このエントリーをはてなブックマークに追加
ID 19709
Eprint ID
19709
フルテキストURL
著者
Matsushita Shin-ya Akita Prefectural University
Li Xu Akita Prefectural University
抄録
This paper studies convergence properties of the proximal point algorithm when applied to a certain class of nonmonotone set-valued mappings. We consider an algorithm for solving an inclusion 0 ∈ T(x), where T is a metrically regular set-valued mapping acting from R(n) into R(m). The algorithm is given by the follwoing iteration: x(0) ∈ R(n) and x(k+1) = α(k)x(k) + (1 - α(k))y(k), for k = 0, 1, 2, ..., where {α(k)} is a sequence in [0, 1] such that α(k) ≤ α < 1, g(k) is a Lipschitz mapping from R(n) into R(m) and y(k) satisfies the following inclusion 0 ∈ g(k)(y(k)) - g(k)(x(k)) + T(y(k)). We prove that if the modulus of regularity of T is sufficiently small then the sequence generated by our algorithm converges to a solution to 0 ∈ T(x).
発行日
2009-11-11
出版物タイトル
Proceedings : Fifth International Workshop on Computational Intelligence & Applications
2009巻
1号
出版者
IEEE SMC Hiroshima Chapter
開始ページ
270
終了ページ
273
ISSN
1883-3977
NCID
BB00577064
資料タイプ
会議発表論文
言語
English
OAI-PMH Set
岡山大学
著作権者
IEEE SMC Hiroshima Chapter
イベント
5th International Workshop on Computational Intelligence & Applications IEEE SMC Hiroshima Chapter : IWCIA 2009
イベント地
東広島市
イベント地の別言語
Higashi-Hiroshima City
論文のバージョン
publisher
査読
有り
Sort Key
50
Eprints Journal Name
IWCIA