to be better sperm competitors. Surprisingly, they also had longer legs. However, how well males performed in sperm competition depended on females. Males with reduced mobility always copulated for longer than males with high mobility, but this only translated into greater fertilization success in females from control populations and not the selection populations (i.e. treatment females). These results are consistent with a mate-searching/mating-duration trade-off and broadly support a trade-off between mobility and sperm competitiveness. en-copyright= kn-copyright= en-aut-name=MatsumuraKentarou en-aut-sei=Matsumura en-aut-mei=Kentarou kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ArcherC Ruth en-aut-sei=Archer en-aut-mei=C Ruth kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=Hosken David J en-aut-sei=Hosken en-aut-mei= David J kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MiyatakeTakahisa en-aut-sei=Miyatake en-aut-mei=Takahisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Centre for Ecology & Conservation, University of Exeter kn-affil= affil-num=3 en-affil=Centre for Ecology & Conservation, University of Exeter kn-affil= affil-num=4 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=leg length kn-keyword=leg length en-keyword=mate searching kn-keyword=mate searching en-keyword=morphology kn-keyword=morphology en-keyword=sperm competition, kn-keyword=sperm competition, en-keyword=trade-off kn-keyword=trade-off en-keyword=Tribolium castaneum kn-keyword=Tribolium castaneum en-keyword=walking kn-keyword=walking END start-ver=1.4 cd-journal=joma no-vol=44 cd-vols= no-issue=12 article-no= start-page=5658 end-page=5672 dt-received= dt-revised= dt-accepted= dt-pub-year=2016 dt-pub=20160407 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms en-subtitle= kn-subtitle= en-abstract= kn-abstract= Toll-like receptor 5 (TLR5) expression in the intestinal epithelial cells (IECs) is critical to maintain health, as underscored by multiple intestinal and extra-intestinal diseases in mice genetically engineered for IEC-specific TLR5 knockout. A gradient of expression exists in the colonic epithelial cells from the cecum to the distal colon. Intriguingly, an identical gradient for the dietary metabolite, butyrate also exists in the luminal contents. However, both being critical for intestinal homeostasis and immune response, no studies examined the role of butyrate in the regulation of TLR5 expression. We showed that butyrate transcriptionally upregulates TLR5 in the IECs and augments flagellin-induced immune responses. Both basal and butyrate-induced transcription is regulated by differential binding of Sp-family transcription factors to the GC-box sequences over the TLR5 promoter. Butyrate activates two different protein kinase C isoforms to dephosphorylate/acetylate Sp1 by serine/threonine phosphatases and phosphorylate Sp3 by ERK-MAPK, respectively. This resulted in Sp1 displacement from the promoter and binding of Sp3 to it, leading to p300 recruitment and histone acetylation, activating transcription. This is the first study addressing the mechanisms of physiological TLR5 expression in the intestine. Additionally, a novel insight is gained into Sp1/Sp3-mediated gene regulation that may apply to other genes. en-copyright= kn-copyright= en-aut-name=Bhupesh Kumar Thakur en-aut-sei=Bhupesh Kumar Thakur en-aut-mei= kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=DasguptaNirmalya en-aut-sei=Dasgupta en-aut-mei=Nirmalya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TaAtri en-aut-sei=Ta en-aut-mei=Atri kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=DasSantasabuj en-aut-sei=Das en-aut-mei=Santasabuj kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil=Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases kn-affil= affil-num=2 en-affil=Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases kn-affil= affil-num=3 en-affil=Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases kn-affil= affil-num=4 en-affil=Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases kn-affil= END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=14 article-no= start-page=9005 end-page=9020 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140717 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Nuclear dynamics of topoisomerase II beta reflects its catalytic activity that is regulated by binding of RNA to the C-terminal domain en-subtitle= kn-subtitle= en-abstract= kn-abstract=DNA topoisomerase II (topo II) changes DNA topology by cleavage/re-ligation cycle(s) and thus contributes to various nuclear DNA transactions. It is largely unknown how the enzyme is controlled in a nuclear context. Several studies have suggested that its C-terminal domain (CTD), which is dispensable for basal relaxation activity, has some regulatory influence. In this work, we examined the impact of nuclear localization on regulation of activity in nuclei. Specifically, human cells were transfected with wild-type and mutant topo II beta tagged with EGFP. Activity attenuation experiments and nuclear localization data reveal that the endogenous activity of topo II beta is correlated with its subnuclear distribution. The enzyme shuttles between an active form in the nucleoplasm and a quiescent form in the nucleolus in a dynamic equilibrium. Mechanistically, the process involves a tethering event with RNA. Isolated RNA inhibits the catalytic activity of topo II beta in vitro through the interaction with a specific 50-residue region of the CTD (termed the CRD). Taken together, these results suggest that both the subnuclear distribution and activity regulation of topo II beta are mediated by the interplay between cellular RNA and the CRD. en-copyright= kn-copyright= en-aut-name=OnodaAkihisa en-aut-sei=Onoda en-aut-mei=Akihisa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HosoyaOsamu en-aut-sei=Hosoya en-aut-mei=Osamu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SanoKuniaki en-aut-sei=Sano en-aut-mei=Kuniaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KiyamaKazuko en-aut-sei=Kiyama en-aut-mei=Kazuko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KimuraHiroshi en-aut-sei=Kimura en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KawanoShinji en-aut-sei=Kawano en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=FurutaRyohei en-aut-sei=Furuta en-aut-mei=Ryohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyajiMary en-aut-sei=Miyaji en-aut-mei=Mary kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=TsutsuiKen en-aut-sei=Tsutsui en-aut-mei=Ken kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=TsutsuiKimiko M. en-aut-sei=Tsutsui en-aut-mei=Kimiko M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurogen affil-num=2 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurogen affil-num=3 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurogen affil-num=4 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurogen affil-num=5 en-affil= kn-affil=Osaka Univ, Grad Sch Frontier Biosci, Lab Biol Sci affil-num=6 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurogen affil-num=7 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurogen affil-num=8 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurogen affil-num=9 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurogen affil-num=10 en-affil= kn-affil=Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Neurogen END start-ver=1.4 cd-journal=joma no-vol=42 cd-vols= no-issue=19 article-no= start-page=11903 end-page=11911 dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140927 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=HSP90α plays an important role in piRNA biogenesis and retrotransposon repression in mouse en-subtitle= kn-subtitle= en-abstract= kn-abstract=HSP90, found in all kingdoms of life, is a major chaperone protein regulating many client proteins. We demonstrated that HSP90α, one of two paralogs duplicated in vertebrates, plays an important role in the biogenesis of fetal PIWI-interacting RNAs (piRNA), which act against the transposon activities, in mouse male germ cells. The knockout mutation of Hsp90α resulted in a large reduction in the expression of primary and secondary piRNAs and mislocalization of MIWI2, a PIWI homolog. Whereas the mutation in Fkbp6 encoding a co-chaperone reduced piRNAs of 28–32 nucleotides in length, the Hsp90α mutation reduced piRNAs of 24–32 nucleotides, suggesting the presence of both FKBP6-dependent and -independent actions of HSP90α. Although DNA methylation and mRNA levels of L1 retrotransposon were largely unchanged in the Hsp90α mutant testes, the L1-encoded protein was increased, suggesting the presence of post-transcriptional regulation. This study revealed the specialized function of the HSP90α isofom in the piRNA biogenesis and repression of retrotransposons during the development of male germ cells in mammals. en-copyright= kn-copyright= en-aut-name=IchiyanagiTomoko en-aut-sei=Ichiyanagi en-aut-mei=Tomoko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IchiyanagiKenji en-aut-sei=Ichiyanagi en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=OgawaAyako en-aut-sei=Ogawa en-aut-mei=Ayako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=Kuramochi-MiyagawaSatomi en-aut-sei=Kuramochi-Miyagawa en-aut-mei=Satomi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=NakanoToru en-aut-sei=Nakano en-aut-mei=Toru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=ChumaShinichiro en-aut-sei=Chuma en-aut-mei=Shinichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=SasakiHiroyuki en-aut-sei=Sasaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=UdonoHeiichiro en-aut-sei=Udono en-aut-mei=Heiichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= affil-num=1 en-affil= kn-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences affil-num=2 en-affil= kn-affil=Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University affil-num=3 en-affil= kn-affil=Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University affil-num=4 en-affil= kn-affil=Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University affil-num=5 en-affil= kn-affil=Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University affil-num=6 en-affil= kn-affil=Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University affil-num=7 en-affil= kn-affil=Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University affil-num=8 en-affil= kn-affil=Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences END start-ver=1.4 cd-journal=joma no-vol= cd-vols= no-issue= article-no= start-page= end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2014 dt-pub=20140616 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Efficient DNA Fingerprinting Based on the Targeted Sequencing of Active Retrotransposon Insertion Sites Using a Bench-Top High-Throughput Sequencing Platform en-subtitle= kn-subtitle= en-abstract= kn-abstract=In many crop species, DNA fingerprinting is required for the precise identification of cultivars to protect the rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the insertion polymorphisms of active retrotransposon families (Rtsp-1 and LIb) in sweet potato. Using 38 cultivars, we identified 2024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified region (SCAR) markers. A phylogenetic tree was constructed using these insertion sites, which corresponded well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus, the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome sequence information. This approach may facilitate the development of practical polymerase chain reaction-based cultivar diagnostic system and could also be applied to the determination of genetic relationships. en-copyright= kn-copyright= en-aut-name=MondenYuki en-aut-sei=Monden en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoAyaka en-aut-sei=Yamamoto en-aut-mei=Ayaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShindoAkiko en-aut-sei=Shindo en-aut-mei=Akiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=TaharaMakoto en-aut-sei=Tahara en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Environmental and Life Science, Okayama University affil-num=2 en-affil= kn-affil=Faculty of Agriculture, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Environmental and Life Science, Okayama University affil-num=4 en-affil= kn-affil=Graduate School of Environmental and Life Science, Okayama University en-keyword=DNA fingerprinting kn-keyword=DNA fingerprinting en-keyword=high-throughput sequencing kn-keyword=high-throughput sequencing en-keyword=molecular marker kn-keyword=molecular marker en-keyword=retrotransposon kn-keyword=retrotransposon en-keyword=sweet potato kn-keyword=sweet potato END start-ver=1.4 cd-journal=joma no-vol=38 cd-vols= no-issue= article-no= start-page=D26 end-page=D32 dt-received= dt-revised= dt-accepted= dt-pub-year=2010 dt-pub=201001 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=NBRP databases: databases of biological resources in Japan en-subtitle= kn-subtitle= en-abstract= kn-abstract=The National BioResource Project (NBRP) is a Japanese project that aims to establish a system for collecting, preserving and providing bioresources for use as experimental materials for life science research. It is promoted by 27 core resource facilities, each concerned with a particular group of organisms, and by one information center. The NBRP database is a product of this project. Thirty databases and an integrated database-retrieval system (BioResource World: BRW) have been created and made available through the NBRP home page (http://www.nbrp.jp). The 30 independent databases have individual features which directly reflect the data maintained by each resource facility. The BRW is designed for users who need to search across several resources without moving from one database to another. BRW provides access to a collection of 4.5-million records on bioresources including wild species, inbred lines, mutants, genetically engineered lines, DNA clones and so on. BRW supports summary browsing, keyword searching, and searching by DNA sequences or gene ontology. The results of searches provide links to online requests for distribution of research materials. A circulation system allows users to submit details of papers published on research conducted using NBRP resources. en-copyright= kn-copyright= en-aut-name=YamazakiYukiko en-aut-sei=Yamazaki en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AkashiRyo en-aut-sei=Akashi en-aut-mei=Ryo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BannoYutaka en-aut-sei=Banno en-aut-mei=Yutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=EndoTakashi en-aut-sei=Endo en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=EzuraHiroshi en-aut-sei=Ezura en-aut-mei=Hiroshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=Fukami-KobayashiKaoru en-aut-sei=Fukami-Kobayashi en-aut-mei=Kaoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=InabaKazuo en-aut-sei=Inaba en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IsaTadashi en-aut-sei=Isa en-aut-mei=Tadashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KameiKatsuhiko en-aut-sei=Kamei en-aut-mei=Katsuhiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=KasaiFumie en-aut-sei=Kasai en-aut-mei=Fumie kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=KobayashiMasatomo en-aut-sei=Kobayashi en-aut-mei=Masatomo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=KurataNori en-aut-sei=Kurata en-aut-mei=Nori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=KusabaMakoto en-aut-sei=Kusaba en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=MatuzawaTetsuro en-aut-sei=Matuzawa en-aut-mei=Tetsuro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=MitaniShohei en-aut-sei=Mitani en-aut-mei=Shohei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=NakamuraTaro en-aut-sei=Nakamura en-aut-mei=Taro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=NakamuraYukio en-aut-sei=Nakamura en-aut-mei=Yukio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=NakatsujiNorio en-aut-sei=Nakatsuji en-aut-mei=Norio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=NaruseKiyoshi en-aut-sei=Naruse en-aut-mei=Kiyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= en-aut-name=NikiHironori en-aut-sei=Niki en-aut-mei=Hironori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=20 ORCID= en-aut-name=NitasakaEiji en-aut-sei=Nitasaka en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=21 ORCID= en-aut-name=ObataYuichi en-aut-sei=Obata en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=22 ORCID= en-aut-name=OkamotoHitoshi en-aut-sei=Okamoto en-aut-mei=Hitoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=23 ORCID= en-aut-name=OkumaMoriya en-aut-sei=Okuma en-aut-mei=Moriya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=24 ORCID= en-aut-name=SatoKazuhiro en-aut-sei=Sato en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=25 ORCID= en-aut-name=SerikawaTadao en-aut-sei=Serikawa en-aut-mei=Tadao kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=26 ORCID= en-aut-name=ShiroishiToshihiko en-aut-sei=Shiroishi en-aut-mei=Toshihiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=27 ORCID= en-aut-name=SugawaraHideaki en-aut-sei=Sugawara en-aut-mei=Hideaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=28 ORCID= en-aut-name=UrushibaraHideko en-aut-sei=Urushibara en-aut-mei=Hideko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=29 ORCID= en-aut-name=YamamotoMasatoshi en-aut-sei=Yamamoto en-aut-mei=Masatoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=30 ORCID= en-aut-name=YaoitaYoshio en-aut-sei=Yaoita en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=31 ORCID= en-aut-name=YoshikiAtsushi en-aut-sei=Yoshiki en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=32 ORCID= en-aut-name=KoharaYuji en-aut-sei=Kohara en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=33 ORCID= affil-num=1 en-affil= kn-affil=Natl Inst Genet affil-num=2 en-affil= kn-affil=Miyazaki Univ affil-num=3 en-affil= kn-affil=Kyushu Univ affil-num=4 en-affil= kn-affil=Kyoto Univ affil-num=5 en-affil= kn-affil=Univ Tsukuba affil-num=6 en-affil= kn-affil=RIKEN, BioResource Ctr affil-num=7 en-affil= kn-affil=Univ Tsukuba affil-num=8 en-affil= kn-affil= affil-num=9 en-affil= kn-affil=Chiba Univ affil-num=10 en-affil= kn-affil=Natl Inst Environm Studies affil-num=11 en-affil= kn-affil=RIKEN, BioResource Ctr affil-num=12 en-affil= kn-affil=Natl Inst Genet affil-num=13 en-affil= kn-affil=Hiroshima Univ affil-num=14 en-affil= kn-affil=Kyoto Univ affil-num=15 en-affil= kn-affil=Tokyo Womens Med Univ affil-num=16 en-affil= kn-affil=RIKEN, BioResource Ctr affil-num=17 en-affil= kn-affil= affil-num=18 en-affil= kn-affil=Kyoto Univ affil-num=19 en-affil= kn-affil= affil-num=20 en-affil= kn-affil=Natl Inst Genet affil-num=21 en-affil= kn-affil=Kyushu Univ affil-num=22 en-affil= kn-affil=RIKEN, BioResource Ctr affil-num=23 en-affil= kn-affil=RIKEN, Brain Sci Inst affil-num=24 en-affil= kn-affil=RIKEN, BioResource Ctr affil-num=25 en-affil= kn-affil=Okayama Univ affil-num=26 en-affil= kn-affil=Kyoto Univ affil-num=27 en-affil= kn-affil=Natl Inst Genet affil-num=28 en-affil= kn-affil=Natl Inst Genet affil-num=29 en-affil= kn-affil=Univ Tsukuba affil-num=30 en-affil= kn-affil=Kyoto Inst Technol affil-num=31 en-affil= kn-affil=Hiroshima Univ affil-num=32 en-affil= kn-affil=RIKEN, BioResource Ctr affil-num=33 en-affil= kn-affil=Natl Inst Genet END start-ver=1.4 cd-journal=joma no-vol=19 cd-vols= no-issue=6 article-no= start-page=487 end-page=497 dt-received= dt-revised= dt-accepted= dt-pub-year=2012 dt-pub=201212 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Discovery of High-Confidence Single Nucleotide Polymorphisms from Large-Scale De Novo Analysis of Leaf Transcripts of Aegilops tauschii, A Wild Wheat Progenitor en-subtitle= kn-subtitle= en-abstract= kn-abstract=Construction of high-resolution genetic maps is important for genetic and genomic research, as well as for molecular breeding. Single nucleotide polymorphisms (SNPs) are the,predominant class of genetic variation and can be used as molecular markers. Aegilops tauschii, the D-genome donor of common wheat, is considered a valuable genetic resource for wheat improvement. Our previous study implied that Ae. tauschii accessions can be genealogically divided into two major lineages. In this study, the transcriptome of two Ae. tauschii accessions from each lineage, lineage 1 (L1) and 2 (L2), was sequenced, yielding 9435 SNPs and 739 insertion/deletion polymorphisms (indels) after de novo assembly of the reads. Based on 36 contig sequences, 31 SNPs and six indels were validated on 20 diverse Ae. tauschii accessions. Because almost all of the SNP markers were polymorphic between L1 and L2, and the D-genome donor of common wheat is presumed to belong to L2, these markers are available for D-genome typing in crosses between common wheat varieties and L1-derived synthetic wheat. Due to the conserved synteny between wheat and barley chromosomes, the high-density expressed sequence tag barley map and the hypothetical gene order in barley can be applied to develop markers on target chromosomal regions in wheat. en-copyright= kn-copyright= en-aut-name=IehisaJulio Cesar Masaru en-aut-sei=Iehisa en-aut-mei=Julio Cesar Masaru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShimizuAkifumi en-aut-sei=Shimizu en-aut-mei=Akifumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SatoKazuhiro en-aut-sei=Sato en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NasudaShuhei en-aut-sei=Nasuda en-aut-mei=Shuhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakumiShigeo en-aut-sei=Takumi en-aut-mei=Shigeo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil= kn-affil=Kobe Univ, Grad Sch Agr Sci, Lab Plant Genet affil-num=2 en-affil= kn-affil=Univ Shiga Prefecture, Dept Biol Resources Management, Sch Environm Sci affil-num=3 en-affil= kn-affil=Okayama Univ, Inst Plant Sci & Resources affil-num=4 en-affil= kn-affil=Kyoto Univ, Grad Sch Agr, Lab Plant Genet affil-num=5 en-affil= kn-affil=Kobe Univ, Grad Sch Agr Sci, Lab Plant Genet en-keyword=Aegilops tauschii kn-keyword=Aegilops tauschii en-keyword=expression sequence tag kn-keyword=expression sequence tag en-keyword=next generation sequencing kn-keyword=next generation sequencing en-keyword=single nucleotide polymorphism kn-keyword=single nucleotide polymorphism en-keyword=wheat kn-keyword=wheat END start-ver=1.4 cd-journal=joma no-vol=16 cd-vols= no-issue=2 article-no= start-page=81 end-page=89 dt-received= dt-revised= dt-accepted= dt-pub-year=2009 dt-pub=200904 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of 5006 Full-Length CDNAs in Barley: A Tool for Accessing Cereal Genomics Resources en-subtitle= kn-subtitle= en-abstract= kn-abstract=A collection of 5006 full-length (FL) cDNA sequences was developed in barley. Fifteen mRNA samples from various organs and treatments were pooled to develop a cDNA library using the CAP trapper method. More than 60% of the clones were confirmed to have complete coding sequences, based on comparison with rice amino acid and UniProt sequences. Blastn homologies (E < 1E-5) to rice genes and Arabidopsis genes were 89 and 47%, respectively. Of the 5028 possible amino acid sequences derived from the 5006 FLcDNAs, 4032 (80.2%) were classified into 1678 GreenPhyl multigenic families. There were 555 cDNAs showing low homology to both rice and Arabidopsis. Gene ontology annotation by InterProScan indicated that many of these cDNAs (71%) have no known molecular functions and may be unique to barley. The cDNAs showed high homology to Barley 1 GeneChip oligo probes (81%) and the wheat gene index (84%). The high homology between FLcDNAs (27%) and mapped barley expressed sequence tag enabled assigning linkage map positions to 151-233 FLcDNAs on each of the seven barley chromosomes. These comprehensive barley FLcDNAs provide strong platform to connect preexisting genomic and genetic resources and accelerate gene identification and genome analysis in barley and related species. en-copyright= kn-copyright= en-aut-name=SatoKazuhiro en-aut-sei=Sato en-aut-mei=Kazuhiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Shin-ITadasu en-aut-sei=Shin-I en-aut-mei=Tadasu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=SekiMotoaki en-aut-sei=Seki en-aut-mei=Motoaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=ShinozakiKazuo en-aut-sei=Shinozaki en-aut-mei=Kazuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=YoshidaHideya en-aut-sei=Yoshida en-aut-mei=Hideya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=TakedaKazuyoshi en-aut-sei=Takeda en-aut-mei=Kazuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamazakiYukiko en-aut-sei=Yamazaki en-aut-mei=Yukiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=ConteMatthieu en-aut-sei=Conte en-aut-mei=Matthieu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KoharaYuji en-aut-sei=Kohara en-aut-mei=Yuji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Okayama Univ, Bioresources Res Inst affil-num=2 en-affil= kn-affil=Natl Inst Genet affil-num=3 en-affil= kn-affil=RIKEN, Plant Sci Ctr affil-num=4 en-affil= kn-affil=RIKEN, Plant Sci Ctr affil-num=5 en-affil= kn-affil=Okayama Univ, Bioresources Res Inst affil-num=6 en-affil= kn-affil=Okayama Univ, Bioresources Res Inst affil-num=7 en-affil= kn-affil=Natl Inst Genet affil-num=8 en-affil= kn-affil=Int Rice Res Inst, Crop Res Informat Lab affil-num=9 en-affil= kn-affil=Natl Inst Genet en-keyword=full-length cDNA kn-keyword=full-length cDNA en-keyword=Hordeum vulgare kn-keyword=Hordeum vulgare en-keyword=mRNA kn-keyword=mRNA en-keyword=gene ontology kn-keyword=gene ontology END start-ver=1.4 cd-journal=joma no-vol=102 cd-vols= no-issue=4 article-no= start-page=448 end-page=457 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201108 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genome-wide deficiency mapping of the regions responsible for temporal canalization of the developmental processes of Drosophila melanogaster en-subtitle= kn-subtitle= en-abstract= kn-abstract=Developmental processes of organisms are programed to proceed in a finely regulated manner and finish within a certain period of time depending on the ambient environmental conditions. Therefore, variation in the developmental period under controlled genetic and environmental conditions indicates innate instability of the developmental process. In this study, we aimed to determine whether a molecular machinery exists that regulates the canalization of the developmental period and, if so, to test whether the same mechanism also stabilizes a morphological trait. To search for regions that influence the instability of the developmental period, we conducted genome-wide deficiency mapping with 441 isogenic deficiency strains covering 65.5% of the Drosophila melanogaster genome. We found that 11 independent deficiencies significantly increased the instability of the developmental period and 5 of these also significantly increased the fluctuating asymmetry of wing shape although there was no significant correlation between the instabilities of developmental period and wing shape in general. These results suggest that canalization processes of the developmental period and morphological traits are at least partially independent. Our findings emphasize the potential importance of temporal variation in development as an indicator of developmental stability and canalization and provide a novel perspective for understanding the regulation of phenotypic variability. en-copyright= kn-copyright= en-aut-name=TakahashiKazuo H. en-aut-sei=Takahashi en-aut-mei=Kazuo H. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkadaYasukazu en-aut-sei=Okada en-aut-mei=Yasukazu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=TeramuraKouhei en-aut-sei=Teramura en-aut-mei=Kouhei kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil= kn-affil=Research Core for Interdisciplinary Sciences, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Environmental Science, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Environmental Science, Okayama University en-keyword=developmental period kn-keyword=developmental period en-keyword=developmental stability kn-keyword=developmental stability en-keyword=Drosophila melanogaster kn-keyword=Drosophila melanogaster en-keyword=wing shape kn-keyword=wing shape END start-ver=1.4 cd-journal=joma no-vol=146 cd-vols= no-issue=1-3 article-no= start-page=360 end-page=363 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201107 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Studies on possibility for alleviation of lifestyle diseases by low-dose irradiation or radon inhalation en-subtitle= kn-subtitle= en-abstract= kn-abstract=Our previous studies showed the possibility that activation of the antioxidative function alleviates various oxidative damages, which are related to lifestyle diseases. Results showed that, low-dose X-ray irradiation activated superoxide dismutase and inhibits oedema following ischaemia-reperfusion. To alleviate ischaemia-reperfusion injury with transplantation, the changes of the antioxidative function in liver graft using low-dose X-ray irradiation immediately after exenteration were examined. Results showed that liver grafts activate the antioxidative function as a result of irradiation. In addition, radon inhalation enhances the antioxidative function in some organs, and alleviates alcohol-induced oxidative damage of mouse liver. Moreover, in order to determine the most effective condition of radon inhalation, mice inhaled radon before or after carbon tetrachloride (CCl4) administration. Results showed that radon inhalation alleviates CCl4-induced hepatopathy, especially prior inhalation. It is highly possible that adequate activation of antioxidative functions induced by low-dose irradiation can contribute to preventing or reducing oxidative damages, which are related to lifestyle diseases. en-copyright= kn-copyright= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=SakodaAkihiro en-aut-sei=Sakoda en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YoshimotoMasaaki en-aut-sei=Yoshimoto en-aut-mei=Masaaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NakagawaShinya en-aut-sei=Nakagawa en-aut-mei=Shinya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=ToyotaTeruaki en-aut-sei=Toyota en-aut-mei=Teruaki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NishiyamaYuichi en-aut-sei=Nishiyama en-aut-mei=Yuichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamatoKeiko en-aut-sei=Yamato en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=IshimoriYuu en-aut-sei=Ishimori en-aut-mei=Yuu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=KawabeAtsushi en-aut-sei=Kawabe en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=HanamotoKatsumi en-aut-sei=Hanamoto en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=TaguchiTakehito en-aut-sei=Taguchi en-aut-mei=Takehito kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=2 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=3 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=4 en-affil= kn-affil=Sakakibara Heart Institute of Okayama affil-num=5 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=6 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=7 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=8 en-affil= kn-affil=Ningyo-toge Environmental Engineering Center affil-num=9 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=10 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=11 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University affil-num=12 en-affil= kn-affil=Graduate School of Health Sciences, Okayama University END