start-ver=1.4 cd-journal=joma no-vol=61 cd-vols= no-issue=4 article-no= start-page=517 end-page=523 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200429 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=X-Irradiation at 0.5 Gy after the forced swim test reduces forced swimming-induced immobility in mice en-subtitle= kn-subtitle= en-abstract= kn-abstract=The forced swim test (FST) is a screening model for antidepressant activity; it causes immobility and induces oxidative stress. We previously reported that radon inhalation has antidepressant-like effects in mice potentially through the activation of antioxidative functions upon radon inhalation. This study aimed to investigate the effect of prior and post low-dose X-irradiation (0.1, 0.5, 1.0 and 2.0 Gy) on FST-induced immobility and oxidative stress in the mouse brain, and the differences, if any, between the two. Mice received X-irradiation before or after the FST repeatedly for 5 days. In the post-FST-irradiated group, an additional FST was conducted 4h after the last irradiation. Consequently, animals receiving prior X-irradiation (0.1 Gy) had better mobility outcomes than sham-irradiated mice; however, their levels of lipid peroxide (LPO), an oxidative stress marker, remained unchanged. However, animals that received post-FST X-irradiation (0.5 Gy) had better mobility outcomes and their LPO levels were significantly lower than those of the sham-irradiated mice. The present results indicate that 0.5 Gy X-irradiation after FST inhibits FST-induced immobility and oxidative stress in mice. en-copyright= kn-copyright= en-aut-name=KataokaTakahiro en-aut-sei=Kataoka en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=ShutoHina en-aut-sei=Shuto en-aut-mei=Hina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=YanoJunki en-aut-sei=Yano en-aut-mei=Junki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=NaoeShota en-aut-sei=Naoe en-aut-mei=Shota kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=IshidaTsuyoshi en-aut-sei=Ishida en-aut-mei=Tsuyoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=NakadaTetsuya en-aut-sei=Nakada en-aut-mei=Tetsuya kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YamatoKeiko en-aut-sei=Yamato en-aut-mei=Keiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=HanamotoKatsumi en-aut-sei=Hanamoto en-aut-mei=Katsumi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=NomuraTakaharu en-aut-sei=Nomura en-aut-mei=Takaharu kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=YamaokaKiyonori en-aut-sei=Yamaoka en-aut-mei=Kiyonori kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=2 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=3 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=4 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=5 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=6 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=7 en-affil=Laboratory of Neurology and Neurosurgery, National Cerebral and Cardiovascular Center kn-affil= affil-num=8 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= affil-num=9 en-affil=Central Research Institute of Electric Power Industry kn-affil= affil-num=10 en-affil=Graduate School of Health Sciences, Okayama University kn-affil= en-keyword=X-irradiation kn-keyword=X-irradiation en-keyword=forced swim test kn-keyword=forced swim test en-keyword=antioxidants kn-keyword=antioxidants en-keyword=brain kn-keyword=brain en-keyword=oxidative stress kn-keyword=oxidative stress END start-ver=1.4 cd-journal=joma no-vol=27 cd-vols= no-issue=3 article-no= start-page=dsaa012 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=20200617 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Genome-wide study on the polysomic genetic factors conferring plasticity of flower sexuality in hexaploid persimmon en-subtitle= kn-subtitle= en-abstract= kn-abstract=Sexuality is one of the fundamental mechanisms that work towards maintaining genetic diversity within a species. In diploid persimmons (Diospyros spp.), separated sexuality, the presence of separate male and female individuals (dioecy), is controlled by the Y chromosome-encoded small-RNA gene, OGI. On the other hand, sexuality in hexaploid Oriental persimmon (Diospyros kaki) is more plastic, with OGI-bearing genetically male individuals, able to produce both male and female flowers (monoecy). This is thought to be linked to the partial inactivation of OGI by a retrotransposon insertion, resulting in DNA methylation of the OGI promoter region. To identify the genetic factors regulating branch sexual conversion, genome-wide correlation/association analyses were conducted using ddRAD-Seq data from an F-1 segregating population, and using both quantitative and diploidized genotypes, respectively. We found that allelic ratio at the Y-chromosomal region, including OGI, was correlated with male conversion based on quantitative genotypes, suggesting that OGI can be activated in cis in a dosage-dependent manner. Genome-wide association analysis based on diploidized genotypes, normalized for the effect of OGI allele dosage, detected three fundamental loci associated with male conversion. These loci underlie candidate genes, which could potentially act epigenetically for the activation of OGI expression. en-copyright= kn-copyright= en-aut-name=MasudaKanae en-aut-sei=Masuda en-aut-mei=Kanae kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=YamamotoEiji en-aut-sei=Yamamoto en-aut-mei=Eiji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=ShirasawaKenta en-aut-sei=Shirasawa en-aut-mei=Kenta kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=OnoueNoriyuki en-aut-sei=Onoue en-aut-mei=Noriyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=KonoAtsushi en-aut-sei=Kono en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=UshijimaKoichiro en-aut-sei=Ushijima en-aut-mei=Koichiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KuboYasutaka en-aut-sei=Kubo en-aut-mei=Yasutaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=TaoRyutaro en-aut-sei=Tao en-aut-mei=Ryutaro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=HenryIsabelle M. en-aut-sei=Henry en-aut-mei=Isabelle M. kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=AkagiTakashi en-aut-sei=Akagi en-aut-mei=Takashi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= affil-num=1 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=2 en-affil=Kazusa DNA Research Institute kn-affil= affil-num=3 en-affil=Kazusa DNA Research Institute kn-affil= affil-num=4 en-affil=Institute of Fruit Tree and Tea Science, NARO kn-affil= affil-num=5 en-affil=Institute of Fruit Tree and Tea Science, NARO kn-affil= affil-num=6 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=7 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= affil-num=8 en-affil=Graduate School of Agriculture, Kyoto University kn-affil= affil-num=9 en-affil=Department of Plant Biology and Genome Center, University of California kn-affil= affil-num=10 en-affil=Graduate School of Environmental and Life Science, Okayama University kn-affil= en-keyword=flexible sexuality kn-keyword=flexible sexuality en-keyword=monoecy kn-keyword=monoecy en-keyword=polyploid kn-keyword=polyploid en-keyword=GWAS kn-keyword=GWAS END