start-ver=1.4 cd-journal=joma no-vol=33 cd-vols= no-issue=8 article-no= start-page=18515 end-page=18529 dt-received= dt-revised= dt-accepted= dt-pub-year=2025 dt-pub=20250418 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Demonstration of enhanced Raman scattering in high-Q silicon nanocavities operating below the silicon band-gap wavelength en-subtitle= kn-subtitle= en-abstract= kn-abstract=We experimentally determined the quality factor (Q) and the intensity of the Raman scattered light for different silicon photonic-crystal nanocavities operating at wavelengths shorter than the silicon band-gap wavelength. Despite the relatively large absorption of silicon in this wavelength region, we observed Q values greater than 10,000 for cavities with a resonance wavelength of 1.05 mu m, and Q values greater than 30,000 for cavities with a resonance wavelength of 1.10 mu m. Additionally, we measured the Raman scattering spectra of cavities with resonance wavelengths of 1.10 mu m and 1.21 mu m. On average, the generation efficiency of the Raman scattered light in a 1.10-mu m nanocavity is 6.5 times higher than that in a 1.21-mu m nanocavity. These findings suggest that silicon nanocavities operating below the silicon band-gap wavelength could be useful in the development of silicon-based light sources. en-copyright= kn-copyright= en-aut-name=ShimomuraYu en-aut-sei=Shimomura en-aut-mei=Yu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=AsanoTakashi en-aut-sei=Asano en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=IshiharaAyumi en-aut-sei=Ishihara en-aut-mei=Ayumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NodaSusumu en-aut-sei=Noda en-aut-mei=Susumu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=TakahashiYasushi en-aut-sei=Takahashi en-aut-mei=Yasushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= affil-num=1 en-affil=Department of Physics and Electronics, Osaka Metropolitan University kn-affil= affil-num=2 en-affil=Department of Electronic Science and Engineering, Kyoto University kn-affil= affil-num=3 en-affil=Department of Physics and Electronics, Osaka Metropolitan University kn-affil= affil-num=4 en-affil=Department of Electronic Science and Engineering, Kyoto University kn-affil= affil-num=5 en-affil=Graduate School of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=23 article-no= start-page=38529 end-page=38539 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20231106 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Optical multi-context scrubbing operation on a redundant system en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper presents a proposal of the world-first optical multi-context scrubbing operation on a redundant system that can maintain the state of a sequential circuit and the operation continuously without any interruption on a radiation-hardened optically reconfigurable gate array even after a permanent failure suddenly happens on the sequential circuit or a flip-flop by radiation. Up to now, a high-speed optical scrubbing operation has been demonstrated on a radiation-hardened optically reconfigurable gate array. In addition, a multi-context scrubbing operation based on the high-speed optical scrubbing operation has already been demonstrated. Although the multi-context scrubbing operation presents the benefit that it can treat both soft errors and permanent failures caused by radiation simultaneously, the conventional contributions have never presented how to maintain the state of a sequential circuit after a permanent failure occurs on flip-flops. Therefore, in the conventional multi-context scrubbing operation, all the operations must be restarted from the initial condition each time a permanent failure occurs on a programmable gate array. As a result, conventional multi-context scrubbing operations could not be applied for real-time systems. The proposed optical multi-context scrubbing method that can solve the issue has been experimentally evaluated on a radiation-hardened optically reconfigurable gate array. en-copyright= kn-copyright= en-aut-name=AndoKakeru en-aut-sei=Ando en-aut-mei=Kakeru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeMinoru en-aut-sei=Watanabe en-aut-mei=Minoru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=WatanabeNobuya en-aut-sei=Watanabe en-aut-mei=Nobuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Graduate School of Natural Science and Technology, Okayama University kn-affil= affil-num=2 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= affil-num=3 en-affil=Faculty of Environmental, Life, Natural Science and Technology, Okayama University kn-affil= END start-ver=1.4 cd-journal=joma no-vol=31 cd-vols= no-issue=2 article-no= start-page=1943 end-page=1957 dt-received= dt-revised= dt-accepted= dt-pub-year=2023 dt-pub=20230116 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=High-sensitivity low-noise photodetector using a large-area silicon photomultiplier en-subtitle= kn-subtitle= en-abstract= kn-abstract=The application of silicon photomultiplier (SiPM) technology for weak-light detection at a single photon level has expanded thanks to its better photon detection efficiency in comparison to a conventional photomultiplier tube (PMT). SiPMs with large detection area have recently become commercially available, enabling applications where the photon flux is low both temporarily and spatially. On the other hand, several drawbacks exist in the usage of SiPMs such as a higher dark count rate, many readout channels, slow response time, and optical crosstalk; therefore, users need to carefully consider the trade-offs. This work presents a SiPM-embedded compact large-area photon detection module. Various techniques are adopted to overcome the disadvantages of SiPMs so that it can be generally utilized as an upgrade from a PMT. A simple cooling component and recently developed optical crosstalk suppression method are adopted to reduce the noise which is more serious for larger-area SiPMs. A dedicated readout circuit increases the response frequency and reduces the number of readout channels. We favorably compare this design with a conventional PMT and obtain both higher photon detection efficiency and larger-area acceptance. en-copyright= kn-copyright= en-aut-name=MasudaTakahiko en-aut-sei=Masuda en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=HiramotoAyami en-aut-sei=Hiramoto en-aut-mei=Ayami kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=AngDaniel G. en-aut-sei=Ang en-aut-mei=Daniel G. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=MeisenhelderCole en-aut-sei=Meisenhelder en-aut-mei=Cole kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=PandaCristian D. en-aut-sei=Panda en-aut-mei=Cristian D. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=SasaoNoboru en-aut-sei=Sasao en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=UetakeSatoshi en-aut-sei=Uetake en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=WuXing en-aut-sei=Wu en-aut-mei=Xing kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=DeMilleDavid P. en-aut-sei=DeMille en-aut-mei=David P. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=DoyleJohn M. en-aut-sei=Doyle en-aut-mei=John M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=GabrielseGerald en-aut-sei=Gabrielse en-aut-mei=Gerald kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=YoshimuraKoji en-aut-sei=Yoshimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=3 en-affil=Department of Physics, Harvard University kn-affil= affil-num=4 en-affil=Department of Physics, Harvard University kn-affil= affil-num=5 en-affil=Department of Physics, University of California kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=8 en-affil=2Department of Physics, Harvard University kn-affil= affil-num=9 en-affil=James Franck Institute and Department of Physics, University of Chicago kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=11 en-affil=Center for Fundamental Physics, Department of Physics and Astronomy, Northwestern University kn-affil= affil-num=12 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= END