start-ver=1.4 cd-journal=joma no-vol=28 cd-vols= no-issue=1 article-no= start-page=111 end-page=119 dt-received= dt-revised= dt-accepted= dt-pub-year=2021 dt-pub=202101 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Absolute X-ray energy measurement using a high-accuracy angle encoder en-subtitle= kn-subtitle= en-abstract= kn-abstract=This paper presents an absolute X-ray photon energy measurement method that uses a Bond diffractometer. The proposed system enables the prompt and rapid in situ measurement of photon energies over a wide energy range. The diffractometer uses a reference silicon single-crystal plate and a highly accurate angle encoder called SelfA. The performance of the system is evaluated by repeatedly measuring the energy of the first excited state of the potassium-40 nuclide. The excitation energy is determined as 29829.39 (6) eV, and this is one order of magnitude more accurate than the previous measurement. The estimated uncertainty of the photon energy measurement was 0.7 p.p.m. as a standard deviation and the maximum observed deviation was 2 p.p.m. en-copyright= kn-copyright= en-aut-name=MasudaTakahiko en-aut-sei=Masuda en-aut-mei=Takahiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=WatanabeTsukasa en-aut-sei=Watanabe en-aut-mei=Tsukasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=BeeksKjeld en-aut-sei=Beeks en-aut-mei=Kjeld kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=FujimotoHiroyuki en-aut-sei=Fujimoto en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=HirakiTakahiro en-aut-sei=Hiraki en-aut-mei=Takahiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=KainoHiroyuki en-aut-sei=Kaino en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=KitaoShinji en-aut-sei=Kitao en-aut-mei=Shinji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=MiyamotoYuki en-aut-sei=Miyamoto en-aut-mei=Yuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=OkaiKoichi en-aut-sei=Okai en-aut-mei=Koichi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= en-aut-name=SasaoNoboru en-aut-sei=Sasao en-aut-mei=Noboru kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=10 ORCID= en-aut-name=SetoMakoto en-aut-sei=Seto en-aut-mei=Makoto kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=11 ORCID= en-aut-name=SchummThorsten en-aut-sei=Schumm en-aut-mei=Thorsten kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=12 ORCID= en-aut-name=ShigekawaYudai en-aut-sei=Shigekawa en-aut-mei=Yudai kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=13 ORCID= en-aut-name=TamasakuKenji en-aut-sei=Tamasaku en-aut-mei=Kenji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=14 ORCID= en-aut-name=UetakeSatoshi en-aut-sei=Uetake en-aut-mei=Satoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=15 ORCID= en-aut-name=YamaguchiAtsushi en-aut-sei=Yamaguchi en-aut-mei=Atsushi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=16 ORCID= en-aut-name=YodaYoshitaka en-aut-sei=Yoda en-aut-mei=Yoshitaka kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=17 ORCID= en-aut-name=YoshimiAkihiro en-aut-sei=Yoshimi en-aut-mei=Akihiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=18 ORCID= en-aut-name=YoshimuraKoji en-aut-sei=Yoshimura en-aut-mei=Koji kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=19 ORCID= affil-num=1 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=2 en-affil=National Institute of Advanced Industrial Science and Technology kn-affil= affil-num=3 en-affil=Institute for Atomic and Subatomic Physics – Atominstitut kn-affil= affil-num=4 en-affil=National Institute of Advanced Industrial Science and Technology kn-affil= affil-num=5 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=6 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=7 en-affil=National Institute of Advanced Industrial Science and Technology kn-affil= affil-num=8 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=9 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=10 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=11 en-affil=Institute for Integrated Radiation and Nuclear Science, Kyoto University kn-affil= affil-num=12 en-affil=Institute for Atomic and Subatomic Physics – Atominstitut kn-affil= affil-num=13 en-affil=RIKEN kn-affil= affil-num=14 en-affil=RIKEN, SPring-8 Center kn-affil= affil-num=15 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=16 en-affil=RIKEN kn-affil= affil-num=17 en-affil=Japan Synchrotron Radiation Research Institute kn-affil= affil-num=18 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= affil-num=19 en-affil=Research Institute for Interdisciplinary Science, Okayama University kn-affil= en-keyword=X-ray diffraction kn-keyword=X-ray diffraction en-keyword=energy calibration kn-keyword=energy calibration en-keyword=lattice constants kn-keyword=lattice constants en-keyword=rotary encoders kn-keyword=rotary encoders en-keyword=nuclear resonant scattering kn-keyword=nuclear resonant scattering END start-ver=1.4 cd-journal=joma no-vol=76 cd-vols= no-issue=11 article-no= start-page=1701 end-page=1707 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202011 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structures of four isomeric hydrogen-bonded co-crystals of 6-methyl­quinoline with 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid en-subtitle= kn-subtitle= en-abstract= kn-abstract=The structures of the four isomeric compounds of 6-methyl­quinoline with chloro- and nitro-substituted benzoic acids, C7H4ClNO4·C10H9N, namely, 2-chloro-4-nitro­benzoic acid–6-methyl­quinoline (1/1), (I), 2-chloro-5-nitro­benzoic acid–6-methyl­quinoline (1/1), (II), 3-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (III), and 4-chloro-2-nitro­benzoic acid–6-methyl­quinoline (1/1), (IV), have been determined at 185–190 K. In each compound, the acid and base mol­ecules are linked by a short hydrogen bond between a carboxyl O atom and an N atom of the base. The O⋯N distances are 2.5452 (12), 2.6569 (13), 2.5640 (17) and 2.514 (2) Å, respectively, for compounds (I)–(IV). In the hydrogen-bonded acid–base units of (I), (III) and (IV), the H atoms are each disordered over two positions with O site:N site occupancies of 0.65 (3):0.35 (3), 0.59 (4):0.41 (4) and 0.48 (5):0.52 (5), respectively, for (I), (III) and (IV). The H atom in the hydrogen-bonded unit of (II) is located at the O-atom site. In all of the crystals of (I)–(IV), π–π inter­actions between the quinoline ring system and the benzene ring of the acid mol­ecule are observed. In addition, a π–π inter­action between the benzene rings of adjacent acid mol­ecules and a C—H⋯O hydrogen bond are observed in the crystal of (I), and C—H⋯O hydrogen bonds and O⋯Cl contacts occur in the crystals of (III) and (IV). These inter­molecular inter­actions connect the acid and base mol­ecules, forming a layer structure parallel to the bc plane in (I), a column along the a-axis direction in (II), a layer parallel to the ab plane in (III) and a three-dimensional network in (IV). Hirshfeld surfaces for the title compounds mapped over dnorm and shape index were generated to visualize the weak inter­molecular inter­actions. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= en-keyword=crystal structure kn-keyword=crystal structure en-keyword=2-chloro-4-nitro­benzoic acid kn-keyword=2-chloro-4-nitro­benzoic acid en-keyword=2-chloro-5-nitro­benzoic acid kn-keyword=2-chloro-5-nitro­benzoic acid en-keyword=3-chloro-2-nitro­benzoic acid kn-keyword=3-chloro-2-nitro­benzoic acid en-keyword=4-chloro-2-nitro­benzoic acid kn-keyword=4-chloro-2-nitro­benzoic acid en-keyword=6-methyl­quinoline kn-keyword=6-methyl­quinoline en-keyword=hydrogen bond kn-keyword=hydrogen bond en-keyword=disorder kn-keyword=disorder en-keyword=Hirshfeld surface kn-keyword=Hirshfeld surface END start-ver=1.4 cd-journal=joma no-vol=7 cd-vols= no-issue=3 article-no= start-page=370 end-page=374 dt-received= dt-revised= dt-accepted= dt-pub-year=2020 dt-pub=202005 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Strong hydrogen bonding in a dense hydrous magnesium silicate discovered by neutron Laue diffraction en-subtitle= kn-subtitle= en-abstract= kn-abstract=A large amount of hydrogen circulates inside the Earth, which affects the long-term evolution of the planet. The majority of this hydrogen is stored in deep Earth within the crystal structures of dense minerals that are thermodynamically stable at high pressures and temperatures. To understand the reason for their stability under such extreme conditions, the chemical bonding geometry and cation exchange mechanism for including hydrogen were analyzed in a representative structure of such minerals (i.e. phase E of dense hydrous magnesium silicate) by using time-of-flight single-crystal neutron Laue diffraction. Phase E has a layered structure belonging to the space group R (3) over barm and a very large hydrogen capacity (up to 18% H2O weight fraction). It is stable at pressures of 13-18 GPa and temperatures of up to at least 1573 K. Deuterated high-quality crystals with the chemical formula Mg2.28Si1.32D2.15O6 were synthesized under the relevant high-pressure and high-temperature conditions. The nuclear density distribution obtained by neutron diffraction indicated that the O-D dipoles were directed towards neighboring O2- ions to form strong interlayer hydrogen bonds. This bonding plays a crucial role in stabilizing hydrogen within the mineral structure under such high-pressure and high-temperature conditions. It is considered that cation exchange occurs among Mg2+, D+ and Si4+ within this structure, making the hydrogen capacity flexible. en-copyright= kn-copyright= en-aut-name=PurevjavNarangoo en-aut-sei=Purevjav en-aut-mei=Narangoo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=OkuchiTakuo en-aut-sei=Okuchi en-aut-mei=Takuo kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=HoffmanChristina en-aut-sei=Hoffman en-aut-mei=Christina kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= affil-num=1 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=2 en-affil=Institute for Planetary Materials, Okayama University kn-affil= affil-num=3 en-affil=Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory kn-affil= en-keyword=hydrogen bonding kn-keyword=hydrogen bonding en-keyword=Earth's deep mantle kn-keyword=Earth's deep mantle en-keyword=dense hydrous magnesium silicates kn-keyword=dense hydrous magnesium silicates en-keyword=neutron diffraction kn-keyword=neutron diffraction END start-ver=1.4 cd-journal=joma no-vol=75 cd-vols= no-issue= article-no= start-page=1853 end-page= dt-received= dt-revised= dt-accepted= dt-pub-year=2019 dt-pub=201912 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid-quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate en-subtitle= kn-subtitle= en-abstract= kn-abstract=The title compound, C9H7.5NO center dot C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto-enol tautomerization in the base molecule. The co-crystal is 4-chloro-2-nitrobenzoic acid-quinolin-4(1H)-one (1/1), C7H4ClNO4 center dot C9H7NO, and the salt is 4-hydroxy-quinolinium 4-chloro-2-nitrobenzoate, C9H8NO+center dot C7H3ClNO4. In the compound, the acid and base molecules are held together by a short hydrogen bond [O center dot center dot center dot O = 2.4393 (15) angstrom], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid-base units are linked by N-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via pi-pi interactions [centroid-centroid distances = 3.5504 (8)-3.9010 (11) angstrom]. The layers are further linked by another C-H center dot center dot center dot O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and d orm were generated to visualize the intermolecular interactions. en-copyright= kn-copyright= en-aut-name=GotohKazuma en-aut-sei=Gotoh en-aut-mei=Kazuma kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=IshidaHiroyuki en-aut-sei=Ishida en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= affil-num=1 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= affil-num=2 en-affil=Department of Chemistry, Faculty of Science, Okayama University kn-affil= en-keyword=crystal structure kn-keyword=crystal structure en-keyword=4-chloro-2-nitro-benzoic acid kn-keyword=4-chloro-2-nitro-benzoic acid en-keyword=4(1H)-quinolinone kn-keyword=4(1H)-quinolinone en-keyword=4-hydroxy-quinoline kn-keyword=4-hydroxy-quinoline en-keyword=hydrogen bond kn-keyword=hydrogen bond en-keyword=keto-enol tautomerization kn-keyword=keto-enol tautomerization en-keyword=Hirshfeld surface kn-keyword=Hirshfeld surface END start-ver=1.4 cd-journal=joma no-vol=18 cd-vols= no-issue=6 article-no= start-page=879 end-page=884 dt-received= dt-revised= dt-accepted= dt-pub-year=2011 dt-pub=201111 dt-online= en-article= kn-article= en-subject= kn-subject= en-title= kn-title=Development of a soft X-ray angle-resolved photoemission system applicable to 100 µm crystals en-subtitle= kn-subtitle= en-abstract= kn-abstract=A system for angle-resolved photoemission spectroscopy (ARPES) of small single crystals with sizes down to 100 µm has been developed. Soft X-ray synchrotron radiation with a spot size of ~40 µm × 65 µm at the sample position is used for the excitation. Using this system an ARPES measurement has been performed on a Si crystal of size 120 µm × 100 µm × 80 µm. The crystal was properly oriented on a sample stage by measuring the Laue spots. The crystal was cleaved in situ with a microcleaver at 100 K. The cleaved surface was adjusted to the beam spot using an optical microscope. Consequently, clear band dispersions along the Γ-X direction reflecting the bulk electronic states were observed with a photon energy of 879 eV. en-copyright= kn-copyright= en-aut-name=MuroTakayuki en-aut-sei=Muro en-aut-mei=Takayuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=1 ORCID= en-aut-name=Katoyukako en-aut-sei=Kato en-aut-mei=yukako kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=2 ORCID= en-aut-name=MatsushitaTomohiro en-aut-sei=Matsushita en-aut-mei=Tomohiro kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=3 ORCID= en-aut-name=KinoshitaToyohiko en-aut-sei=Kinoshita en-aut-mei=Toyohiko kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=4 ORCID= en-aut-name=WatanabeYoshio en-aut-sei=Watanabe en-aut-mei=Yoshio kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=5 ORCID= en-aut-name=OkazakiHiroyuki en-aut-sei=Okazaki en-aut-mei=Hiroyuki kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=6 ORCID= en-aut-name=YokoyaTakayoshi en-aut-sei=Yokoya en-aut-mei=Takayoshi kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=7 ORCID= en-aut-name=SekiyamaAkira en-aut-sei=Sekiyama en-aut-mei=Akira kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=8 ORCID= en-aut-name=Sugahigemasa en-aut-sei=Suga en-aut-mei=higemasa kn-aut-name= kn-aut-sei= kn-aut-mei= aut-affil-num=9 ORCID= affil-num=1 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI) affil-num=2 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI) affil-num=3 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI) affil-num=4 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI) affil-num=5 en-affil= kn-affil=Japan Synchrotron Radiation Research Institute (JASRI) affil-num=6 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=7 en-affil= kn-affil=The Graduate School of Natural Science and Technology, Okayama University affil-num=8 en-affil= kn-affil=Graduate School of Engineering Science, Osaka University affil-num=9 en-affil= kn-affil=Graduate School of Engineering Science, Osaka University en-keyword=angle-resolved photoemission spectroscopy (ARPES) kn-keyword=angle-resolved photoemission spectroscopy (ARPES) en-keyword=soft X-ray kn-keyword=soft X-ray en-keyword=small crystal kn-keyword=small crystal en-keyword=microcleaving kn-keyword=microcleaving en-keyword=micropositioning kn-keyword=micropositioning END